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ABSTRACT
The ubiquity of implicit feedback makes them the default choice
to build online recommender systems. While the large volume of
implicit feedback alleviates the data sparsity issue, the downside
is that they are not as clean in reflecting the actual satisfaction of
users. For example, in E-commerce, a large portion of clicks do not
translate to purchases, and many purchases end up with negative
reviews. As such, it is of critical importance to account for the
inevitable noises in implicit feedback for recommender training.
However, little work on recommendation has taken the noisy nature
of implicit feedback into consideration.

In this work, we explore the central theme of denoising implicit
feedback for recommender training. We find serious negative
impacts of noisy implicit feedback, i.e., fitting the noisy data
hinders the recommender from learning the actual user preference.
Our target is to identify and prune the noisy interactions, so as
to improve the efficacy of recommender training. By observing
the process of normal recommender training, we find that noisy
feedback typically has large loss values in the early stages. Inspired
by this observation, we propose a new training strategy named
Adaptive Denoising Training (ADT), which adaptively prunes noisy
interactions during training. Specifically, we devise two paradigms
for adaptive loss formulation: Truncated Loss that discards the
large-loss samples with a dynamic threshold in each iteration; and
Reweighted Loss that adaptively lowers the weights of large-loss
samples. We instantiate the two paradigms on the widely used
binary cross-entropy loss and test the proposed ADT strategies
on three representative recommenders. Extensive experiments on
three benchmarks demonstrate that ADT significantly improves
the quality of recommendation over normal training.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Learning from implicit feedback.
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1 INTRODUCTION
Recommender systems have been a promising solution for mining
user preference over items in various online services such as E-
commerce [29], news portals [32] and social media [3]. As the clue to
user choices, implicit feedback (e.g., click and purchase) are typically
the default choice to train a recommender due to their large volume.
However, prior work [18, 32, 39] points out the gap between implicit
feedback and the actual user satisfaction due to the prevailing
presence of noisy interactions (a.k.a. false-positive interactions)
where the users dislike the interacted item. For instance, in E-
commerce, a large portion of purchases end up with negative
reviews or being returned. This is because implicit interactions
are easily affected by the first impression of users and other factors
such as caption bias [4, 17, 33] and position bias [19]. Moreover,
existing studies [33, 39] have demonstrated the detrimental effect
of such false-positive interactions on user experience of online
services. Nevertheless, little work on recommendation has taken
the noisy nature of implicit feedback into consideration.

In this work, we argue that such false-positive interactions would
hinder a recommender from learning the actual user preference,
leading to low-quality recommendations. Table 1 provides empirical
evidence on the negative effects of false-positive interactions when
we train a competitive recommender, Neural Matrix Factorization
(NeuMF) [16], on two real-world datasets. In particular, we construct
a “clean” testing set by removing the false-positive interactions
for recommender evaluation1. As can be seen, training NeuMF
with false-positive interactions (i.e., normal training) results in
an average performance drop of 16.65% and 10.29% over the two
datasetsw.r.t. Recall@20 and NDCG@20, as compared to the NeuMF
trained without false-positive interactions (i.e., clean training). As
such, it is of critical importance to account for the inevitable noises
in implicit feedback and eliminate the impact of false-positive
interactions for recommender training.

Indeed, some efforts [7, 21, 41] have been dedicated to
eliminating the effects of false-positive interactions by: 1) negative
experience identification [21, 33] (illustrated in Figure 1(b)); and 2)
the incorporation of various feedback [41, 43] (shown in Figure 1(c)).
The former processes the implicit feedback in advance by predicting
1Each false-positive interaction is identified by auxiliary information of post-
interaction behaviors, e.g., rating score ([1, 5]) < 3, indicating that the interacted
item dissatisfies the user. Refer to Section 2 for more details.
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the false-positive ones with additional user behaviors (e.g., dwell
time and gaze pattern) and auxiliary item features (e.g., length of the
item description) [33]. The latter incorporates extra feedback (e.g.,
favorite and skip) into recommender training to prune the effects of
false-positive interactions [43]. A key limitation with these methods
is that they require additional data to perform denoising, which
may not be easy to collect. Moreover, extra feedback (e.g., rating
and favorite) is often of a smaller scale, which may suffer from the
sparsity issue. For instance, many users do not give any feedback
after watching a movie or purchasing a product [18].

Recommender
training

Data with noisy 
implicit feedback

Recommender
training

Additional features:
Dwell time,

Item features

Binary Classification 
User satisfaction: 0/1

Denoising 
recommender training

Denoising interactions

𝒊𝟏 𝒊𝟐 𝒊𝟑 

User Item𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 

Additional feedback 
Skip or complete

Favorite

Recommender
training with 

extra feedback

(a) Normal training (b) Negative experience 
identification

(c) Incorporating 
various feedback

(d) Denoising training 
without extra data

Low-quality
recommendation High-quality

recommendation

High-quality
recommendation

High-quality
recommendation

Figure 1: The comparison between normal training (a);
two prior solutions to eliminate false-positive interactions
through extra data (b) and (c); and denoising training
without extra data (d). Note that the red lines in the user-
item graph denote false-positive interactions.

This work explores denoising implicit feedback for recommender
training, which automatically reduces the influence of false-positive
interactions without using any additional data (Figure 1(d)). That is,
we only count on the implicit interactions and distill signals of false-
positive interactions across different users and items. Prior study on
robust learning [13, 20] and curriculum learning [2] demonstrate
that noisy samples are relatively harder to fit into models, indicating
distinct patterns of noisy samples’ loss values in the training
procedure. Primary experiments across different recommenders
and datasets (e.g., Figure 3) reveals similar phenomenon: the loss
values of false-positive interactions are larger than those of the
true-positive ones in the early stages of training, while their loss
values decrease to the same range at the end. Consequently, due
to the larger loss, false-positive interactions can largely mislead
the recommender training in the early stages. Worse still, the
recommender ultimately fits the false-positive interactions due
to its high representation capacity, which could be overfitting and
hurt the generalization. As such, a potential idea of denoising is to
reduce the impact of false-positive interactions, e.g., pruning the
interactions with large loss values, where the key challenge is to
simultaneously decrease the sacrifice of true-positive interactions.

