
A Deep Learning Framework for Self-evolving Hierarchical
Community Detection

Daizong Ding1, Mi Zhang1∗, Hanrui Wang1, Xudong Pan1, Min Yang1, Xiangnan He2
1School of Computer Science, Fudan University

{17110240010,mi_zhang,18212010031,18110240010,m_yang}@fudan.edu.cn
2School of Data Science, University of Science and Technology of China

xiangnanhe@gmail.com

ABSTRACT
Hierarchical community detection, which aims at discovering the
hierarchical structure of a graph, attracts increasing attention due
to its wide range of applications. However, due to the diculty of
parametrizing the community tree, existing methods mainly rely
on heuristic algorithms, which are limited by their low accuracy
and inability to handle new observations. As far as we know, how
to leverage deep learning techniques to better discover hierarchical
communities remains almost blank in the existing literature. In this
paper, we present the rst deep learning framework called ReinCom
for hierarchical community detection. To address the challenge of
parametrizing the community tree, we propose a novel growing-
up process where, at each step, we rst partition nodes into the
community tree and then adjust the community tree according to
the partition results. To learn an optimal growing-up process, we
propose an embedding agent and a community agent to implement
the two sub-steps respectively. Furthermore, we also propose an
online learning strategy for new observations on the graph. Em-
pirical results show that our proposed model has better modeling
eectiveness than the state-of-the-art methods. For example, in
terms of modularity, the performance of ReinCom is 33% higher
than previous community detection works. Besides, with the aid of
the learned node embeddings, we also devise a graph visualization
algorithm which can consistently reect the latent hierarchical
structure of a graph.

CCS CONCEPTS
• Information systems→ Clustering.

KEYWORDS
Hierarchical Community Detection, Deep Learning
ACM Reference Format:
Daizong Ding1, Mi Zhang1∗, Hanrui Wang1, Xudong Pan1, Min Yang1,
Xiangnan He2. 2021. A Deep Learning Framework for Self-evolving Hierar-
chical Community Detection. In Proceedings of the 30th ACM International

∗The corresponding author is Mi Zhang.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482223

Figure 1: The hierarchical community detection task and ex-
isting heuristic algorithms.

Conference on Information and Knowledge Management (CIKM ’21), Novem-
ber 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3459637.3482223

1 INTRODUCTION
Community detection, which aims at partitioning nodes on a graph
to several communities, can be widely used in various graph-based
application, e.g., grouping researchers with similar interests in an
author collaboration network [51] and clustering web-pages accord-
ing to the hyperlinks [49]. Due to its wide range of applications,
community detection has attracted increasing attention from both
academia and industry. Existing community detection methods can
be mainly classied into two categories [23, 50]: non-hierarchical
community detection methods such as Spectral Clustering [27, 34]
and Block Modeling [1, 39], and hierarchical community detec-
tion methods such as Label Propagation [51, 58] and Louvain al-
gorithm [3]. Hierarchical methods aim to learn hierarchical rela-
tions between communities (i.e., community tree). Since complex
networks in real-world applications usually have hierarchical struc-
tures [7, 10], e.g., certain content integration websites like Yahoo
usually cover a wide range of topics and have hyperlinks to web
pages on more specic topics, such hierarchical modeling is able to
characterize this property and leads to better community detection
results [25]. Therefore, in this paper, we focus on hierarchical com-
munity detection. Existing methods mainly use heuristic algorithms
[9, 14, 21] to detect hierarchical structure. For example, [9] proposes
to recursively divide a large community into smaller communities
through a greedy strategy, while [3, 13] propose to recursively
merge small communities into larger communities. After running
the pre-dened heuristic algorithms, one can obtain a community
tree and the corresponding node-community aliation, as shown
in Fig. 1.

Recently, with the rapid development of deep learning, deep
neural networks (DNN) have been applied to various graph ap-
plications, such as Graph Convolutional Network (GCN) for node
classication [18, 54] and Neural Graph Collaborative Filtering

https://doi.org/10.1145/3459637.3482223
https://doi.org/10.1145/3459637.3482223

(NGCF) for recommender systems [47, 48]. Compared with tradi-
tional methods, a major advantage of DNNs is that they can learn
eective node representations through deep nonlinear structures,
which enables them to extract complex topological patterns of a
graph. However, as far as we know, deep learning has not been suc-
cessfully applied to hierarchical community detection yet. This is
mainly because we usually require parametrized inputs and outputs
to design deep learning models. For example, in node classica-
tion problems, the input (i.e., node) and the output (i.e., label) of a
model can be dened as an integer number and a one-hot vector
respectively. However, this requirement can not be fullled for hi-
erarchical community detection, whose output is by denition a
community tree of uncertain width and depth [20, 37]. As a result,
despite the eectiveness of deep learning techniques, how to lever-
age them to better discover hierarchical communities remains almost
blank in the existing literature.

