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Abstract
We study the out-of-distribution generalization
of active learning that adaptively selects sam-
ples for annotation in learning the decision
boundary of classification. Our empirical study
finds that increasingly annotating seen samples
may hardly benefit the generalization. To ad-
dress the problem, we propose Counterfactual
Active Learning (CounterAL) that empowers
active learning with counterfactual thinking to
bridge the seen samples with unseen cases. In
addition to annotating factual samples, Coun-
terAL requires annotators to answer counterfac-
tual questions to construct counterfactual sam-
ples for training. To achieve CounterAL, we
design a new acquisition strategy that selects
the informative factual-counterfactual pairs for
annotation; and a new training strategy that
pushes the model update to focus on the dis-
crepancy between factual and counterfactual
samples. We evaluate CounterAL on multi-
ple public datasets of sentiment analysis and
natural language inference. The experiment
results show that CounterAL requires fewer
acquisition rounds and outperforms existing
active learning methods by a large margin in
OOD tests with comparable IID performance.

1 Introduction

Active Learning (AL) is widely applied to allevi-
ate the scarcity of labeled data in various machine
learning applications (Ren et al., 2021) such as fi-
nancial fraud detection (Carcillo et al., 2017) where
the annotation cost is high. Existing research on AL
mainly focuses on the design of an acquisition strat-
egy that adaptively selects informative samples for
annotation from an unlabeled pool (Tan et al., 2021;
Kirsch et al., 2019). While the models learned by
AL methods have comparable in-distribution per-
formance with the ones learned from fully labeled
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Figure 1: The performance on IID and OOD tests
of sentiment analysis and natural language inference
datasets (Kaushik et al., 2020) in the learning procedure
of the AL method: Entropy.

data, they typically result in poor generalization on
out-of-distribution samples (Krishnan et al., 2021).
As OOD samples widely exist in practice (Wang
et al., 2022), it is critical to enhance the OOD gen-
eralization of AL.

We first investigate how the OOD generalization
ability varies during the AL procedure. Figure 1
shows the empirical evidence on two text classifi-
cation datasets (Kaushik et al., 2020) of sentiment
analysis and natural language inference with both
IID and OOD tests, where we evaluate a repre-
sentative AL method: Entropy (Ren et al., 2021).
The IID performance steadily increases, while the
OOD performance fluctuates at a much lower range
close to the initial status as the number of annota-
tions increases. We thus hypothesize that the seen
samples selected from the unlabeled pool are not
informative for OOD generalization. The model
will recognize some spurious correlations between
input features and labels probably varying beyond
the observed data. In other words, the model may
over-emphasize some non-causal features to con-
struct the decision boundary.

Counterfactual thinking (Roese, 1997; Pearl,
2009) is essential for bridging the gap between
seen IID samples and unseen OOD ones. It an-
swers counterfactual questions like “what would
the sentence be if its sentiment were negative?”, in-
dicating the causal features that change labels and

11362



break the spurious correlations in seen IID samples.
Along this line, counterfactual training (Teney et al.,
2020) is effective for enhancing OOD generaliza-
tion, which leverages factual and counterfactual
samples to push the learning of decision boundary
to focus on features causally affect the label (Sauer
and Geiger, 2021; Teney et al., 2020). We thus
believe that incorporating counterfactual samples
into AL can enhance OOD generalization1.

To embrace counterfactual samples, it is natu-
ral to consider combining AL and counterfactual
sample construction in a pipelined manner. As a
pre-stage of AL, we can first augment the entire un-
labeled pool by pairing all samples with counterfac-
tual samples, then perform AL over the augmented
pool. As a post-stage of AL, with the factual sam-
ples acquired by an AL method, we can construct
counterfactual samples, and perform counterfac-
tual training to obtain the final model. However,
the pre-stage approach is cost unfriendly due to
the large size of the unlabeled pool for counterfac-
tual construction. The post-stage approach cannot
consider the potential gain from the counterfactual
samples in the acquisition of AL.

In this work, we consider combining sample an-
notation and counterfactual sample construction in
the procedure of AL. Towards this end, we pro-
pose Counterfactual Active Learning (CounterAL),
which requires annotators to additionally perform
counterfactual thinking on the selected samples.
Given a selected sample (x), in addition to the an-
notation (y), the annotator further imagines a coun-
terfactual class (ȳ) and edits the factual features
to be coherent with the counterfactual class, i.e.,
constructing the counterfactual feature (x∗ȳ). Coun-
terAL then updates model parameters over pairs of
factual samples (x, y) and counterfactual samples
(x∗ȳ, ȳ) to enhance the OOD generalization.

The key to the success of CounterAL lies in: 1)
an acquisition strategy that looks ahead the con-
struction of counterfactual samples to select in-
formative factual and counterfactual pairs; and
2) a training strategy that recognizes the discrep-
ancy between each pair of factual and counterfac-
tual samples. In the light that informative factual-
counterfactual pairs are close to each other (la-
bel flip with fewer feature changes), we design
a variability-based acquisition strategy to select
factual samples with high variability to model up-

1Empirical evidence about the effectiveness of data aug-
mentation in recent AL work (Ducoffe and Precioso, 2018)
supports this hypothesis to some extent.

dates (high probability of label flip). Besides, we
incorporate a new dropout to model training which
masks the common features of factual and counter-
factual samples to push the model to focus more on
the discrepancy that implies causal features. Lastly,
we take two text classification problems of senti-
ment analysis and natural language inference as
examples and validate the strong OOD generaliza-
tion ability of CounterAL on three public datasets.
Our main contributions are summarized as follows:

• We propose a Counterfactual Active Learning
paradigm for OOD generalization, which extends
the role of human annotators in active learning
from simple annotation to also performing coun-
terfactual thinking.

• We design a novel acquisition strategy and a
new training strategy for CounterAL, which
enables the acquisition of informative factual-
counterfactual pairs for OOD generalization un-
der affordable construction cost.

