
Sui YD, Wang X, Chen TL et al. Inductive Lottery Ticket Learning for Graph Neural Networks. JOURNAL OF COM-
PUTER SCIENCE AND TECHNOLOGY 33(1): 1–15 January 2018. DOI 10.1007/s11390-015-0000-0

Inductive Lottery Ticket Learning for Graph Neural Networks

Yong-Duo Sui1 (隋勇铎), Xiang Wang1,∗ (王 翔), Member, CCF, Tianlong Chen2 (陈天龙), Meng Wang3 (汪
萌), Fellow, IEEE, Xiang-Nan He1,∗ (何向南), Member, CCF, Tat-Seng Chua4 (蔡达成)

1School of Data Science, University of Science and Technology of China, Hefei 230027, China
2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, U.S.A.
3School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
4School of Computing, National University of Singapore, Singapore

E-mail: syd2019@mail.ustc.edu.cn; xiangwang@ustc.edu.cn; tianlong.chen@utexas.edu; wangmeng@hfut.edu.cn;
hexn@ustc.edu.cn; dcscts@nus.edu.sg

Received June 28, 2022; accepted October 9, 2023.

Abstract Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable
computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The
recent work UGS studies lottery ticket learning for GNNs, aiming to find a subset of model parameters and graph structure
that can best maintain the GNN performance. However, it is tailed for the transductive setting, failing to generalize to
unseen graphs, which are common in inductive tasks like graph classification. In this work, we propose a simple and effective
learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with inductive pruning capacity.
To prune the input graphs, we design a predictive model to generate importance scores for each edge based on the input;
to prune the model parameters, it views the weight’s magnitude as their importance scores. Then we design an iterative
co-pruning strategy to trim the graph edges and GNN weights based on their importance scores. Although it might be
strikingly simple, ICPG surpasses the existing pruning method and can be universally applicable in both inductive and
transductive learning settings. On ten graph-classification and two node-classification benchmarks, ICPG achieves the same
performance level with 14.26%-43.12% sparsity for graphs and 48.80%-91.41% sparsity for the model.

Keywords lottery ticket hypothesis, graph neural networks, neural network pruning

1 Introduction

Graph neural networks (GNNs) [1–3] have become a
prevalent solution for machine learning tasks on graph-
structured data. Such success is usually ascribed to
the powerful representation learning of GNN, which in-
corporates the graph structure into the representations,
such as aggregating neural messages from the neighbor-
ing nodes to update the ego node’s representation.

As the field grows, there is an increasing need of
building deeper GNN architectures [4,5] on larger-scale
graphs [6]. While deepening GNNs shows potential

on large-scale graphs, it also brings expensive com-
putations due to the increased scale of graph data
and model parameters, limiting their deployment in
resource-constrained applications. Taking fraud detec-
tion in a transaction network as an example, the scale of
user nodes easily reaches millions or even larger, mak-
ing a GNN-detector model prohibitive to stack deep
layers and predict malicious behaviors in real-time.
Hence, pruning over-parameterized GNNs is of great
need, which aims to answer the question: Can we co-
sparsify the input graphs and model, while preserving

Regular Paper
This work was supported by the National Key Research and Development Program of China under Grant No. 2020YFB1406703,

and the National Natural Science Foundation of China under Grant No. 9227010114.
∗Corresponding Author
©Institute of Computing Technology, Chinese Academy of Sciences 2023

2 J. Comput. Sci. & Technol., January 2023, Vol., No.

or even improving the performance?
Recently, a pruning approach, UGS [7], has been

proposed to find graph lottery tickets (GLTs) — smaller
subsets of model parameters and input graphs. At its
core is Lottery Ticket Hypothesis (LTH) [8] speculat-
ing that any dense, randomly-initialized neural network
contains a sparse subnetwork, which can be trained in-
dependently to achieve a matching performance as the
dense network. Specifically, UGS employs trainable
masks on each edge in the input graph and each weight
in the model parameters, to specify their importance.
When training the model with the masks, the strategy
of iterative magnitude-based pruning (IMP) [8] is used
to discard the edges and weights with the lowest mask
values at each iteration.

Despite the effectiveness, there exist the following
limitations: (1) UGS focuses solely on providing trans-
ductive graph masks by generating a painstakingly cus-
tomized mask for a single edge individually and inde-
pendently. That is, the edge masks are limited to the
given graph, making UGS infeasible to be applied in the
inductive setting since the edge masks hardly generalize
to unseen edges or entirely new graphs. (2) Applying
a mask for each edge alone only provides a local un-
derstanding of the edge, rather than the global view of
the entire graph (e.g., in node classification) or multiple
graphs (e.g., in graph classification). Moreover, the way
of creating trainable edge masks will double the param-
eters of GNNs, which violates the purpose of pruning
somehow. As a result, these edge masks could be sub-
optimal to guide the pruning. (3) The unsatisfactory
graph pruning will negatively influence the pruning of
model weights. Worse still, low-quality weight pruning
will amplify the misleading signal of edge masks in turn.
They influence each other and form a vicious circle. We
ascribe all these limitations of UGS to its transductive
nature. Hence, conducting combinatorial pruning in
the inductive setting is crucial to high-quality winning
tickets.

In this work, we emphasize the inductive nature
within the combinatorial pruning of input graphs and
GNN parameters and present our framework, Inductive

Co-Pruning of GNNs (ICPG). It is an extremely sim-
ple but effective pruning framework that is applicable
to any GNN in both inductive and transductive set-
tings. Specifically, for the input graphs, we design a
predictive model, AutoMasker, which learns to gener-
ate edge masks from the observed graphs. It is pa-
rameterized with an additional GNN-based encoder,
whose parameters are shared across the population of
observed graphs. As a consequence, AutoMasker is nat-
urally capable to specify the significance of each edge
and extract core subgraphs from a global view of the
entire observations. For the model parameters, we sim-
ply exploit the magnitude of a model weight to as-
sess whether it should be pruned, rather than train-
ing an additional mask. Having established the edge
masks and weight magnitudes, we can obtain high-
quality GLTs by pruning the lowest-mask edges and
lowest-magnitude weights. Experiments on ten graph
classification and two node classification datasets con-
sistently validate our framework ICPG by identifying
high-quality GLTs. Moreover, we inspect the GNN-
level and graph-level transferability, which promises
for deploying ICPG in the pre-training and fine-tuning
paradigm to save the computational cost. The vi-
sualizations show that ICPG always retains decisive
subgraphs, such as edges located on digital pixels in
MNIST graphs, which further illustrates rationality and
explainability.

