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Abstract

Few-shot learning (FSL) based on manifold regularization
aims to improve the recognition capacity of novel objects
with limited training samples by mixing two samples from
different categories with a blending factor. However, this mix-
ing operation weakens the feature representation due to the
linear interpolation and the overlooking of the importance of
specific channels. To solve these issues, this paper proposes
attentive feature regularization (AFR) which aims to improve
the feature representativeness and discriminability. In our ap-
proach, we first calculate the relations between different cate-
gories of semantic labels to pick out the related features used
for regularization. Then, we design two attention-based cal-
culations at both the instance and channel levels. These cal-
culations enable the regularization procedure to focus on two
crucial aspects: the feature complementarity through adap-
tive interpolation in related categories and the emphasis on
specific feature channels. Finally, we combine these regular-
ization strategies to significantly improve the classifier perfor-
mance. Empirical studies on several popular FSL benchmarks
demonstrate the effectiveness of AFR, which improves the
recognition accuracy of novel categories without the need to
retrain any feature extractor, especially in the 1-shot setting.
Furthermore, the proposed AFR can seamlessly integrate into
other FSL methods to improve classification performance.

Introduction
In recent years, convolutional neural networks (CNNs) have
demonstrated remarkable capabilities on various visual clas-
sification tasks, particularly provided with sufficient train-
ing data. However, collecting and labeling such datasets is
a time-consuming and expensive procedure. As a remedy to
address this challenge, few-shot learning (FSL) is proposed
to classify a novel object with a scarcity of labeled data. (Ye
et al. 2020; Peng et al. 2019; Wang et al. 2020).

The conventional solution of FSL involves using a CNN
trained on the base categories to directly extract the global
features of novel objects (Hariharan and Girshick 2017;
Wang et al. 2018). It aims to yield a transferable feature
representation (textures and structures) to describe a novel
category. Subsequently, these features are employed to train
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Figure 1: The analysis of manifold regularization methods.

a classifier for recognizing novel objects. Manifold regu-
larization (Rodrı́guez et al. 2020; Deutsch et al. 2017; Ve-
lazquez et al. 2022) is a popular strategy to improve clas-
sification performance. These methods involve mixing two
samples (features) and their labels from randomly selected
categories to generate a regularized feature. However, the
mixing operation with randomness is easy to weaken the
representation ability (Guo, Mao, and Zhang 2019; Chou
et al. 2020). This is primarily due to the direct interpola-
tion without considering the complementarity of two fea-
tures and the neglect of specific feature channels (Hou, Liu,
and Wang 2017; Shi, Wu, and Wang 2023; Luo, Xu, and Xu
2022; Zhu et al. 2023), which in turn impacts the distribu-
tion of prediction results. As illustrated in Figure 1, given
a novel sample of “Retriever” and another randomly picked
out sample “Linnet”, the manifold regularization methods,
e.g., Mixup (Zhang et al. 2018), CutMix (Yun et al. 2019),
and PatchMix (Liu et al. 2021), interpolate their images and
labels to train the classifier for predicting both categories.
It’s evident that the “Retriever” and the “Linnet” are unre-
lated in terms of both vision and semantics. Consequently,
the regularized features deviate from the novel feature “Re-
triever” (as indicated by the five yellow squares in the lower-
left corner of Figure 1). This deviation leads to an increase
in the prediction score for “Linnet” and results in misclassi-
fication. This deviation leads to an increase in the prediction
score of the “Linnet” and limits the classification results.

To address the aforementioned issue arising from mani-
fold regularization, we first incorporate semantics to select
categories related to the novel categories from the base set.



This idea aligns with the prior work (Wang et al. 2020; Peng
et al. 2019; Wang et al. 2022), where semantic knowledge
not only strengthens visual features but also aids help classi-
fier in capturing discriminative patterns. However, it’s worth
noting that such methodologies necessitate greater prior se-
mantic information during the training process, which leads
to increased model size and longer training times. Differ-
ent from the previous approaches, our method solely relies
on semantic labels to select relevant base categories during
the data preprocessing stage. This purposeful selection, in
contrast to the random selection in manifold regularization,
enables the classifier to better concentrate more effectively
on the novel content during the training stage. Besides, we
also exploit the feature complementarity from similar cate-
gories and the discriminability of specific feature channels,
which can both provide distinctive patterns for classification
(Liu et al. 2019; Shi, Wu, and Wang 2023). Building on the
above analysis, we propose two attention-based calculations
at the instance and channel levels, respectively.