• We conduct extensive experiments on three pub-
lic datasets of two text classification tasks, vali-
dating the effectiveness of the CounterAL frame-
work in enhancing OOD generalization of AL.

2 Methodology

In this section, we first present the OOD gener-
alization issue in active learning, and then detail
the proposed CounterAL framework, followed by
several discussions on CounterAL.

2.1 OOD Generalization in Active Learning
We focus on batch-mode active learning for classifi-
cation problems. Given a huge unlabeled pool with
samples following the distribution of XU , we need
to learn a K-way classifier ŷ = f(x; θ) where x
and θ denote sample features and model param-
eters, respectively. ŷ denotes the prediction in
the label space Y = {1, · · · ,K}, and the label
of sample x is y. The target of active learning is
to adaptively selects informative samples from the
unlabeled pool to construct a labeled set XL for
training the final model2.

Active Learning assumes that the distribution of
the unlabeled pool can represent the real distribu-
tion of samples, which is usually not satisfied in
reality. Specifically, deep models tend to use the
spurious correlations between non-causal features
and label in XL for prediction (Kaushik et al., 2021;

2In practice, we replay all labeled samples to train a new
model instead of applying the final model of AL directly.
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Figure 2: Overview of CounterAL framework.

YU et al., 2022). Such spurious correlations often
shift in the real test sets, causing the models’ poor
generalization. The common OOD testing samples
call for a new AL objective: enhancing the OOD
generalization of AL methods while maintaining
the IID performance.

To boost OOD generalization, past literature in
Natural Language Understanding has made some
exploration such as instance reweighting (Utama
et al., 2020; Ghaddar et al., 2021). However, these
methods are not as effective when the size of the
training set is small (See empirical evidence in Ap-
pendix B.2). Another promising line of work uses
counterfactual training (Teney et al., 2020) to pur-
sue strong OOD generalization. It learns model
parameters by comparing pairs of factual samples
(x, y) and counterfactual samples (x∗ȳ, ȳ). The sam-
ple pair exhibits the relation how feature changes
(x → x∗ȳ) cause label changes (y → ȳ). The edi-
tions on causal features and the labels naturally
break the spurious correlations, as the non-causal
features appear in both the factual and counterfac-
tual samples with different classes (Kaushik et al.,
2020). Due to counterfactual training, the model
cannot rely on such spurious correlations for pre-
diction, improving the OOD generalization abil-
ity (Kaushik et al., 2020; Nie et al., 2019).

2.2 Counterfactual Active Learning
Considering the success of counterfactual training
in enhancing the model’s OOD generalization abil-
ity, we set the target of pursuing the OOD general-
ization of active learning as constructing a labeled
set with both factual and counterfactual samples.
Without loss of generality, we take binary classi-
fication to explain the method, and it is simple to
extend it to general multi-class classification prob-
lems. It is natural to consider the incorporation
of counterfactual construction into each round of
active learning. We term this new paradigm as
Counterfactual Active Learning (Figure 2). In the

procedure of CounterAL, annotators play twofold
roles: annotating factual samples x selected from
the unlabeled pool and imagining the counterfac-
tual features x∗ȳ given a counterfactual label ȳ.

Similar to conventional active learning, the core
of CounterAL includes an acquisition strategy to
fetch factual samples at each round and a train-
ing strategy to update model parameters to adjust
the acquisition strategy. As counterfactual samples
are invisible, the acquisition strategy needs to look
ahead the counterfactual construction to select in-
formative factual-counterfactual pairs. The training
strategy then updates model parameters over all an-
notated factual and counterfactual samples. The
update is expected to lead the acquisition strategy
to emphasize more on the factual samples that can
produce the informative pairs of (x, y) and (x∗ȳ, ȳ).

2.2.1 Variability-based Acquisition Strategy
Distance between Factual and Counterfactual
Samples. Our key consideration for the informa-
tive factual-counterfactual pair is that the factual
and counterfactual samples are similar to each other.
As factual and counterfactual samples locate at
different sides of the decision boundary, similar
pairs are closer to the decision boundary, which
is more informative for the learning of decision
boundary (Teney et al., 2020). What’s more, simi-
lar pairs help to discover causal features that decide
labels, boosting the OOD generalization ability (cf.
Table 11 in Appendix B).

As the distance between similar factual and coun-
terfactual samples is small, it will be difficult for
the model to distinguish them. Intuitively, minor
changes on the causal features of the factual sample
result in the label flip (y → ȳ), and the model is apt
to ignore the minor changes and alter its prediction
during the training process. Inspired by the dataset
map construction in (Swayamdipta et al., 2020),
we propose to use the variability of the model’s
historical predictions to measure the dynamics of
label flip and approximately estimate the distance
between factual and counterfactual samples.

Samples with High Variability. As lacking of
labels, we propose a new variability-based acquisi-
tion strategy that measures the easiness of label flip.
We define the variability of a sample x over the
set of historical models with different parameters
like (Liu et al., 2022). Formally,

v(x) = max{vi(x)|i ∈ [1,K]},
vi(x) = Var(P (yi|x, θs)).

(1)
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Table 1: The construction of a counterfactual sample on the NLI task is shown. The sample is composed of a
premise and a hypothesis about it. We highlight causal feature in red and the edited feature in blue. The model is
apt to learn the correlation between lexical overlap and the entailment label, and will always predict entailment for
similar samples with high lexical overlap, neglecting the numerical inconsistency. The existence of counterfactual
samples breaks such spurious correlation, and forces the model to capture the logic of “less than".

Label Example

Entailment (y) Tim has 350 pounds of cement in 100, 50, and 25 pound bags; Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Contradiction (ȳ) Tim has 350 pounds of cement in 100, 50, and 25 pound bags; Tim has less than 350 pounds of cement in 100, 50, and 25 pound bags.

