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Learning to Double-check Model Prediction from a
Causal Perspective
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Abstract—The present machine learning schema typically uses
a one-pass model inference (e.g., forward propagation) to make
predictions in the testing phase. It is inherently different from
human students who double-check the answer during exami-
nations especially when the confidence is low. To bridge this
gap, we propose a Learning to Double-check (L2D) framework,
which formulates double-check as a learnable procedure with two
core operations: recognizing unreliable predictions and revising
predictions. To judge the correctness of a prediction, we resort
to counterfactual faithfulness in causal theory and design a
contrastive faithfulness measure. In particular, L2D generates
counterfactual features by imagining: “what would the sample
features be if its label was the predicted class”; and judges the
prediction by the faithfulness of the counterfactual features.
Furthermore, we design a simple and effective revision module to
revise the original model prediction according to the faithfulness.
We apply the L2D framework to three classification models
and conduct experiments on two public datasets for image
classification, validating the effectiveness of L2D in prediction
correctness judgment and revision.

Index Terms—Classification, Double-check, Counterfactual
Faithfulness, Causality.

I. INTRODUCTION
Machine learning models are widely used in various real-

world applications such as machine translation [1], image
recognition [2], and recommender system [3]. In practice, the
model is typically trained offline and deployed to serve the
samples coming during the testing period. That is, the model
indiscriminately makes predictions for all testing samples,
while they can differ a lot. For instance, some samples
(Figure 1(b)) can be hard to make confident predictions.
Apparently, it differs from the behavior of human students in
the testing period (e.g., an examination), who would double-
check the answer for hard questions. Due to the lack of double-
check, the current models encounter sharp performance drops
on low confidence samples [4], [5].

Existing methods attempt to bridge the gap mainly by post-
processing [6] the model prediction with heuristic strategies.
For instance, the ensemble methods [7] revise the prediction
according to the consensus across models. However, hard
samples in practice can result in low confidence on different
models, limiting the effect of ensemble. Hand-craft rules
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(a) Prob. of dog: 0.99 (b) Prob. of dog: 0.17
Fig. 1: Examples of a normal sample (a) and hard sample (b)
in the class of dog and the corresponding model predictions.

based on domain knowledge are also used for checking model
prediction [8]. However, the strategies are mainly hand-crafted
in an application-specific manner, which are hard to generalize.

This work aims to build a uniform framework to achieve
double-check. Our belief is that double-check is a learnable
ability like making predictions where the key lies in iden-
tifying unreliable predictions. We hypothesize the source of
unreliable predictions as misrecognizing feature patterns. In
this light, double-check follows an opposite direction, which
starts at assuming the prediction (e.g., dog) is correct, and then
reversely imagines the representative features of the class. By
testing the consensus between the imagination and the fact,
we can introspect the appropriateness of the assumption and
estimate the reliability of the corresponding prediction. In this
light, the key to learning double-check lies in the modeling of
imagination and consensus testing.

We resort to causal theory to model double-check. Ap-
parently, we can express the imagination as a counterfac-
tual statement, e.g., “given the factual feature (Figure 1(b)),
what it would be if its class was cat?” We thus formu-
late the imagination operation as a counterfactual inference
P (XY=y|X = x, Y = ȳ) where y is the assumed class, x
and ȳ are factual features and label, respectively. According
to counterfactual faithfulness [9] and consistency rule [10], the
counterfactual features should be close to the factual features
when the assumed class is indeed the label, i.e., y = ȳ.
Therefore, we measure the faithfulness for each candidate class
and estimate the reliability of model prediction (e.g., y) as
the relative faithfulness against the other candidates, which is
termed contrastive faithfulness measure. Undoubtedly, we can
achieve learnable double-check once designing proper neural
network modules to achieve the counterfactual inference and
faithfulness measure.

Towards this end, we propose a Learning to Double-check
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framework, which consists of two main modules: 1) counter-
factual inference (CI) module; and 2) consensus measure (CM)
module. In particular, the CI module is a generative network
to infer the counterfactual feature conditioned on the fact and
the prediction according to a partial causal graph of the clas-
sification problem. The CM module is a siamese network to
measure the consensus of factual and counterfactual features,
which is trained by a common triplet retrieval objective [11].
Furthermore, we pursue revising the original model prediction
according to the consensus when necessary. Toward this goal,
we further design a revision module for the L2D framework,
which is a simple yet effective convolutional network trained
as a normal classifier. We apply the L2D framework on
three representative image classification models: ResNet [12],
RSC [13], and DSL [14] and conduct extensive experiments on
two real-world image classification datasets. Empirical results
validate the effectiveness of L2D in classification mistake
identification and revision, achieving significant improvement
(from 6.6% to 9.8%) over vanilla models.