In all, our main contributions can be summarized
as follows.
•We introduce ICPG, an innovative pruning frame-

work, capable of pruning both the GNN model and
input graphs, which excels at identifying high-quality
GLTs across diverse graph representation tasks in both
inductive and transductive settings.
• We have validated ICPG’s capacity to find GLTs

in datasets of various scales through extensive experi-
ments, while maintaining performance with a range of
graph sparsity from 22.62% to 43.12% and GNN spar-
sity from 67.23% to 91.41%.
• We demonstrate that ICPG offers transferability

at both the GNN and graph levels, resulting in im-

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 3

proved performance and lower computational costs in
downstream tasks. This is substantiated by thorough
comparisons, analyses, and visual inspections that val-
idate its effectiveness, applicability, and explainability.

2 Related Work

Graph Neural Networks (GNNs) [1–3,9,10] have
emerged as a powerful tool for learning the representa-
tion of graph-structured data. The great success mainly
comes from the structure-aware learning, which follows
the iterative message-passing scheme. Specifically, we
denote an undirected graph by G = (A,X) with the
node set V and edge set E . A ∈ {0, 1}|V|×|V| is the
adjacency matrix, where A[i, j] = 1 denotes the edge
between node vi and node vj , otherwise A[i, j] = 0.
X ∈ R|V|×d is the matrix of node features, where
xi = X[i, :] is the d-dimensional feature of the node
vi ∈ V . Given a K-layer GNN, its k-th layer generates
the representation of node vi as in (1) and (2).

a
(k)
i = AGGREGATION(k)({h(k−1)

j |j ∈ N (i)}), (1)

h
(k)
i = COMBINE(k)(h

(k−1)
i ,a

(k)
i), (2)

where h
(k)
i and a

(k)
i are the representation of node

vi and the message aggregated from its neighbor
nodes set N (i), respectively; the AGGREGATION and
COMBINE operators are the message passing and up-
date functions, respectively. After propagating through
K layers, we get the final representations of nodes,
which facilitate downstream node-level tasks, such as
node classification and link prediction. As for graph-
level tasks like graph classification and graph matching,
we further hire the READOUT function to generate the
representation of the whole graph G, as in (3).

ZG = READOUT({h(k)
i |vi ∈ V , k ∈ {1, ...,K}}). (3)

Various GNNs [2,9,10] adopt different AGGREGATION,
COMBINE and READOUT functions to refine the de-
sired information.

Lottery Ticket Hypothesis (LTH) [8] states that
a sparse subnetwork exists in a dense randomly-
initialized network that can be trained to achieve com-

parable performance to the full models. LTH is ex-
plored in many fields such as computer vision and nat-
ural language processing [11–15]. Recently, UGS [7] ex-
tends the LTH to the GNNs, proposing the Graph Lot-
tery Ticket (GLT), which includes subgraph and sub-
network pairs that can be trained independently to
reach comparable performance to the dense pairs. How-
ever, due to the transductive nature of graph-specific
masks, UGS [7] cannot develop in inductive learning
settings. To address this issue, we have incorporated
AutoMasker into our approach. This tool possesses the
capability to learn the importance of each edge from
training graphs on a global scale and predict signifi-
cance scores for newly introduced graphs. By being
both graph-agnostic and inductive, AutoMasker effec-
tively surmounts the limitations traditionally associ-
ated with graph-specific masks, thus paving the way for
novel advancements within inductive learning settings.

Table 1. Comprehensive Comparisons in the Inference Stage

Method Sparse Graph Sparse Model
Transductive Inductive

SGAT [16] 3 7 7

NeuralSparse [17] 3 3 7

GraphSAGE [21] 3 3 7

DropEdge [18] 3 3 7

SGCN [19] 3 7 7

GEBT [22] 3 7 3

UGS [7] 3 7 3

ICPG (Ours) 3 3 3

Graph Sparsification and Sampling aim to find
core subgraphs in graph learning. Numerous strate-
gies [16–27] are proposed to achieve efficient training or
inference. SGAT [16] adopts sparse attention to remove
edges. NeuralSparse [17] utilizes a DNN to identify task-
irrelevant edges. Sampling-based methods [18–21] sam-
ple and aggregate features from a node’s local neighbor-
hood. DropEdge [18] randomly drops edges from the in-
put graph, which can be seen as a data augmenter. An-
other research line selects subgraphs in an optimization
way. SGCN [19] and GEBT [22] adopt the ADMM op-
timization algorithm to sparsify the adjacency matrix.
UGS [7] utilizes trainable masks to prune graphs. Un-
fortunately, these methods either fail to utilize sparse

4 J. Comput. Sci. & Technol., January 2023, Vol., No.

graphs in the inductive inference stage or do not use
sparse GNNs for efficient inference. Distinct from them,
ICPG endows GNNs with inductive sparsification ca-
pacity, which can universally work in both transduc-
tive and inductive settings with both sparse graphs and
models. We make comprehensive comparisons with the
above methods in Table 1.

3 Preliminaries

In this section, we first briefly introduce the induc-
tive graph learning. Then we formulate the task of
learning graph lottery tickets under inductive setting.

3.1 Inductive Graph Learning

Before entering our method, we first clarify the in-
ductive learning settings of our work. Compared with
inductive graph learning, transductive graph learning
denotes that unlabeled test data can be used in the
training process. For example, in semi-supervised node
classification tasks [1], training and test nodes form an
entire graph. During model training, we need to take
the full graph data as input and predict the class of
test nodes based on all node features (including test
node features), all edges, and labels of training nodes.
Hence, all information (except labels) on the test data is
available during training. In contrast, inductive graph
learning means that all information of the test graph
is not available during the training process. For ex-
ample, in graph classification tasks, we use the train-
ing data at hand to train GNN models, hoping that
the models can effectively generalize to the unseen test
data. Compared with the transductive graph learning
setting, inductive graph learning cannot utilize any in-
formation from test data. Therefore, inductive learn-
ing requires better generalization ability of the model.
Unfortunately, UGS [7] designs learnable weights for all
edges of an entire graph. This training strategy requires
that the topological structure of the graph data is fixed
and invariant between the training and inference stage.
Hence, UGS [7] is only possible to apply to the setting
of transductive graph learning, while it cannot apply to
inductive graph learning.

3.2 Inductive Graph Lottery Ticket (GLT)

Without loss of generality, we consider the task of
graph classification as an example. Given a GNN clas-
sifier f(·,Θg0), it starts from the randomly-initialized
parameters Θg0 before training and arrives at the well-
optimized parameters Θg after training. Once trained,
it takes any graph G = (A,X) as the input and yields
a probability distribution over C classes ŷ = f(G,Θg).

