June 11, 2018 Yokohama, Japan

Recommendation Technologies for Multimedia Content

Xiangnan He
National University
of Singapore

Hanwang Zhang
Nanyang Technological
University

Tat-Seng Chua
National University of
Singapore

Slides are available: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Image/Video Recommendation (Hanwang, 25 mins)
- Conclusion (Hanwang, 5 mins)

Retrieval vs. Recommendation

- Retrieval is information pull:
 - User pulls desired information by making a specific request

User intent is **explicitly** reflected in query

- Recommendation is information push:
 - System pushes desired information to a user by guessing her interest

User intent is **implicitly** reflected in interaction history, profile, contexts etc.

- Retrieval mostly exists in search engines
- But, recommendation exists everywhere...
 - When you search for a product <= Ad recommendation</p>

Search results of Taobao

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsvs.pdf

- Retrieval mostly exists in search engines
- But, recommendation exists everywhere...
 - When you search for a product => Ad recommendation
 - When you open a product page => Product recommendation

Screenshot of Amazon

- Retrieval mostly exists in search engines
- But, recommendation exists everywhere...
 - When you search for a product => Ad recommendation
 - When you open a product page => Product recommendation
 - When you watch a video => Video Recommendation

Up next

The Star Online 108K views

How Donald Trump Answers A Question

Nerdwriter1 @ 7.3M views

North Korea's Kim Jong Un Calls President Donald Trump...

3M views

President Trump reads letter from Kim Jong Un (YouTube)

- Retrieval mostly exists in search engines
- But, recommendation exists everywhere...
 - When you search for a product => Ad recommendation
 - When you open a product page => Product recommendation
 - When you watch a video => Video Recommendation
 - When you read a news => News recommendation
 - When you book a flight => Hotel Recommendation
 - When you use social network => Friend Recommendation
 - When you are hungry => Restaurant Recommendation
 - When you open any webpage/app, there maybe a recommendation list.

• • • • •

Value of Recommender System (RecSys)

- RecSys has become a major monetization tool for customeroriented online services
 - E.g., E-commerce, News Portal, Social Networks, etc.
- Ad systems are technically supported by recommendation solutions.
 - The key is Click-Through Rate (CTR) prediction
- Some statistics:
 - YouTube homepage: 60%+ clicks [Davidson et al. 2010]
 - Netflix: 80%+ movie watches, 1billion+ value/year [Gomze-Uribe et al 2016]
 - Amazon: 30%+ page views [Smith and Linden, 2017]

Why RecSys + MultiMedia?

- Multimedia contents are prevalent in Web, generated and consumed in a fast speed.
 - YouTube, Pinterest, Snap etc.
 - => Need dedicated RecSys for multimedia contents (e.g., images, videos)
- A picture is worth a thousand words
 - Visual signal is crucial to attract users perform an action.
 - Many non-multimedia items are affiliated with image/video for better explanation, e.g., news, products, ads
 - => Need enhanced RecSys to incorporate visual signal

Some Useful Resources

- Recent challenges:
 - MediaEval 2018 on content-based movie recommendation:
 http://www.multimediaeval.org/mediaeval2018/content4recsys/
 - ACM MM Challenge 2018 on social media headline prediction:
 https://social-media-prediction.github.io/PredictionChallenge/
- Datasets:
 - Pinterest images:https://sites.google.com/site/xueatalphabeta/academic-projects
 - Amazon products (with images):http://jmcauley.ucsd.edu/data/amazon/

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
 - Traditional Shallow Learning Methods
 - Recent Deep Learning Methods
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Visual Recommendation (Hanwang, 25 mins)
- Conclusion (Hanwang, 5 mins)

Problem Formulation

Recommendation solves a matching problem.

User Profile (query):

- User ID
- Rating history
- Age, Gender
- Income level
- Time of the day

.....

Item Profile (document):

- Item ID
- Description
- Category
- Price
- Image

••••

Challenge: no overlap between user features and item features Matching can't be done on the superficial feature level!

Collaborative Filtering

 Collaborative Filtering (CF) is the most well-known technique for recommendation.

"CF makes predictions (**filtering**) about a user's interest by collecting preferences information from many users (**collaborating**)" ---Wikipedia

Math formulation: matrix completion problem

User	Movie	Rating				Movie				
Alice	Titanic	5				ΤI	NH	SW	ST	
Alice	Notting Hill	3			Α	5	3	1	2	
Alice	Star Wars	1			•	5	0		•	•••
Bob	Star Wars	4		User	В	?	?	4	5	
Bob	Star Trek	5	V	Š	С	1	?	5	?	
Charlie	Titanic	1								
Charlie	Star Wars	5				•••	•••	•••	•••	• • •
						_		_		_
Inp	ut Tabular data				Rating Matrix (Interaction Matrix)					

13

Solving Matrix Completion

 Singular Value Decomposition (SVD) is the most well-known technique for matrix completion

Rating Matrix

Steps to use SVD for CF:

- Impute missing data to 0 in Y
- 2. Solving the SVD problem
- 3. Using only *K* dimensions in **U** and **V** to obtain a low rank model to estimate **Y**

SVD is Suboptimal for CF

$$\mathbf{Y}_{m \times n} = \mathbf{U}_{m \times k} \mathbf{\Sigma}_{k \times k} \mathbf{V}^{*}_{k \times n}$$

In essence, SVD is solving the problem:

$$\arg\min_{\mathbf{U}, \Sigma, \mathbf{V}} (\mathbf{Y} - \mathbf{U}\Sigma\mathbf{V}^T)^2$$

$$= \arg\min_{\mathbf{U}, \Sigma, \mathbf{V}} \sum_{i=1}^m \sum_{j=1}^n \underbrace{(\mathbf{U}\Sigma\mathbf{V}^T)_{ij}^2}_{\text{Model Prediction}}$$

$$\operatorname{Training instance}$$

- Several Implications (weaknesses):
 - 1. Missing data has the same weight as observed data (>99% sparsity)
 - 2. No regularization is enforced easy to overfit