The instance attention is designed to adaptively leverage
the collaborative components of the selected base categories
guided by their relevance to heighten the novel feature rep-
resentativeness. Specifically, we first analyze the semantic
similarity of the selected base categories related to the novel
category, then calculate the attention scores between the se-
lected base samples and the given novel sample to measure
their importance. Finally, these attention scores are then em-
ployed in the reweighting of selected samples. Instance at-
tention exploits the collaboration between the related cat-
egories through adaptive interpolation, which avoids the ir-
relevant components of the base categories and consequently
improves the representation of the novel samples.

For channel calculations, we aim to emphasize the spe-
cific feature channels that signify the discriminative pat-
terns. Specifically, we calculate the scores as channel impor-
tance weights from the regularized features output from the
instance attention. These weights are then applied to each
channel of features in regularization, aiding the classifier
in identifying the representative content of the novel sam-
ples. This channel attention mechanism allows for more ef-
ficient and focused exploration of novel category informa-
tion within the feature channels, which enhances the dis-
criminability of the final feature representation.

The proposed procedures, defined as Attentive Feature
Regularization (AFR), all operate on features and can be
easily applied to existing pre-trained feature extractors. The
main contributions of our method are as follows.

1. We propose instance-level attention with semantic se-
lection to improve the feature representativeness, which
leverages the complementarity of the related base cate-
gories to enhance the novel categories.

2. We design channel-level attention to enhance the feature
discriminability by measuring the importance of differ-
ent channels, which helps the classifier focus on the rep-
resentative content of the novel sample.

3. Our method achieves state-of-the-art performance on
three popular FSL datasets and can also be used to im-
prove the performance of the classifier in other FSL

methods without training feature extractors.

Related Work
In this section, we first briefly introduce common solutions
for FSL tasks and corresponding regularization strategies.
Subsequently, we list the applications of recent attention-
based methods. Finally, we enumerate the differences be-
tween our methods and those of related methods.

Knowledge Transfer in Few-Shot Learning
Recent advances in Few-Shot Learning (FSL) have demon-
strated promising performance by transferring the knowl-
edge from the base categories to the novel categories (Li
et al. 2020, 2019; Wang et al. 2022; Lu et al. 2023). These
methods leverage semantic knowledge to provide additional
information for refining visual features or enriching the su-
pervision during classifier training. For example, the method
in (Li et al. 2019) clusters hierarchical textual labels from
both the base and novel categories to improve the feature
extractor training. Wang et al. proposed a multi-directional
knowledge transfer (MDKT) method which integrates the
visual and textual features through a bidirectional knowl-
edge connection. The work described in (Lu et al. 2023) em-
ploys the semantics to explore the correlation of categories
to hallucinate the additional training samples.

Regularization in Few-Shot Learning
Recently, manifold regularization(Devries and Taylor 2017;
Zhang et al. 2018; Verma et al. 2019; Yun et al. 2019;
Liu et al. 2021) has been used in FSL tasks, which is
simply based on mixture and mask operation and can im-
prove the classification performance. The simplest method is
CutOut (Devries and Taylor 2017), which randomly masks
out square regions of input during training and improves the
performance of the networks. Based on CutOut, many other
manifold regularization methods have been developed, i.e.,
MixUp (Zhang et al. 2018; Verma et al. 2019), CutMix (Yun
et al. 2019), PatchMix (Liu et al. 2021). Specifically, MixUp
mixes two samples by interpolating both the image and the
labels. In CutMix, patches are cut and pasted among train-
ing features, where ground truth labels are also mixed pro-
portionally to the area of the patches. PatchMix is similar to
CutMix and uses mixed images for contrastive learning.