Learning GLTs aims to make the input graph G and
the model weights Θg0 sparse to reduce the computa-
tional costs, while preserving the performance. For-
mally, it aims to generate two masks mG and mΘ,
which are applied on G and Θg0 correspondingly, so as
to establish the sparser input graph G′ = (mG ⊙A,X)

and initialized weights Θ′
g0 = mΘ ⊙ Θg0 . Hereafter,

through retraining the subnetwork f(·,Θ′
g0) on the

sparse versions {G′} of training graphs, we can get the
new converged parameters Θ′

g. If the well-optimized
subnetwork can achieve comparable performance with
full graphs and network, we term the pair of G′ and
f(·,Θ′

g0) as a GLT. Although a recent study, UGS [1],
proposes to learn the GLTs, it focuses solely on the
transductive setting but leaves the inductive setting un-
touched. Specifically, it assigns a trainable mask to
each edge of the input graph and trains such graph-
specific masks individually and independently. As a
consequence, these edge-dependent masks are limited
to the given graph, hardly generalizing to unseen edges
or entirely new graphs. Distinct from UGS, we aim to
uncover GLTs in the inductive learning setting.

4 Methodology

In this section, we propose a novel pruning frame-
work, named Inductive Co-Pruning of GNNs (ICPG),
to find the GLTs. We first introduce the key compo-
nent in ICPG, named AutoMasker. Then we present
our inductive strategy of co-pruning the input graphs
and model parameters.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 5

Magnitude-based

Pruning

Training Graph(s)

Rating

Scores

Mask-based

Pruning

Training/Testing Graph(s)

Rating

Scores

GNNMasked Graph(s)

Masked Graph(s) Sparse GNNSparse Graph(s)

Step1: Co-training the AutoMasker and GNN model.

Step2: Co-sparsifying the input graphs and GNN model.

AutoMasker

AutoMasker

0.99

0.720.93

0.96

0.49
0.82

0.87
0.95

0.45
0.34

0.37

0.98

0.41

0.74

0.84

0.89

0.82

0.99

0.95

0.960.13

0.99

0.98
0.94

0.87
0.25

0.18
0.88

0.77

0.57

0.83

0.16

0.91

0.86

0.36
0.89

Fig.1. ICPG framework to find the GLTs.

4.1 AutoMasker

Instead of assigning a mask to a single edge, our
idea is extremely simple: we take a collection of graph
instances and design a trainable model to learn to mask
edges collectively. The key ingredient of this model is
an additional GNN-based model, termed AutoMasker,
whose parameters are shared across the population of
observed graphs. Here we represent AutoMasker as the
combination of a graph encoder and a subsequent scor-
ing function. Formally, given a graph G = (A,X),
AutoMasker applies a GNN-based graph encoder g(·)
to create representations of all nodes as:

H = g(A,X),

where H ∈ R|V×d| stores d-dimension representations
of all nodes, whose i-th row hi denotes the representa-
tion of node vi; g(·) is a GNN following the message-
passing paradigm in (1). To assess the importance score
of edge (i, j) between node vi and node vj , AutoMasker
builds a multi-layer perceptron (MLP) upon the con-
catenation of node representations hi and hj , which
yields the score αij . In what follows, the sigmoid func-
tion σ(·) projects αij into the range of (0, 1), which rep-
resents the probability of edge (i, j) being the winning
ticket. The scoring function is represented as follows:

sij = σ(αij), αij = MLP([hi,hj]).

By employing the scoring function over all possible
edges, we are able to collect the matrix of edge masks
sG , where sG [i, j] = sij if edge (i, j) holds, otherwise
sG [i, j] = 0. In a nutshell, we summarize the Au-
toMasker function as:

sG = AutoMasker(G,Θa), (4)

where Θa is the parameter of AutoMasker, covering the
parameters of the GNN encoder and the MLP.

Although the key ingredient of AutoMasker is sim-
ple, it has several conceptual advantages over UGS.

Algorithm 1 Mask & Magnitude-based Pruning
Input: D, f(·,Θg0), AutoMasker(·,Θa0), M, mΘ,

Epoch T .
Output: Sparsified masks {m′

Gi
}Ni=1, m′

Θ.
1: for t = 0 to T − 1 do
2: for Gi ∈ D and mGi

∈M do
3: Gi ← (mGi

⊙Ai,Xi)
4: sGi ← AutoMasker(Gi,Θat)
5: Gi ← (sGi ⊙Ai,Xi)
6: Forward f(Gi,mΘ ⊙Θgt)
7: Backward to update Θat+1

, Θgt+1

8: end for
9: end for

10: for Gi ∈ D do
11: sGi ← AutoMasker(Gi,ΘaT

)
12: Set pg = 5% of the lowest mask values in sGi

to
0 and others to 1, creating m′

Gi
.

13: Prune pθ = 20% of the lowest magnitude param-
eters in ΘgT , creating m′

Θ.
14: end for

6 J. Comput. Sci. & Technol., January 2023, Vol., No.

1) Global view. Although edge masks derived
from UGS might preserve the fidelity to local impor-
tance, they do not help to delineate the general pic-
ture of the whole graph population. Distinct from
UGS, AutoMasker takes a global view of making de-
cisions. Specifically, for instance-level, AutoMasker
adopts GNN as its backbone. Because of the message-
passing mechanism of GNN, AutoMasker can fully con-
sider the topology information of the entire graph data.
For the dataset-level, all graph data share an Au-
toMasker, therefore it can make decisions for each edge
in each graph data from a global perspective by ob-
serving all graph data in the dataset. As edges usually
collaborate to make predictions, rather than working
individually, they form a coalition like the functional
groups of a molecule graph, the community of a social
network. Hence, AutoMasker will learn the invariant
and stable patterns in training data and can well trans-
fer the learned patterns to the unseen test data.

2) Lightweight edge masks. When using UGS to
prune graph data with millions of edges or nodes, the
cost of assigning local edge masks one by one will be
prohibitive with such a large-scale dataset in real-world
scenarios. Moreover, UGS introduces additional pa-
rameters, whose scale remains the same as the edge
number

∑
G |E| and is much larger than the original

parameters being pruned. Hence, it somehow violates
the purpose of pruning. In our AutoMasker, the addi-
tional parameter is Θa in (4), which remains invariant
across the change of data scale.

3) Generalization. In contrast to UGS, AutoMasker
can generalize the mechanism of mask generation to
new graphs without retraining, making it more efficient
to prune unseen and large-scale graphs. Hence, it makes
ICPG more scalable and flexible for pruning in diverse
real-world graph learning tasks or applications. In ad-
dition, we also conduct extensive experiments to verify
this point.

4.2 Inductive Co-Pruning Strategy

Here we present Inductive Co-Pruning of GNNs
(ICPG) to learn the GLTs. Fig.1 demonstrates its

overview, which consists of the following two steps:
Step 1: Co-Training AutoMasker and the GNN

Model of Interest. Given an input graph G = (A,X),
AutoMasker first generates the edge mask sG via (4).
Then we apply sG to the adjacency matrix A to create
the soft-masked graph Gs = (sG⊙A,X), which fully re-
flects AutoMasker’s decision for the importance of each
edge, such that less important edges are prone to have
lower mask values. Finally, we feed the soft-masked
graph into the GNN model to co-train the AutoMasker
and the model. The GNN model adopts the masked
graph to learn the representation and make predictions,
which can be viewed as the supervision signals to guide
the AutoMasker to achieve a more accurate decision.
The detailed co-training process is shown in Algorithm
1. When the training is done, we conduct Step 2 to
perform the pruning.

