
Text-to-Image Generation for Abstract Concepts

Jiayi Liao1*†, Xu Chen2*‡, Qiang Fu2, Lun Du2,
Xiangnan He3 § , Xiang Wang3 § , Shi Han2, Dongmei Zhang2

1 University of Science and Technology of China
2 Microsoft

3 MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China
ljy0ustc@mail.ustc.edu.cn, {xu.chen, qifu, lun.du, shihan, dongmeiz}@microsoft.com,

xiangnanhe@gmail.com, xiangwang@u.nus.edu

Abstract
Recent years have witnessed the substantial progress of large-
scale models across various domains, such as natural lan-
guage processing and computer vision, facilitating the ex-
pression of concrete concepts. Unlike concrete concepts that
are usually directly associated with physical objects, express-
ing abstract concepts through natural language requires con-
siderable effort since they are characterized by intricate se-
mantics and connotations. An alternative approach is to lever-
age images to convey rich visual information as a supplement.
Nevertheless, existing Text-to-Image (T2I) models are pri-
marily trained on concrete physical objects and often strug-
gle to visualize abstract concepts. Inspired by the three-layer
artwork theory that identifies critical factors, intent, object
and form during artistic creation, we propose a framework
of Text-to-Image generation for Abstract Concepts (TIAC).
The abstract concept is clarified into a clear intent with a de-
tailed definition to avoid ambiguity. LLMs then transform
it into semantic-related physical objects, and the concept-
dependent form is retrieved from an LLM-extracted form pat-
tern set. Information from these three aspects will be inte-
grated to generate prompts for T2I models via LLM. Evalua-
tion results from human assessments and our newly designed
metric concept score demonstrate the effectiveness of our
framework in creating images that can sufficiently express ab-
stract concepts.

Introduction
Concepts are cognitive representations that encapsulate
ideas. The expression of concepts plays a pivotal role in
communication, especially within the context of profound
intellectual discourse. Recent advancements in large-scale
models in the field of natural language processing and com-
puter vision (Cao et al. 2023; Zhang et al. 2023b; Wu et al.
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"A 3D Render Of A Person 
Bowing Respectfully, 
Wearing A Suit, In A Modern 
Art Style, Showing 
Politeness."
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Figure 1: (a) Unsatisfactory cases generated by DALL·E 2
for abstract concept: priority, ability, regular and morality.
(b) An illustration of “politeness” in the context of intro-
ducing cooperation skills. The prompt guiding the visual-
ization is generated by TIAC, and the image is generated
by DALL·E 2. (c) Image on the left is generated by taking
word “fairness” as input, and the right one is produced with
prompt from TIAC (LLM+PE), consisting of physical ob-
jects like a scale to express “fairness”.

2023) have demonstrated remarkable performance in con-
veying concrete concepts. These concrete concepts are per-
ceptible entities or occurrences and are often associated
with physical objects, such as animals and planets. On the
contrary, how to express abstract concepts that encompass
rich and intricate connotations is less explored (Recchia and
Jones 2012; Liao, Chen, and Du 2023). Abstract concepts
serve a crucial role in accurately conveying philosophical
thoughts, moral perspectives, and emotional states in every-
day life. Moreover, they can present themes in a deeper and
multi-dimensional manner in domains like art, literature, and
music, rich with creativity and aesthetic value. On the other
hand, abstract concepts are mentally constructed ideas that



usually lack physical forms, and their definitions are often
quite abstract as well. Therefore, when expressing abstract
concepts through natural language, speakers encounter chal-
lenges in providing clear explanations, while recipients also
face difficulties in understanding (Schwanenflugel 2013),
leaving it a great barrier between human communications.

As an important channel of communication, conveying
abstract concepts through vision can effectively alleviate
the aforementioned challenges, enhancing the intuitive and
vivid nature of their expression. For example, when using
slides to introduce “Cooperation Skills” that include bullet
points like “Politeness” and “Fairness’, incorporating rele-
vant images to represent these abstract concepts can greatly
improve communication efficiency: an image with a person
bowing respectfully for “Politeness” and a person holding a
scale for “Fairness” as shown in Figure 1 (b-c).