Attention in Few-Shot Learning
In the field of FSL, attention mechanisms (Vaswani et al.
2017a) have been widely widespread due to their ability to
highlight the important parts of inputs by measuring simi-
larities. This enables the network to focus on critical content
for specific tasks (Hou et al. 2019; Kang et al. 2021; Chikon-
twe, Kim, and Park 2022). For instance, Hou et al. proposed
a cross-attention (CAM) method to model the semantic rele-
vance between class and query features, leading to adaptive
localization of relevant regions and generation of more dis-
criminative features (Hou et al. 2019). The work in (Kang
et al. 2021) computes the cross-correlation between two
representations and learns to produce co-attention between
them. It improves the classification accuracy by learning
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Figure 2: The overview of attentive feature regularization (AFR), where LCE, LSC, and LMSE are three losses.

cross-correlational patterns and adapting “where to attend”
concerning the images given in the testing stage. More-
over, the method (Ye et al. 2020) integrates the entire Trans-
former module including attention mechanisms (FEAT) to
adapt the features for FSL tasks. The authors in (Lai et al.
2022) propose the method named transformer-based Seman-
tic Filter (tSF) which defines the additional learnable param-
eters to filter the useful knowledge of the whole base set for
the novel category. The recently proposed CAD (Chikon-
twe, Kim, and Park 2022) employs self-attention operations
to cross-attend support and query embeddings, effectively
reweighting each instance relative to the others.

Based on the analysis of the related work, our method
belongs to the manifold regularization methods. The meth-
ods most related to ours are the recently proposed Manifold
Mixup in (Verma et al. 2019) and CAM in (Hou et al. 2019).
Our method differs from theirs in two aspects. First, we in-
troduce semantic knowledge to purposefully select samples
for regularization and keep the label of the regularized fea-
ture the same as the novel feature to avoid introducing other
unrelated supervisions for training. Second, we design two
attention calculations to enhance collaboration and improve
the discriminability of features, which helps the classifier fo-
cus on the distribution of novel categories rather than asso-
ciate the support and query samples during the testing stage
(Hou et al. 2019). Besides, our approach directly applies to
the features and has a lower computational complexity.

Method
In this section, we elaborate on our attentive feature regular-
ization (AFR). First, we briefly revisit the preliminaries of
the FSL tasks and an overview of our framework. Second,
we delve into the details of our semantic selection process
and different attention calculations. Finally, we describe the
training and inference procedures of our approach.

Preliminaries
The data for the few-shot learning task is divided into three
parts: base set Dbase, support set Dsupport, and query set
Dquery. The base set Dbase has large-scale labeled samples

(e.g., about hundreds of samples in one category) used for
training the feature extractor. The categories of these sam-
ples are denoted as Cbase and provide valuable prior knowl-
edge as known contents to describe other samples. The sup-
port set Dsupport and the query set Dquery share the same set
of categories, called Cnovel, which is disjoint with that of the
base set Cbase. The goal of few-shot learning is to construct a
classifier using training samples from both the base set and
the support set, capable of accurately classifying the sam-
ples in the query set. For the training samples from Dsupport,
there are total N categories that are randomly sampled from
Cnovel, and each category provides K samples. This process
is known as the N -way-K-shot recognition problem.

The overview of our framework is depicted in Figure 2.
First, we use the semantic knowledge to select the related
base categories to a given novel sample and extract features
of all these samples by a pre-trained CNN. Second, we de-
sign instance attention and channel attention to regularize
these features. Third, we design three losses to constrain the
regularization procedure and train a classifier.

Attentive Feature Regularization
Textual knowledge uses semantic description to express
each category. It provides the direct relations between the
categories. To avoid bringing irrelevant noise to influence
the classifier training, we directly calculate the relations be-
tween these descriptions before regularization. Specifically,
we first use the word2vec embedding method (Li et al. 2019)
to express these descriptions into the feature. Then, given
feature of a support category as ts, we calculate the rela-
tions Rs = {rsi }

|Cbase|
i=1 between ts and the other descriptions

{ti}i∈Cbase
from base categories by similarity calculation:

rsi =
⟨ts, ti⟩

∥ts∥2 · ∥ti∥2
, (1)

where ⟨·, ·⟩ is the inner product between two vectors.
After obtaining the relation scores Rs, we sort them and

select the samples from the top-βs related categories denoted
as Cβs

for regularization. These semantically relevant fea-
tures can provide a more relevant content supplement to the
training and avoid bringing much irrelevant noise.
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Figure 3: The calculation of calibration in instance attention.

Our regularization operates on the feature level. There-
fore, we first represent the sample I into feature f =
Φ(I) ∈ Rd by extracting the output from the pre-trained vi-
sual model Φ before the last prediction layer. The model Φ
is already trained on known images from the base set Dbase,
and d is the dimension of the feature. Then, we illustrate the
different attention calculations used in our approach.