P (yi|x, θs) denotes the prediction probability on
the i-th class given by the model s with parameters
θs. vi(x) denotes the variance of prediction prob-
ability on the i-th class over the model set at the
current round r. Note that we omit the superscript
r for briefness. Similar to (Swayamdipta et al.,
2020), we adopt the checkpoints before round r
as the model set. In this way, the high variability
means that the factual sample might have varying
predictions along the learning procedure,

Acquisition Strategy. As model checkpoints are
not available at the initial round (i.e., r = 1), we
adopt a random strategy for acquisition. To acquire
a diverse batch in the following rounds (i.e., r > 1),
we first select a batch of T samples with the highest
variability according to Equation 1, these samples
are then clustered with KMeans algorithm and the
sample nearest to the centroid of each cluster is
returned. The intuition is that samples in the same
cluster tend to share similar linguistic properties,
and keeping them will not improve the diversity of
the acquired batch.

2.2.2 Discrepancy-aware Dropout
After the acquisition at each round, CounterAL up-
dates the model over the factual and counterfactual
pairs. However, the expert annotation budget of
active learning is limited and practically less than
1000 (Tan et al., 2021). To efficiently utilize the
annotated factual and counterfactual sample, we
propose a dropout strategy that forces the model
to focus on the causal features that are different
between factual and counterfactual samples for pre-
diction. In particular, applying discrepancy-aware
dropout forms a three-step update procedure:

• Substraction, which calculate the difference be-
tween x and x∗ȳ through δ(x, x∗ȳ) = |x− xȳ∗ |.

• Masking, which removes similar features
through a feature-wise dropout mask m:

x̃ = m⊙x, x̃∗ȳ = m⊙x∗ȳ, mi =

{
1, δi > τ,

0, δi ≤ τ,
(2)

Table 2: User study on Tweet Data: the average time
cost of annotating a factual sample (t1), a counterfactual
sample (t2), and the mean cost of annotating a factual-
counterfactual pair (t3). s stands for seconds.

t1 t2 t3

54s 48s 44s

where ⊙ means element-wise multiplication, mi

denotes the i-th entry of the dropout mask; τ is
the threshold for masking. Note that only sig-
nificantly different features between factual and
counterfactual samples are used for the following
parameter update.

• Updating, which updates model parameters with
masked features x̃ and x̃∗ȳ:

min
θ

E(x,y)∼XL
[l(x̃, y; θ) + l(x̃∗ȳ, ȳ; θ)], (3)

where l(·) is typically the cross-entropy loss.

2.3 Discussions

Counterfactual Construction. For each factual
sample, the annotator is asked to give the label
based on causal features. The annotator further
seeks edits on causal features according to a given
counterfactual label. They are not expected to alter
other features unless necessary. We exemplify the
annotation and show the effect of counterfactual
samples with the cases in Table 1.

User Study on Annotation Cost. The time cost
of variability calculation and KMeans clustering
are relatively low. The major cost of CounterAL
lies in the human annotation. To explore whether
it is affordable to conduct CounterAL in practice,
we conduct a user study on the Tweet data (Rosen-
thal et al., 2017) and require annotators to annotate
both the factual and counterfactual samples. From
the result in Table 2, we find that the average time
spent on creating a counterfactual sample is less
than the time on labeling a factual sample, showing
that CounterAL is cost-effective. We provide more
details about the settings of the user study, evalua-
tion of sample quality, and the feedback from the
annotators in the Appendix C.
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Instructions for Annotators The instructions
given to annotators for editing counterfactual sam-
ples are as follows: "The edition should satisfy
(i) the counterfactual label applies; (ii) the docu-
ment remains coherent; and (iii) no unnecessary
modifications are made". We believe that these in-
structions won’t lead to data leakage because they
do not induce annotators to make any specific mod-
ifications related to the OOD test.

3 Experiments

We evaluate the proposed CounterAL framework
over two text classification tasks about sentiment
analysis (SA) and natural language inference (NLI)
to answer three research questions. RQ1: How ef-
fective is the proposed CounterAL as compared to
conventional active learning methods? RQ2: How
do the proposed acquisition strategy and training
strategy influence the effectiveness of CounterAL?
RQ3: How do the counterfactual samples affect
the learning procedure?

3.1 Experimental Settings

Datasets. We use three benchmark datasets (one
for sentiment analysis (Kaushik et al., 2020) and
two for natural language inference (Kaushik et al.,
2020; Nie et al., 2019)) with both factual samples
and manually constructed counterfactual samples,
which are denoted as SA, NLI, and ANLI, respec-
tively. All three datasets contain train and test (IID
test) sets. Factual samples in the train set form
the unlabeled pool for active learning. The corre-
sponding counterfactual samples are treated as the
response of annotators for counterfactual sample
construction. SA contains textual movie reviews
from IMDB for sentiment analysis, and we instead
adopt the tweet data with different distributions
from SemEval-2017 Task 4 subtask A (Rosenthal
et al., 2017) as the OOD test. NLI has factual sen-
tence pairs for natural language inference, while
ANLI is a set of sentence pairs intentionally edited
to exhibit distribution shifts with NLI. We thus take
the test set of NLI as the OOD test for ANLI, and
randomly select a subset from ANLI as the OOD
test of NLI.

To further prove the OOD generalization of
CounterAL across various OOD tests with dif-
ferent distributions, we add one OOD test Ama-
zon (Kaushik et al., 2021) for SA, where the re-
views are from different fields. We also introduce
NLI stress tests (Naik et al., 2018) with five differ-

ent OOD tests for NLI and ANLI. The data statis-
tics of all datasets are shown in the appendix A.

Baselines. We select five representative base-
lines: Random, Entropy, BERT-KM (Arthur
and Vassilvitskii, 2006; Margatina et al., 2021),
BADGE (Ash et al., 2020), and CAL (Margatina
et al., 2021). Random selects samples from the un-
labeled pool uniformly. Entropy is the most com-
mon uncertainty-based strategy that selects samples
with the highest model predictive entropy. BERT-
KM targets to get a diverse batch, which performs
clustering in the representation space and selects
samples near the centroid of each cluster. BADGE
estimates both sample uncertainty and diversity
from the gradient of samples. CAL is an acqui-
sition strategy for NLP tasks. It selects samples
whose predictive probability differs most from their
nearest k neighbors in the labeled set.