To this end, we propose Adaptive Denoising Training (ADT)
strategies for recommenders, which dynamically prunes the large-
loss interactions along the training process. To avoid the lost of

Table 1: Performance comparison between the clean train-
ing and normal training of NeuMF on Adressa and Amazon-
book. #Drop denotes the relative performance drop of
normal training as compared to clean training.
Dataset Adressa Amazon-book
Metric Recall@20 NDCG@20 Recall@20 NDCG@20
Clean training 0.4040 0.1963 0.0293 0.0159
Normal training 0.3081 0.1732 0.0265 0.0145
#Drop 23.74% 11.77% 9.56% 8.81%

generality, we focus only on formulating the training loss, which
can be applied to any differentiable models. In detail, we devise
two paradigms to formulate the training loss: 1) Truncated Loss,
which discards the large-loss interactions dynamically, and 2)
Reweighted Loss, which adaptively reweighs the interactions. For
each training iteration, the Truncated Loss removes the large-loss
samples (i.e., hard samples) with a dynamic threshold which is
automatically updated during training. Besides, the Reweighted
Loss dynamically assigns “harder” interactionswith smaller weights
to weaken their effects on the optimization. We instantiate the two
loss functions on the basis of the widely used binary cross-entropy
loss. On three benchmarks, we test ADT trained with the Truncated
Loss or Reweighted Loss over three representative recommenders:
Generalized Matrix Factorization (GMF) [16], NeuMF [16], and
Collaborative Denoising Auto-Encoder (CDAE) [40]. The results
show significant performance improvements of ADT over normal
training.

Our main contributions are summarized as:

• We formulate the task of denoising implicit feedback for
recommender training. We find the negative effect of false-
positive interactions and identify their characteristics (i.e., hard
samples) during training.

• We propose Adaptive Denoising Training to prune the large-loss
interactions dynamically, which introduces two paradigms to
formulate the training loss: Truncated Loss and Reweighted Loss.

• We instantiate two paradigms on the binary cross-entropy loss
and apply ADT to three representative recommenders. Extensive
experiments on three benchmarks validate the effectiveness of
ADT in improving the recommendation quality.

2 STUDY ON FALSE-POSITIVE FEEDBACK
The effect of noisy training samples has been studied in conven-
tional machine learning tasks such as image classification [13,
20]. However, little attention has been paid to such effect on
recommendation, which is inherently different from conventional
tasks with training samples highly related to each other, e.g.,
interactions on the same item. We investigate the effects of false-
positive interactions on recommender training by comparing the
performance of recommenders trained with and without false-
positive interactions. An interaction is identified as false-positive
or true-positive one according to the explicit feedback. For instance,
a purchase is false-positive if the following rating score ([1, 5]) < 3.
Although the size of such explicit feedback is typically insufficient
for building robust recommenders in real-world scenarios, the scale
is sufficient for a pilot experiment. In detail, we train a competitive
recommender model NeuMF under two different settings: 1) “clean
training” which trains NeuMF on the true-positive interactions only;
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and 2) “normal training” which trains NeuMF on all observed user-
item interactions. We evaluate the recommendation performance
on the holdout clean testing set with only true-positive interactions
kept, i.e., the evaluation focuses on recommending more satisfying
items to users. More details can be seen in Section 5.

Results. Table 1 summarizes the performance of NeuMF under
normal training and clean training w.r.t. Recall@20 and NDCG@20
on the two representative datasets, Adressa and Amazon-book.
From Table 1, we can observe that, as compared to the ideal setting,
i.e., clean training, the performance of normal training drops by
11.77% and 8.8% w.r.t. NDCG@20 on Adressa and Amazon-book,
respectively. This result shows the negative effects of false-positive
interactions on recommending satisfying items to users. Worse still,
recommendations from normal training have higher risk on leading
to further false-positive interactions, which would hurt the user
experience [33]. Despite the success of clean training in the pilot
study, it is not a reasonable choice in practical applications because
of the sparsity issues of reliable feedback such as rating scores. As
such, it is worth exploring denoising implicit feedback such as click,
view, or buy for recommender training.

3 METHOD
In this section, we detail the proposed Adaptive Denoising Training
strategy for recommenders. Prior to that, task formulation and
observations that inspire the strategy design are introduced.

3.1 Task Formulation
Generally, the target of recommender training is to learn user
preference from user feedback, i.e., learning a scoring function
𝑦𝑢𝑖 = 𝑓 (𝑢, 𝑖 |Θ) to assess the preference of user 𝑢 over item 𝑖 with
parameters Θ. Ideally, the setting of recommender training is to
learn Θ from a set of reliable feedback between 𝑁 users (U) and𝑀
items (I). That is, given D∗ = {(𝑢, 𝑖,𝑦∗

𝑢𝑖
) |𝑢 ∈ U, 𝑖 ∈ I}, we learn

the parameters Θ∗ by minimizing a recommendation loss over D∗,
e.g., the binary Cross-Entropy (CE) loss:

L𝐶𝐸

(
D∗) = −

∑
(𝑢,𝑖,𝑦∗

𝑢𝑖
)∈D∗

𝑦∗𝑢𝑖 log (𝑦̂𝑢𝑖 ) +
(
1 − 𝑦∗𝑢𝑖

)
log (1 − 𝑦̂𝑢𝑖 ) ,

where 𝑦∗
𝑢𝑖

∈ {0, 1} represents whether the user 𝑢 really prefers the
item 𝑖 . The recommender with Θ∗ would be reliable to generate
high-quality recommendations. In practice, due to the lack of
large-scale reliable feedback, recommender training is typically
formalized as: Θ̄ = minL𝐶𝐸 (D̄), where D̄ = {(𝑢, 𝑖,𝑦𝑢𝑖 ) |𝑢 ∈ U, 𝑖 ∈
I} is a set of implicit interactions. 𝑦𝑢𝑖 denotes whether the user 𝑢
has interacted with the item 𝑖 implicitly, such as click and purchase.