Instance Attention Given a support feature fs with its
textual description feature ts, we first selected βs categories
from base categories as Cβs

using Eq (1). Then we compute
the prototype of each selected category Ci

βs
by averaging all

the features corresponding to that category:

pi =
1

|Ci
βs
|
∑

fj , j ∈ Ci
βs

(2)

Therefore, the prototypes of whole Cβs
categories can

be constructed as P = [p1,p2, ...,p|Cβs |], where P ∈
R|Cβs |×d. We then design a calibration based on self-
attention (Vaswani et al. 2017b) to find relevant categories
that can help describe the novel category. The details are
shown in Figure 3. Specifically, we first design three atten-
tion matrixes Q, K, and V to capture the content similari-
ties from novel features and prototypes of related categories:

Q = fs ∗Wq,K = P ∗Wk,V = P ∗Wv, (3)

where Wq ∈ Rd×d, Wk ∈ Rd×d, Wv ∈ Rd×d are weights
of calibration calculation. We then use these similarities to
calibrate the prototypes of the related categories since the
distribution of the base categories and the novel category
belong to different spaces, where the amplitude As ∈ Rd of
calibration is calculated as:

As = softmax(
Q ∗K⊺

√
d

)V . (4)

It measures the relations between the novel category and its
related base categories from the feature space.

Thus, calibrated prototypes P̂ can be defined as:

P̂ = [p̂1, p̂2, ..., p̂|Cβs |],

= δ(As ∗Wp) + [p1,p2, ...,p|Cβs |],
(5)

where Wp ∈ Rd×d is weight matrix for the calibration cal-
culation, and δ is ReLU function. The calibrated prototypes
can better simulate the distribution of the novel category and
improve the accuracy of feature regularization.

Channel Attention Channels of features have different in-
fluences on classifiers (Yue et al. 2020). To identify the im-
portant content of the channels, we design a channel at-
tention module inspired by SE-Net (Hu, Shen, and Sun
2018). SE-Net terms the “Squeeze-and-Excitation (SE)”
block to adaptively re-calibrate channel-wise feature re-
sponses by explicitly modeling interdependencies between
channels in backbone training(Hu, Shen, and Sun 2018).
Thus, we introduce a similar operation into the feature anal-
ysis. Specifically, we design two fully connected (FC) layers
to “Squeeze-and-Excitation” calibrated prototypes P̂ :

Es = σ(FC2(δ(FC1(P̂ )))), (6)

where σ is the Sigmoid function, and we intentionally set
the embedding size of FC1 to be smaller than that of FC2.
This design enhances important content and weakens unre-
lated content in the features by controlling the size of FC1.
To further fuse the channel attention with the prototypes, we
set the size of Es to be the same as P̂ ∈ R|Cβs |×d by con-
trolling FC2 accordingly. In our fusion stage, we employ a
residual structure to prevent vanishing gradients while im-
proving the accuracy of the prototype representation:

P̄ = Es ⊙ P̂ + P , (7)

where ⊙ is the Hadamard product. P̄ ∈ R|Cβs |×d not only
close to the distribution of the novel category by calibrating
but also captures the content related to the novel category by
using channel attention. Therefore, we sample the features
of P̄ as representations of the given novel category to enrich
the training set in our few-shot learning task.

Training and Inference
Denoted the novel samples and their labels in a N -way-
K-shot task as {{f i

s, l
i
s}Ns=1}Ki=1, and the fused prototypes

as {P̄s = {p̄j
s}

βs

j=1}Ns=1, we combine the given features
and prototypes into one set {{Hs = {hj

s}}Ns=1}
K+βs

j=1 to
simplify the expressions in subsequent calculations, where
Hs = [f1

s ,f
2
s , ...,f

K
s , p̄1

s, p̄
2
s, ..., p̄

βs
s ]. We then design two

losses to constrain the distribution of regularized prototypes
and use cross-entropy (CE) loss to train the classifier.