While it is of great potential to express abstract concepts
through the visual channel, current text-to-image genera-
tion (T2I) models face obstacles in realizing this purpose.
Existing T2I models such as Stable Diffusion (Rombach
et al. 2022), DALL·E (Ramesh et al. 2022), NUWA (Wu
et al. 2022) and Imagen (Saharia et al. 2022) have achieved
impressive improvements in generating realistic and eye-
catching images with input texts (Zhang et al. 2023a). How-
ever, these models are primarily designed for concrete con-
cepts, and high-quality datasets (Lin et al. 2014; Young
et al. 2014; Wah et al. 2011; Nilsback and Zisserman 2008)
of text-image pairs used for their training only focus on
physical objects, leading to the unsatisfactory generalization
capabilities of T2I models for abstract concepts naturally
(Ramesh et al. 2022; Saharia et al. 2022; Nichol et al. 2022;
Yu et al. 2022). When an abstract concept is directly inputted
into a T2I model, it often generates images with distorted
English letters resembling the input, as seen in the four im-
ages in Figure 1 (a) and the left image of Figure 1 (c). An
analysis of prompts submitted by users on T2I servers (Xie
et al. 2023) also reveals that images generated from vague
and abstract prompts are often scored lower by users.

To tackle the above challenges, we draw inspiration from
a 3-layer artistic creation hierarchy (Ocvirk et al. 1968; Xie
et al. 2023), which is illustrated in Figure 2. The hierarchy is
organized in a top-down manner, including: (1) Intent layer
that reveals the high-level purpose the creator intends to ex-
press. (2) Object layer, which denotes physical objects and
their spatial relationships. (3) Form layer that refers to the
basic elements of artistic styles, such as line, color, shape,
and texture, along with their arrangement. With the hierar-
chy in art, we can provide a new perspective to explain why
T2I models perform worse for abstract concepts. When cre-
ating images for concrete concepts, information from the in-
tent layer and the object layer are highly similar, i.e., what I
think is what I will draw on the picture, and the correspond-
ing form information is easy to obtain with plenty amount
of images drawing physical objects. However, for abstract
concepts, the connection between the concept and the in-
formation on the three layers is not obvious for current T2I
models. Therefore, the key to effectively expressing abstract
concepts lies in building connections to the three layers.

In this paper, we propose a framework of Text-to-Image

Generation for Abstract Concepts TIAC that aims to bridge
the gap between human input abstract concepts and the gen-
erated images by leveraging the knowledge stored in LLMs
and their comprehension ability. Specifically, TIAC links
abstract concepts to nodes in WordNet so that the abstract
concepts can be bonded to unambiguous definitions, which
contributes to clarifying the user intents. Abstract concepts
are then transformed by LLMs to related physical objects
to represent their connotations. Additionally, the concept-
dependent form patterns extracted from a prompt dataset are
retrieved to enrich the information from the form layer. By
integrating the above information from three layers, LLMs
can generate prompts that tangibly describe abstract con-
cepts, enabling T2I models to create satisfactory images.

Through conducting experiments on the abstract branch
of WordNet, we compare different approaches and design a
new metric called concept score. The results indicate that
prompts generated using our framework facilitate effective
visualization of abstract concepts. Furthermore, the concept
score demonstrates better consistency with human prefer-
ences compared to existing metrics for assessing the align-
ment between abstract text inputs and generated images. Our
framework, TIAC, optimizes prompts directly without ne-
cessitating model fine-tuning, making it adaptable to various
T2I models. The main contributions are as follows:

• We introduce a novel task of text-to-image generation for
abstract concepts, aiming to fill the gap in abstract con-
cept expression in the area of image generation.

• We design TIAC leveraging LLMs to integrate the en-
riched information of abstract concepts in three layers.

• We propose concept score, a new metric that is more
aligned with human cognition for evaluating images
generated for abstract concepts. Experimental results
demonstrate the effectiveness of TIAC in this task.

Related Work
Concept Expression in Image Generation. In the explo-
ration of image generation, there has been a recent upsurge
in interest regarding concept expression. For example, con-
cept customization (Gal et al. 2022; Ruiz et al. 2022; Kumari
et al. 2022; Wei et al. 2023) aims to integrate existing T2I
models with new concepts. However, these concepts are ei-
ther specific objects like newly created objects “moongates”
or customized objects in our daily lives like someone’s pet
dog. Furthermore, concept disambiguation (Mehrabi et al.
2022) also focuses on the syntactic equivocation inherent in
human input, which leads to ambiguity concerning the ref-
erential relationships of physical objects, rather than delving
into the subtle distinctions within abstract concepts. In gen-
eral, current research in the field of image generation pre-
dominantly emphasizes the depiction of physical concepts
rather than abstract ones. Consequently, we aim to bridge
the gap in the study of abstract concepts within this domain.