The main contributions are summarized as follows:
• We highlight the importance of double-check for model pre-

diction and propose a Learning to Double-check framework,
which can check and revise the prediction.

• We propose a new contrastive faithfulness measure, which
reveals the correctness of a prediction according to the
faithfulness of counterfactual features.

• We conduct extensive experiments on two image classi-
fication datasets, validating the effectiveness of the L2D
framework.

II. METHODS

A. Formulation of L2D

As an initial attempt for learning to double-check, we
narrow down the scope to image classification models and
adopt a general C-way classification setting, which aims to
learn a function y = f(x|θ). x ∈ RD denotes the feature of
a sample. y ∈ RC is a distribution over the classes. The class
with the maximum probability, y = argmaxi yi, i ∈ [1, C],
is the prediction of sample x. Assume there is a classification
model trained over labeled data T = {(x, ȳ)}. Formally,

θ̂ = min
θ

∑
(x,ȳ)∈T

l(ȳ, f(x|θ)) + λ∥θ∥, (1)

where θ̂ is the learned parameters of the model, l(·) is a
classification loss such as cross-entropy [15], and λ is a
hyper-parameter to adjust the regularization. Double-check is
a procedure to: 1) reveal the correctness of a prediction; and
2) revise the prediction if necessary (see Figure 2).

We model the prediction correctness judgment as two-steps
of counterfactual inference, which generates the counterfactual
feature for the input sample under an assumed class; and
contrastive faithfulness measurement, which is based on the
consensus between counterfactual and factual features. Ac-
cording to Pearl’s expression of counterfactual [16], we first
provide a formal definition of counterfactual features.

Definition 1 (Counterfactual Features): Given a sample
(x, ȳ), the counterfactual features for assuming the label to

Fig. 2: Illustration of L2D framework.

be y are: x∗
y = E (XY=y|X = XY=ȳ = x, Y = ȳ), where X

and Y are random variables; and E(·) denotes the expecta-
tion. XY=ȳ denotes the value of X conditioned on the event
Y = ȳ.
Note that P (XY=y|X = XY=ȳ = x, Y = ȳ) is the
distribution of counterfactual features, which is inherently
different from the normal conditional probability distribution
P (X|Y = y). This is because X = x and Y = ȳ are given
known facts in the counterfactual distribution.

Accordingly, we construct a set of counterfactual samples
{x∗

y′ |y′ ∈ [1, C]} for the input factual sample x by succes-
sively assuming the label as each candidate class. Upon the
counterfactual samples, we define a contrastive faithfulness
measure of the model prediction y.

Definition 2 (Contrastive Faithfulness): Given the model
prediction y on sample x, the contrastive faithfulness is:

zy =

{
1, iff y = argmax

y′
s(x,x∗

y′), y′ ∈ [1, C],

0, otherwise,
(2)

where s(·) is a consensus measure between factual and coun-
terfactual features.

We treat zy as a correctness measurement according to
the consistency rule in [10]. zy = 0 indicates that the
prediction y on sample x is unreliable due to the existence of a
candidate class whose counterfactual features achieve higher
consensus with the factual features than the predicted class
y. On the contrary, zy = 1 indicates a reliable prediction. In
the following, we term predictions with zy = 0 and zy = 1
as unfaithful predictions and faithful predictions, respectively.
Obviously, to realize learnable double-check, we have to learn:
• P (XY=y|X = XY=ȳ = x, Y = ȳ), the counterfactual

distribution to infer counterfactual features
E (XY=y|X = XY=ȳ = x, Y = ȳ).

• s(x,x∗
y), a function to estimate feature consensus.

B. Estimating Counterfactual Features

Apparently, we cannot directly infer
E (XY=y|X = XY=ȳ = x, Y = ȳ) for three reasons: 1)
The probability P (XY=y|X = XY=ȳ = x, Y = ȳ) is
unidentifiable since the label of testing samples (i.e., Y = ȳ)
are not available. 2) Such causal inference requires the whole
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Fig. 3: The causal graph for: (a) the factual feature generation
procedure; (b) a counterfactual with hypothetical condition
T = Ty . As studying feature generation, we adopt the
anticausal setting [17], [18] where X is the outcome.

causal graph that describes the generation procedure of the
feature x. In most practical cases, such causal graph is not
available and hard to be constructed due to the large amount
of mediators between the variables Y and X (Figure 3(a)).
The mediators can be understood as concepts used to define
the classes. For instance, in the object recognition task,
the mediator can be the shape (S) and the texture (T ) of
the object. 3) The hypothetical condition Y = y is too
strong, which can thoroughly change the feature, resulting in
unrealistic generation [10].