Note that all baselines have the same acquisition
batch size per round as the proposed CounterAL
framework, i.e., the total number of both factual
and counterfactual samples is the same.

Implementation. We use RoBERTa (Liu et al.,
2019) as the backbone model for all experi-
ments and set the maximum length of text as
512. Following the setup in CAL, we apply
AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 1e-5 and a batch size of 4 for the
training at each round. The threshold for dropout
(τ ) in our training strategy is set as 0.1 for SA and
NLI, and 0.03 for ANLI. The acquisition size (M )
is 20/48/96 for SA/NLI/ANLI, respectively. We
set the start pool size as M for all baselines (an
acquisition strategy like CAL requires a start pool
to acquire a meaningful batch), and adopt the cold
start setting for CounterAL.3 For a fair comparison,
the start pool is abandoned in the rest rounds of
training. For each method, we report the average
classification accuracy on both IID and OOD tests
over five runs with different initialization.

3.2 Performance Comparison (RQ1)

We first investigate the effectiveness of the pro-
posed CounterAL framework through the perfor-
mance comparison with baselines. Table 3 shows
the IID and OOD performance of different methods
on the three datasets. From the table, we have the
following observations:

3The code and data used in this paper are available at
https://github.com/xiangtanshi/CounterAL
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Figure 3: IID and OOD performance along the learning procedure of CounterAL and the baselines. Full supervision
is the performance when the model is trained with the entire training set.

Table 3: Performance comparison between CounterAL
framework and baselines on the IID and OOD tests of
the three datasets w.r.t. classification accuracy (%). The
second-best result is underlined in each column.

Method
SA NLI ANLI

IID OOD Ave IID OOD Ave IID OOD Ave

Random 92.18 82.75 87.46 76.33 36.66 56.50 39.92 33.07 36.49
Entropy 93.33 72.86 83.09 77.27 38.92 58.09 42.03 34.59 38.31

BERT-KM 91.78 76.68 84.23 76.61 37.46 57.03 38.46 33.05 35.75
BADGE 93.11 66.84 79.97 77.23 38.36 57.80 42.43 35.39 38.91

CAL 92.86 72.42 82.64 77.56 37.71 57.63 39.30 34.85 37.08
CounterAL 91.88 86.21 89.04 78.87 45.02 61.95 52.35 51.25 51.80

• Across the three datasets, the proposed Coun-
terAL outperforms all baselines by a significant
margin (absolute improvements of 4%∼15%) re-
garding the OOD test. More results on additional
OOD tests (NLI stress tests for NLI, ANLI and
Amazon for SA) in Table 4, 5 also show con-
sistent improvements. The performance gain is
attributed to the consideration of counterfactual
samples in active learning, which validates the
effectiveness and rationality of CounterAL for
OOD generalization.

• As to the IID test, CounterAL also achieves the
best performance on the NLI and ANLI dataset.
This is because neural NLP models are apt to
capture the easy-to-learn spurious correlations in
the acquired training data (Kaushik et al., 2021;
YU et al., 2022), and fail in the IID tests with
correlation shifts. Instead, CounterAL includes
counterfactual samples and discrepancy-aware
dropout which force the model to focus on the
features that causally affect the label, enhanc-
ing the OOD generalization ability. On the SA,
CounterAL only achieves comparable IID per-

formance with the baselines, which is consis-
tent with previous work on counterfactual train-
ing (Teney et al., 2020). This might be because
this IID test has similar correlations with the ac-
quired training data.

• There is a clear gap between the IID and OOD
performance of all baselines, which means that
existing active learning methods face weak gen-
eralization problems on the two natural language
processing tasks. This is consistent with previ-
ous findings on computer vision tasks (Krishnan
et al., 2021), indicating that poor OOD general-
ization of active learning is a general problem.

• Remarkably, the OOD performance of Random
is better than the other baselines in SA. It im-
plies that delicately selected samples for training
might hurt OOD generalization. We attribute the
reason to overfitting, i.e., complex acquisition
strategies might make the model overfit some
samples with strong correlations.

We further compare the learning process of
CounterAL with the baselines. Figure 3 shows
the round-wise performance of each acquisition
function on the three datasets. As shown in Fig-
ure 3, the IID performance of CounterAL quickly
achieves a relatively high level in early rounds and
becomes stable with fewer rounds than baselines.
It shows that counterfactual samples can accelerate
the active learning process, reducing the acquisi-
tion amount. In addition, CounterAL shows consis-
tent improvements in the OOD test during training,
surpassing all baselines by a large margin. This val-
idates the effectiveness of counterfactual samples
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Table 4: Performance comparison between CounterAL
and baselines on the NLI stress test.

Methods AT LN NG SE WO Ave.

NLI

Random 15.10 47.33 40.98 48.34 49.01 40.15
Entropy 13.92 52.49 43.55 50.83 51.52 42.46
BERT-KM 11.60 48.08 41.06 49.79 48.73 39.85
BADGE 18.01 52.93 45.08 52.30 50.70 43.80
CAL 11.07 50.75 43.29 51.47 50.42 41.40
CounterAL 22.19 56.24 51.02 53.84 55.80 47.82

ANLI

Random 85.00 33.96 35.50 33.95 34.69 44.62
Entropy 87.57 37.59 35.43 33.36 35.42 45.87
BERT-KM 71.31 33.00 35.02 33.03 34.28 41.33
BADGE 67.61 36.33 35.27 36.50 35.21 42.18
CAL 56.33 35.26 35.49 36.40 35.28 39.75
CounterAL 79.14 49.71 41.18 46.73 46.51 52.65

Table 5: The OOD performance of baselines and Coun-
terAL on Amazon for SA. We also report the standard
error for each result.

Random Entropy BERT-KM BADGE CAL CounterAL

88.67 88.35 86.68 84.01 86.04 90.81

in enhancing model’s OOD generalization.