However, due to the existence of noisy interactions which
would mislead the learning of user preference, the typical
recommender training might result in a poor model (i.e., Θ̄) that
lacks generalization ability on the clean testing set. As such, we
formulate a denoising recommender training task as:

Θ∗ = min L𝐶𝐸

(
𝑑𝑒𝑛𝑜𝑖𝑠𝑒 ( D̄)

)
, (1)

aiming to learn a reliable recommender with parameters Θ∗

by denoising implicit feedback, i.e., pruning the impact of
noisy interactions. Formally, by assuming the existence of
inconsistency between 𝑦∗

𝑢𝑖
and 𝑦𝑢𝑖 , we define noisy interactions

as
{
(𝑢, 𝑖) |𝑦∗

𝑢𝑖
= 0 ∧ 𝑦𝑢𝑖 = 1

}
. According to the value of 𝑦∗

𝑢𝑖
and 𝑦𝑢𝑖 ,

we can separate implicit feedback into four categories similar to a
confusion matrix as shown in Figure 2.
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Figure 2: Four types of implicit interactions.
In this work, we focus on denoising false-positive interactions

and omit the false-negative ones since positive interactions are
much fewer in recommendation and thus false-positive interactions
would induce worse effects on recommender training. Note that we
do not incorporate any additional data such as explicit feedback or
reliable implicit feedback into the task of denoising, despite their
success in a few applications [33, 39]. This is because such feedback
is of a smaller scale in most cases, suffering more severely from the
sparsity issue.
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Figure 3: The training loss of true- and false-positive
interactions on Adressa in the normal training of NeuMF.

3.2 Observations
False-positive interactions are harder to fit in the early stages. In

robust learning [13, 20] and curriculum learning [2], one theory is
that easy samples are more likely to be the clean ones and fitting
the hard samples may hurt the generalization. To explore whether it
also exists in recommendation, we conduct experiments by training
NeuMF with all observed implicit interactions (i.e., normal training)
on Adressa and Amazon-book. The loss of true- and false-positive
interactions in Adressa is visualized in Figure 3. Note that similar
trends are also found over other recommenders and datasets (see
more details in Section 5.2.1). From Figure 3, we observe that:
• Ultimately, the loss of both of true- and false-positive interactions
converges to a stable state with close values, which implies
that NeuMF fits both of them well. It reflects that deep models
with substantial capacity would “memorize” all the training data,
including the noisy samples. As such, if the data is noisy, the
memorization will lead to poor generalization performance.

• In the early stages of training, the loss values of true- and false-
positive interactions decrease differently. Furthermore, we zoom
in to visualize the changes of the lossw.r.t. iterations ranging from
0 to 1,000 in Figure 3(b). From the figure, we can see that the loss
of false-positive interactions is clearly larger than that of the true-
positive ones, which indicates that false-positive interactions are
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Figure 4: Illustration of T-CE loss for the observed interac-
tions (i.e., 𝑦𝑢𝑖 = 1). 𝑇𝑖 is the iteration number and 𝜏 (𝑇𝑖 ) refers
to the threshold. Dash area indicates the effective loss and
the loss values larger than 𝜏 (𝑇𝑖 ) are truncated.

harder to memorize than the true-positive ones in the early stages.
The reason might be that false-positive ones represent the items
that the user dislikes, and they are more similar to the items
that the user didn’t interact with (i.e., the negative samples). The
findings also support the prior theory in robust learning and
curriculum learning [2, 13].

Overall, the results are consistent with the memorization effect [1]:
deep models will first learn the easy and clean patterns in the early
stage, and eventually memorize all training samples [13].

3.3 Adaptive Denoising Training
Based on the observations, we propose ADT strategies for
recommenders, which estimate 𝑃 (𝑦∗

𝑢𝑖
= 0|𝑦𝑢𝑖 = 1, 𝑢, 𝑖) according to

the training loss. To reduce the impact of false-positive interactions,
ADT dynamically prunes the large-loss interactions during training.
In particular, ADT either discards or reweighs the interactions
with large loss values to reduce their influences on the training
objective. Towards this end, we devise two paradigms to formulate
loss functions for denoising training:
• Truncated Loss. This is to truncate the loss values of large-loss
interactions to 0 with a dynamic threshold function.

• Reweighted Loss. It adaptively assigns hard samples (i.e., the large-
loss ones) with smaller weights during training.

Note that the two paradigms formulate various recommendation
loss functions, e.g., CE loss, square loss [35], and BPR loss [34]. In
the work, we take CE loss as an example to elaborate them.