In this light, we relax the hypothetical condition to be
T = Ty , which intervenes only one mediator (Figure 3(b)).
T = Ty denotes the value of T under the condition Y = y.
There are various candidate mediators available in image
classification such as the texture of the object and the shape
of the object. In this study, we select T as the texture
of the object. Accordingly, the counterfactual statement be-
comes: “What the feature would be if its texture was Ty ,
where all the other variables remain their factual values (e.g.,
S = Sȳ = s̄). Formally, the counterfactual feature becomes:
x∗
y = E

(
XT=Ty |X = XY=ȳ = x, T = Tȳ = t̄

)
, where t̄ de-

notes the factual value of T . Apparently, this counterfactual is
identifiable as long as TY=y and TX=x are identifiable, which
can be easily inferred through texture extraction tools [19].

Counterfactual inference module. Generative networks
have become an emerging technique to model the inference
of counterfactual features [3], [10], [19]. Among the exist-
ing models, we find that Counterfactual Generative Network
(CGN) [19] can well support our requirement, which accounts
for the mediator between X and Y and consists of components
to model TY=y and TX=x. We thus directly use CGN as the CI
module in the L2D framework to generate the counterfactual
samples for all candidate classes: {x∗

y′ |y′ ∈ [1, C]}.

C. Learning s(x,x∗
y′)

Functionally speaking, s(x,x∗
y′) aims to distinguish faithful

counterfactual samples from unfaithful ones. Accordingly, we
formulate an image retrieval problem to learn the function.
In particular, we define: 1) the factual sample x as a query;
2) the counterfactual sample x∗

y′ with y′ = ȳ as a positive
counterfactual sample; and 3) the one with y′ ̸= ȳ as a

negative counterfactual sample. Therefore, we model the con-
sensus measure module as an image retrieval model, which is
formulated as s(x∗

y′ ,x|η) where η denotes model parameters.
Consensus measure module. Inspired by the success of

siamese network [20] in image retrieval tasks [20], we devise
the CM module as a siamese network, which adopts the
same structure as the prediction model f(x|θ) being double-
checked. In particular, we estimate the consensus through the
cosine-similarity of the latent representation of x and x∗

y′ .
As f(·) and s(·) serve for different targets, we additionally
optimize the parameters of s(·) (i.e., η). In particular, we
minimize a widely used triplet retrieval loss [11] over the
counterfactual samples of the training data. Formally,

η̂ = min
η

∑
(x,ȳ)∈T

∑
y′∈[1,C]&y′ ̸=ȳ

max
(
0, s(x,x∗

y′)− s(x,x∗
ȳ) + α

)
,

(3)

where α is a hyperparameter of to what extent the positive
and negative counterfactual samples should be separated.

D. Revision Module

Based on the CI and CM modules, the L2D framework can
judge the correctness of a prediction (x, y) by calculating its
contrastive faithfulness zy . Considering that we humans further
call for a revision once identify a wrong answer, we further
devise a revision module. Our belief is that the level of feature
consensus provides clues for adjusting the original prediction
distribution y. In this light, we formulate the revision module
as: r(y, s|ω), where s ∈ RC includes the feature consensus of
all counterfactual samples {x∗

y′ |y′ ∈ [1, C]}, i.e., the cosine-
similarity given by the CM module.

Module design. Considering the success of Convolutional
Neural Network (CNN) in recognizing local-region patterns,
we devise the module as a CNN, which consists of a stack
layer, a convolution layer, and two fully-connected layers.
• Stack layer. The layer stacks the original distribution and

similarity scores as a matrix Y = [y, s] ∈ RC×2, which
can facilitate observing the local-region patterns.

• Convolution layer. The layer consists of 1D vertical filters
to distill patterns within the classification distribution and
similarity scores, which is formulated as: C =< F ,Y >.
F ∈ RC×K denotes the filters of the layer and C ∈ RK×2

denotes the recognized signals. K is the number of filters.
• FC layers. The FC layers learn strategies to combine the

probability and similarity and perform revision, where the
output is normalized through softmax.
Training. We optimize the parameters of the revision mod-

ule by minimizing the classification loss over the factual
training samples, which is:

ω̂ = min
ω

∑
(x,ȳ)∈T

l(ȳ, r(y, s|ω)) + β∥ω∥, (4)

where β denotes the hyper-parameter to adjust the weight of
the regularization term. In practice, most of the training sam-
ples obtain faithful predictions (i.e., zy = 1). To balance the
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occurrence of faithful and unfaithful predictions, we perform
down-sampling on the training data.