Adjust SVD for CF

The "SVD" model in the context of recommendation:

$$\hat{y}_{ui} = \mathbf{v}_u^T \mathbf{v}_i$$

User latent vector

Item latent vector

Regularized Loss function:

$$L = \sum_{u} \sum_{i} w_{ui} (y_{ui} - \hat{y}_{ui})^2 + \lambda (\sum_{u} ||\mathbf{v}_{u}||^2 + \sum_{i} ||\mathbf{v}_{i}||^2)$$
Prediction error

L2 regularizer

- This method is also called Matrix Factorization (MF) in RecSys:
 - It represents a user and an item as a latent vector (ID embedding).
 - The interaction between user and item is modelled using inner product (measure how much user latent "preferences" match with item "properties"
 - Besides L2 regularized loss, other loss can also be used, e.g., crossentropy, margin-based pairwise loss, etc.

Why MF Can Capture CF

Latent Embedding space:

Train the model on all observed interactions by sharing user embedding and item embedding

17

Figure adopted from: https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf

Factored Item Similarity Model (Kabbur et al., KDD'14)

- MF encodes a user with an ID, and projects it to embedding.
 - Also called as user-based CF (i.e., find similar users for recom)
- Another more meaningful encoding is to use rated items of the user.
 - Also called as item-based CF (i.e., find similar items for recom)

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

SVD++: Fusing User-based and Item-based CF (Koren, KDD'08)

- MF (user-based CF) represents a user as her ID.
 - Directly projecting the ID into latent space
- FISM (item-based CF) represents a user as her interacted items.
 - Projecting interacted items into latent space
- SVD++ fuses the two types of models in the latent space:

$$\hat{y}_{ui} = (\mathbf{v}_u + \sum_{j \in \mathcal{R}_u} \mathbf{q}_j)^T \mathbf{v}_i$$

User representation in latent space

 This is the best single model for rating prediction in the Netflix challenge.

Note: the normalization terms are discarded for clarity.

Generic Feature-based Recommendation

- CF utilizes only the interaction matrix only to build the predictive model.
- How about other information like user/item attributes and contexts?
- Example data used for building a RecSys:

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Morden RecSys Architecture

Generic Feature-based Recommendation

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

FM: Factorization Machine (Rendle, ICDM'10)

- FM is inspired from previous factorization models
- It represents each feature an embedding vector, and models the second-order feature interactions:

 Only nonzero features

$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p <\mathbf{v}_i, \mathbf{v}_j > \underbrace{x_i x_j}$$
 First-order: Linear Regression Second-order: pair-wise interactions between features

- Note: self-interaction is not included: $\langle v_i, v_i \rangle$.
- FM allows easy feature engineering for recommendation, and can mimic many existing models (that are designed for a specific task) by inputting different features.
 - E.g., MF, SVD++, timeSVD (Koren, KDD'09), PITF (Rendle, WSDM'10) etc.

Matrix Factorization with FM

Input: 2 variables <user (ID), item (ID)>.

With this input, FM is identical to MF with bias:

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i + \langle \mathbf{v}_u, \mathbf{v}_i \rangle$$

Factored Item Similarity Model with FM

Input: 2 variables <user (historical items ID), item (ID)>.

Further input user ID into FM will resume SVD++

With this input, FM subsumes FISM with additional terms:

$$\hat{y}(\mathbf{x}) = bias + \sum_{j \in \mathcal{R}_u} <\mathbf{v}_j, \mathbf{v}_i> + \sum_{j \in \mathcal{R}_u, j'>j} <\mathbf{v}_j, \mathbf{v}_{j'}>$$
 FISM

Explicit Feedback vs. Implicit Feedback

Explicit Feedback

Movie

Ratings

Explicit Feedback conveys user preference explictly:

- Higher scores carry positive signal
- Lower scores carry negative signal

Implicit Feedback

Movie

		TI	NH	SW	ST	
User	Α	1	1	1	?	
	В	?	?	1	1	
	С	1	?	1	?	

Watches, Clicks, Purchases ...

Implicit Feedback conveys user preference implicitly:

- Observed interactions do not mean positive signal
- Unobserved interactions do not mean negative signal

Rating Prediction vs. Ranking

Old work on recommendation optimize L2 loss:

$$L = \sum_{u} \sum_{i} w_{ui} (y_{ui} - \hat{y}_{ui})^{2} + \lambda (\sum_{u} ||\mathbf{v}_{u}||^{2} + \sum_{i} ||\mathbf{v}_{i}||^{2})$$

– But many empirical evidence show that:

A lower error rate does not lead to a good ranking performance...

- Possible Reasons:
 - 1) Discrepancy between error measure (e.g., RMSE) and ranking measure.
 - 2) Observation bias users tend to rate on the items they like.
- Modern work on recommendation optimize pairwise ranking loss:

sigmoid Positive prediction Negative prediction
$$L_{BPR} = \arg\max_{\Theta} \frac{\ln\sigma(\hat{y}_{ui} - |\hat{y}_{uj}|) - \lambda||\Theta||^2}{(u,i,j)\in\mathcal{R}_B} \text{ Pairwise training examples: } u \text{ prefers } i \text{ over } j$$

- Known as the Bayesian Personalized Ranking loss (Rendle, UAI'09).
- It optimizes relative ranking between two items, rather than absolute scores

References

- https://en.wikipedia.org/wiki/Collaborative_filtering
- Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization for online recommendation with implicit feedback. In SIGIR 2016.
- Yehuda Koren, and Robert Bell. Advances in collaborative filtering. Recommender systems handbook. Springer, Boston, MA, 2015. 77-118.
- Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity models for top-n recommender systems. In KDD 2013.
- Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD 2018.
- Steffen Rendle. Factorization machines. In ICDM 2010.
- Yehuda Koren. Collaborative filtering with temporal dynamics. Communications of the ACM 53, no. 4 (2010): 89-97.
- Steffen Rendle, and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM 2010.
- Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic coordinate descent framework for learning from implicit feedback. In WWW 2017.
- Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
 Neural collaborative filtering. In WWW 2017.
- Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
 BPR: Bayesian personalized ranking from implicit feedback. In UAI 2009.