3.3.1 Truncated Cross-Entropy Loss. Functionally speaking,
the Truncated Cross-Entropy (shorted as T-CE) loss discards
positive interactions with large values of CE loss. Formally, we
can define it as:

LT-CE (𝑢, 𝑖) =
{

0, L𝐶𝐸 (𝑢, 𝑖) > 𝜏 ∧ 𝑦𝑢𝑖 = 1
L𝐶𝐸 (𝑢, 𝑖), otherwise,

(2)

where 𝜏 is a pre-defined threshold. The T-CE loss removes any
positive interactions with CE loss larger than 𝜏 from the training.
While this simple T-CE loss is easy to interpret and implement, the
fixed threshold may not work properly. This is because the loss
value is decreasing with the increase of training iterations. Inspired
by the dynamic gradient descent methods [22], we replace the fixed
threshold with a dynamic threshold function 𝜏 (𝑇 ) w.r.t. the training
iteration 𝑇 , which changes the threshold value along the training
process (Figure 4). Besides, since the loss values vary across different

Algorithm 1 Adaptive Denoising Training with T-CE loss
Input: the set of all trainable parameters Θ, the training set of

observed implicit interactions D̄, the maximum number of
iterations 𝑇𝑚𝑎𝑥 , learning rate 𝜂, 𝜖𝑚𝑎𝑥 , 𝛼 , L𝐶𝐸

1: for 𝑇 = 1 → 𝑇𝑚𝑎𝑥 do ⊲ shuffle samples every epoch
2: Fetch mini-batch data D̄𝑝𝑜𝑠 from D̄
3: Sample unobserved interactions D̄𝑛𝑒𝑔 randomly for users

in D̄𝑝𝑜𝑠 with the proportion of 1:1
4: Define D̄𝑇 = D̄𝑝𝑜𝑠 ∪ D̄𝑛𝑒𝑔

5: Obtain D̂ = arg max
D̂∈D̄𝑝𝑜𝑠 , | D̂ |=𝜖 (𝑇 ) | D̄T |

∑
(𝑢,𝑖) ∈D̂ L𝐶𝐸 (𝑢, 𝑖 |ΘT-1)

6: Update ΘT = ΘT-1 − 𝜂∇ 1
| D̂ |

∑
𝑢,𝑖∈D̂ L𝐶𝐸 (𝑢, 𝑖 |ΘT-1)

7: Update 𝜖 (𝑇 ) =𝑚𝑖𝑛(𝛼𝑇, 𝜖𝑚𝑎𝑥 )
8: end for

Output: the optimized parameters Θ𝑇𝑚𝑎𝑥
of the recommender

datasets, it would be more flexible to devise 𝜏 (𝑇 ) as a function of
the drop rate 𝜖 (𝑇 ). Note that there is a bijection between the drop
rate and the threshold, i.e., for any training iteration, if the drop
rate is given, we can calculate the threshold to filter out samples.

Based on prior observations, a proper drop rate function should
have the following properties: 1) 𝜖 (·) should have an upper bound
to limit the proportion of discarded samples so as to prevent data
missing; 2) 𝜖 (0) = 0, i.e., it should allow all the samples to be
fed into the models in the beginning; and 3) 𝜖 (·) should increase
smoothly from zero to its upper bound, so that the model can learn
and distinguish the true- and false-positive interactions gradually.

Towards this end, we formulate the drop rate function as:

𝜖 (𝑇 ) =𝑚𝑖𝑛 (𝛼𝑇, 𝜖𝑚𝑎𝑥 ), (3)

where 𝜖𝑚𝑎𝑥 is an upper bound and 𝛼 is a hyper-parameter to adjust
the pace to reach the maximum drop rate. Note that we increase the
drop rate in a linear fashion rather than a more complex function
such as a polynomial function or a logarithm function. Despite
the expressiveness of these functions, they will inevitably increase
the number of hyper-parameters, resulting in the increasing cost
of tuning a recommender. The whole algorithm is explained in
Algorithm 1. Note that T-CE loss discards the hard samples which
are more likely to be the noisy ones. It is symmetrically contrary
to the Hinge loss, and T-CE loss limits the model to be overfitting.

3.3.2 Reweighted Cross-Entropy Loss. Functionally speaking,
the Reweighted Cross-Entropy (shorted as R-CE) loss down-weights
the positive interactions with large loss values, which is defined as:

LR-CE (𝑢, 𝑖) = 𝜔 (𝑢, 𝑖)LCE (𝑢, 𝑖), (4)

where 𝜔 (𝑢, 𝑖) is a weight function that adjusts the contribution
of an observed interaction to the training objective. To achieve
the target of properly down-weighting the large-loss samples, the
weight function𝜔 (𝑢, 𝑖) is expected to have the following properties:
1) it dynamically adjusts the weights of samples during training; 2)
the function will reduce the influence of a hard sample to be weaker
than an easy sample; and 3) the degree of weight reduction can be
easily adjusted so that it can fit different models and datasets.

Inspired by the success of Focal Loss [30], we estimate 𝜔 (𝑢, 𝑖)
with a function of 𝑓 (𝑦𝑢𝑖 ) that takes the prediction score as the
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input. Note that the prediction score and CE loss are equivalent
to identify hard samples (i.e., the large-loss ones). We use the
prediction score as the input of the weight function since its value
is within [0, 1] rather than [0, +∞], which is more accountable to
further computation. Towards this end, we formulate it as:

𝑓 (𝑦̂𝑢𝑖 ) = 𝑦̂
𝛽

𝑢𝑖
, (5)

where 𝛽 ∈ [0, +∞] is a hyper-parameter to control the range of
weights. From Figure 5(a), we can see that R-CE loss equipped
with the proposed weight function can significantly reduce the
loss of hard samples (i.e., 𝑦𝑢𝑖 ≪ 0.5) as compared to the original
CE loss. Furthermore, the proposed weight function satisfies the
aforementioned requirements:

• 𝑓 (𝑦𝑢𝑖 ) = 𝑦
𝛽

𝑢𝑖
is sensitive to 𝑦𝑢𝑖 which is closely related to the loss

value. As such, it generates dynamic weights during training.
• The interactions with extremely large CE loss (e.g., the “outlier” in
Figure 5(b)) will be assigned with very small weights because 𝑦𝑢𝑖
is close to 0. Therefore, the influence of such large-loss samples
is largely reduced. In addition, as shown in Figure 5(b), harder
samples always have smaller weights because the function 𝑓 (𝑦𝑢𝑖 )
monotonically increases when 𝑦𝑢𝑖 ∈ [0, 1] and 𝛽 ∈ [0, +∞]. As
such, it can avoid that false-positive interactions with large loss
values dominate the optimization during training [42].