Machine learning schema with L2D. To summarize, the
final L2D framework consists of three modules: CI module,
CM module, and revision module, to recognize the unfaithful
predictions and perform revision. To incorporate the L2D
framework into the present machine learning schema, we
revise both the training and testing procedures. Algorithm 1
illustrates the new schema with L2D.

Algorithm 1 Learning schema with L2D.

Input: Training data T .
/* Training */

1: Train base model (optimize Eq. (1));
2: Train CGN;
3: Train CM module (optimize Eq. (3);
4: Train revision module (optimize Eq. (4);
5: Return θ̂, CGN, η̂, and ω̂.

/* Testing */
6: Infer y = f(x|θ̂);
7: for y′ = 1 → C do
8: Infer x∗

y′ = CGN(x, y′);
9: end for

10: Calculate zy (Eq. (2);
11: zy = 1 ? return y : return r(y, s|ω̂);

III. EXPERIMENTS

We aim to answer the following research questions:
• RQ1: How effective is our L2D framework in distinguishing

wrong and correct predictions?
• RQ2: How effective is our L2D framework in amending the

predictions?
• RQ3: What revision patterns are uncovered? In what cases

our L2D framework performs as expected or fails?

A. Experimental Settings

Datasets. We perform experiments on the Animal and Vehicle
datasets in NICO, for 10-way and 8-way classification, respec-
tively [21]. Following the OOD1 data split setting in [14],
[21], we split these datasets by restricting the number of
contexts (e.g., beach and sky) that appear in the training set.
Specifically, for each class, we randomly select five contexts
appearing in the training set, while the rest five contexts are
in the testing set. The discrepancy in contexts will result in
more hard samples. In fact, a sharp drop on classification
accuracy exists between the validation and testing sets: around
15% on Animal and 10% on Vehicle, which offers evidence
of the distribution shift between the training and testing sets.
The number of images in the training/validation/testing set is
5318/1088/2524 for Animal and 4332/885/2073 for Vehicle.
We tune hyperparameters on the validation set and report the
average testing accuracy of five different runs.

1The reason for adopting OOD testing is that the revision of prediction is
more necessary for OOD cases.

Counterfactual generation. Recall that we use CGN [19] to
generate counterfactual samples for each training and testing
samples (cf. Section II-B) by intervening the texture of the
object (i.e., T represents texture). In particular, given a sample
x, we generate a counterfactual image x∗

y′ by feeding CGN
with the common textual of class y′ where we enumerate all
possible classes y′. Considering that CGN is not a perfect
generative network, which shows high cognitive uncertainty,
we run four repeats for each x∗

y′ . As to the consensus
measurement s(x,x∗

y′), we use the mean of the four repeats
to mitigate the impact of cognitive uncertainty.

Baselines. To demonstrate the effectiveness of the L2D frame-
work, we compare it with five baselines covering the fields of
counterfactual data augmentation, stable learning, and domain
generalization. Among these baselines, three typical models
are equipped with L2D. We adopt ResNet-18 [12] as the
backbone model and initialize each model with the weights
pretrained on ImageNet2 [22].

• ResNet-18 [12]: ResNet-18 is widely used as the backbone
in image classification.

• CNBB [21]: The prior study [23] proposes a causally
regularized logistic regression (CRLR) for OOD image
classification. However, as CRLR requires access to all
training samples during each iteration, it is not feasible for
CNN-based models. To resolve the limitations of CRLR, a
very recent work [21] devises a new weight learning model,
ConvNet with Batch Balancing (CNBB), which balances the
confounder distribution within a minibatch.

• DSL [14]: To improve the generalization ability of deep
neural networks (DNN), DSL learns independent features
for different images via weight learning in function space
of Random Fourier Features. It makes the DNN models
concentrate more on the objects in the image.

• CGN [19]: CGN is a data augmentation method, which
generates various counterfactual samples with the imagined
texture and background. Following the rules [19], we gen-
erate the same amount of counterfactual samples as the
training set to train models.

• RSC [13]: RSC belongs to the line of adversarial dropout. It
improves the robustness of CNN by focusing on the subset
of representation with smaller gradients and mutes the rest
during the backpropagation. The model is forced to pay
attention to more features of the target object after training.