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
 - Traditional Shallow Learning Methods
 - Recent Deep Learning Methods
 - 1) Deep Collaborative Filtering methods
 - 2) Deep Feature-based Recommender Models
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Image/Video Recommendation (Hanwang, 25 mins)
- Summary (Hanwang, 5 mins)

Deep Learning Models for CF

Methods of representation learning

Methods of matching function learning

Next ...

Methods of representation learning

- DeepMF: Deep Matrix Factorization (Xue et al, IJCAI'17)
- AutoRec: Autoencoders Meeting CF (Sedhain et al, WWW'15)
- **CDAE**: Collaborative Denoising Autoencoder (Wu et al, WSDM'16)

Matrix Factorization as a Neural Network (Wang et al, SIGIR'17)

- Input: user -> ID (one-hot), item -> ID (one-hot).
- Representation Function: linear embedding layer.
- Matching Function: inner product.

$$f_{MF}(u, i | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^{\top} \mathbf{q}_i = \sum_{k=1}^K p_{uk} q_{ik},$$

Deep Matrix Factorization (Xue et al, IJCAI'17)

Input:

user -> items that she has rated (multi-hot), i.e., row vector of Y indicates the user's global preference

item -> users who have rated it (multi-hot), i.e., column vector of Y indicates the item's rating profile.

Deep Matrix Factorization (Xue et al, IJCAI'17)

Representation Function:

Multi-Layer Perceptron

AutoRec (Sedhain et al, WWW'15)

- Input: (similar to DeepMF)
 - user -> historically rated items (user-based autoencoder).
 - item-> ID
- Representation Function: Multi-Layer Perceptron
- Matching Function: inner product

Input reconstruction: $h(\mathbf{r}; \theta) = f(\mathbf{W} \cdot g(\mathbf{Vr} + \boldsymbol{\mu}) + \mathbf{b})$

$$\min_{\theta} \sum_{i=1}^{n} \left[|\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2}), \right]$$

Output weights denote item representation

Hidden neurons denote user representation

Collaborative Denoising Auto-Encoder (Wu et al, WSDM'16)

Input:

User Node

user -> ID & historically rated items (similar to SVD++) item -> ID

Representation Function: Multi-Layer Perceptron

Short Summary

- Either ID or history is used as the profile of user/item
- Models with history as input are more expressive, but are also more expensive to train.
- The Auto-Encoder architecture is essentially identical to MLP (representation learning) + MF (matching function).

Nonlinear Linear

Next...

Methods of matching function learning:

- Based on Neural Collaborative Filtering (NCF) framework:
 - NeuMF: Neural Matrix Factorization (He et al, WWW'17)
 - NNCF: Neighbor-based NCF (Bai et al, CIKM'17)
 - ConvNCF: Convolutional NCF (He et al, IJCAI'18)

Why Using Neural Networks to Learn the Matching Function?

• The simple choice of inner product can limit the *expressiveness* of an embedding-based matching model.

$$\hat{y}_{ui} = \mathbf{U}_i^T \mathbf{V}_j \simeq cos(\mathbf{U}_i, \mathbf{V}_j)$$

(E.g., assuming a unit length)

Example:

$$sim(u1, u2) = 0.5$$

$$sim(u3, u1) = 0.4$$

 $sim(u3, u2) = 0.66$

Jaccard Similarity: $s_{ij} = \frac{|\mathcal{R}_i| \cap |\mathcal{R}_j|}{|\mathcal{R}_i| \cup |\mathcal{R}_j|}$

Neural Collaborative Filtering Framework (He et al, WWW'17)

• NCF is a general framework that replaces the inner product with a neural network to learn the matching function. $\hat{y}_{ui}=f(\mathbf{p}_u,\mathbf{q}_i)$

Figure 2: Neural collaborative filtering framework

Multi-Layer Perceptron for CF

• The most intuitive idea is to use a Multi-Layer Perceptron as the matching function.

(He et al, WWW'17)

MLP is Weak in Capturing Low-Rank Relation (Beutel et al, WSDM'18)

Setting: Generating low-rank data, and using one-layer MLP to fit it.
r: rank size; m: data dimension (2 -> matrix; 3 -> 3D tensor).

We have to design more effective models to make DNN work for CF!

MLP can learn to approximate the low-rank relation, but is inefficient in doing so.

NeuMF: Neural Matrix Factorization (He et al, WWW'17)

- NeuMF unifies the strengths of MF and MLP in learning the matching function:
 - MF uses inner product to capture the low-rank relation
 - MLP is more flexible in using DNN to learn the matching function.

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

NNCF: Neighbor-based NCF (Bai et al, CIKM'17)

- Feeding user and item neighbors into the NCF framework
 - Direct neighbors or community neighbors are considered.

Experiment Evidence

Datasets	#Interaction	# Users	#Items	Sparsity
Delicious	437,593	1,867	69,223	99.66%
MovieLens	1,000,209	3,706	6,040	95.53%

Performance Comparison on Item Recommendation (%)

Datasets	Delic	cious	MovieLens		
Models	HR@5	NDCG@5	HR@5	NDCG@5	
ItemPop	5.41	3.22	31.49	20.18	
ItemKNN	59.69	55.90	45.01	30.14	
MF-BPR	73.77	74.11	51.03	36.21	
NeuMF	85.53	80.68	56.55	38.30	
NNCF	87.31	84.58	62.00	42.21	

CF method is better than non-personalized method

Model-based CF is better than memory-based CF

Deep NCF models are better than shallow MF models by a large margin.