3.3 In-depth Analysis (RQ2)

Ablation Study. We then study the effective-
ness of our proposed acquisition strategy, training
strategy, and the KMeans clustering by compar-
ing three variants of CounterAL: 1) CounterAL-
KM, which discards the KMeans sampling and
directly selects top-MK samples w.r.t. variability.
2) CounterAL-A+BADGE, CounterAL-A+CAL,
which replace the proposed acquisition strategy in
CounterAL with BADGE and CAL respectively. 3)
CounterAL-T, which discards the proposed train-
ing strategy, i.e., updating model parameters nor-
mally during the iterations of CounterAL.

Table 6 shows the performance of these variants
on SA and NLI. From the table, we have the follow-
ing observations: 1) Across the two datasets, Coun-
terAL outperforms its four variants in the OOD
tests, which validates that all three components of
CounterAL contribute to model’s generalization
ability. 2) CounterAL-KM performs worse than
CounterAL, which shows that KMeans sampling
can improve batch diversity that benefits Coun-
terAL. This is consistent with the results in BE-
MPS (Tan et al., 2021). 3) CounterAL achieves
better performance than CounterAL-A+BADGE
and CounterAL-A+CAL, especially in the OOD
test, hinting that the acquisition strategy plays a
central role in acquiring informative samples to
enhance models’ OOD generalization ability.

We further explore how the acquisition strategy
works by comparing four versions of variability

Table 6: Performance comparison between CounterAL
and its variants on the IID and OOD tests of the two
NLI datasets w.r.t. classification accuracy (%).

Version
NLI ANLI

IID OOD Ave IID OOD Ave

CounterAL-KM 77.93 42.20 60.06 52.59 45.19 48.89
CounterAL-T 78.32 43.83 61.07 52.79 48.36 50.57

CounterAL-A+BADGE 79.00 42.34 60.67 51.6 40.90 46.25
CounterAL-A+CAL 77.88 42.67 60.27 51.44 40.16 45.80

CounterAL 78.87 45.02 61.95 52.35 51.25 51.80

Table 7: The performance of different sample selection
strategies on ANLI. 300 factual-counterfactual pairs are
selected for each strategy.

Max-variability Max-variability-opposite Ave-variability Y-variability

IID test 45.13 47.21 43.76 45.19
OOD test 50.58 34.56 44.98 48.11

Ave 47.86 40.88 44.37 46.65

for sample selection on ANLI: 1) Max-variability,
which is defined in Equation 1; 2) Max-variability-
opposite, which selects samples with the lowest
value of Max-variability. 3) Ave-variability, which
replaces the max operation in Equation 1 with av-
erage, i.e., obtaining the mean value of variance
across K classes. 4) Y-variability (Swayamdipta
et al., 2020), which directly uses the variance of
the ground-truth class as v(x). We separately apply
these strategies for sample selection on ANLI, and
the detailed setups are provided in Appendix A.

Table 7 shows the IID and OOD performance of
each strategy. We can find that: 1) max-variability
outperforms the other three strategies in the OOD
test, revealing that max-variability is more effec-
tive for OOD generalization. Besides, different
from Y-variability, Max-variability does not uti-
lize the ground-truth labels for sample selection,
making it more suitable for CounterAL. 2) Max-
variability-opposite has superior IID results but
performs poorly in OOD tests (16% lower than
Max-variability). This is possibly attributed to that
Max-variability-opposite acquires many samples
with spurious correlations that sacrifice OOD gen-
eralization for superior IID improvements.

3.4 Effect of Counterfactual Samples (RQ3)
We further investigate the effect of counterfactual
samples by implementing two intuitive settings of
combining counterfactual construction and active
learning: pre-stage and post-stage methods intro-
duced in Section 1. Table 8 shows their IID and
OOD performance on SA and NLI. Comparing
the results in Table 3 and 8, we find that: 1) un-
der the post-stage setting, all three AL methods
achieve better OOD performance than the vanilla
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versions, which further validates the rationality of
incorporating counterfactual samples into active
learning for OOD generalization. 2) Under the pre-
stage setting, three AL methods achieve little OOD
performance gain. The reason might be ignoring
pairing information as they acquire and train fac-
tual and counterfactual samples indiscriminately.
3) CounterAL achieves better OOD performance
than the three AL methods under two settings, vali-
dating the superiority of our proposed acquisition
and training strategies over the intuitive methods.

We analyze the types of edits made by annota-
tors when constructing counterfactual samples for
the samples selected by CounterAL in the three
datasets. In SA and NLI tasks, there are eight
general types of editions that can be performed sep-
arately (Kaushik et al., 2020). We find that popular
examples of modifications in sentiment analysis
tasks include inserting or replacing modifiers, in-
serting phrases, and altering perspective. For nat-
ural language inference tasks, examples include
modifying actions, substituting entities, and adding
or removing negations and modifiers. We docu-
ment the frequency of different types of modifica-
tions, along with specific examples and statistical
results, in our project code.

We also explore whether asking humans to per-
form data augmentation (creating samples of the
same class as factual samples) for the acquired
batch can improve model’s OOD generalization
ability. We implement active learning on the ANLI
datasets with BADGE and augment the acquired
batch in each round. We evaluate the model af-
ter ten rounds of sample acquisition and training,
and the OOD performance is 35.99%, which is
only 0.6% higher than the normal BADGE. What’s
worse, its IID performance is 34.91%, which is
7.5% lower than the normal BADGE. These results
support the superiority of counterfactual construc-
tion in text classification tasks.

4 Related Work

Uncertainty Measure of Active Learning. Active
learning typically adopts uncertainty to estimate
the informativeness of a sample (Ren et al., 2021),
which mainly consists of two directions: estimating
the uncertainty of a model’s direct output (Wang
et al., 2016; He et al., 2019) and the calibrated un-
certainty with a group of models (Houlsby et al.,
2011; Gal et al., 2017; Kirsch et al., 2019). Besides,
some work estimates the uncertainty of a sample

Table 8: Performance of two settings of combining
active learning and counterfactual construction.