Parameter Settings. We detail the parameter settings of
classification models and our L2D:

• Classification Models. Adam optimizer is adopted to train
the models and the learning rate starts from 0.001 and is
decayed by 0.1 after 14 epochs. For each model, we set the
batch size as 128 and epoch number as 20. There are some
hyperparameters specific to each model, which we set as the
value suggested in the original paper for fair comparison.
For both Animal and Vehicle datasets, we use two widely
used data augmentation strategies: 1) randomly cropping

2We adopt this initialization for fair comparison since the CGN used in
L2D is trained on ImageNet [22].
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(b) RSC on Animal
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(c) DSL on Animal
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(d) ResNet-18 on Vehicle
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(e) RSC on Vehicle
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Fig. 4: Model’s original classification accuracy at each CL level and the accuracy on faithful samples and unfaithful samples.

the images with random retain ratio in [0.8, 1.0]; and 2)
randomly applied horizontal flipping with 50% probability.

• L2D3. The CM module is initialized with the parameters
of the well-trained baseline model. We further train the CM
module for 200 iterations by optimizing Eq. 3 with α = 0.4,
the learning rate of 0.0001 and batch size of 64. Meanwhile,
we train the revision module for 10 epochs, where the
learning rate is 0.01 and the batch size is 32. As severe
overfitting issue will occur in revision module training, we
adopt an aggressive early stopping rule: stopping once the
accuracy decreases on the validation set.

B. Performance on Prediction Correctness Measure (RQ1)
We first investigate how L2D performs in terms of pre-

diction correctness judgment, i.e., whether the contrastive
faithfulness measure zy can recognize the wrong predictions.
To this end, we set eight Confidence Levels (CL) based on the
range of maximum class probability (MCP) [4] given by the
original classification model. In particular, CL1: MCP < 0.5;
CL2: 0.5 < MCP < 0.6; CL3: 0.6 < MCP < 0.7; CL4: 0.7 <
MCP < 0.8; CL5: 0.8 < MCP < 0.9; CL6: 0.9 < MCP < 0.95;
CL7: 0.95 < MCP < 0.99; CL8: MCP > 0.99. For each model,
we can split the testing samples into eight groups according
to their prediction probability. The samples in each group are
identified as faithful samples, if their contrastive faithfulness is
1, otherwise as unfaithful samples. In each group, we calculate
the overall accuracy, faithful accuracy for the faithful samples,
and unfaithful accuracy for the unfaithful samples. The group-
wise results of models are shown in Figure 4. We have the
following observations based on these results:
• In most cases, the original accuracy exhibits an increasing
trend from CL 1 to 8, which means the vanilla models

3Source code: https://github.com/xiangtanshi/L2D.

TABLE I: Accuracy(%) of CM module on separating positive
and negative counterfactual samples.

Animal Vehicle
ResNet-18 RSC DSL ResNet-18 RSC DSL

Training 96.52 96.84 96.50 87.82 89.40 89.00
Testing 90.26 90.32 89.02 86.06 86.16 86.48

have inferior performance on low confidence samples. This
observation is consistent with previous work [4], where we
view samples in low CL groups as hard samples of the model.
• Across all eight CL groups, the faithful accuracy is con-
sistently better than the overall accuracy. Meanwhile, the gap
between faithful accuracy and unfaithful accuracy is around
40% in Animal and 30% in Vehicle. It means that a prediction
has a much higher chance to be correct if it is faithful (i.e.,
zy = 1). The significant gap validates the effectiveness of
the proposed contrastive faithfulness measure in recognizing
wrong predictions regardless of model confidence level.
• In most cases, unfaithful accuracy is less than 30%. Even
for the CL interval where 0.9 < MCP < 0.99, the unfaithful
accuracy is still less than 60% in both datasets. This result
reveals the potential for revising unfaithful model predictions,
which can thus validate the rationality of equipping the L2D
framework with a revision module.

Performance of CM module. Beyond the final contrastive
faithfulness, we further evaluate the specific feature consensus
given by the CM module (cf. Section II-C). We randomly
sample 5,000 triplets of (query factual sample, positive coun-
terfactual sample, negative counterfactual sample) from the
training and testing samples to demonstrate the performance of
the CM module. We report the accuracy over the triplets with
a binary correctness criterion that the positive counterfactual
sample receives higher feature consensus. Recall that we ini-
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TABLE II: Overall classification accuracy of all compared
methods on Animal and Vehicle.