(Bai et al, CIKM'17)

Convolutional NCF (He et al, IJCAI'18)

- Although fully connected layers are popular in learning the matching function, they have too many parameters.
- Recently, we propose to use the locally connected CNN to build deeper NCF models.

Experiment Evidence

Datasets	#Interactions	#Users	#Items	Sparsity
Yelp	730,791	25,815	25,677	99.89%
Gowalla	1,249,703	54,156	52,400	99.95%

Datasets	Gov	valla	Yelp		
Models	HR@5	NDCG@5	HR@5	NDCG@5	
ItemPop	20.03	10.99	7.10	3.65	
MF-BPR	62.84	48.25	17.52	11.04	
MLP	63.59	48.02	17.66	11.03	
IRGAN	63.89	49.58	18.61	11.98	
NeuMF	67.44	53.19	18.81	11.89	
ConvNCF	69.14	54.94	19.06	12.09	

ConvNCF are better than NeuMF and MLP with much fewer parameters.

47

(He et al, IJCAI'18)

Morden RecSys Architecture

Recall: Input to Feature-based Models

Raw features:

- Categorical features
 One-hot encoding on ID features
- 2. Continuous features
 E.g., time, frequency.
 Need feature normalization

Transformed features:

- Categorical features
 Cross features are important (e.g., AND (A=true, B=true))
- 2. Continuous features
 E.g., outputs of other models like visual embeddings.

Target y

y⁽¹⁾

y⁽²⁾

 $V^{(3)}$

y⁽⁴⁾

y⁽⁵⁾

y⁽⁶⁾

 $y^{(7)}$

Importance of Cross Feature

An example that cross feature (feature interaction) is important for prediction:

```
Task: predict customer income.
```

Two input variables:

- 1) occupation = {banker, engineer,...}
- 2) Level = {junior, senior}

Facts:

```
income(junior, banker) < income(junior, engineer)
but,</pre>
```

Income(senior, banker) > income(senior, engineer)

Wide&Deep (Cheng et al, Recsys'16)

- The wide part is linear regression for memorizing seen feature interactions, which requires careful engineering on cross features.
 E.g., AND(gender=female, language=en) is 1 iff both single features are 1
- The deep part is DNN for generalizing to unseen feature interactions.
 Cross feature effects are captured in an implicit way.

Wide&Deep for Google App Recommendation (Cheng et al, Recsys'16)

Deep Crossing (Shan et al, KDD'16)

Microsoft's Sponsor Search Solution in 2016:

The use of residual layers makes the network be deep.

Empirical Evidence

 However, when only raw features are used, both DL models don't perform well in learning unseen feature interactions.

Solid line: testing loss; Dashed line: training loss

(He and Chua, SIGIR'17)

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Why MLP is Ineffective?

Besides optimization difficulties, one reason might be model design:

- 1. Embedding concatenation carries little information about feature interactions in the low level!
- 2. The structure of Concat+MLP is ineffective to learn the multiplicative relation (Beutel et al, WSDM'18).

NFM: Neural Factorization Machine (He and Chua, SIGIR'17)

 Inspired by FM, NFM models pairwise interactions between feature embeddings with multiplication.

Figure 2: Neural Factorization Machines model (the first-order linear regression part is not shown for clarity).

Experiment Evidence

Task #1: Context-aware App Usage Prediction - Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation - MovieLens data: Inst #: 2,006,859, Feat #: 90,445

Table: Parameter # and testing RMSE at embedding size 128

	Fra	ppe	MovieLens		
Method	Param#	RMSE	Param#	RMSE	
Logistic Regression	5.38K	0.5835	0.09M	0.5991	
FM	1.38M	0.3385	23.24M	0.4735	
High-order FM	2.76M	0.3331	46.40M	0.4636	
Wide&Deep (3 layers)	4.66M	0.3246	24.69M	0.4512	
DeepCross (10 layers)	8.93M	0.3548	25.42M	0.5130	
Neural FM (1 layer)	1.45M	0.3095	23.31M	0.4443	

Codes: github.com/hexiangnan/neural_factorization_machine

- 1. Shallow embedding methods learn interactions, better than simple linear models
- Deep embedding methods:
 Wide&Deep = Concat+3 layers
 DeepCross = Concat+10 layers
- 3. Our methods:

Neural FM = BI pooling + 1 layer Shallower but outperforming existing deeper methods with less parameters.

AFM: Attentional Factorization Machine (Xiao et al, IJCAl'17)

- Neural FM treats all second-order feature interactions as contributing equally.
- Attentional FM uses an attention network to learn the weight of a feature interaction.

Explaining Recommendation with AFM

The attention scores can be used to select the most predictive second-order feature interactions as explanations.

Example: explainable recommendation with second-order cross features:

<Female, Age 20>

<Age 20, iPhone>

<Female, Color Pink>

....

Experiment Evidence

Task #1: Context-aware App Usage Prediction - Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation - MovieLens data: Inst #: 2,006,859, Feat #: 90,445

Table: Parameter # and testing RMSE at embedding size 128

	Fra	ppe	MovieLens		
Method	Param#	RMSE	Param#	RMSE	
Logistic Regression	5.38K	0.5835	0.09M	0.5991	
FM	1.38M	0.3385	23.24M	0.4735	
High-order FM	2.76M	0.3331	46.40M	0.4636	
Wide&Deep (3 layers)	4.66M	0.3246	24.69M	0.4512	
DeepCross (10 layers)	8.93M	0.3548	25.42M	0.5130	
Neural FM (1 layer)	1.45M	0.3095	23.31M	0.4443	
Attentional FM (0 layer)	1.45M	0.3102	23.26M	0.4325	

AFM without hidden layers can be better than NFM with 1 hidden layer.