Algorithm 2 Finding GLTs by ICPG
Input: Graphs D = {Gi = (Ai,Xi)}Ni=1, f(·,Θg0),

AutoMasker(·,Θa0
), sparsity levels sd, sθ.

Output: GLT {G′i = (mGi
⊙Ai,Xi)}Ni=1, f(·;mΘ ⊙

Θg0).
1: Initialize masks set M← {mGi

← Ai}Ni=1

2: Initialize GNN mask mΘ ← 1 ∈ R∥Θg0
∥0

3: while the sparsity of M < sd, mΘ < sθ do
4: Sparsify GNN f(·;Θg0) with mΘ and graphs

{Gi = (Ai,Xi)}Ni=1 with the mask set M and
get the new masks as presented in Algorithm 1.

5: Update M← {mGi
←m′

Gi
}Ni=1

6: Update mΘ ←m′
Θ

7: Rewind AutoMasker’s weight to Θa0 .
8: Rewind GNN’s weight to Θg0 .
9: end while

Step 2: Co-Sparsifying the Input Graphs and GNN
Model. Having obtained the well-trained AutoMasker
and GNN, we can apply the learned knowledge to co-
sparsify the graphs and model. For graphs, AutoMasker
predicts the importance score (e.g., mask value) for
each edge. Then the edges of a certain graph are sorted
based on their mask values, and the edges with pg ratio
of the lowest-masks are pruned to obtain the mask mG .
For GNN, we sort the parameters based on the their
magnitude and prune pθ ratio of the lowest-magnitude

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 7

parameters to obtain the binary model mask mΘ. Un-
der the current sparsity, we now successfully obtain the
sparsified graph G′ = (mG ⊙A,X) and the sparsified
GNN mask mΘ. Finally, we need to check whether the
sparsity meets our condition. If the sparsity is satisfied,
the algorithm is completed; if not, we reuse the found
GLT to update the original graphs and GNN model,
and iteratively run Step 1 and Step 2 (dotted arrow in
Fig.1) until the condition is met.

In summary, Algorithm 2 offers the detailed process
of ICPG, where the sparsity levels sθ and sd refer to the
proportions of model weights and graph edges that need
to be pruned. Following LTH [8] and UGS [7], we also
adopt an iterative pruning strategy to locate GLTs. In
Algorithm 2, it will conduct Algorithm 1 to prune a
certain proportion of graph edges and model weights.
In our experiments, for graph data, we prune 5% of the
edges each time, and for the model, we prune 20% of
the weights each time. So we need to execute Algorithm
1 several times to achieve the given sparsity levels.

5 Experiments

In this section, we conduct extensive experiments
to validate the effectiveness of ICPG. We first intro-
duce the experimental settings and explore the exis-
tence of GLTs in graph classification and node classifi-
cation. Then, we demonstrate the practicability, such
as transferability, performance, and computational cost
saving. Finally, more ablation studies and visualiza-
tions are provided.

5.1 Experimental Settings

Datasets. For graph classification, we adopt TU
datasets [28–30], including biological graphs (NCI1, MU-
TAG), social graphs (COLLAB, RED-B, RED-M5K,
RED-M12K). We also use superpixel graphs (MNIST,
CIFAR-10) [31,32], and Open Graph Benchmark (ogbg-
ppa and ogbg-code2) [6]. We use these graph clas-
sification datasets for inductive graph learning. For
node classification, we choose a transductive learning

dataset, Cora, and an inductive learning dataset, PPI.
The detailed statistics of the datasets are shown in Ta-
ble 2, where “#” refers to the number and “Avg.” means
the average number.

Models. We adopt the same model architecture for
the GNN backbone and GNN encoder in AutoMasker.
For graph classification tasks and Cora, we adopt the
GCN [1] model. For PPI, we choose GAT [2] to achieve
a better baseline performance.

Table 2. Datasets Statistics

Dataset #Graph Avg. Nodes Avg. Edges Avg. Degree #Class
NCI1 4,110 29.87 32.30 1.08 2
MUTAG 188 17.93 19.79 1.10 2
COLLAB 5,000 74.49 2457.78 32.99 3
RED-B 2,000 429.63 494.07 1.15 2
RED-M5K 4,999 508.52 594.87 1.17 5
RED-M12K 11,929 391.41 456.89 1.16 11
MNIST 70,000 70.57 564.56 8.00 10
CIFAR-10 60,000 117.63 941.04 8.00 10
ogbg-ppa 158,100 243.40 2,266.10 9.31 37
ogbg-code2 452,741 125.20 124.20 0.99 -
Cora 1 2708.00 5429.00 2.00 7
PPI 24 2372.67 34113.16 14.38 121

Training Settings. Here we provide the detailed
training settings of the proposed ICPG. All training
hyper-parameters such as epoch, learning rate (LR), op-
timizer, batch size, and weight decay are summarized
in Table 3. For the devices, we adopt the NVIDIA
GeForce RTX 3090 (24GB GPU) to conduct all our ex-
periments. To help readers easily reproduce our results,
we also provide the code of our work¬.

Table 3. Training Details of ICPG

Dataset Epoch LR Optimizer Batch Size Weight Decay
TU 100 0.001 Adam 128 0
Superpixel 100 0.001 Adam 128 0
ppa 100 0.001 Adam 32 0
code2 25 0.001 Adam 128 0
Cora 200 0.01 Adam 1 0.0005
PPI 100 0.005 Adam 1 0

5.2 GLTs in Graph Classification Tasks

We first conduct experiments to find the GLTs in
graph classification tasks. The results of different graph
sparsity-levels are displayed in Fig.2 and Fig.3. Due to
the limited space, we omit the results of weight sparsity,

¬https://github.com/yongduosui/ICPG, Apr. 2023

8 J. Comput. Sci. & Technol., January 2023, Vol., No.

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

50

60

70

80

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (26.49%)
Baseline

(a)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (18.55%)
ICPG-GLT (30.17%)
Baseline

(b)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

50

60

70

80

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (33.66%)
Baseline

(c)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (9.75%)
ICPG-GLT (22.62%)
Baseline

(d)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (14.26%)
ICPG-GLT (40.13%)
Baseline

(e)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

30

40

50

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (9.75%)
ICPG-GLT (51.23%)
Baseline

(f)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

40

60

80

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (43.12%)
Baseline

(g)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

30

40

50

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (14.26%)
Baseline

(h)
Fig.2. Graph classification performance across different graph sparsity-levels. (a) NCI1. (b) MUTAG. (c) COLLAB. (d) RED-B. (e)
RED-M5K. (f) RED-M12K. (g) MNIST. (h) CIFAR-10.

which follow a similar trend. We also plot the random

pruning (RP) for comparison. Stars denote extreme

sparsity, which is the maximal sparsity-level without

performance degradation. We make the following ob-

servations.