Method ResNet-18 CNBB RSC CGN DSL
Animal 75.04 74.48 78.26 75.90 74.61
+L2D 76.47+1.43 — 79.32+1.06 — 77.10+2.49

Vehicle 83.99 84.01 85.32 84.44 83.26
+L2D 84.50+0.51 — 85.88+0.56 — 84.21+0.95

tialize the CM module with the original classification model.
Table I shows the training and testing accuracy of CM modules
based on ResNet-18, DSL, and RSC. Generally speaking,
the CM module achieves great accuracy around 90%, which
means the CM module can accurately judge the faithfulness
of counterfactual samples. Remarkably, the accuracy of the
CM module on the testing set is only slightly lower than that
on the training set. Considering the sharp distribution shift in
the testing set, we postulate that the generated counterfactual
features are stable and informative for distinguishing between
the positive and negative counterfactual samples.
• As a brief summary, we validate the rationality of judging
model prediction correctness based on counterfactual faithful-
ness and the effectiveness of the CI and CR modules in our
L2D framework.

C. Performance on Prediction Revision (RQ2)

We then investigate the effects of the whole L2D framework
with revision module w.r.t. image classification performance.

Overall performance. Table II shows the image classifi-
cation performance of all compared methods on Animal and
Vehicle, where we apply L2D on ResNet-18, DSL, and RSC.
Obviously, leveraging our L2D framework achieves consistent
improvements over the vanilla models (ResNet-18, DSL, RSC)
across all cases in Table II, indicating the rationality and
effectiveness of our L2D framework. Remarkably, L2D also
achieves stable improvement on the highly competitive RSC
model, which leverages adversarial learning to distill stable
features. We attribute the gain harvested by applying L2D
to the retrospection ability, which double-checks and adjusts
model predictions during inference. Furthermore, we test the
performance of directly utilizing counterfactual consensus for
classification by judging the prediction as the class with the
largest consensus measure. It encounters performance drops of
5% and 15% on the Animal and Vehicle datasets. The result
indicates that retrospection is not a simple operation, which
thus requires a revision module.

Effects on hard samples. To further explore the charac-
teristics of L2D, we take a close look at the testing set by
exploring hard samples whose contrastive faithfulness is 0 and
its MCP is less than 0.9. Figure 5 summarizes the performance
and comparison between different models. From Figure 5,
we find that applying L2D achieves significant improvements
over the vanilla models by 9.8% and 6.6% in Animal and
Vehicle, respectively. We attribute these improvements to our
consideration of contrastive faithfulness, which better captures
the consensus among features and endows the models with
powerful discrimination ability. Besides, the revision module
indeed learn some effective double-check strategies.

TABLE III: Performance of vanilla models and applying L2D
on the perturbed test of Animal and Vehicle.

Method ResNet-18 RSC DSL
Animal 72.58 76.15 72.34
+L2D 75.16+2.58 77.50+1.35 75.35+3.01

Vehicle 82.58 83.84 82.00
+L2D 83.72+1.14 84.61+0.89 83.44+1.44
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(b) On Vehicle
Fig. 5: Classification performance on hard samples and im-
provement when applying L2D.

Study on robustness. We then study the robustness of
L2D against invisible perturbations. In particular, instead of
directly downscaling the testing images to (224,224), we add
an additional interpolation by resizing to (256,256) before to
(224,224). Table III shows the performance on the Animal
dataset. Through a cross comparison with Table II, we can
find that the original models, ResNet-18, RSC, and DSL,
encounters a performance drop of about 2.5% due to the
impact of perturbations. Applying L2D achieves performance
gain by a large margin, which validates the robustness of the
CM module and the contrastive faithfulness measure.

D. In-depth Analysis (RQ3)

To investigate the working mechanism of the proposed L2D
framework, we visualize the patterns learned by the revision
module and conduct a case study over the testing samples.

1) Revision Patterns: We first reveal how the revision
module works by mining revision patterns on representative
inputs. Recall that the inputs of the revision module are the
classification probabilities y and the feature consensus values
across all counterfactual samples s. Taking DSL+L2D as an
example, we depict five patterns in Figure 6. Note that we
index the candidate classes according to a descending order
of predicted probabilities. In particular,
• Pattern 1, where both curves exhibit peaks at the top 1

class. In this case, the revision module remains the original
classification.

• Pattern 2, where both curves also show high peaks, but
the peak of consensus is at class with the second highest
probability. Here, the revision module chooses the second
candidate class.