Codes: github.com/hexiangnan/attentional_factorization_machine

Short Summary

- ✓ Deep methods for collaborative filtering
 - User/Item representation learning
 - Matching function learning
- ✓ Deep methods for feature-based recommendation
 - Cross features are important to encode
 - DNN can effectively learn feature interactions, but require careful design
- It remains challenging to do explainable learning on high-order feature interaction.

Reference

- Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative filtering. In WWW 2017.
- Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. Out Product-based Neural Collaborative Filtering. In IJCAI 2018.
- Xiangnan He, and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In SIGIR 2017.
- Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional factorization machines: Learning the weight of feature interactions via attention networks. In IJCAI 2017.
- Ting Bai, Ji-Rong Wen, Jun Zhang, and Wayne Xin Zhao. A Neural Collaborative Filtering Model with Interaction-based Neighborhood. In CIKM 2017.
- Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In Recsys 2016.
- Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Item silk road: Recommending items from information domains to social users. In SIGIR 2017.
- Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix factorization models for recommender systems. IJCAI 2017.
- Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet collaborative filtering. In WWW 2015.
- Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative denoising autoencoders for top-n recommender systems. In WSDM 2016.
- Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson et al. Wide & deep learning for recommender systems. In DLRS 2016.
- Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and J. C. Mao. Deep crossing: Web-scale modeling without manually crafted combinatorial features. In KDD 2016.
- Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender Systems. In WSDM 2018.

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Image/Video Recommendation (Hanwang, 25 mins)
- Conclusion (Hanwang, 5 mins)

Problem Formulation

Each item = ID + image

Two key questions:

- 1. How to understand image?
- 2. How to integrate image feature into CF model?

Image Understanding

- Traditional (low-level) image features:
 - Pixels, Color histograms
 - SIFT descriptors
 - Speeded Up Robust Features (SURF)
- Gap between low-level features and real semantics.
- Recent work uses deep CNN as feature extractor.

Extract high level features

Classify each sample

Collaborative Filtering with CNN Features

- Let \mathbf{f}_i be CNN features for image i:
 - Usually of thousands dimension: AlexNet: 4096, ResNet: 2048
- MF predicts user rating on image *i*:

$$\hat{y}_{ui} = \langle \mathbf{p}_u, \mathbf{f}_i \rangle = \mathbf{p}_u^T \mathbf{f}_i$$

User preference on image CNN features

- Problem:
 - $-\mathbf{p}_u$ has to be of the same dimension as \mathbf{f}_i
 - Too big for CF latent space: too many parameters => overfitting
 E.g., 100 million users * 4096 * 8 B = 3.28 TB
 - Typically, the dimension of CF latent space is hundreds (128, 256) at most.

Deep CNN Features => CF Latent Space

- An intuitive solution is to do dimension reduction on CNN features, e.g., PCA
- However, it will lose signal in CNN features.
 - The objective of dimension reduction is not recommendation.
- Solution: learning a transformation matrix to do the projection based on user-item interactions:

$$\hat{y}_{ui} = \mathbf{p}_u^T (\mathbf{E} \mathbf{f}_i)$$

Transformation matrix that projects CNN features to CF latent space

E is optimized for the recommendation task.

VBPR: Visual Bayesian Personalized Ranking (He et al, AAA'16)

 The first visually-aware recommendation method based on Deep CNN features:

$$\hat{y}_{ui} = b_u + b_i + \mathbf{v}_u^T \mathbf{v}_i + \mathbf{p}_u^T (\mathbf{E} \mathbf{f}_i)$$

Bias terms

CF prediction Image feature-based Prediction

VBPR: Visual Bayesian Personalized Ranking (He et al, AAA'16)

$$\hat{y}_{ui} = b_u + b_i + \mathbf{v}_u^T \mathbf{v}_i + \mathbf{p}_u^T (\mathbf{E} \mathbf{f}_i)$$

To learn model parameters, VBPR optimizes BPR pairwise loss:

sigmoid Positive prediction Negative prediction
$$L_{BPR} = \arg\max_{\Theta} \frac{ \left| \ln\sigma(\hat{y}_{ui} - \hat{y}_{uj}) - \lambda \right| |\Theta||^2}{(u,i,j) \in \mathcal{R}_B} \text{ Pairwise training examples: } u \text{ prefers } i \text{ over } j$$

Pairwise loss on the model:

69

Experimental Results

AUC score on personalized ranking

Dataset	Setting	(a) RAND	(b) MP	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items Cold Start	0.4997 0.5031	0.5772 0.3159	0.7020 0.5281	0.7834 0.6813	9.4% 2.1%	11.6% 29.0%
Amazon Men	All Items <i>Cold Start</i>	0.4992 0.4986	0.5726 0.3214	0.7100 0.5512	0.7841 0.6898	9.1% 1.6%	10.4% 25.1%
Amazon Phones	All Items <i>Cold Start</i>	0.5063 0.5014	0.7163 0.3393	0.7918 0.5346	0.8052 0.6056	1.2% -4.2%	1.7% 13.3%
Tradesy.com	All Items Cold Start	0.5003 0.4972	0.5085 0.3721	0.6198 0.5241	0.7829 0.7594	26.3% 44.9%	26.3% 44.9%

- 1. RAND < MP (popularity) < BPR-MF < VBPR
- 2. VBPR has more improvements for cold-start items
- 3. Visual signal are more important for Clothing than Phones.

Visualization on Transformed CNN Features

$$\hat{y}_{ui} = \mathbf{p}_u^T (\mathbf{E}\mathbf{f}_i)$$

2D visualization (with t-SNE) on Amazon women dataset.

Items of the same subcategory are mapped to nearby locations.

DeepStyle (Liu et al, SIGIR'17)

- Drawback of VBPR: the transformed features mainly encode the category info, rather than the style info.
 - Example categories: ups, dresses, shoes, watches ...
 - Example styles: casual, athletic, formal ...

Each row is a cluster based on learned features.

Each cluster mixes items of different styles

DeepStyle (Liu et al, SIGIR'17)

Item representation should be two-facet:

 User rating on a fashion product is mainly determined by its style, rather than category.