Abstract Concepts in Computer Vision. One exemplary
application of abstract concepts in computer vision is ad
images. Ad images are creative artworks that convey ab-
stract concepts, incorporating a wealth of knowledge such
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o: Race Car

Prompt: A Digital Artwork Of A Race Car Speeding Through 
A Cityscape, With Buildings Blurring Into Abstract Shapes.

d: Distance travelled per unit time.

Abstract concept c: Speed

p: Focus on two entities or parts, together with the environment. 
Include words that evoke a sense of connection between the two 
entities, such as "together", "combined", or "interconnected". 
Include references to specific art styles, artists, and mediums.

Figure 2: Framework of TIAC. The left section demonstrates the intent/object/form layer considered when creating artwork.
The middle part denotes how to decompose abstract concepts into 3 layers and corresponding prompt and image generation
process. The right section is a running example showing how TIAC depicts the concept “speed”.

as common-sense reasoning, cultural context, and symbol-
ism. Hence, tasks associated with ad images pose signif-
icant challenges for machines. Several datasets (Hussain
et al. 2017; Akula et al. 2022; Xu et al. 2022) and works of
ads understanding (Ye and Kovashka 2018) and generation
(Chilton, Petridis, and Agrawala 2019) have been proposed
for visual ads. The underlying idea of the paper mentioned
before is combining objects in a logical manner to convey
messages. This suggests that they also share the belief that
the essence of abstract concept research lies in selecting ob-
jects and forms that can simultaneously express information.
Visual ads are a subset of our research, highlighting the po-
tential application of abstract concept studies in the realm
of artistic creation. In addition, our applications also encom-
pass illustrations of slides, decorative paintings, and more.

Prompt Optimization for T2I Models. While the perfor-
mance of large-scale models driven by textual inputs is pro-
gressively advancing, the resource-intensive nature of train-
ing and fine-tuning these models has posed challenges for
researchers to afford. Consequently, improving the model
input directly, known as prompt optimization, emerges as a
commendable choice. It can enhance image quality without
altering the model structure or requiring extensive training
and fine-tuning of T2I models. This field is relatively new,
resulting in a lack of comprehensive research. Experiences
of writing good T2I prompts manually are shared through
blog posts and user guidebooks(Oppenlaender 2022; Smith
2022; Pavlichenko and Ustalov 2022). Basic elements for
a good T2I prompt and prompt terms (i.e., modifiers) de-
scribing various perspectives of image style are summarized
by a taxonomy survey (Oppenlaender 2022) and DALL·E 2
prompt book (Parsons 2022). As prompt optimization can be
conducted in either text space or embedding space (i.e., soft
tuning (Lester, Al-Rfou, and Constant 2021)), some stud-

ies also train a prompt optimization model for soft tuning,
which results in a high degree of coupling with the T2I
model (Hao et al. 2022). However, current T2I prompt opti-
mization (Ge et al. 2022) primarily aims to improve the style
and aesthetics of synthesized images. In contrast, our re-
search will prioritize the visual comprehension of concepts.

Preliminary
Definition 1 (Concept, concrete concept and abstract con-
cept). Concepts are mental representations of coherent
classes of entities (Schwanenflugel 2013); they can be di-
vided into concrete concepts and abstract concepts. Con-
crete concepts are perceivable objects or occurrences,
whereas abstract concepts are those that cannot be directly
perceived through senses (Zdrazilova, Sidhu, and Pexman
2018; Katja Wiemer-Hastings and Xu 2005).

As intuitive examples, concrete concepts can be a tiger, a
keyboard, or a T-shirt, while abstract concepts can be dream,
happiness, or love. Based on the above definition, the new
task is further defined as:
Definition 2 (Text-to-image generation for abstract con-
cept). Given a human text input that intends to express an
abstract concept c, the task of text-to-image generation for
abstract concepts requires a mapping f to produce images
that can reveal the meaning of c.