First, we adopt the principles of self-supervised con-
trastive learning (Khosla et al. 2020), which aim to bring
features of the same category closer together while pulling
features of different categories apart. Thus, the supervised
contrastive (SC) loss can be calculated as follows:

LSC=
1

N |Hs|

N∑
s=1

|Hs|∑
i,j=1
i ̸=j

log
exp(⟨hi

s,h
j
s⟩/τ)∑

∀hp/∈Hs

exp(⟨hi
s,hp⟩/τ)

, (8)

where |Hs| = K + βs means the size of Hs. Minimizing
LSC encourages maximizing the distances between samples
from different categories and clustering them from the same
category closer together. Meanwhile, to bridge the distribu-
tion gap between the prototypes of base categories and the
features of the novel category, we employ the mean squared



error (MSE) operation to measure the average prototypes
and the novel features, and the loss is designed as:

LMSE =
1

N

N∑
s=1

|| 1
K

K∑
i=1

f i
s −

1

βs

βs∑
j=1

p̄j
s||. (9)

Finally, we design a N -way classifier Γ to learn the pre-
diction distribution from given novel features and the proto-
types. In this work, the classifier Γ is a simple network, e.g.,
as simple as one fully connected layer. We use the cross-
entropy loss to train the classifier with the hard labels:

LCE =
1

N

1

|Hs|

N∑
s=1

|Hs|∑
i=1

CrossEntropy(hi
s, ls). (10)

The total loss for training is defined as:

L = LCE + µ1LSC + µ2LMSE, (11)

where µ1 and µ2 are two weighting factors.
During the inference, we use the trained classifier to di-

rectly predict the category for each feature in the query set.

Experiments
In this section, we present the experimental evaluation of our
AFR. We begin by introducing the experimental settings.
Next, we perform ablation studies to analyze the contribu-
tions of different components in our approach. Finally, we
compare the performance of our approach with other state-
of-the-art (SOTA) methods. Our experiments aim to address
the following research questions (RQ):
RQ1: Given an novel category, how many related categories
(Cβs

) should be selected from the base categories?
RQ2: What are the effects of the instance attention and
channel attention?
RQ3: How do the contrastive learning and the feature space
closing operations influence the classifier?
RQ4: How does AFR perform compared to the state-of-the-
art FSL methods?

Experimental Settings
Datasets. We evaluate our method on three benchmark
datasets, i.e., Mini-ImageNet (Vinyals et al. 2016), Tiered-
ImageNet (Ren et al. 2018), and Meta-Datase (Triantafillou
et al. 2019). Specifically, Mini-ImageNet consists of 100 cat-
egories and each category has 600 images. It is divided into
three parts: 64 base categories for training, 16 novel cate-
gories for validation, and the remaining 20 categories for
testing. Similar to Mini-ImageNet, Tiered-ImageNet con-
sists of 779165 images from 608 categories, where 351 base
categories are used for training, 97 novel categories are used
for validation, and the remaining 160 novel categories are
used for testing. Meta-Dataset is a significantly larger-scale
dataset that comprises multiple datasets with diverse data
distributions, and we follow the usage described in (Xu et al.
2022). Specifically, feature extractor training is conducted
using the base categories of Mini-ImageNet, and the other
8 image datasets are utilized for testing process, includ-
ing Omniglot (Lake, Salakhutdinov, and Tenenbaum 2015),
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Figure 4: The accuracy (%) of the classifiers trained with the
different numbers of selected base categories.

Ins.Att. Chanl.Att K = 1 K = 5

% % 64.02 ± 0.70% 82.32 ± 0.41%
% " 68.74 ± 0.61% 82.56 ± 0.46%
" % 68.03 ± 0.58% 83.04 ± 0.43%
" " 70.68 ± 0.61% 83.36 ± 0.45%

Table 1: The accuracy (%) of the classifiers with different
attentions, where Ins.Att. and Chanl.Att is the instance at-
tention and channel attention, respectively.

CUB-200-2011 (Wah et al. 2011), Describable Textures
(Cimpoi et al. 2014), Quick Draw (Fernandez-Fernandez
et al. 2019), Fungi (Sulc et al. 2020), VGG Flower (Nilsback
and Zisserman 2008), Traffic Signs (Houben et al. 2013).
Evaluation. In our evaluation, we conduct several N -way-
K-shot classification tasks. In each task, N novel categories
are randomly sampled at first, then K samples in each of the
N categories are sampled for training, and finally, 15 sam-
ples (different from the previous K samples) in each of the
N categories are sampled for testing. To ensure reliable re-
sults, we sample 600 such tasks and report mean accuracies
and variances on all tasks. In our experiments, N = 5. No-
tably, we adhere to the evaluation setting for meta-dataset
as described in (Xu et al. 2022), where the novel categories
are randomly sampled from the alternate image datasets, ex-
cluding the base categories present in the Mini-ImageNet.
Implementation Details. We utilize the features extracted
from the pre-trained model and then apply our AFR to ob-
tain both original and regularized features for training the
classifier Γ. These features are used to train the classifier Γ
using the loss function L defined in Eq. (11) for a total of
1000 epochs. We employ Adam optimization (Kingma and
Ba 2015) with a learning rate of 0.001 and a weight decay
of 0.0001 during the training process.