- But how do we get style representation for an image?
 - A dedicated style-CNN needs labeled data.

Solution: learn it from user-item interaction data!

DeepStyle (Liu et al, SIGIR'17)

Representation: item = style + category

Embedding:

$$\mathbf{Ef}_i = \mathbf{s}_i + \mathbf{c}_i$$

Transformed Style Category
CNN features vector vector

$$\mathbf{s}_i = \mathbf{E}\mathbf{f}_i - \mathbf{c}_i$$

Prediction model:

$$\hat{y}_{ui} = b_u + b_i + \mathbf{v}_u^T \mathbf{v}_i + \mathbf{p}_u^T (\mathbf{E} \mathbf{f}_i - \mathbf{c}_i)$$

Remove the effect of category info in prediction

DeepStyle (Liu et al, SIGIR'17)

Experimental Results

AUC score on personalized ranking

dataset	setting	BPR	VBPR	DeepStyle
Clothing	warm-start cold-start	$0.6243 \\ 0.5037$	$0.7441 \\ 0.6915$	$0.7961 \\ 0.7317$
Home	warm-start cold-start	$0.5848 \\ 0.5053$	$0.6845 \\ 0.6140$	$0.7155 \\ 0.6396$

Room of improvement by learning better image representation.

Visualization on clusters of item style vector: $\mathbf{s}_i = \mathbf{E}\mathbf{f}_i - \mathbf{c}_i$

Each cluster mixes item of different categories, but they follow the same style!

Visually Explainable CF (Chen et al, 2018)

 Users care about different visual features even on the same item.

Visually Explainable CF (Chen et al, 2018)

- Uncover region-level user preference with attention
 - Different regions of an image affect a user differently.
 - Originated from Attentive CF (Chen et al, SIGIR'17)

(a) Visually explainable collaborative filtering (VECF)

Visually Explainable CF + User Reviews (Chen et al, 2018)

- Attention Net can learn user preference on regions, but may not be accurate in doing this.
- User review may help!

Some review words can be aligned with image regions

Visually Explainable CF + User Reviews (Chen et al, 2018)

Generative model to incorporate review text:

(b) Review-enhanced visually explainable collaborative filtering (Re-VECF)

Visually Explainable CF + User Reviews (Chen et al, 2018)

Learning model in a multi-task way:

$$l_2 = \delta \left[\sum_{i,j} \sum_{t=1}^{l_{ij}} \log \ p(w_{ij}^t | \boldsymbol{w}_{ij}^{1:t-1}, \boldsymbol{z}_{ij}^{t-1}) \right]$$
 Task #1: review generation (error of generating each word)
$$+ (1 - \delta) \left[\sum_{i \in \boldsymbol{u}} \sum_{j \in \boldsymbol{v}_+^i} \log \hat{y}_{ij} + \sum_{i \in \boldsymbol{u}} \sum_{j \in \boldsymbol{v}/\boldsymbol{v}_+^i} \log (1 - \hat{y}_{ij}) - \lambda ||\Theta||_F^2 \right]$$

Task #2: user preference prediction (point-wise cross entropy loss)

Experimental Results

Dataset	Men			Women		
Measure@5(%)	F_1	HR	NDCG	F_1	HR	NDCG
BPR	1.209	3.901	0.740	0.897	3.342	0.611
HFT	1.242	4.243	0.757	0.915	3.371	0.631
VBPR	1.361	4.261	0.773	0.929	3.402	0.648
VECF	1.378	4.373	0.791	0.948	3.523	0.669
Re-VECF	1.442	4.803	0.846	0.985	3.587	0.712

HFT(review) vs. VBPR (image)

VECF (Visually Explainable CF) vs. Re-VECF (Review-enhanced VECF)

Image Attention with Review

			_		
#	Target Item	Historical Records	Textual Review	Visual E VECF	xplanation Re-VECF
2	Ö		this is a really comfortable v-neck i found that the size and location of the v are just right for me. i'm 5'8 & #34, but 200 lbs (and dropping:))		
3		nn	Great leggings perfect for fly fishing or hunting or running. just perfect anytime you are cold!	M	
4			The socks on the shoes are a perfect fit for me. first time with a shoe with the speed laces and i like them a lot		
5			Really like these socks! they are really thick woolen socks and are good for cold days. they cover a good portion of your feet as they go a little (halfway) above the calf muscle area.	J	
6			I like the front pocket∼. Very cool!		

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Short Summary

- The quality of image features is crucial for visuallyaware recommendation.
 - Attention over regions is helpful
- After projecting image features to embedding space, it becomes a standard recommendation problem.
 - Any advanced preference learning techniques introduced in Part I can be used.

Reference

- He, Ruining, and Julian McAuley. "VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback." In AAAI 2016.
- Chen, Jingyuan, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. "Attentive collaborative filtering: Multimedia recommendation with itemand component-level attention." In SIGIR 2017.
- Liu, Qiang, Shu Wu, and Liang Wang. "DeepStyle: Learning User Preferences for Visual Recommendation." In SIGIR 2017.
- Chen, Xu, Yongfeng Zhang, Hongteng Xu, Yixin Cao, Zheng Qin, and Hongyuan Zha. "Visually Explainable Recommendation." *arXiv preprint arXiv:1801.10288* (2018).
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In NIPS 2012.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." In ICLR 2015.