Image = f(c). (1)

Method: TIAC
To deal with this task, we propose TIAC which is inspired
by the 3-layer artwork theory. The framework consists of
4 stages and is demonstrated in Figure 2. (1) Intent Clar-
ification stage aims to clarify the human intent. The in-
put text will be linked to an existing entity in the WordNet



knowledge base to retrieve its detailed definition as the def-
inite intent. (2) Object Transformation stage is designed
to decompose the abstract concept in the object layer. Here,
concrete objects related to the intent will be obtained with
the help of external knowledge and comprehension abil-
ity of LLMs. (3) Form Extraction stage will enrich the
form information conditioned on the intent, which will be
accessed through pre-extracted form patterns from a high-
quality human-submitted prompt dataset. (4) Prompt Gen-
eration and Image Generation is the final stage and the
above information will be integrated to generate prompts for
T2I models so that more desirable images can be produced.
Design in each stage will be elaborated on in this section.

Intent Clarification
When visualizing a human input abstract concept, its po-
tential multiple connotations undoubtedly increase the diffi-
culty of expression. For example, “energy” can mean (1) en-
terprising or ambitious drive or (2) a thermodynamic quan-
tity equivalent to the capacity of a physical system to do
work and so on. Hence, it is imperative to clarify the pre-
cise semantics of the input abstract concept so that there is
an exact drawing intent in the intent layer. To achieve this
goal, an abstract concept is linked to a synset in WordNet
(Miller 1995; Du et al. 2021) with a definite meaning. Word-
Net is a lexical database where semantically similar words
are grouped into a set of cognitive synonyms called a synset;
thus each synset represents a unique concept with corre-
sponding definition in the database. Here, we focus on nouns
in WordNet that are organized into a hierarchical tree with
the root node of “entity.n.01”1. There are two main branches
under it: one is a subtree rooted at “abstraction.n.06” and
the other rooted at “physical entity.n.01.”. The former is the
main focus of this paper as it represents abstract concepts.

Based on the subtree of abstract concepts T , the intent
clarification stage can be mathematically expressed as

d = fIC(c;T ). (2)
For each human input abstract concept c, we link it to a spe-
cific node under the abstraction subtree T and retrieve the
definition d of this node in WordNet. The intent clarification
mapping fIC builds a bridge between input abstract con-
cepts and detailed drawing intent to mitigate potential ambi-
guity. Note that we assume the human input can be precisely
mapped to a node in WordNet, whereas in the real scenario,
it requires more efforts to determine the corresponding node
in WordNet for input abstract concepts without other con-
texts. But the key idea is to identify the drawing intent of
users, and we can achieve this by simply retrieving the def-
initions of all relevant WordNet nodes and asking users to
decide from this candidate intent set. Overall, the definition
d is now regarded as the exact intent in this task.

Object Transformation
The WordNet-based intent clarification alleviates the burden
of ambiguous intent, but the intricate and abstract definition

1“entity.n.01” is the notation of a synset in WordNet where “en-
tity” is the synset name and “n” means it is a noun. Synsets with
the same name are distinguished by a number like “01”.

of abstract concepts can still be a barrier for this task. As
seen in the case study, directly using the abstract concept
or its definition as the input of T2I model both fail to yield
satisfactory results, and the corresponding images are usu-
ally characters of input words with random noise instead
of meaningful objects. On the other hand, there is a strong
correlation between the intent layer and the object layer for
concrete concepts; thus, they can be easily transformed into
concrete objects and then illustrated by current T2I models.
Hence, the critical step is to transform the abstract concept
from the intent layer to the object layer.

Actually, abstract concepts and concrete objects are not
entirely irrelevant; in WordNet, the entity “abstraction” is
defined as extracting common features from specific exam-
ples, indicating that abstract concepts can be the summa-
rization of properties or states of physical objects, or inter-
actions between them. Therefore, concrete objects and their
interactions can serve as instantiations of abstract concepts
in reverse.

To fulfill the transformation from the abstract concept
to relevant physical objects or their interactions, we utilize
LLMs for their knowledge and understanding ability. More
specifically, LLMs have been trained with numerous corpus
and should establish associations between concepts and rel-
evant objects. With appropriate instructions, it can assist in
the object transformation for given abstract concepts. This
process can be formulated as:

o = fOT (c,d; i). (3)

Here given an abstract concept c and its definition d as well
as the object transformation instruction i, the function fOT

(i.e., LLMs) is able to ground the human input to concrete
objects o. As an example, the abstract concept “shrinkage”
can be transformed into objects such as “deflating balloon”,
with i that employ words prompting LLMs to contain con-
crete objects which exemplify the meaning of concepts.