Observation 1. GLTs extensively exist in graph clas-

sification tasks. Utilizing the ICPG, we successfully lo-

cate the GLTs with different sparsity-levels from diverse

types of graphs. For NCI1 and MUTAG, we precisely

identify GLTs with extreme graph sparsity at 26.49%

and 30.17%, GNN sparsity at 73.79% and 79.03%, re-

spectively. On four social network datasets, we find

the GLTs with graph sparsity of 22.62%-51.23% and

GNN sparsity-level of 67.23%-95.60%. For MNIST and

CIFAR-10, the GLTs are achieved with graphs sparsity

of 43.13% and 14.26%, and GNN sparsity of 91.41%

and 48.80%. These results show that ICPG can induc-

tively locate the high-quality GLTs with different graph

types, and demonstrate the potential of efficient train-

ing and inference with sparser graphs and lightweight

GNNs without sacrificing performance.

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

40

60

Ac
cu

ra
cy

 (%
)

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (14.26%)
Baseline

(a)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

6

8

10

12

14

F1
 s

co
re

 (%
)

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (18.55%)
Baseline

(b)

Fig. 3. Graph classification performance across different graph
sparsity-levels on large-scale datasets. (a) ogbg-ppa. (b) ogbg-
code2.

Observation 2. AutoMasker has good generaliza-
tion ability. The mainstream graph sparsification tech-
niques [7,17,19] cannot inductively prune unseen graphs.
However, the AutoMasker can flexibly overcome this
challenge. Compared with RP, ICPG can find more
sparse subgraphs and subnetworks and keep a large
gap with RP. For instance, the RED-M5K and RED-
M12K graphs pruned by ICPG can achieve 40.13% and
51.23% extreme graph sparsity, improving 25.87% and
41.48% compared with RP, which keeps an extremely
large superiority. These indicate that AutoMasker can
precisely capture more significant core-patterns from
the training graphs and have a good generalization abil-
ity to predict the high-quality masks for unseen graphs.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 9

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

40

60

80

Ac
cu

ra
cy

 (%
) RP

UGS
ICPG (Ours)
RP-GLT (9.75%)
UGS-GLT (18.55%)
ICPG-GLT (26.49%)
Baseline

(a)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

60

70

80

90

100

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (22.62%)
Baseline

(b)

Fig. 4. Transductive and inductive node classification perfor-
mance across different graph sparsity-levels. (a) Cora. (b) PPI.

Observation 3. The extreme sparsity of GLTs de-
pends on the property of the graphs. Although ICPG
achieves higher sparsity than RP on most graphs, the
improvements are not obvious on a small part of the
graphs, such as biochemical molecule graphs NCI1 and
MUTAG. We give the following explanations. Firstly,
most of the edges in these graphs are important, such
as a certain edge may correspond to a crucial chem-
ical bond, which may drastically affect the chemical
properties of the molecule if pruned. Furthermore, the
graph size is relatively small, which just includes a few
dozen nodes and edges, therefore it is more sensitive to
pruning. The study GraphCL [33] also finds a similar
phenomenon with us. It states that the performance of
these chemical and molecular datasets could not be im-
proved by data augmentation. In our work, we also ex-
perimentally demonstrate the phenomenon that edges
in datasets of biochemical molecules, are more impor-
tant than those of social networks. For example, on
the biochemical molecule datasets, ICPG can achieve
an average extreme sparsity of 28.6%, while on the so-
cial network datasets, ICPG can achieve an average
extreme sparsity of 36.9%.

Observation 4. AutoMasker can well tackle larger-
size and larger-quantity graphs. Fig.3 demonstrates the
results on the challenging OGB datasets, which consist
of larger-size graphs (2266.1 edges and 243.4 nodes on
average per graph for ogbg-ppa) and larger-quantity
graphs (452,741 graphs for ogbg-code2). We surpris-
ingly find that the OGB datasets are so intractable
that RP can only locate 5% graph sparsity-level of
GLT on the ogbg-ppa, and it is even impossible to

find any sparser GLTs on the ogbg-code2. Despite this,
the proposed ICPG can locate the GLTs with 14.26%
and 18.55% graph sparsity-levels, 48.80% and 59.40%
GNN sparsity-level on ogbg-ppa and ogbg-code2, re-
spectively. The superior performance further verifies
the generalization ability and strong scalability.

5.3 GLTs in Node Classification Tasks

Since ICPG can achieve excellent performance on

diverse types and scales of graphs, we also want to

explore if it can also tackle node-level tasks. To an-

swer this question, we conduct experiments on Cora and

PPI, which are commonly used in transductive and in-

ductive node classification tasks. We also reproduce the

recent work ADMM [19,22] and UGS [7] for Cora (can-

not apply for inductive setting) for comparison. From

the results in Fig.4, we give the following observations.

Observation 5. ICPG achieves excellent perfor-

mance in node classification tasks. Firstly, for Cora,

all pruning methods consistently outperform RP and

keep a large gap as the sparsity-level increases. UGS

just adopts simple trainable masks for edges without

considering the global topological structure of the en-

tire graph. ADMM only optimizes the adjacency ma-

trix without considering the GNN model. ICPG over-

comes these two issues, thereby predicting more high-

quality masks. Hence, ICPG can locate sparser GLTs

than ADMM (↑21.49%) and UGS (↑7.94%). Secondly,

the performance of ICPG drops faster in the later

stage. These phenomena also exist in several other

datasets, such as ogbg-code2, RED-B and RED-M5K.

From Algorithm 2, each round of ICPG will preferen-

tially prune the model weights and graph edges with the

lowest importance score, therefore those unimportant

weights and edges will be removed at an early stage.

Some recent studies [34–36] have also demonstrated that

there exist important features in graph data, often

called causal subgraphs [35] or rationales [34,36]. These

10 J. Comput. Sci. & Technol., January 2023, Vol., No.

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

70

75

80

85

RP
AutoMasker (Ours)
Baseline

(a)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

70

75

80

RP
AutoMasker (Ours)
Baseline

(b)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

44

46

48

50

52

RP
AutoMasker (Ours)
Baseline

(c)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

44

46

48

50

RP
AutoMasker (Ours)
Baseline

(d)

Fig.5. Performance of diverse GNNs on the sparse graphs pruned by AutoMasker. (a) NCI1 (GIN). (b) NCI1 (GAT). (c) RED-M12K
(GIN). (d) RED-M12K (GAT).