SA NLI
Method IID OOD Ave IID OOD Ave

Pre-stage

Random 90.60 79.56 85.08 74.31 38.44 56.37
Entropy 91.84 80.24 86.04 76.77 41.55 59.16
BADGE 92.14 76.98 84.56 76.10 42.84 59.47

CAL 91.70 76.72 84.21 77.24 40.15 58.69

Post-stage

Random 91.26 82.86 87.06 77.99 42.46 60.23
Entropy 91.53 83.63 87.58 78.72 40.98 59.85
BADGE 91.60 84.19 87.89 78.15 42.96 60.55

CAL 91.43 84.72 88.07 78.52 43.20 60.86

CounterAL 91.88 86.21 89.04 78.87 45.02 61.95

by comparing it with other related samples. (Gao
et al., 2020) proposes to calculate the variance (i.e.,
inconsistency) of predictions over a random set
of data augmentation over the given sample. And
(Margatina et al., 2021) proposes to select the con-
trastive samples by calculating the KL-divergence
between a sample and its nearest neighbors in the
labeled set. These variance-based methods only
focus on the prediction of current model, which
provides little information about whether model
relies on spurious correlation to predict the sam-
ple. However, our acquisition strategy focus on
the dynamic process of how the model changes its
prediction along the training, and the variability
recovers the existence of the spurious correlations
that are informative for OOD generalization.

OOD Generalization in Active Learning. Recent
studies on AL have demonstrated the performance
drop in OOD tests (Krishnan et al., 2021). To allevi-
ate this issue, SCAL (Krishnan et al., 2021) utilizes
contrastive learning to improve models’ robustness
and JEPIG (Kirsch et al., 2021) detects test-time
distribution shifts and uses the information gain
for test–time prediction. Besides, on-line active
learning (Lughofer, 2017) solves the OOD gener-
alization problem by updating the unlabeled pool,
hoping to make it more representative of the test
samples. However, it is expensive to implement on-
line active learning as it requires access to real-time
samples. Hence, we consider the generalization of
pool-based active learning.

Counterfactual Generation in NLP. In the field
of text classification, recent studies have explored
building new datasets by introducing counterfactual
samples to improve model’s generalization abil-
ity. (Nie et al., 2019) and (Kaushik et al., 2020) re-
quest the annotator to annotate counterfactual sam-
ples for existing samples, and the enhanced datasets
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are proven to significantly improve model’s OOD
generalization ability. Besides, (Gardner et al.,
2020) proposes to construct contrast sets by an-
notating counterfactual samples for the test sets,
and the contrast sets provide a better evaluation
of model’s decision boundary. Another line of
work focuses on generating counterfactual sam-
ples with models. (Liu et al., 2022) resorts to
GPT-3 (Brown et al., 2020) to create counterfac-
tual samples with similar linguistic patterns to fac-
tual samples, and (Plyler et al., 2021) proposes a
causal framework to create counterfactual samples
for the sentiment analysis task. Overall, the qual-
ity of counterfactual samples created by humans
is higher than the generated one (Kaushik et al.,
2021), which reflects the value of human feedback.

Previous studies seldom consider transferring
the counterfactual thinking ability from human to
the model via active learning. By contrast, we
propose counterfactual active learning, which im-
proves model’s OOD generalization ability with
limited samples acquired in active learning.

5 Conclusion

We introduced a counterfactual active learning
paradigm to improve the OOD generalization of
active learning. Specifically, we developed novel
acquisition and training strategies, which first
acquire a diverse batch of informative factual-
counterfactual pairs, and then capture the discrep-
ancy between factual and counterfactual samples
for model learning. Experiments on two classic
NLP problems validate that the proposed strategies
can significantly enhance the OOD performance.

In the future, we consider building models for au-
tomatic counterfactual sample generation to reduce
the labor cost of annotators. In addition, a promis-
ing research direction is devising more effective
training methods to leverage counterfactual sam-
ples. Furthermore, our method has higher potential
in domains where human expertise and knowledge
advantages are less captured by Large Language
Models, and we will consider the application to
more datasets in vertical domains

Limitations

The limitations of the paper are twofold. First,
we need to train the annotators to be familiar with
another annotation paradigm: creating counterfac-
tual samples for the labeled factual samples. It is
an additional cost for active learning although our

user study has shown that annotating counterfac-
tual samples has similar costs to labeling factual
samples. Second, we require the annotators to man-
ually find and edit the causal features, which is not
effective enough. It can be improved by developing
tools like generative models to automatically edit
features for annotator judgment.
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We provide more details and results about the
datasets and experiments in the appendix. Section
A provides information about the datasets and the
experiment setup. Section B provides more results
about model’s OOD performance on SA and the
standard error of results in 3. Section C describes
how we implement the user-study on the twitter
datasets to get the final counterfactual datasets.

A Detailed Experiment Settings

A.1 Dataset Information

The detailed statistics of the three datasets are pre-
sented in Table 9. Factual samples from different
classes are balanced in the unlabeled pool for SA
and NLI, but unbalanced for ANLI. Unbalanced
class distribution in ANLI is because we randomly
select a subset from the samples that have coun-
terfactual samples in round 2 and 3 of the large
adversarial NLI (Nie et al., 2019) (i.e., A2 and A3
in adversarial NLI), which thus follows the unbal-
anced distribution in (Nie et al., 2019). Therefore,
the results in the three datasets provide a straight-
forward comparison between baselines and Coun-
terAL when dealing with balanced and unbalanced
unlabeled pools.