Form Extraction and Retrieval
Besides information from the object layer, incorporating in-
formation from the form layer also aids in expressing ab-
stract concepts. The form layer depends on the intent layer,
while LLMs may have difficulty generating form informa-
tion for abstract concepts directly due to limited training data
available about it. Hence, we introduce a dataset Simulacra
Aesthetic Captions (SAC) (Pressman, Crowson, and Con-
tributors 2022) to enhance LLMs in building the connection
between intent and form. Moreover, abstract concepts in the
same class are supposed to share common form informa-
tion (Du et al. 2021; Chen et al. 2020; Chen, Wang, and Xie
2021; Chen et al. 2022; Du et al. 2022). Therefore, our ap-
proach involves initially extracting patterns pertaining to the
form of a concept class. Subsequently, for a given concept,
the corresponding form pattern is retrieved for the following
usage. Details will be illustrated as follows.

Form Extraction. In form extraction, form patterns that
describe the artistic properties of objects, how they are or-
ganized and the style of the picture are extracted with in-
context learning from the SAC dataset. It consists of over
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Figure 3: Details for 3 steps of Form Extraction in TIAC.

33k user-submitted T2I prompts and over 238k images gen-
erated from these prompts along with user ratings (1∼10).
In preprocessing, we assign the average rating as the score
for prompts and remove prompts with fewer than 3 user rat-
ings. The performance of prompts with scores below 3 is
viewed as “bad” and above 8 is “good”. Form extraction is
conducted through three steps: concept grounding, class de-
termination and pattern extraction, as shown in Figure 3.
Concept Grounding. Human-submitted prompts contain
other information besides the desired abstract concepts;
thus, we ground the main concept in the prompt data P to a
WordNet node c′ by:

c′ = fground(P ;T ). (4)

Here fground is an LLM that completes the tasks of (1) ex-
tracting the main concept of a prompt and ignoring artwork-
related descriptions like pictures, images and so on; (2)
grounding the concept to the most relevant synset in the ab-
stract subtree T to obtain the intended abstract concept c′.
Class Determination. Given the inadequate amount of
prompt data for any single concept while abstract concepts
under the same ancestor share a common form pattern, we
group the mapped nodes into different concept classes. For
an abstract concept c′, its class can be obtained by

C = fclassify(c
′). (5)

fclassify determines the class by finding a common ancestor
as the class label for a group of nodes and ensuring each
class has enough nodes while maintaining distinctiveness.
Pattern Extraction. Based on our pre-defined classes, the
form pattern can be extracted with an LLM summarizing
over a batch of prompts belonging to the same class in a
contrastive manner as

p = fextract(C,D,Pgood,Pbad). (6)

For a class C, both good and bad prompts whose main con-
cept is under C are put together. We instruct LLM fextract to
extract helpful form patterns from the good prompts Pgood

while avoiding harmful factors from bad ones Pbad based on
the class and corresponding definition D.

Form Retrieval. With the extracted form pattern, we can
acquire the form information for an intended abstract con-
cept. Given that it has been mapped to c through intent clar-
ification, the corresponding class C can be known following

Eq. 5 even if it does not appear in the SAC. Then the shared
form pattern p can be retrieved from class C, which has
been extracted and stored during the form pattern extraction.

Prompt Generation and Image Generation
In cognitive psychology (Neisser 2014), the cognitive pro-
cesses of humans are defined as “all mental processes by
which the sensory input is transformed, reduced, elaborated,
stored, recovered, and used”. In our framework, the process
of intent clarification, object transformation as well as form
extraction and retrieval are similar to the transformation, re-
duction, elaboration and storage of abstract concepts. Ac-
cordingly, prompt generation and image generation are the
final steps, recovery and utilization.

From the above stages, We have obtained d from the in-
tent layer, o from the object layer and p from the form layer.
Furthermore, considering the benefits of in-context learning
for LLMs, we select eight good prompts from the guidebook
of DALL·E 2 (Parsons 2022) as few-shot examples e. Also,
the task description and the consideration of the token limit
of downstream models are both incorporated. Hence, by uti-
lizing the abilities of LLMs in information integration and
content generation, the prompt for T2I model is obtained by

Prompt = LLM(c,d,o,p, e). (7)
With T2I prompts from our designed framework, down-
stream T2I models are capable of generating images that can
better express the intended abstract concepts:

Image = T2I-Model(Prompt), (8)
where T2I-Model can be any text-to-image generation
model like Stable Diffusion 2 and DALL·E 2.