Table 4. Graph Classification Accuracy (%)

Dataset Method Graph Sparsity

0% (No pruning) 9.75% 18.55% 33.66% 45.96% 55.99%

RED-B RP 92.15 90.60 89.75 86.75 85.15 85.34
AutoMasker 92.15 92.16 91.05 90.15 90.06 89.64

RED-M5K RP 56.63 56.33 55.85 54.81 54.19 54.95
AutoMasker 56.63 56.89 56.69 57.01 56.97 56.09

features often determine the intrinsic property of the

graph data, such as the functional groups in molecu-

lar data, or some important edge collections in social

networks [35]. Perturbing or pruning them may greatly

affect performance. Based on our results, ICPG tends

to remove the redundant parts of the data in the early

stage, and the remaining parts are basically the causal

features of the graph data. Intuitively, the visualiza-

tion results in Subsection 5.7 can also prove this point.

Hence, the performance of ICPG will drop significantly

in later stages.

5.4 Transferability of the AutoMasker

We consider two perspectives to verify the transfer-

ability of the AutoMasker: GNN-level transferability

and graph-level transferability. From GNNs view, we

transfer the sparse graphs pruned by AutoMasker to the

other two popular GNN models: GIN [9] and GAT [2].

From graphs view, we first pre-train the AutoMasker

on the larger-scale social dataset RED-M12K and then

transfer the well-trained AutoMasker to prune the other

two smaller-scale social datasets: RED-B and RED-

M5K. We keep the GNN models unpruned on trans-

ferred tasks. The performance of graph classification

over different sparsity-levels are provided in Fig. 5 and

Table 4. The best results are shown in bold. We make

the following observations.

Observation 6. AutoMasker has both GNN-level

and graph-level transferability. For GNN-level, we ob-

serve from Fig. 5 that GIN and GAT achieve rang-

ing 9.75%-45.96% and 18.55%-22.62% sparsity on NCI1

and RED-M12K without sacrificing performance. Au-

toMasker also outperforms RP and keeps a large gap.

These results demonstrate that AutoMasker can effec-

tively extract the model-agnostic subgraphs. These

subgraphs contain significant semantic information and

can be universally transferred to diverse GNN architec-

tures without performance degradation. As for graph-

level transferability in Table 4, the classification ac-

curacy of random pruning decreases as the sparsity-

level increases. For RED-B and RED-M5K, when

the sparsity-level increases from 0 to 55.99%, the ac-

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 11

Table 5. Graph Classification Accuracy (%) on NCI1, COLLAB and RED-M5K Datasets across Different Sparsity-Levels

Method NCI1 COLLAB RED-M5K

22.62% 33.66% 40.13% 22.62% 33.66% 40.13% 22.62% 33.66% 40.13%
GraphSAGE [16] 76.62 72.97 71.27 73.93 69.04 68.50 47.65 44.25 36.83
DropEdge [18] 82.24 81.40 80.14 82.16 81.96 81.52 50.37 46.85 45.35
NeuralSparse [33] 81.43 80.34 79.83 81.63 77.76 75.35 52.82 51.56 49.95
ICPG (ours) 82.82 81.63 80.34 83.34 82.90 82.44 57.69 57.07 56.63
Improvement (ours) ↑0.58% ↑0.23% ↑0.20% ↑1.18% ↑0.94% ↑0.92% ↑4.87% ↑5.51% ↑6.68%

Table 6. Inference MACs Comparisons

Method MUTAG NCI1 COLLAB RED-B RED-5K RED-12K ogbg-code2 ogbg-ppa

Baseline 23.53M 834.97M 3445.43M 4723.60M 13661.66M 24366.16M 1397.95G 5680.79G

ICPG (ours) 5.09M 223.76M 1103.06M 1583.97M 1584.23M 1533.57M 672.91G 2869.69G

Reduction (ours) ↓ 78.36% ↓ 73.20% ↓ 67.98% ↓ 66.47% ↓ 88.40% ↓ 93.71% ↓ 51.86% ↓ 49.48%

curacy decreases by 7.39% and 2.97%, respectively.

While AutoMasker can achieve consistent improvement

within all sparsity-levels. Furthermore, the GNN model

trained with more sparse graphs even outperforms the

GNN trained with the original dense graphs, such as

RED-B at 9.75% and RED-M5K at 9.75%-45.96%. It

demonstrates that AutoMasker can well transfer the

knowledge from large-scale upstream tasks to small-

scale downstream tasks and achieve a double-win: with

lower computational cost and better performance. In

summary, AutoMasker can learn model-agnostic, gen-

eral, and significant sparse subgraph structures from

the graphs, so that it has outstanding GNN-level and

graph-level transferability.

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

GCN
GIN
GAT
MLP
RP
Baseline

(a)

0.0
0
5.0

0
9.7

5
14

.26
18

.55
26

.49
33

.66
40

.13
45

.96
51

.23
55

.99
64

.15

Graph Sparsity (%)

60

70

80

90

100

RP
RPG-PM
RPG
RPM
ICPG
PG
PM
Baseline

(b)

Fig.6. (a) The comparison of different encoders in AutoMasker
on RED-M5K dataset. (b) The comparison of each component
in ICPG on PPI dataset.

5.5 Performance and Inference MACs.

Performance Comparison. To demonstrate the

practicability of ICPG, we validate the performance of

the GLTs. We adopt GraphSAGE [21], DropEdge [18],

and NeuralSparse [17], which can achieve graph sparsifi-

cation inductively. For a fair comparison, we adjust the

hyper-parameters in GraphSAGE (sampling rate) and

DropEdge (dropping rate) to achieve similar sparsity-

levels. In Table 5, we observe that our methods consis-

tently outperform other baselines at all sparsity-levels.

It demonstrates the superiority of ICPG.

Inference MACs. Following UGS [1], we translate

the sparsity-level to the inference MACs reduction for

evaluating the computational cost. We report the ex-

treme inference MACs, which is the minimal MACs

without performance degradation. The results are

shown in Table 6. Compared with the full baseline, our

method can significantly reduce the computational cost

by about 51.86%-93.71% from small-scale (e.g., MU-

TAG) to large-scale (e.g., ogbg-code2) datasets, with-

out sacrificing performance. These results further verify

the practicability of ICPG.

12 J. Comput. Sci. & Technol., January 2023, Vol., No.

5.6 Ablation Study

Encoder Networks. AutoMasker is designed on a

GNN-based encoder, which leads to a global under-

standing of each edge from the entire graphs. There-

fore, we extensively investigate the impact of diverse

encoders, such as GNN-based or MLP-based encoders.

We can observe the results from Fig.6 (a) that, for

all the GNN-based encoders, AutoMasker can achieve

good performance: 45.96% extreme sparsity for GCN

and 51.23% for GIN and GAT, while MLP-based en-

coder only achieves 33.66% extreme sparsity. It in-

dicates that the message-passing scheme of the GNN

encoder naturally considers the graph structure from a

global view, while the MLP-based encoder does not.