• Pattern 3, where the consensus curve is similar to Pattern
2, but the probability curve shows a plateau. Similarly, the
revision module decides to revise the prediction.
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Fig. 6: Pattern 1 to 5 presents five ways that the revision
module used to revise the prediction. The horizontal axis is
the candidate classes ranked according to their probability and
the triangle in each pattern denotes the revised prediction.

• Pattern 4. There is a low peak on the probability curve and
overall high plateau on the similarity score, the output is top
2 class.

• pattern 5. There is a plateau on the probability curve, and
the low peak of the similarity score is at the top 3 or lower
classes, the output is still the second candidate class.

We then count the testing samples under each pattern. Gener-
ally, Pattern 1, 2, and 3 mostly lead to correct revisions. Pattern
4 is a bad pattern, where the original prediction is typically
correct. This pattern occurs mostly in images where the shape
is not correctly given by CGN. Consequently, only few pixels
of the object are detected, making the CI module fail in
intervening texture. The revision in Pattern 5 is also not very
accurate since the true class is beyond the top 2 candidates
given by the original model. It reflects that the revision module
cannot precisely revise the prediction for some very hard
cases. According to the patterns, we think incorporating more
signals such as the uncertainty of probability and consensus
will further improve the revision performance, which is left
for future exploration.

By further analyzing the wrong predictions missed by
the revision module, we find that most of them have very
high MCP. Consequently, the probabilities of the remaining
classes are all very low, making the revision module hardly to
recognize the correct class. The issue is caused by the softmax
normalization, which only cares about the absolute difference

TABLE IV: Performance comparison on the test set of Animal
between vanilla models, applying L2D with revision module
and applying L2D with SVM classifier.

Method ResNet-18 RSC DSL
Original Model 75.04 78.26 74.61
+L2D,revision module 76.47+1.43 79.32+1.06 77.10+2.49

+L2D,SVM 75.35+0.31 78.26+0 75.31+0.7

between each logit, but is insensitive to the mean of logits4.
A potential future direction for learning to double-check is
pursuing reasonable probability estimations for low confidence
candidate classes. Furthermore, Figure 6 shows that the clas-
sification probability exhibits highly skewed distribution. As
such, L2D can only evaluate the consensus of top predicted
classes for acceleration, especially when facing a large number
of candidate classes.

As these revision patterns are clear, we further investigate
whether shallow revision module can perform retrospection.
In particular, we evaluate a variant of L2D by replacing its
revision module with an SVM classifier. The result is shown
in Table IV. We can find that the SVM revision module also
achieves performance gain in some cases, which indicates its
capability of capturing some revision patterns. However, there
is a clear gap between the performance of L2D with SVM
and the proposed revision module. Shallow models may fail
to make good use of the information in feature consensus.

2) Case Study: Figure 7 shows three testing samples;
their predictions from DSL; and corresponding counterfactual
samples and revisions from L2D.
• Case 1: Correcting false prediction. There is a polar bear

lying on the ice. The vanilla model has never seen such
images in the training set but it has witnessed a lot of
images of white sheep. With high probability, the model
is biased towards sheep. However, this image exhibits the
core features (e.g., face shape and eyes) of the bear. Hence,
our CM module is able to give a quite high consensus
score (0.934) to counterfactual features with bear texture as
opposed to sheep (0.393). This accords with Pattern 2 (cf.
Figure 6(b)) and the revision module makes correct revision.
It is clear that L2D frees the model from the influence of
spurious correlations between white fur and sheep.

• Case 2: Revising wrong prediction to a new class. This is
absolutely a hard sample for the classification model as dogs
are rarely seen wearing clothes and staying with humans in
the Animal dataset. It is quite interesting that the model
views elephant as the second possible candidate class. The
main reason stems from the bias in the training set that most
elephants appear on green grass fields or forests and stand
by people. We hypothesize that the model was confounded
by the background when predicting this case. Whereas, by
imagining and comparing the texture of elephants with that
of cats and dogs, the CM module finds that the third indeed
identifies dog as the most faithful candidate. Nevertheless,
the revision module labels the image as elephant, which
accords to Pattern 5 (cf. Figure 6(e)).