Experiments
Experiment Settings
Datasets. We construct two datasets based on abstract
concepts in WordNet with different scales. The small-scale
one contains 57 abstract concepts and the large-scale one
contains 3,400 abstract concepts. (1) For each subclass with
more than 100 nodes and under the seven classes on Word-
Net, we sample 100 abstract concepts to constitute the large-
scale dataset. (2) Based on the large-scale dataset, we fur-
ther select three abstract concepts from each subclass whose
number of prompts in SAC is over 10 to construct the small-
scale dataset for human evaluation.



HE CS IS VS

W 1.86±1.23 0.91±0.02 2.58±0.09 0.24±0.00
W+D 2.60±1.56 1.05±0.03 2.66±0.12 0.29±0.00
LLM 3.34±1.54 1.14±0.01 2.75±0.12 0.27±0.00
LLM+P 3.52±1.40 1.32±0.01 2.62±0.11 0.25±0.00
LLM+PE 3.80±1.30 1.50±0.01 2.76±0.07 0.25±0.00

Table 1: Evaluation Metrics on the Small-Scale Dataset.
Bold and underline indicate the best and the second best per-
formance, respectively. HE: human evaluation, CS: concept
score, IS: inception score, VS: visual-semantic similarity.

Implementation Details. T2I prompts generated from
five different approaches are compared to verify the effec-
tiveness: (1) W denotes taking Words of the abstract concept
as the prompt. (2) W+D further concatenates the abstract
concept name and its Definition as the prompt. (3) LLM
means using the concept name and its definition as the in-
put of LLM for prompt generation. (4) LLM+P introduces
information of the transformed objects and extracted form
Patterns compared with LLM. (5) LLM+PE represents uti-
lizing Eq. 7 to obtain the prompts. Compared with LLM+P,
few-shot Examples e are added in LLM+PE.

We use GPT-3.5 (Brown et al. 2020) (text-davanci-003) as
the LLM in our framework, and Stable Diffusion v2 (Rom-
bach et al. 2022) (v2-inference and checkpoint of 512-base-
ema) as the T2I model. Performance of explicitly imposing
object transformation is slightly off, so we use a more intu-
itive instruction in the last two baselines.

Evaluation. We conduct two types of evaluations: human
evaluation and image-generation metrics evaluation. (1) Hu-
man Evaluation. We make a survey using images generated
from small-scale dataset. Given an abstract concept in the
dataset, for each type of prompt, we generate three images
for each prompt type and arrange them in a row. The five
types of images are randomly shuffled, with both the concept
name and definition provided. Respondents are asked to rate
each row on a scale of 1 to 5 (1 is the worst and 5 is the best),
indicating the perceived relevance between the images and
the concept. We collect feedback from three participants. (2)
Image-generation Metrics Evaluation. In the field of im-
age generation, Inception Score (Salimans et al. 2016) (IS)
and Fréchet Inception Distance (Heusel et al. 2017) (FID)
are used for evaluating image quality and fidelity, while R-
precision (Xu et al. 2018) and Visual-Semantic similarity
(Radford et al. 2021) (VS) are employed to measure the rel-
evance between the image and the text. Here we adopt IS
and VS in our experiments for evaluation.

Results on the Small-Scale Dataset
Experimental results of both human evaluation and image-
generation metrics on the small-scale dataset are reported in
Table 1. Table 1 demonstrates that LLM+P and LLM+PE
achieve the top-2 results on human evaluation, showcasing
significant improvements compared to taking raw human in-
put or the concept definition as the prompts.

Human
Evaluation

Concept
Score

Inception
Score

VS
Similarity

0.0

0.5
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LLM+P
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Figure 4: Evaluation Metrics on small-scale dataset. Con-
cept scores are more consistent with human ratings.

Discussion on Image-Generation Metrics. Although our
framework obtains the best performance in human assess-
ment, Table 1 and Figure 4 also seem to demonstrate that
LLM+PE and LLM+P are not so powerful on the image-
generation metrics like IS and VS. In other words, the ma-
chines seem to be against the conclusion that our design is
remarkably better than simply inputting the desired abstract
concept. What is the reason for this gap? As a matter of fact,
the task of image generation for abstract concepts is different
from traditional image generation task that focuses on con-
crete concepts. For concrete concepts, there is a large num-
ber of training data and it is much easier to identify whether
a concrete concept is correctly drawn on the image.