Co-sparsification. To study the effectiveness of each

component in ICPG, we apply them to the graphs and

model independently. We explore mask-based Pruning

for Graphs (PG), magnitude-based Pruning for Model

(PM), Random Pruning only for Graphs (RPG), only

for Models (RPM), both of all (RP), Random Pruning

for Graphs with magnitude-based Pruning for Model

(RPG-PM). The results are summarized in Fig.6 (b).

We can find that: PG can also find the matching sub-

graphs. PM can also locate the matching subnetworks

at 14.26% sparsity, which is consistent with the LTH [8]

in the computer vision field. ICPG significantly outper-

forms RP and RPG-PM, and the gap gradually widens

as the sparsity increases. We also observe that ICPG

is even better than PG (↑12.87%), and we make the

following explanations.

(1) As for PG, with the sparsity-level gradually in-

creasing, the graphs also become more simple. If we still

train the over-parameterized GNN model with simple

graphs, it may cause over-fitting.

(2) Slightly pruning the over-parameterized GNN

through PM can be regarded as a kind of regulariza-

tion, which will improve the performance, and it is con-

sistent with LTH [8]. Further, the regularized GNN can

additionally provide AutoMasker with more precise su-

pervision signals from the gradient in backpropagation

to make wise decisions. In summary, these results sug-

gest the significance of co-training the AutoMasker and

GNN, and co-sparsifying the input graphs and model

to achieve better performance.

Original Image Original Graph RP Graph ICPG Graph

Fig.7. Visualization of the subgraphs extracted by AutoMasker
from MNIST and CIFAR-10 superpixel graphs. Original im-
ages and original graphs are displayed on the first and second
columns. The sparsity-level of RP and ICPG is 64.15%.

5.7 Visualization

To visualize the sparsifed subgraphs in GLTs, we se-

lect graphs with 64.15% sparsity-level from the MNIST

and CIFAR-10 superpixel datasets. For better compar-

ison, we also plot the original images, original graphs,

random pruning graphs, which are depicted in Fig.7.

We have the following findings.

For MNIST and CIFAR-10, the edges between

nodes that locate on the digitals and object pixels (the

dark blue nodes) should be denser, which are conducive

to the graph classification tasks. RP evenly prunes the

significant edges or structures without considering any

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 13

important reference, which makes the core subgraphs

destroyed and seriously deteriorates the performance.

ICPG utilizes AutoMasker to learn the significance of

each edge from a global view and can precisely prune re-

dundant edges. As the MNIST ICPG graph, the pruned

edges are mainly located on non-digital pixels, such as

the upper-left, lower-right corners and the center part of

the number 0 and the lower-left corner of the number 8,

while the remaining edges or nodes are mainly located

on digital pixels. These patterns further demonstrate

the rationality and explainability of ICPG.

6 Conclusions

In this work, we endowed the graph lottery tickets

with inductive pruning capacity. We proposed a simple

but effective pruning framework ICPG, to co-sparsify

the input graphs and GNN model. Our core innova-

tion, the AutoMasker, leverages a global comprehension

of edge significance based on the entire graph’s topo-

logical structure. This ensures the creation of superior

graph masks, exhibiting a strong generalization capabil-

ity in inductive learning contexts. Through extensive

experiments across various graph types, scales, learn-

ing settings, and tasks, we consistently established that

ICPG can effectively accomplish high sparsity within

both graph data and GNN models. This compelling

evidence underscores ICPG’s potential to effectively op-

timize the efficiency of GNN models.

In future work, we intend to refine ICPG’s multi-

round iterative pruning paradigm, investigating meth-

ods to enhance pruning efficiency. This advancement

could significantly reduce computational costs during

training, paving the way for more resource-efficient

GNN models.

References

[1] Kipf, T. N., Welling, M. Semi-supervised classification with
graph convolutional networks. In Proc. the 5th Interna-
tional Conference on Learning Representations, Apirl 2017.

[2] Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., Bengio, Y. Graph attention networks. In Proc. the
6th International Conference on Learning Representations,
April 2018.

[3] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li,
C., Sun, M. Graph neural networks: A review of methods
and applications. arXiv preprint arXiv:1812.08434, 2018.
https://arxiv.org/abs/1812.08434, Oct 2021.

[4] Li, G., Xiong, C., Thabet, A., Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739. https://arxiv.org/abs/2006.07739, Jun
2020.

[5] Li, G., Müller, M., Qian, G., Perez, I. C. D., Abual-
shour, A., Thabet, A. K., Ghanem, B. Deepgcns:
Making gcns go as deep as cnns. IEEE Transactions
on Pattern Analysis and Machine Intelligence. DOI:
10.1109/TPAMI.2021.3074057.

[6] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., Leskovec, J. Open graph benchmark: Datasets
for machine learning on graphs. InProc. Advances in Neu-
ral Information Processing Systems, December 2020, pp.
22118-22133.

[7] Chen, T., Sui, Y., Chen, X., Zhang, A., Wang, Z. A uni-
fied lottery ticket hypothesis for graph neural networks. In
Proc. the 38th International Conference on Machine Learn-
ing, July 2021, pp. 1695-1706.

[8] Frankle, J., Carbin, M. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In Proc. the 7th In-
ternational Conference on Learning Representations, May
2019.

[9] Xu, K., Hu, W., Leskovec, J., Jegelka, S. How powerful
are graph neural networks? In Proc. the 7th International
Conference on Learning Representations, May 2019.

[10] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W.,
Leskovec, J. Hierarchical graph representation learning with
differentiable pooling. In Advances in Neural Information
Processing Systems, December 2018, pp.4800–4810.

[11] Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Carbin,
M., Wang, Z. The lottery tickets hypothesis for supervised
and self-supervised pre-training in computer vision models.
In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 16306-16316.

14 J. Comput. Sci. & Technol., January 2023, Vol., No.

[12] Ma, H., Chen, T., Hu, T.-K., You, C., Xie, X., Wang, Z.
Spending Your Winning Lottery Better After Drawing It.
arXiv, abs/2101.03255. https://arxiv.org/abs/2101.03255,
Oct 2021.

[13] Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T. Re-
thinking the value of network pruning. In Proc. the 7th In-
ternational Conference on Learning Representations, Apirl
2019.

[14] Wang, C., Zhang, G., Grosse, R. Picking winning tickets
before training by preserving gradient flow. In 8th Interna-
tional Conference on Learning Representations, Apirl 2020.

[15] Savarese, P., Silva, H., Maire, M. Winning the lottery with
continuous sparsification. In Proc. Advances in Neural In-
formation Processing Systems 33 pre-proceedings, Decem-
ber 2020, pp. 11380-11390.

[16] Voudigari, E., Salamanos, N., Papageorgiou, T., Yan-
nakoudakis, E. J. Rank degree: An efficient al-
gorithm for graph sampling. In IEEE/ACM Inter-
national Conference on Advances in Social Networks
Analysis and Mining, August 2016, pp. 120–129. DOI:
10.1109/ASONAM.2016.7752223.