Ablation Study
In the ablation study, we use 64 base categories and 16 novel
categories (validation set) of Mini-ImageNet with the avail-
able ResNet-12 (Chen et al. 2021) to evaluate the effective-



LSC LMSE K = 1 K = 5

% % 70.68 ± 0.61% 83.36 ± 0.45%
% " 70.93 ± 0.66% 83.76 ± 0.43%
" % 71.18 ± 0.63% 83.70 ± 0.45%
" " 72.35 ± 0.63% 84.11 ± 0.43%

Table 2: The accuracy (%) of the classifiers with different
training strategies of loss functions.

Regularization K = 1 K = 5

Baseline 64.02 ± 0.70% 82.58 ± 0.45%
CutMix† 64.83 ± 0.72% 80.89 ± 0.51%
Mixup† 64.93 ± 0.69% 81.55 ± 0.47%
CutOut† 64.85 ± 0.68% 81.53 ± 0.48%

AFR(only P̄S) 67.58 ± 0.69% 82.96 ± 0.46%
AFR(fs + P̄S) 72.35 ± 0.63% 83.74 ± 0.43%

Table 3: The accuracy (%) of the classifiers trained with dif-
ferent regularization strategies. † is our implementation.

ness of the different components of attentive feature regular-
ization (AFR). Meanwhile, we use the pre-trained word2vec
(Li et al. 2019) to represent the labels with vectors. All ex-
periments in the ablation study are conducted on 5-way-K-
shot settings, where K = 1 or K = 5. We first evaluate
the category selection and then introduce the experiments of
different attention calculations and training strategies.

The influences of semantic selection (RQ1) The seman-
tic selection is designed for feature regularization, thus we
train the classifier Γ with only instance attention and LCE

loss to validate its effects. In this ablation study, we conduct
experiments with different βs on K = 1 and K = 5, where
βs ranges from 1 to 64 (base categories of Mini-ImageNet).
The results are shown in Figure 4. For comparison, we also
plot the results without any operation at 0th position (“Base-
line”). First, both the introduced semantic selection and in-
stance attention can improve the performance of the clas-
sifier. Moreover, the accuracy of using instance attention is
better than that of utilizing the whole base categories (64th
position). Second, with the increase of category selection,
the performances of the classifier increase first and then de-
crease. It’s because introducing too many categories also
bring more noise, which makes it hard to train the classifier.
Therefore, we set βs = 3 in our remaining experiments.

The effects of different attentions (RQ2) To evaluate the
effectiveness of different attentions, we train four classifiers
with or without attention operations, using only the LCE

loss. The performance of each classifier was evaluated on
K = 1 and K = 5, and the results are shown in Ta-
ble 1. The results indicate that both instance and channel
attention improve the classifier performance for the query
samples. Compared to the classifier without employing any
attention, the introduced instance attention and channel at-
tention achieve nearly 6% accuracy improvements on the
K = 1 experiment, respectively. More importantly, com-

bining these attentions provides the best performance (the
last row of Table 1), with over 7.5% improvement, which
validates the effectiveness of our attention calculations.

The effectiveness of different losses (RQ3) In this abla-
tion study, we train four classifiers with different loss func-
tions, where the instance attention and the channel attention
are applied in all cases. To balance the optimization process
of these losses, we set µ1 = 5 and µ2 = 20 experientially
and following (Li et al. 2022). The performances of four
classifiers on K = 1 and K = 5 are shown in Table 2,
which show that both LSC and LMSE contribute to the train-
ing procedure of the classifier. Moreover, combining these
two losses further improves classification performance.

We also verify the effects of different regularizations in
Table 3. The common regularizations, i.e. CutMix, Mixup,
and CutOut, achieve slight improvement over the baseline
in the 1-shot task but are harmful to accuracy in the 5-shot
task. The classifier trained with the regularized features ob-
tains over 3% improvements (AFR(only P̄S)). Moreover,
our AFR (fs + P̄S) can further improve the performances.