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Image/Video Recommendation (Hanwang, 25 mins)
- Conclusion (Hanwang, 5 mins)

Social Multimedia Data

Interaction with MM Content on Social Networks

Challenges

Large, sparse Image-User matrix

1M Flickr Image and 30K Tags: 99.7% sparsity

1M Pinterest Image and 10K Users: 99.1% sparsity

Sparse

X≈U'V

Diverse

Outline

- State-of-the-art visual representations (45min)
 - Image, object feature
 - Video feature
 - Dynamic representation (visual attention)
- Deep embedding visual representation into user-item matrix (25min)
 - Weakly, semi-supervised learning

The Feature Evolution Space

- Scale
 - Data, concept
- Depth
 - Content understanding
- Tech
 - Model

Near 2000: At the end of the early stage

2000~2005: The Rise of Local Features

2005~2011: The Mature of Shallow Methods

2012: The Revolution

2012~Now: The DL Republic

warped region

On the way of sharing context features

R-CNN [Girshick et al. CVPR'14]

1. Input image

2. Extract region

proposals (~2k)

3. Compute **CNN** features

4. Classify regions

> 5. Bounding Box Regression

aeroplane? no.

person? yes.

tvmonitor? no.

No context shared (66.0% mAP)

Too many CNN pass (0.02 fps)

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

--- On the way of sharing context features

Fast R-CNN [Girshick et al. ICCV'15]

Few context shared (70.0% mAP)

Only one CNN pass but still requires 3rd party proposal (0.5 fps)

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

--- On the way of sharing context features

Rol pooling encapsulate context

--- On the way of sharing context features

Context can help to know "where": conv to generate proposals (73.2% mAP, 5 fps)

--- On the way of sharing context features

SSD [Liu et al. ECCV'16] (see also YOLO9K [Redmon et al CVPR'17])

Context can help to know "where" and "what" simultaneously: Conv at multi-layers to generate bbox and classes (75.1% mAP, 58 fps)

--- On the way of sharing context features

R-FCN[Dai et al. NIPS'16]

Context can help to know "where" and "what" **separately**: Conv to generate bbox (RPN) and classes (RoI pooling) 80.5% mAP, 6fps

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Message To-Go!

- Image feature
 - Apply CNN
 - Take the last layer output

- Object feature
 - Apply CNN-based object detector
 - Get the boxes (or masks)
 - Take the RoI feature who generates them

Video Representation

- The best hand-crafted: iDT
- The best spatial-temporal convolution: (2+1)D
 - + Two-Stream
- The best choice: Frame Pooling

Body up?

Kissed?

Weapon or arm forward?

Improved Dense Trajectories (iDT)

[Wang & Schimid. ICCV'13]

- Trajectory feature point + HOG descriptor + Fisher Vector Encoding + BoW ≅ 10K dimensions
- TRECVID MED challenge 2013 and THUMOS'13 action recognition challenge winners
- Slow and high-dimensional

Spatial-Temporal Convolution

Pre-Training for Features

Sports 1M [Karpathy et al. CVPR'14]

Videos: 1.1M Class: 487

ImageNet [Russakovsky et al. IJCV'15] Images: 1.2M Class: 1000

Boostrapping 3D from 2D [Mansimov et al. arXiv'15]
Boring video from ImageNet + Target video set

More ST Conv. Designs

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

More ST Conv. Designs

Message To-Go!

Performances on Sports 1M

Method	C3D	2D+ Pooling	(2+1) D	Two-Stream	(2+1)D+ Two-Stream
Video@5	85.2%	90.4%	91.5%	87.4%	91.9%

- Image-level is very strong
- Video-level requires tricky pre-training
- If you are lazy, just use image-level+pooling

Visual Attention

--- dynamic visual feature

 Inspired from cognitive science, visual saliency is a special case with prior.

[Jiang et al. CVPR'16]

- Pioneer works on signal band-width savings[Mnih et al. NIPS'15]
- Great success in Machine Translation [Bahdanau et al. ICLR'15] and Image Captioning [Xu et al. ICML'15].

Dynamic Feature

Question?

Generic Formulations

- Get a (local, partial) feature X_i
- Get a contextual information (env.) h
- Calculate an attention probability $p_i \propto F(X_i, h)$
- Calculate the new feature X
 - Probabilistic (hard): $X = Monte Carlo (p_i)$
 - Deterministic (soft): $X = \sum p_i X_i$

Notes

• Attention is not just "weighted sum" (soft), it is originally "discrete visual policy" (hard).

Reinforcement learning is its natural solution.

Shallow Visual Attention

GoogleNIC (Vinyals et al. 2014)

Vision Language Deep CNN Generating RNN

There are many vegetables at the fruit stand.

Attention (Xu et al. 2015)

Vector

Encoder (Image→CNN→Vector) → *Decoder* (Vector→Word Seq.)

1. Only spatial attention. What about various feature maps?

2. Only single layer. What about hierarchical attention?

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

CNN Revisit [Zeiler and Fergus. ECCV'14]

Layer3

Layer4

Layer5

Spatial- and Channel-wise Attention

[Chen et al. CVPR'17]

Ours: a woman walking down a street holding an <u>umbrella</u> SAT: a group of people standing next to each other GT: two females walking in the rain with umbrellas

Ours: a <u>clock</u> tower in the middle of a city SAT: a clock tower on the side of a building GT: there is an old clock on top of a bell tower

Temporal Attention in Video

[Yao et al. ICCV'15]

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Outline

- State-of-the-art visual representations (35min)
 - Image, object feature
 - Video feature
 - Dynamic representation (visual attention)
- Deep embedding visual representation into user-item matrix (35min)
 - Weakly, semi-supervised learning

How to embed features into CF?

Visual BPR [He & McAuley. AAAI'16]

How to embed features into CF?

- Van den Oord et all. Deep content-based music recommendation.
 NIPS'13
- Geng et al. One of a Kind: User Profiling by Social Curation. MM'14
- Geng et al. Learning Image and User Features for Recommendation in Social Networks. ICCV'15
- Lei et al. Comparative deep learning of hybrid representations for image recommendations. CVPR'16
- Chen et al. Attentive Collaborative Filtering. SIGIR'17
- Gao et al. A Unified Personalized Video Recommendation via Dynamic Recurrent Neural Networks. MM'17
- Niu et al. Neural Personalized Ranking for Image Recommendation.
 WSDM'18
- Yu et al. Aesthetic-based Clothing Recommendation. WWW'18

How to embed features into CF?