• Case 3: Making mistakes on revision. On this case, the
revision module changes the prediction from bird to rat. The

4Note that logits x is the same as x+100 and x-100 in view of softmax.
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Testing Sample
Counterfactual Feature

Top-1 Top-2 Top-3

Sheep  

Prob: 0.312

Similarity: 0.393

Bear    

Prob: 0.2970

Similarity: 0.934

Bird

Prob: 0.2748

Similarity: 0.208

Cat  

Prob: 0.253

Similarity: 0.547

Elephant       

Prob: 0.241

Similarity: 0.385

Dog

Prob: 0.226

Similarity: 0.766

Bird   

Prob: 0.878

Similarity: 0.431 

Rat 

Prob: 0.106

Similarity: 0.864

Cat

Prob: 0.014

Similarity: 0.674

Fig. 7: Illustration of three representative cases. Row 1 to 3 corresponds to cases 1 to 3. The first image in each row is
the testing sample, the left 3 images are counterfactual features of top 3 possible classes as predicted by the DSL model.
×/

√
marks the correstness of model prediction; ⋆ indicates the revised prediction given by the revision model. The highest

probability and consensus are highlighted with red and blue colors, respectively.

main cause is that the generated counterfactual samples lack
qualified texture.
To summarize, we postulate that the advantage of L2D

comes from the mitigating of sample selection bias (the 1st
case) and confounding bias (the 2nd case). It can also fail
on cases (the 3rd) where the intervened mediator is not
informative.

IV. RELATED WORK

A. Counterfactual Thinking

Counterfactual Sample. In the field of vision and natural
language processing, a line of research recently concentrates
on generating counterfactual samples to augment the training
data. This technique has been widely adopted in language
understanding-related tasks, such as SA [24], NLI [25], ques-
tion answering [26], dialogue system [27], and vision-language
navigation [28]. Instead of masking objects in images [29]
or modifying words in questions [25], another line gener-
ates counterfactual samples by adding label information with
the help of generative networks. CGN [19] disentangles the
components of an image into three independent mechanisms
that are decided by the class label. Yue et al. [10] generate
counterfactual images by decoding the combination of image
and label features. Unlike our work which calculates the
consensus for every class and utilizes the result for correction,
CGN [19] simply adds these samples to the training set and
GCM-CF [10] provides binary information about seen/unseen
of an image, but do not interfere the inference.

Counterfactual Training. Beyond data augmentation un-
der the standard supervised learning paradigm, a research
line incorporates counterfactual samples into other learning
paradigms like adversarial training [27]–[29] and contrastive

learning [30]. This is orthogonal to the line that incorporates
counterfactual samples into the decision-making procedure
of model inference. CRM [31] accounts for counterfactual
samples as additional clues for making classification. However,
CRM requires manually constructed counterfactual samples in
the model training stage, which cannot be applied to most
classification tasks. Applying CRM will cost much more
manual resources than the proposed L2D.

Counterfactual Inference. There are some prior studies
[32], [33] incorporating counterfactual inference into the test-
ing phase of models. They rely on the causal diagram to
perform counterfactual inference, which requires insights into
the specific tasks.

B. Hard sample and Revision.

Hard Sample. Much attention has been paid on generating
hard samples to boost training. For the classification task,
some work improves the robustness of models by feeding hard
samples with special perturbations [34] in the training phase.
In addition, adversarial training [35] steps further by forcing
the model to fight against perturbations or attacks. This line
differs from ours, since we aim to find out hard samples for
the model with the help of contrastive faithfulness and then
correct model predictions. Another line resorts to additional
checks on the raw prediction in the inference stage, such as
posterior regularization [36].

Confidence and Revision. Convolutional neural network is
sensitive to small perturbations added on the input image [37].
The softmax output sometimes could not give us clue about
the certainty of CNN’s prediction [38]. Multiple solutions
such as Histogram binning, Platt scaling, Matrix, and vector
scaling [38] have been proposed to calibrate the softmax
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output. Our CM module provides a new way to check the
confidence of softmax value, and the correction made by the
revision module is consistently effective for different models
on multiple datasets.

V. CONCLUSION

In this paper, we highlighted the importance of double-
check in the testing phase of machine learning model. We
resorted to causal theory to model the double-check procedure
with a contrastive faithfulness measure. In this light, we
proposed a Learning to Double-check framework, which is
seamlessly incorporated into the present machine learning
schema. We instantiated it on three image classification models
and conducted extensive experiments on two datasets. The re-
sults justify that the L2D framework can accurately recognize
and revise wrong predictions.

This work opens up a new research direction about the
model inference stage, which is of great practical value. As an
initial attempt, this work focuses on the image classification
problem. In the future, we will extend the L2D framework
to other classification tasks such as text classification; and
broader settings such as regression and ranking. The L2D
framework assumes that the intervened mediator T is not
confounded. To address this issue, we will improve the CI
module to account for confounders. Moreover, we will explore
more potential signals for the revision module.
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