Comparisons with Other Methods (RQ4)
We compare the performance of our method with the latest
on the Mini-ImageNet and Tiered-ImageNet datasets. Ta-
ble 4 shows the results which contain MatchingNets (Lee
et al. 2019), ProtoNets (Snell, Swersky, and Zemel 2017),
MixtFSL (Afrasiyabi, Lalonde, and Gagné 2021), RENet
(Kang et al. 2021), DeepBDC (Xie et al. 2022), FeLMi (Roy
et al. 2022), tSF (Lai et al. 2022), RankDNN (Guo et al.
2023), FRN (Wertheimer et al. 2021), BML (Zhou et al.
2021), FEAT (Ye et al. 2020), Label-Halluc (Jian and Tor-
resani 2022), SEGA (Yang, Wang, and Chen 2022), IFSL
(Yue et al. 2020), and LDRC (Yang, Liu, and Xu 2021).
At the same time, we apply our approach to five recently
proposed popular FSL methods, i.e., Meta-Baseline, FRN,
BML, FEAT, Label-Halluc, SEGA, and LRDC. We clearly
observe that our approach consistently improves the classi-
fication performance in all settings, which is agnostic to the
method, datasets, and pre-trained backbones. For different
features extracted with various methods on Mini-ImageNet,
we perform remarkable 6.61% accuracy improvements with
the baseline (“Meta-Baseline + AFR”) and obtain the best
accuracy 74.57% with features from (Zhou et al. 2021)
(“Label-Halluc + AFR”) under K = 1. Generally, our AFR
outperforms the compared methods by about 2% in accu-
racy for K = 1 and the improvements are generally greater
in the 1-shot setting compared to the 5-shot setting. In the
Tiered-ImageNet, we gain the 4.42% improvement (“BML
+ AFR”) and achieve the best performance 89.59% (“LRDC
+ AFR”) for K = 1 and K = 5, respectively.

To further demonstrate the effectiveness of our AFR,
we conduct evaluations on the Meta-Dateset with K = 1
setting. The results are summarized in Table 5, includ-
ing SimpleShot(Wang et al. 2019), ZN(Fei et al. 2021),
and TCPR(Xu et al. 2022). We can see that our AFR ex-
hibits strong adaptability to new data domains and achieves
the best classification performance across several testing
datasets. Notably, even compared to the transductive setting