• The hyper-parameter 𝛽 dynamically controls the gap between
the weights of hard and easy samples. By observing the examples
in Figure 5(b), we can find that: 1) if 𝛽 increases, for the same
pair of easy and hard samples, the gap between their weights
becomes larger (e.g., 𝑑0.4 < 𝑑1.0 in Figure 5(b)); and 2) if we set 𝛽
as 0, the R-CE loss will degrade to the standard CE loss.
In practice, to ensure the loss values of all samples are within the

same range, preventing negative sampleswith large loss values from
dominating the optimization, negative samples are also weighted
in this paradigm. Formally, we revise the weight function as:

𝜔 (𝑢, 𝑖) =
{
𝑦
𝛽

𝑢𝑖
, 𝑦𝑢𝑖 = 1

(1 − 𝑦𝑢𝑖 )𝛽 , otherwise,
(6)

Indeed, it may provide a possible solution to alleviate the impact of
false-negative interactions, which is left for future exploration.

3.3.3 In-depth Analysis. Since ADT depends totally on recom-
menders to identify false-positive interactions, one question might
be whether it is reliable. Actually, many existing work [13, 20]
has pointed out the connection between the large loss and noisy
samples, and explained the underlying causality: the “memorization”
effect of deep models. That is, deep models will first learn easy
and clean patterns in the initial training phase, and then gradually
memorize all samples, including noisy ones. As such, the loss of deep
models in the early stage can help to filter out noisy interactions.We
discuss the memorization effect of recommenders by experiments
in Section 3.2 and 5.2.1. And the performance of T-CE loss also
shows that it can is explored in Section 5.2.2.

Another concern is that some hard samples may be more
informative than easy samples and discarding hard samples would
limit the model’s learning ability. Indeed, as indicated in the prior
studies [2], hard samples in the noisy data probably confuse the
model rather than help it to establish the right decision surface. As
such, they may induce poor generalization. It’s actually a trade-off
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Figure 5: Illustration and analysis of R-CE loss.

between denoising and learning. In ADT, the 𝜖 (·) of T-CE loss and
𝛽 of R-CE loss are to control the balance. And the sensitivity to the
hyper-parameters is studied in Section 5.2.3.

4 RELATEDWORK
This work aims to denoise implicit feedback for recommenders,
which is highly related to the negative experience identification, in-
corporating various feedback, and the robustness of recommenders.

Negative Experience Identification. To reduce the gap
between implicit feedback and the actual user preference, many
researchers have paid attention to identify negative experiences
in implicit signals [7, 21]. Prior work usually collects the various
users’ feedback (e.g., dwell time [21], gaze patterns [46], and skip
[7]) and the item characteristics [32, 33] to predict the user’s
satisfaction. Lu et al. [32] predicted users’ actual preference in news
recommendation based on various user behaviors, news quality, and
the interaction context. However, these methods need additional
feedback and extensive manual label work, e.g., users have to tell if
they are satisfied for each interaction. Besides, the quantification
of item quality and characteristics is non-trivial [32], which largely
relies on the manually feature design and the labeling of domain
experts [32, 33]. The unaffordable labor cost hinders the practical
usage of these methods, especially in the scenarios with constantly
changing items.

Incorporating Various Feedback. To alleviate the impact of
false-positive interactions, previous approaches [8, 26, 31, 41, 44]
also consider incorporating more feedback (e.g., dwell time [43],
skip [27, 45], and adding to favorites) into training directly. For
instance, Wen et al. [39] proposed to train the recommender using
three kinds of items: “click-complete”, “click-skip”, and “non-click”
ones. The last two kinds of items are both treated as negative
samples but with different weights. However, additional feedback
might be unavailable in complex scenarios. For example, we cannot
acquire dwell time and skip patterns after users buy products
or watch movies in a cinema. Most users even don’t give any
informative feedback after clicks. In an orthogonal direction, this
work explores denoising implicit feedback without additional
information during training.

Robustness of Recommender Systems. Gunawardana et al.
[12] defined the robustness of recommender systems as “the
stability of the recommendation in the presence of fake
information”. Prior work [25, 36] has tried to evaluate the
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Table 2: Statistics of the datasets. In particular, #FP interac-
tions refer to the number of false-positive interactions.

Dataset #User #Item #Interaction #FP Interaction
Adressa 212,231 6,596 419,491 247,628
Amazon-book 80,464 98,663 2,714,021 199,475
Yelp 45,548 57,396 1,672,520 260,581

robustness of recommender systems under various attack methods,
such as shilling attacks [25] and fuzzing attacks [36]. To build more
robust recommender systems, some auto-encoder based models
[28, 37, 40] introduce the denoising techniques. These approaches
(e.g., CDAE [40]) first corrupt the interactions of user by random
noises, and then try to reconstruct the original one with auto-
encoders. However, these methods focus on heuristic attacks or
random noises, and ignore the natural false-positive interactions
in data. This work highlights the negative impact of natural noisy
interactions, and improve the robustness against them.

5 EXPERIMENT
Dataset. To evaluate the effectiveness of the proposed ADT on

recommender training, we conducted experiments on three publicly
accessible datasets: Adressa, Amazon-book, and Yelp.
• Adressa: This is a real-world news reading dataset from
Adressavisen2 [11]. It includes user clicks over news and the
dwell time for each click, where the clicks with dwell time < 10s
are thought of as false-positive ones [21, 43].

• Amazon-book: It is from the Amazon-review datasets3 [14]. It
covers users’ purchases over books with rating scores. A rating
score below 3 is regarded as a false-positive interaction.