However, to understand the underlying abstract concepts,
it requires deeper processing progress on the combinations
of objects and forms (recalling viewing pieces of art in the
exhibition), which is beyond the existing image-generation
metrics. Actually, the calculation of the IS utilizes Inception
Network to classify the images into the classes in ImageNet
1k, and the computation of VS encodes images and input
text into a shared latent space using a pre-trained encoder
(here we use CLIP for both image encoding and text encod-
ing), and then calculates the distance between two vectors
to measure the alignment between image and text. They are
both designed for concrete objects, leaving the emergency
of designing an evaluation metric for abstract objects.

To this end, we introduce the Aesthetic score (Schuhmann
2022) that is proposed to evaluate a generated image from
the perspective of art considering abstraction to some extent.
Hence, we consider both factors and take the aesthetic score
as a coefficient for VS similarity as the measure of alignment
between texts and images with abstraction:

Concept score = VS similarity × Aesthetic score (9)
By revisiting Figure 4, we can find that the concept score

is more consistent with human preference. Hence, it enables
us to evaluate the five approaches on the large-scale dataset.

Results on the Large-Scale Dataset
We further validate the effectiveness of different prompts
on large-scale dataset with concept score. The calculation



Category W W+D LLM LLM+P LLM+PE

Attribute.n.02 0.78±0.00 0.81±0.01 1.06±0.01 1.42±0.00 1.40±0.00
Cognition.n.01 0.83±0.01 0.92±0.01 1.07±0.00 1.27±0.01 1.52±0.01

Communication.n.02 0.87±0.00 0.90±0.01 1.01±0.01 1.29±0.01 1.38±0.00
Event.n.01 0.92±0.00 1.01±0.01 1.17±0.01 1.38±0.00 1.50±0.00
Group.n.01 0.99±0.01 1.17±0.01 1.29±0.00 1.44±0.01 1.49±0.01

Measure.n.02 0.98±0.01 1.12±0.01 1.21±0.00 1.26±0.01 1.31±0.00
Relation.n.01 0.85±0.01 0.93±0.01 1.13±0.01 1.13±0.02 1.34±0.01

Average 0.89±0.00 0.98±0.00 1.14±0.00 1.31±0.01 1.42±0.00

Table 2: Concept Score on the Large-Scale Dataset. Bold indicates the best performance.

(c) Auditory hallucination.n.01

(b) Government.n.03

(a) Healthfulness.n.01

Figure 5: Images from left to right are generated by five approaches: W, W+D, LLM, LLM+P and LLM+PE. Healthfulness.n.01
means the quality of promoting good health. Government.n.03 means the system or form by which a community or other
political unit is governed. Auditory hallucination.n.01 means illusory auditory perception of strange nonverbal sounds.

is conducted over 3400 abstract concepts from 34 sub-
classes under the seven classes. The statistical results on the
seven classes are organized in Table 2. Similarly, LLM+P
and LLM+PE generally obtain the highest concept score,
which illustrates that even being evaluated on a more diverse
dataset with more abstract concepts, our design can still out-
perform other baselines and generate better images.

Case Study
We randomly select three abstract concepts and generate im-
ages with five different types of prompts to demonstrate the
performance. As shown in Figure 5, LLM+P and LLM+PE
generated images are much more meaningful and beautiful
than the left ones. Concretely, LLM+P and LLM+PE convey
the concept of “healthfulness” through running in the green
forest or practicing yoga on the grass, and express “govern-
ment” through a magnificent castle and a king sitting on the
throne in the palace. For “auditory hallucination”, LLM+P
seems to produce a less relevant image, while LLM+PE
guided image containing a person wearing headphones with

an ethereality background is closer to the concept.

Conclusion
In this paper, we delve into a novel task text-to-image gener-
ation for abstract concepts. Intricate connotations associated
with abstract concepts pose a great challenge for explanation
and comprehension. Hence, we propose a framework TIAC
to leverage the comprehension and generation abilities of
LLMs in this task. TIAC enriches information from inten-
t/object/form layer based on artwork theory so that LLMs
can construct effective T2I prompts for better image genera-
tion. We design concept score inspired by our human assess-
ment for comprehensive evaluations, and the results show
our superiority in the task over baselines.
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