Method Backbone Mini-ImageNet Tiered-ImageNet
K = 1 K = 5 K = 1 K = 5

MatchingNets (NeurIPS16) ResNet-12 63.08 ± 0.80% 75.99 ± 0.60% 68.50 ± 0.92% 80.60 ± 0.71%
ProtoNets (NeurIPS17) ResNet-12 60.37 ± 0.83% 78.02 ± 0.57% 65.65 ± 0.92% 83.40 ± 0.65%
MixtFSL (ICCV21) ResNet-12 63.98 ± 0.79% 82.04 ± 0.49% 70.97 ± 1.03% 86.16 ± 0.67%
RENet (ICCV21) ResNet-12 67.60 ± 0.44% 82.58 ± 0.30% 71.61 ± 0.51% 85.28 ± 0.35%
DeepBDC (CVPR22) ResNet-12 67.34 ± 0.43% 84.46 ± 0.28% 72.34 ± 0.49% 87.31 ± 0.32%
FeLMi (NeurIPS22) ResNet-12 67.47 ± 0.78% 86.08 ± 0.44% 71.63 ± 0.89% 87.01 ± 0.55%
tSF(ECCV22) ResNet-12 69.74 ± 0.47% 83.91 ± 0.30% 71.89 ± 0.50% 85.49 ± 0.35%
FEAT (CVPR20) ResNet-12 66.78 ± 0.20% 82.05 ± 0.14% 70.80 ± 0.23% 84.79 ± 0.16%
FEAT + AFR ResNet-12 72.57 ± 0.62% 85.06 ± 0.42% 71.55 ± 0.74% 87.64 ± 0.46%
Meta-Baseline (ICCV21) ResNet-12 63.17 ± 0.23% 79.26 ± 0.17% 68.62 ± 0.27% 83.74 ± 0.18%
Meta-Baseline + AFR ResNet-12 69.78 ± 0.61% 84.51 ± 0.41% 69.66 ± 0.70% 86.29 ± 0.48%
FRN (CVPR21) ResNet-12 66.45 ± 0.19% 82.83 ± 0.13% 71.16 ± 0.22% 86.01 ± 0.15%
FRN + AFR ResNet-12 71.66 ± 0.56% 84.75 ± 0.46% 71.54 ± 0.71% 87.35 ± 0.47%
BML (ICCV21) ResNet-12 67.04 ± 0.63% 83.63 ± 0.29% 68.99 ± 0.50% 85.49 ± 0.34%
BML + AFR ResNet-12 73.84 ± 0.60% 86.63 ± 0.41% 73.41 ± 0.74% 87.44 ± 0.48%
Label-Halluc (AAAI22) ResNet-12 68.28 ± 0.77% 86.54 ± 0.46% 73.34 ± 1.25% 87.68 ± 0.83%
Label-Halluc + AFR ResNet-12 74.57 ± 0.58% 87.30 ± 0.37% 73.66 ± 0.66% 89.15 ± 0.40%
SEGA (WACV22) ResNet-12 69.04 ± 0.26% 79.03 ± 0.18% 72.18 ± 0.30% 84.28 ± 0.21%
SEGA + AFR ResNet-12 71.14 ± 0.60% 84.26 ± 0.42% 72.87 ± 0.45% 85.26 ± 0.54%
IFSL (NeurIPS20) WRN-28-10 64.12 ± 0.44% 80.97 ± 0.31% 69.96 ± 0.46% 86.19 ± 0.34%
tSF (ECCV22) WRN-28-10 70.23 ± 0.46% 84.55 ± 0.29% 74.87 ± 0.49% 88.05 ± 0.32%
RankDNN (AAAI23) WRN-28-10 66.67 ± 0.15% 84.79 ± 0.11% 74.00 ± 0.15% 88.80 ± 0.25%
FEAT (CVPR20) WRN-28-10 65.10 ± 0.20% 81.11 ± 0.14% 70.41 ± 0.23% 84.38 ± 0.16%
FEAT + AFR WRN-28-10 71.76 ± 0.59% 84.60 ± 0.42% 71.74 ± 0.74% 86.33 ± 0.53%
LRDC (ICLR21) WRN-28-10 68.57 ± 0.55% 82.88 ± 0.42% 74.38† ± 0.93% 88.12† ± 0.59%
LRDC + AFR WRN-28-10 72.98 ± 0.62% 86.91 ± 0.40% 75.26 ± 0.67% 89.59 ± 0.46%

Table 4: The accuracies (%) by different methods on the novel categories from Mini-ImageNet (Vinyals et al. 2016) and Tiered-
ImageNet (Ren et al. 2018). † denotes our implementation.

Method Testing Data Set
Mini-Test CUB Fungi Omini Sign QDraw Flower DTD

SimpleShot (arXiv2019) 67.18% 49.68% 43.79% 78.19% 54.04% 54.50% 71.68% 51.19%
ZN (ICCV2021) 67.05% 48.15% 43.24% 78.80% 53.92% 52.86% 72.01% 52.20%
TCPR (NeurIPS 2022) 69.52% 53.83% 46.28% 80.88% 56.65% 57.31% 75.37% 54.38%

AFR 72.98% 54.45% 47.93% 81.84% 60.12% 58.20% 76.11% 57.47%

Table 5: The accuracies (%) by different methods on Meta-Dataset (Triantafillou et al. 2019) with K = 1. Sign and DTD denote
Traffic Signs and Describable Textures dataset, respectively.

of TCPR, our approach gains more than 3% improvements
on Traffic Signs and Describale Textures datasets.

Conclusion
In this paper, we have proposed attentive feature regulariza-
tion named AFR to tackle the challenges in few-shot learn-
ing. Specifically, (1) The category selection based on seman-
tic knowledge is employed to carefully constrain the fea-
tures for regularization and helps avoid introducing unre-
lated noise into the training process. (2) Two attention cal-
culations are designed to improve the complementarity of
the features across the different categories and improve the
channel discriminability of the regularized features. The ex-
tensive experiments have demonstrated the effectiveness of

our proposed method, particularly in the 1-shot setting.

Note that the current usage of semantic relations is su-
perficial. In our future work, we will focus on achieving
a more robust feature regularization by incorporating addi-
tional techniques, such as GCN (Graph Convolutional Net-
work) and GNN (Graph Neural Network), et al., to further
enhance the performance of the classifier.
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