[17] Leskovec, J., Faloutsos, C. Sampling from large graphs. In
Proc. the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, August 2006, pp.
631–636, DOI: 10.1145/1150402.1150479.

[18] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna,
V. Graphsaint: Graph sampling based inductive learn-
ing method. In Proc. the 8th International Conference on
Learning Representations, Apirl 2020.

[19] Franceschi, L., Niepert, M., Pontil, M., He, X. Learning
discrete structures for graph neural networks. In Interna-
tional Conference on Machine Learning, June 2019, pp.
1972–1982.

[20] Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec,
J. GNNExplainer: Generating Explanations for Graph
Neural Networks. arXiv preprint arXiv:1903.03894,
https://arxiv.org/abs/1903.03894, Nov 2019.

[21] Ye, Y., Ji, S. Sparse graph attention networks. IEEE Trans-
actions on Knowledge and Data Engineering, pp.1–1, 2021.
DOI:10.1109/TKDE.2021.3072345.

[22] Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., Wang, W. Robust graph representation learning
via neural sparsification. In International Conference on
Machine Learning, April 2020, pp.11458–11468.

[23] Rong, Y., Huang, W., Xu, T., Huang, J. Dropedge: To-
wards deep graph convolutional networks on node classifica-
tion. In Proc. the 8th International Conference on Learning
Representations, April 2020.

[24] Li, J., Zhang, T., Tian, H., Jin, S., Fardad, M., Zafarani, R.
Sgcn: A graph sparsifier based on graph convolutional net-
works. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 2020, pp. 275–287.

[25] Chen, J., Ma, T., Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling. In
Proc. the 6th International Conference on Learning Repre-
sentations, April 2018.

[26] Hamilton, W., Ying, Z., Leskovec, J. Inductive representa-
tion learning on large graphs. In Advances in neural infor-
mation processing systems, December 2017, pp.1024–1034.

[27] You, H., Lu, Z., Zhou, Z., Fu, Y., Lin, Y. Early-
bird gcns: Graph-network co-optimization towards more
efficient gcn training and inference via drawing early-
bird lottery tickets. arXiv preprint arXiv:2103.00794,
https://arxiv.org/abs/2103.00794, Dec 2021.

[28] Chen, T., Bian, S., Sun, Y. Are powerful graph
neural nets necessary? a dissection on graph
classification. arXiv preprint arXiv:1905.04579,
https://arxiv.org/abs/1905.04579, Jun 2020.

[29] Dwivedi, V. P., Joshi, C. K., Laurent, T., Ben-
gio, Y., Bresson, X. Benchmarking graph neu-
ral networks. arXiv preprint arXiv:2003.00982,
https://arxiv.org/abs/2003.00982, Dec 2022.

[30] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, https://arxiv.org/abs/2007.08663, Jul
2020.

[31] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.,
Süsstrunk, S. Slic superpixels compared to state-of-the-art
superpixel methods. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 34, no. 11, pp. 2274-
2282, Nov. 2012, DOI: 10.1109/TPAMI.2012.120.

[32] Knyazev, B., Taylor, G. W., Amer, M. R. Understanding
attention and generalization in graph neural networks. In
Proc. Advances in Neural Information Processing Systems,
2019.

[33] You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.
Graph contrastive learning with augmentations. In Proc.
Advances in Neural Information Processing Systems, De-
cember 2020, pp. 5812-5823.

[34] Wu, Y., Wang, X., Zhang, A., He, X., Chua, T. Discover-
ing invariant rationales for graph neural networks. In Proc.
the 10th International Conference on Learning Represen-
tations, April 2022.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for GNNs 15

[35] Sui, Y., Wang, X., Wu, J., He, X., Chua, T. Causal atten-
tion for interpretable and generalizable graph classification.
In Proc. the 28th ACM SIGKDD international conference
on Knowledge discovery and data mining, August 2022, pp.
1696–1705. DOI: 10.1145/3534678.3539366.

[36] Liu, G., Zhao, T., Xu, J., Luo, T., Jiang, M. Graph ra-
tionalization with environment-based augmentations. In
Proc. the 28th ACM SIGKDD international conference on
Knowledge discovery and data mining, August 2022, pp.
1069–1078. DOI: 10.1145/3534678.3539347.

Yong-Duo Sui is currently pursu-
ing his Ph.D. degree in computer sci-
ence from University of Science and
Technology of China (USTC), Hefei.
His research interests include graph
learning, out-of-distribution general-
ization, sparse neural networks.

Xiang Wang received his Ph.D. de-
gree from the National University of
Singapore, in 2019. He is currently
a professor with the University of Sci-
ence and Technology of China, Hefei.
His research interests include recom-
mender systems, graph learning, and
explainable deep learning techniques.

Tianlong Chen is a Ph.D. candi-
date in Electrical and Computer En-
gineering at University of Texas at
Austin. He received his B.S. degree
from University of Science and Tech-
nology of China, Hefei in 2017. He has
also interned at IBM Research, Face-
book AI, Microsoft Research and Wal-

mart Technology Lab. His research focuses sparse neural
networks, AutoML, adversarial robustness, self-supervised
learning, and graph learning.

Meng Wang received the B.E. and
Ph.D. degrees from the Special Class
for the Gifted Young, Department of
Electronic Engineering and Informa-
tion Science, University of Science and
Technology of China, Hefei in 2003 and
2008, respectively. He worked as an
Associate Researcher at Microsoft Re-

search Asia and a Senior Research Fellow at the National
University of Singapore. He is a Professor at the Hefei
University of Technology. His current research interests
include multimedia content analysis, computer vision, and
pattern recognition.

Xiang-Nan He received his Ph.D.
degree in computer science from Na-
tional University of Singapore, in 2016.
He is now a professor with the Uni-
versity of Science and Technology of
China, Hefei. His research interests in-
clude information retrieval, data min-
ing, and multi-media analytics.

Tat-Seng Chua received the Ph.D.
degree from the University of Leeds,
U.K. He is the KITHCT chair profes-
sor with the School of Computing, Na-
tional University of Singapore. He was
the acting and founding dean of the
School during 1998-2000. His main re-
search interests include multimedia in-

formation retrieval and social media analytics. In particu-
lar, his research focuses on the extraction, retrieval and
question-answering (QA) of text and rich media arising
from the Web and multiple social networks.

	Introduction
	Related Work
	Preliminaries
	Inductive Graph Learning
	Inductive Graph Lottery Ticket (GLT)

	Methodology
	AutoMasker
	Inductive Co-Pruning Strategy

	Experiments
	Experimental Settings
	GLTs in Graph Classification Tasks
	GLTs in Node Classification Tasks
	Transferability of the AutoMasker
	Performance and Inference MACs.
	Ablation Study
	Visualization

	Conclusions