• Yelp: It’s an open recommendation dataset4, in which businesses
in the catering industry (e.g., restaurants and bars) are reviewed
by users. Similar to Amazon-book, the rating scores below 3 are
regarded as false-positive feedback.
These datasets comprise the common implicit feedback: click,

purchase, and consumption, which are suitable to explore the
effectiveness of denoising implicit feedback although explicit
feedback also exists in each interaction. We followed former
work [15, 28, 38] to remove users and items with extremely sparse
interactions and split the dataset into training, validation, and
testing (see Table 2 for statistics). To evaluate the effectiveness
of denoising implicit feedback, we kept all interactions, including
the false-positive ones, in training and validation, and tested
recommenders only on true-positive interactions. That is, the
models are expected to recommend more satisfying items to users.

Evaluation Protocols. For each user in the testing set, we predicted
the preference score over all the items except the positive ones used
during training. Following existing studies [16, 38], we reported
the recommendation performance w.r.t. two widely used metrics:
Recall@K and NDCG@K, where higher scores indicate better
performance. For both metrics, we set K as 50 and 100 for Amazon-
book and Yelp, while 3 and 20 for Adressa due to its much smaller
item space.

Testing Recommenders. To demonstrate the effectiveness of
our proposed ADT strategy on denoising implicit feedback, we
2https://www.adressa.no/
3http://jmcauley.ucsd.edu/data/amazon/
4https://www.yelp.com/dataset/challenge

compared the performance of recommenders trained with T-CE
or R-CE and normal training with standard CE. We selected two
representative user-based neural CF models, GMF and NeuMF [16],
and one item-based model, CDAE [40]. Note that CDAE is also a
representative model of robust recommender which can defend
random noises within implicit feedback.

• GMF [16]: This is a generalized version of matrix factorization
by replacing the inner product with the element-wise product
and a linear neural layer as the interaction function.

• NeuMF [16]: NeuMF is a representative CF neural model, which
models the relationship between users and items by combining
GMF and a Multi-Layer Perceptron (MLP).

• CDAE [40]: CDAE corrupts the interactions with random noises,
and then employs a MLP model to reconstruct the original input.

We only tested neural recommenders and omit conventional
ones such as MF [24] and SVD++ [23] due to their inferior
performance [16, 40].

Parameter Settings. For the three testing recommenders, we
followed their default settings, and verified the effectiveness of
our methods under the same conditions. For GMF and NeuMF, the
factor numbers of users and items are both 32. As to CDAE, the
hidden size of MLP is set as 200. In addition, the batch size is always
1,024 and Adam [22] is applied to optimize all the parameters with
the learning rate initialized as 0.001. As to the ADT strategies, they
have three hyper-parameters in total: 𝛼 and 𝜖𝑚𝑎𝑥 in T-CE loss, and
𝛽 in R-CE loss. In detail, 𝜖𝑚𝑎𝑥 is searched in {0.05, 0.1, ..., 0.5} and
𝛽 is tuned in {0.05, 0.1, ..., 0.25, 0.5, 1.0}. As for 𝛼 , we controlled its
range by adjusting the iteration number 𝜖𝑁 to the maximum drop
rate 𝜖𝑚𝑎𝑥 , and 𝜖𝑁 is adjusted in {1𝑘, 5𝑘, 10𝑘, 20𝑘, 30𝑘}.

5.1 Performance Comparison
Table 3 summarizes the recommendation performance comparison
of the three testing models trained with standard CE, T-CE, or R-CE
over three datasets. From Table 3, we can observe:

• In all cases, both the T-CE loss and R-CE loss effectively
improve the performance, e.g., NeuMF+T-CE outperforms vanilla
NeuMF by 12.98% on average over three datasets. The significant
performance gain indicates the better generalization ability of
neural recommenders trained by T-CE loss and R-CE loss. It
validates the effectiveness of adaptive denoising training, i.e.,
discarding or down-weighting hard samples during training.

• By comparing the T-CE Loss and R-CE Loss, we found that the
T-CE loss performs better in most cases. We postulate that the
recommender still suffers from the false-positive interactions
when it is trained with the Reweighted Loss, even though they
have smaller weights and contribute little to the overall training
loss. In addition, we suspect that the superior performance of
the Truncated Loss could be attributed to the additional hyper-
parameters in the dynamic threshold function which can be
tuned more granularly. Further improvement might be achieved
by a finer-grained user-specific or item-specific tuning of these
parameters, which can be done automatically [5].

• Across the recommenders, NeuMF performs worse than GMF and
CDAE, especially on Amazon-book and Yelp, which is criticized
for the vulnerability to noisy interactions. Because our testing is
only on the true-positive interactions, the inferior performance

https://www.adressa.no/
http://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset/challenge
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Table 3: Overall performance of three testing recommenders trained with ADT strategies and normal training over three
datasets. Note that Recall@K and NDCG@K are shorted as R@K and N@K to save space, respectively, and “RI” in the last
column denotes the relative improvement of ADT over normal training on average. The best results are highlighted in bold.
Dataset Adressa Amazon-book Yelp
Metric R@3 R@20 N@3 N@20 R@50 R@100 N@50 N@100 R@50 R@100 N@50 N@100 RI
GMF 0.0880 0.2141 0.0780 0.1237 0.0610 0.0953 0.0252 0.0328 0.0830 0.1344 0.0348 0.0463 -
GMF+T-CE 0.0904 0.2210 0.0805 0.1275 0.0707 0.1113 0.0292 0.0382 0.0871 0.1437 0.0359 0.0486 8.10%
GMF+R-CE 0.0890 0.2152 0.0788 0.1248 0.0682 0.1075 0.0275 0.0362 0.0860 0.1363 0.0366 0.0480 5.13%
NeuMF 0.1094 0.3081 0.0947 0.1732 0.0509 0.0813 0.0210 0.0279 0.0771 0.1259 0.0317 0.0427 -
NeuMF+T-CE 0.1416 0.3158 0.1267 0.1885 0.0600 0.0972 0.0240 0.0323 0.0800 0.1314 0.0325 0.0440 12.98%
NeuMF+R-CE 0.1416 0.3172 0.1267 0.1900 0.0628 0.1028 0.0248 0.0334 0.0788 0.1304 0.0320 0.0436 14.36%
CDAE 0.1394 0.3208 0.1168 0.1808 0.0989 0.1507 0.0414 0.0527 0.1112 0.1732 0.0471 0.0611 -
CDAE+T-CE 0.1406 0.3220 0.1176 0.1839 0.1088 0.1645 0.0454 0.0575 0.1165 0.1806 0.0504 0.0652 5.36%
CDAE+R-CE 0.1388 0.3164 0.1200 0.1827 0.1022 0.1560 0.0424 0.0542 0.1161 0.1801 0.0488 0.0632 2.46%