As for the test sets, we randomly sample from
the source datasets of SA, NLI and ANLI to get
the IID test sets. We then give a detailed discussion
of how we choose the OOD test sets for the three
benchmark datasets. We adopt tweet and Amazon
as the OOD test sets for SA, which follows the
setting in (Kaushik et al., 2020). The difference
between these two OOD datasets and SA is that
they are reviews from different fields. The reason
we choose tweets as the major OOD test set is
that it additionally shows quite different linguistic
properties (incomplete sentences and colloquial
expression) from SA and is more challenging4. We
choose the NLI stress tests as the additional OOD

4For instance, samples from the tweet dataset follows the
style of “New on @Twitter . Big fan of @NICKIMINAJ
and @ArianaGrande #ArianaGrande #NickiMinaj #Barbies
#Barbz #Arianators. . . "

tests for NLI and ANLI. The NLI stress test is
designed to test if the model captures the right
linguistic pattern for prediction. It adds multiple
different interferences such as spelling error, word
overlap, and length control to exhibit distribution
shifts. We randomly select 3000 samples from
each of the five subtasks in NLI stress test as our
additional OOD tests.

The scales of the IID and OOD test sets are
comparable, and samples of different classes are
balanced for each test set. This promises that the
test results will not be influenced by the class bias
or the size of the test sets.

Table 9: Dataset statistics.

Datasets SA NLI ANLI

Class number 2 3 3
Unlabeled pool 1707 1666 4935
Class ratio 1:1 1:1:1 5:3:2
Counterfactual samples 1707 1666×2 4935×2
IID test set 2000 2000 2400
OOD test set 1400 2400 2000

A.2 Implementation
We now introduce how we implement the baselines
and CounterAL to acquire a batch from XU . Ran-
dom shuffles the samples in XU and randomly se-
lects M samples. Entropy calculates the predicted
probability for each sample in XU and selects
M samples with the highest probability. BERT-
KM (Arthur and Vassilvitskii, 2006; Ash et al.,
2020) clusters the samples into M groups and se-
lects one sample that is closest to the centroid
from each group. BADGE (Ash et al., 2020) is
a parameter-free method which acquires a ran-
dom subset using the k-MEANS++ seeding algo-
rithms (Arthur and Vassilvitskii, 2006) in the gradi-
ent space. CAL (Margatina et al., 2021) calclutes
the average KL-divergence between each unlabeled
sample and its K nearest samples in the labeled set,
then selects M samples with the highest mean di-
vergence. Follow the setup in CAL, we set K as 10.
CounterAL requires to store historical models and
recall them to calculate the variability for samples
in XU . In order to calculate a meaningful variabil-
ity after the first round, we save three checkpoints
in the first round when model’s predictive accuracy
first reaches 70%, 90%, and 100% separately. To
save the cost, we store the predicted probability
for each sample once it is calculated. Thereafter,
CounterAL first selects c × M samples with the
highest variability from XU , then applies KMeans-
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Table 10: Performance comparison between models trained on the entire unlabeled pool. The results related to the
model of baselines and CounterAL are put down below for easy comparison.

Method
SA NLI ANLI

IID OOD Ave IID OOD Ave IID OOD Ave

93.90±0.12 81.94±2.05 87.92 82.94±0.17 41.33±1.32 62.13 56.51±0.73 37.05±1.14 46.78

Random 92.18±0.34 82.75±1.95 87.46 76.33±0.65 36.66±0.80 56.49 39.92±0.48 33.07±1.37 36.49
Entropy 93.33±0.10 72.86±2.83 83.10 77.27±1.15 38.93±1.41 58.10 42.02±1.37 34.59±2.47 38.31

BERT-KM 91.78±0.33 76.68±3.33 84.23 76.61±1.57 37.46±1.06 57.03 38.45±1.54 33.05±1.72 35.75
BADGE 93.11±0.41 66.84±1.90 79.97 77.23±1.18 38.36±1.26 57.79 42.43±1.09 35.39±1.11 38.91

CAL 92.86±0.24 72.42±3.27 82.64 77.56±0.61 37.70±0.92 57.63 39.30±1.13 34.85±2.37 37.07
CounterAL 91.88±0.31 86.21±1.21 88.60 78.87±0.35 45.02±1.06 61.94 52.35±1.32 51.25±2.02 51.80

clustering to select a diverse batch of size M
K . We

recommend setting c as 4 for our experiments.
As for the training strategy, we tune the dropout

threshold (τ ) so that the ratio of masked features
approximates 50%. For the initialized model in
the first round, τ is 0 to make sure not all features
are masked because the initialized model extracts
similar features for both factual and counterfactual
samples. We choose to apply the dropout after
multiple training epochs until the model is able to
correctly classify over 80% of the acquired sam-
ples.

The Setup of Table 7 The test consists of three
steps: (i) we train a model on the training set of
ANLI for multiple epochs; (ii) we calculate the
value of the specific variability we want to test ac-
cording to the historical models from step (i); (iii)
we apply KMeans clustering to choose a diverse
batch of 300 samples from the top-600 samples
with the highest variability. Then we train a new
model with the acquired 300 samples and their
counterfactual counterparts for five times with dif-
ferent initialization. The OOD performance of the
new model reflects the quality of the samples that
are selected by the corresponding variability.

A.3 More Discussions

Under Multi-class. Given a factual sample of
K-way classification, CounterAL constructs K− 1
counterfactual samples. To reduce the cost of coun-
terfactual construction, we can restrict the construc-
tion to informative counterfactual classes of the
sample. In particular, we can sort candidate classes
in the descending order of prediction probability
given by the model at current round. In this way,
we only consider the top-ranked classes with suf-
ficient probability as counterfactual classes. As
deep neural networks typically give highly skewed
probability distributions (Kendall and Gal, 2017),
the number of considered candidate classes will

Table 11: The contribution of different numbers of
factual-counterfactual pairs to OOD generalization on
NLI. 160 and 240 are the number of pairs for training.

IID Test OOD Test
Number of training pairs 160 240 160 240

Distance
Small 76.28 78.58 45.90 47.15
Large 79.33 80.15 41.04 40.99

remain small when K is large.

Compute Resources. All the experiments were
run on 3 GeForce RTX 3090 GPUs.