- Van den Oord et all. Deep content-based music recommendation.
 NIPS'13
- Geng et al. One of a Kind: User Profiling by Social Curation. MM'14
- Geng et al. Learning Image and User Features for Recommendation in Social Networks. ICCV'15
- Lei et al. Comparative deep learning of hybrid representations for image recommendations. CVPR'16
- Chen et al. Attentive Collaborative Filtering. SIGIR'17
- Gao et al. A Unified Personalized Video Recommendation via Dynamic Recurrent Neural Networks. MM'17
- Niu et al. Neural Personalized Ranking for Image Recommendation.
 WSDM'18
- Yu et al. Aesthetic-based Clothing Recommendation. WWW'18

Nature: Weakly Semi-Supervised Learning

- Weak
 - Partial feedback
- Semi-
 - Implicit feedback

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Towards "Weakly": Attentive CF

[Chen et al. SIGIR'17]

ACF: Attentive Collaborative Filtering (Chen et al, SIGIR'17)

Input:

user -> ID & historical interacted items.

Item -> ID & visual features.

Item Representation:

Component-level attention -> not all components contribute equally to an item's representation

 $x_{l.1}$

 $x_{l,2}$

 $(x_{l,m})$

124

ACF: Attentive Collaborative Filtering (Chen et al, SIGIR'17)

Input:

user -> ID & historical interacted items.

item -> ID & visual features.

User Presentation:

 Item-level attention -> not all historical items contribute equally to a user's representation

$$\hat{R}_{ij} = \left(\mathbf{u}_i + \sum_{l \in \mathcal{R}(i)} \alpha(i, l) \mathbf{p}_l\right)^T \mathbf{v}_j$$

Attention weights learned by a neural net ⇔ Attentive SVD++ model.

A user's preference on different items of history are not equal!

Attentive CF

$$\arg \min_{\mathbf{U}, \mathbf{V}, \mathbf{P}, \boldsymbol{\Theta}} \sum_{(i, j, k) \in \mathcal{R}_B} -\ln \sigma \left\{ \left(\mathbf{u}_i + \sum_{l \in \mathcal{R}(i)} \alpha(i, l) \mathbf{p}_l \right)^T \mathbf{v}_j - \left(\mathbf{u}_i + \sum_{l \in \mathcal{R}(i)} \alpha(i, l) \mathbf{p}_l \right)^T \mathbf{v}_k \right\} + \lambda (||\mathbf{U}||^2 + ||\mathbf{V}||^2 + ||\mathbf{P}||^2),$$

latent factor model

$$\hat{R}_{ij} = \underbrace{\mathbf{u}_{i}^{T} \mathbf{v}_{j}}_{l \in \mathcal{R}(i)} + \underbrace{\sum_{l \in \mathcal{R}(i)} \alpha(i, l) \mathbf{p}_{l}^{T} \mathbf{v}_{j}}_{neighborhood\ model},$$

Towards "Semi-": Deep Tree-CF

[Geng et al. ICCV'15]

A Closer Look

[Zhang et al. TOMM'16]

$$\min_{\mathbf{Y}} \sum_{ij} S_{ij} \log p(\mathbf{y}_i | \mathbf{y}_j)$$

Instead of $\langle y_i, y_j \rangle$, we use $\langle y_i, Y_i \rangle + \langle y_i, Y_i \rangle$

Visualization by Image and Word(User)

Out walking home early in the morning, i see this. A Macintosh Plus in a tree.. Briljant!

Reagan in pink striped dress in front yard - 82

Flickr 1M Image-Caption Pairs 8K+ Words

Image-Word Embedding

Table 2: Performance (mAP%) of keyword-based retrieval on NUSWIDE and CCV.

Dataset/Method	S-CNN	R-Ours	HR-Ours	GoogLeNet
NUSWIDE	19.2	21.1	24.3	23.0
CCV	20.9	24.7	36.2	19.4

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Word-Word Embedding

Table 1: Spearman correlation of 971 word-pair similarities computed by different methods and MEN human judgements. Our method learned from SBU is very close to Word2Vec learned from Google News.

Method	Word2Vec	S-CNN	Ours
MEN	0.65	0.36	0.64

Slides: http://comp.nus.edu.sg/~xiangnan/icmr18-recsys.pdf

Model Visualization: Why it works?

Summary

- Many multimedia tasks benefit from GOOD visual features, so does Recommendation!
- Image: Use fine-grained and dynamic features (RoI+Visual Attention).
- Video: Better choice is to follow image, but 3d-conv is worth trying.
- Please follow ``weakly semi-supervised learning " in ML for inspiration.

Outline of Tutorial

- Background (Xiangnan, 10 mins)
- Basics & Advances in Recommendation (Xiangnan, 50 mins)
- Visually-aware Product Recommendation (Xiangnan, 30 mins)
- Break (15 mins)
- Visual Representation (Hanwang, 45 mins)
- Image/Video Recommendation (Hanwang, 25 mins)
- Conclusion (Hanwang, 5 mins)

Conclusion

- Recommendation becomes increasingly important in our daily life
 - Age of Information overload
- Multimedia Recommendation is rich area of research.
 - ✓ Advanced recommendation technologies
 - ✓ Advanced visual representation learning
 - ✓ Representative visually-aware recommendation methods
- More research to be done in integrating state-of-theart CV techniques into recommendation.

Challenges

- Model: data-driven + knowledge-driven
 - Most current methods are purely data-driven
 - Prior information (e.g., domain knowledge, symbolic knowledge) is helpful and should be integrated into datadriven learning in a principled way.
- Task: multiple criteria
 - Existing work have primarily focused on similarity (relevance)
 - Different scenarios may have different matching goals
 - Other criteria such as novelty, diversity, and explainability should be taken into consideration

Thanks!