of NeuMF is reasonable since NeuMF with more parameters can
fit more false-positive interactions during training.

• Both T-CE and R-CE achieve the biggest performance increase
on NeuMF, which validates the effectiveness of ADT to prevent
vulnerable models from the disturbance of noisy data. On
the contrary, the improvement over CDAE is relatively small,
showing that the design of defending random noise can also
improve the robustness against false-positive interactions to
some extend. Nevertheless, applying T-CE or R-CE still leads
to performance gain, which further validates the rationality of
denoising implicit feedback.

In the following, GMF is taken as an example to conduct thorough
investigation for the consideration of computation cost.

Further Comparison against Using Additional Feedback. To avoid
the detrimental effect of false-positive interactions, a popular
idea is to incorporate the additional user feedback for training
although they are usually sparse. Existing work either adopts the
additional feedback by multi-task learning [9, 10], or leverages
it to identify the true-positive interactions [32, 39]. In this work,
we introduce two classical models for comparison: Neural Multi-
Task Recommendation (NMTR) [10] and Negative feedback Re-
weighting (NR) [39]. In particular, NMTR with multi-task learning
is to capture multiple user behaviors (i.e., click and satisfaction)
while NR uses the addition feedback (i.e., dwell time and rating)
to identify true-positive interactions with user satisfaction and
re-weight the false-positive and non-interacted ones as negative
samples. We applied NMTR and NR on the testing recommenders
and reported the results of GMF in Table 4. The results of other
recommenders with similar trends are omitted to save space.

From Table 4, we can find that: 1) NMTR and NR achieve
better performance than GMF, which validates the effectiveness
of additional feedback; and 2) the results of NMTR and NR are
inferior to that of ADT, both T-CE and R-CE. This is attributed to the
sparsity of additional feedback. Indeed, the clicks with satisfaction
is much fewer than the total number of clicks, and thus NR will lose
extensive positive training samples. Besides, not all clicks without
labeled user satisfaction indicate users’ dislikes because many users
seldom give explicit feedback even if they are satisfied. Therefore,
treating them as negative samples will hurt the performance, which
is also found by the experiments in [6].

Table 4: Performance w.r.t. GMF on Amazon-book.
Metric R@50 R@100 N@50 N@100
GMF 0.0600 0.0945 0.0247 0.0324
GMF+T-CE 0.0707 0.1113 0.0292 0.0382
GMF+R-CE 0.0682 0.1075 0.0275 0.0362
GMF+NMTR 0.0616 0.0967 0.0254 0.0332
GMF+NR 0.0615 0.0958 0.0254 0.0331
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Figure 6: Performance comparison of GMF over user groups
with different sparsity levels onAmazon-book andYelp. The
histograms represent the user number in each group and the
lines denote the performance w.r.t. NDCG@100.
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(c) Reweighted Loss
Figure 7: Loss of GMF (a), GMF+T-CE (b) and GMF+R-CE (c).

Performance Comparison w.r.t. Interaction Sparsity. Since ADT
prunes many interactions during training, we explored whether
ADT hurts the preference learning of inactive users because their
interacted items are sparse. Following the former studies [38], we
split testing users into four groups according to the interaction
number of each user where each group has the same number
of interactions. Figure 6 shows the group-wise performance
comparisonwhere we can observe that the proposed ADT strategies
achieve stable performance gain over normal training in all cases.
It validates that ADT is also effective for the inactive users.



Conference’17, July 2017, Washington, DC, USA Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua

0.0 0.1 0.2 0.3 0.4 0.5
0.020

0.025

0.030

0.035

0.040

0.045

0.050

N
D
C
G
@
K

 GMF + T‐CE (K=50)

 GMF + T‐CE (K=100)

𝒎𝒂𝒙 𝑵

Amazon‐book

1k 5k 10k 30k 60k 100k
0.02

0.03

0.04

0.05

N
D
C
G
@
K

 GMF + T‐CE (K=50)

 GMF + T‐CE (K=100)

𝑵 𝒎𝒂𝒙

Amazon‐book

0.0 0.1 0.2 0.3 0.4 0.5
0.030

0.035

0.040

0.045

0.050

N
D
C
G
@
K  GMF + T‐CE (K=50)

 GMF + T‐CE (K=100)

𝒎𝒂𝒙 𝑵

Yelp

1k 5k 10k 30k 60k 100k
0.030

0.035

0.040

0.045

0.050

N
D
C
G
@
K

 GMF + T‐CE (K=50)

 GMF + T‐CE (K=100)

𝑵 𝒎𝒂𝒙

Yelp

0.0 0.1 0.2 0.3 0.4 0.5
0.020

0.025

0.030

0.035

0.040

N
D
C
G
@
K  GMF + R‐CE (K=50)

 GMF + R‐CE (K=100)

Amazon‐book

0.0 0.1 0.2 0.3 0.4 0.5
0.030

0.035

0.040

0.045

0.050

N
D
C
G
@
K  GMF + R‐CE (K=50)

 GMF + R‐CE (K=100)

Yelp

Figure 8: Performance comparison of GMF trained with ADT on Yelp and Amazon-book w.r.t. different hyper-parameters.
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Figure 9: Recall and precision of false-positive interactions
overGMF trainedwith theTruncated Loss onAmazon-book.