B Model Performance

B.1 Extra OOD Performance

We investigate how the distance between factual
and counterfactual samples affects their out-of-
distribution (OOD) generalization contribution to
the model. The result is shown in Table 11,
which indicates that factual-counterfactual pairs
with small distances play a more significant role in
improving the model’s generalization performance
as they locate near the decision boundary (The
model is currently unable to distinguish them well),
providing better constraints during training.

B.2 OOD Results of Reweighting Methods

We explore the relationship between the generaliza-
tion ability of reweighting methods and the size of
the training set. Following the setup in the original
paper, We choose MNLI (Williams et al., 2017) as
the training set and HANS (McCoy et al., 2019))
as the OOD test set. We randomly select a subset
from MNLI for model training. The results are
shown in Table 12, from which we find that all the
methods are not effective for small training sets,
hence do not fit active learning.
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Table 12: The OOD performance of the vanilla model
and several SOTA reweighting methods on HANS. They
are trained with the randomly selected subset from
MNLI.

subset size 1k 3k 10k 390.27k

BERT-base (Wolf et al., 2020) 50.35 50.00 49.79 61.50
Reweighting (UB) (Utama et al., 2020) 49.46 49.95 49.75 69.70
Self-Debiasing (Ghaddar et al., 2021) 50.10 49.95 49.85 71.20
Forgetabble Examples (Yaghoobzadeh et al., 2019) 49.26 49.55 49.65 70.50

B.3 Extra Results with the Standard Error

We train a RoBERTa model on the entire unlabeled
pool (noted as Full supervision in Figure 3). The
results are reported in Table 10, where we also
report the standard error for results in Table 3. We
have the following observations: all the baselines
achieve similar IID performance on both SA and
NLI as compared to the upper bound model, i.e.,
the model trained by using the entire unlabeled pool
and counterfactual samples. However, there is still
a certain gap compared to the upper bound model
on ANLI. This is because the redundancy of ANLI
is relatively small and the distribution of ANLI is
not balanced. Meanwhile, their OOD performance
is much worse. By contrast, CounterAL achieves
comparable IID and OOD performance on all three
datasets compared to the upper bound.

C User Study

C.1 Implementation Setup

We aim to empirically explore whether the anno-
tation cost of creating counterfactual samples is
much more expensive compared to labeling factual
samples. We choose tweet data from SemEval-
2017 task 4 subtask A (Rosenthal et al., 2017) to
conduct the user study for the following consid-
erations: 1) It is a topic-free 3-way classification
task which is challenging for deep models and a
counterfactual dataset for it would be valuable 5; 2)
Sentiment analysis on tweet data is a meaningful
task that has received much attention.

Initially, we used the variability-based acquisi-
tion strategy to select 300 samples from the original
training set. We then assigned the task of labeling
these samples to three volunteers, with each respon-
sible for 100 samples6. The volunteers were paid
based on a standard rate of 30 dollars per hour for
their work. The entire process was carried out in
four steps:

5There is no such dataset available yet, and we will release
our constructed dataset along with our code.

6All annotators had similar levels of English proficiency
and academic qualifications.

Table 13: User study on Tweet data: the average time
cost and accuracy of labeling factual samples and anno-
tating counterfactual samples. s stands for seconds.

Annotator index T1 T2 T3 Accuracy

1 36s 36s 29s 82%
2 92s 66s 50s 88%
3 36s 42s 53s 85%

Ave 54s 48s 44s -

• First, all annotators are instructed on the same
labeling rules for Positive/Neutral/Negative. Fol-
lowing this, we provide an explanation and train-
ing on how to modify causal features to gen-
erate the corresponding counterfactual samples
through a few examples.

• Second, to avoid potential ethical concerns dur-
ing the labeling process, we explicitly instruct
the annotators to discard any samples related to
sensitive issues such as war and politics.

• Third, we ask each annotator to record three dif-
ferent timestamps: 1) T1, the time taken for la-
beling 50 factual samples; 2) T2, the time taken
for annotating 50 × 2 counterfactual samples
for the same set of samples annotated in step
1; 3) T3, while annotating the remaining 50 fac-
tual samples, we instruct the annotator to create
counterfactual samples for each factual sample
immediately after labeling it and record the to-
tal amount of time taken to annotate 50 factual-
counterfactual pairs (150 samples in total).

• Fourth, we calculate the labeling accuracy for
each annotator and remove any mislabeled sam-
ples. The results are presented in Table 13.

C.2 Conclusion

According to the result and the feedback from the
annotators, we have the following conclusions:

• Our results indicate that the average time re-
quired to annotate a counterfactual sample is
lower than that for labeling a factual sample, in-
dicating that identifying causal features is more
time-consuming than modifying them. In addi-
tion, our study shows that annotating counterfac-
tual samples immediately after labeling their cor-
responding factual samples improves efficiency.

• Throughout the process, the most common ques-
tions posed by annotators pertained to labeling
certain special factual samples, often involving
complex metaphors in English. In addition, one
annotator sought clarification on whether it was
permissible to make significant modifications to
such samples, and we confirmed that it was al-
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lowed.
• We observed that most of the mislabeled sam-

ples were attributed to biases in the original la-
bels. For instance, samples involving Cristiano
Ronaldo were often labeled as positive, whereas
replacing his name with other characters resulted
in neutral labels for the same sentences. In such
cases, we respected the decisions of the annota-
tors to retain or discard these samples.

• The annotators reported having difficulty con-
structing counterfactual samples for a particular
type of sample: those that were not clearly posi-
tive, making it challenging to determine whether
to label them as positive or neutral. Moreover, it
was difficult to create a neutral counterfactual
sample for a positive factual sample, such as
"Saint Valentine’s Day.".

• Overall, the annotators reported that the most
challenging aspect of labeling was the lack of
clear guidelines for distinguishing between Posi-
tive and Neutral categories. This difficulty stems
from the annotation setup used in the original
paper, where the majority label among five differ-
ent annotators was selected as the final label. As
such, there was often no clear rule or guideline
for selecting a definitive label.
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