5.2 In-depth Analysis
5.2.1 Memorization of False-positive Interactions. Recall that false-
positive interactions are memorized by recommenders eventually
under normal training, leading to poor generalization (cf. Section
3.2). We then investigated whether false-positive interactions are
also fitted well by the recommenders trained with ADT strategies.
Considering that the original CE loss values indicates the model’s
fitting ability on the samples, we depicted the CE loss of false-
positive interactions during the training procedure with the real
training loss as reference.

From Figure 7(a), we can find that the observations in section 3.2
also exist in the training of GMF on Amazon-book. The loss values
of false-positive interactions eventually become similar to other
samples, indicating that GMF fits false-positive samples well at last.
On the contrary, as shown in Figure 7(b), by applying T-CE, the
loss values of false-positive interactions keep increasing while the
overall training loss stably decreases step by step. The increased
loss indicates that the recommender parameters are not optimized
over the false-positive interactions, validating the capability of T-
CE to identify and discard such interactions. As to R-CE (Figure
7(c)), the loss of false-positive interactions also shows a decreasing
trend, showing that the recommender still fits such interactions.
However, their loss values are still larger than the real training loss,
indicating that the false-positive interactions are assigned with
smaller weights by R-CE, which prevents the model from fitting
them. Therefore, we can conclude that both paradigms reduce the
effect of false-positive interactions on recommender training, which
can explain their improvement over normal training.
5.2.2 Study of Truncated Loss. Since the Truncated Loss achieves
promising performance in the experiments, we studied how well
it performs to identify and discard false-positive interactions. We
first defined Recall to represent what percentage of false-positive
interactions in the training data are discarded, and precision as the

ratio of discarded false-positive interactions to all discarded samples.
Figure 9 visualizes the changes of the recall and precision along the
training process. The green line in Figure 9 indicates the recall and
precision under the settings of random discarding. In particular, the
recall of random discarding equals the drop rate during training
while its precision is the proportion of noisy interactions in all
training samples at each iteration.

From Figure 9, we observed that: 1) the Truncated Loss discards
nearly half of false-positive interactions after the drop rate keeps
stable, greatly reducing the impact of noisy interactions; and 2)
the precision of Truncated Loss is about twice as large as that
of random discarding. It demonstrates that the Truncated Loss
effectively utilizes the distill signals of false-positive interactions
and weakens their contributions to the model training. In spite of
this, we can find that a key limitation of the Truncated Loss is the
low precision, e.g., only 10% precision in Figure 9, which implies
that it inevitably discards many clean interactions. This also partly
proves that it’s worth pruning noisy interactions at the cost of
losing many clean samples. And the hyper-parameters in ADT
control the trade-off between denoising and losing clean samples.
Besides, how to further improve the precision so as to decrease the
loss of clean samples is a promising research direction in the future.

5.2.3 Hyper-parameter Sensitivity. Our proposed ADT strategies
incorporate three hyper-parameters to adjust the dynamic threshold
function and the weight function in two paradigms. In particular,
𝜖𝑚𝑎𝑥 and 𝜖𝑁 are used to control the drop rate in the Truncated
Loss, and 𝛽 adjusts the weight function in the Reweighted Loss.
In this section, we studied how the hyper-parameters affect the
performance. Only the results of GMF trained with ADT strategies
on Amazon-book and Yelp are reported in Figure 8 due to space
limitation. Other methods over three datasets have similar patterns.
From Figure 8, we can find that: 1) the recommender trained
with the T-CE loss performs better when 𝜖𝑚𝑎𝑥 ∈ [0.1, 0.3]. If
𝜖𝑚𝑎𝑥 exceeds 0.4, the performance drops significantly because a
large proportion of samples are discarded. Therefore, the upper
bound 𝜖𝑚𝑎𝑥 should be restricted. 2) The recommender is relatively
sensitive to 𝜖𝑁 , especially on Amazon-book, and the performance
still increases when 𝜖𝑁 > 30k. Nevertheless, a limitation of T-CE
loss is the big search space of hyper-parameters. 3) The adjustment
of 𝛽 in the Reweighted Loss is consistent over different datasets,
and the best results happen when 𝛽 ranges from 0.15 to 0.3. These
observations provide insights on how to tune the hyper-parameters
of ADT if it’s applied to other recommenders and datasets.
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6 CONCLUSION AND FUTUREWORK
In this work, we aim to denoise implicit feedback for recommender
training. We explore the negative effects of noisy implicit feedback,
and propose Adaptive Denoising Training strategies to reduce
their impact. In particular, this work contributes two paradigms to
formulate the loss functions: Truncated Loss and Reweighted Loss.
Both paradigms are general and can be applied to different loss
functions, neural recommenders, and optimizers. In this work, we
applied the two paradigms on the widely used binary cross-entropy
loss and conduct extensive experiments over three recommenders
on three datasets, showing that the paradigms effectively reduce
the disturbance of noisy implicit feedback.

This work takes the first step to denoise implicit feedback for
recommendation without using additional feedback for training,
and points to some new research directions. Specifically, it is
interesting to explore how the proposed two paradigms perform
on other loss functions, such as Square Loss [35], Hinge Loss [35]
and BPR Loss [34]. Besides, how to further improve the precision
of the paradigms is worth studying. Lastly, our Adaptive Denoising
Training is not specific to the recommendation task, and it can be
widely used to denoise implicit interactions in other domains, such
as Web search and question answering.
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