In this paper, we present our novel deep learning framework
called ReinCom to bridge this gap. To tackle the challenge of
parametrizing the community tree, we divide the generation of
a community tree into two sub-processes: (1) learning the node-
community aliation given a community tree and (2) further ad-
justing the community tree according to the partition results. Based
on this, we design a deep learning model to implement the two
sub-processes above. To the best of our knowledge, ReinCom is
the rst solution which applies deep learning model to hierarchical
community detection. In comparison to traditional methods, the
major advantages of our methods lie in the following aspects:

• Eectiveness of Hierarchical Modeling: ReinCom is more ef-
fective in discovering the latent hierarchical structure of a graph
with the aid of deep learning techniques. From our perspective,
the reasons are two-folds. First, we leverage graph embeddings to
model node-community aliation, which can characterize local
structure eectively by the low-dimensional space. Second, we
introduce reinforcement learning to search the optimal commu-
nity tree, which can balance the exploration and exploitation well
compared with heuristic algorithms. Empirical results show that
in most cases ReinCom outperforms the state-of-the-art hierar-
chical community detection methods by a noticeable margin. For
example, ReinCom makes 33% relative improvements in terms
of modularity on Wiki-Vote.

• Online Updating for NewObservations:When there are new
nodes and edges, existing methods need to be re-run on the whole
graph [30], e.g., recursively dividing or merging, which often
leads to a totally dierent community tree due to the instability of
heuristic algorithms. To date, how to perform eective updating
for new observations without perturbing the existing community
tree is still an open problem. As real-world graphs often have
new incoming observations, there is an urging need to devise
a novel hierarchical community detection method to embrace
this important characteristic [7, 10]. In this work, with the aid
of the novel two sub-processes, we propose an online updating
strategy for new observations. When new nodes and edges are
added to the graph, ReinCom can make slight adjustments to
the existing community tree and ne-tune the node-community
aliation in order to maintain the modeling eectiveness. We

conduct extensive experiments to validate the eectiveness of
our online updating strategy.

• Application toMultipleDownstreamTasks:Meanwhile, Rein-
Com also learns eective node embeddings, which can be used
in conjunction with a wide range of downstream graph-based
applications, including link prediction, node classication and
graph visualization. We validate the quality of the learned embed-
dings in various graph-based tasks. Besides, we develop a graph
visualization algorithm which is able to consistently reect the
latent hierarchical structure of a graph.

2 RELATEDWORKS
Community detection aims at nding latent node-community ali-
ation relations and detecting the modular structure of a graph [12].
Dierent from standard clustering algorithms which group data
according to their content information [52], e.g., images used in
K-nearest neighbors (KNN) [8] and node properties used in Graph
Neural Network (GNN) [18, 55], community detection algorithms
need to nd communities based on the discrete linkage information
in a graph. Existing community detection methods can be roughly
classied into two categories [23, 50]: (1) Non-hierarchical commu-
nity detection methods such as Clique Percolation Method (CPM)
[11, 29], randomwalk [16], spectral clustering [27, 42, 57] and block-
ing models [26, 53]; (2) Hierarchical community detection methods
such as Label Propagation Algorithm (LPA) [51, 58] and Girvan-
Newman Algorithm [43]. For a more comprehensive introduction,
please refer to [12, 50]. Compared with non-hierarchical methods,
hierarchical community detection methods aim at learning to build
a community tree through partitioning nodes to communities on
the tree [2, 19, 21, 25, 31]. This design helps them model the hier-
archical topology of complex networks in real-world applications
well [7, 10]. In this paper, we focus on hierarchical community
detection (HCD).

Despite the advantages of being able to detect hierarchical struc-
tures, such modeling however increases the complexity of the opti-
mization. For instance, nding an optimal tree structure is proved
to be a typical NP-hard problem [37]. To address the issue, most
methods propose to use heuristic algorithms like greedy strategy
[21], e.g., to recursively divide a large community into smaller com-
munities [9] or to recursively merge small communities into larger
communities [3, 13]. Although some of them try to use Bayesian
non-parametrics to infer the tree structure [4], they could only be
applied to small networks due to the high time complexity [19].

Recently, deep learning is widely used in graph based tasks, e.g.,
Graph Convolutional Network (GCN) and Graph Attention Net-
work (GAT) for node classication [18, 44], Graph Neural Network
(GNN) for Knowledge Base Completion [15] and Neural Graph Col-
laborative Filtering (NGCF) for recommender systems [45, 47, 48].
This is mainly because its benets of learning nonlinear features
and data representations at multiple levels of abstraction, which
is suitable for complex topological graphs. However, it is dicult
to apply the technique to HCD because a neural network model
usually needs an output form which is clearly parametrized, e.g.,
one-hot label in node classication or ratingmatrix in recommender
systems. Yet, this requirement could hardly be met in HCD, mainly
because its output is usually a community tree with unknownwidth

Figure 2: An Overview of our proposed framework ReinCom, the growing-up process of a community tree (Left) and our
general design of the embedding agent and the community agent (Right).

and depth [20]. Therefore, how to leverage deep learning techniques
in HCD remains an open problem.

3 GENERATING A COMMUNITY TREE
3.1 The Growing-up Process
We rst formally dene the task of hierarchical community de-
tection. Formally, we denote an undirected homogeneous graph
G = (V, ϒ) with |V| = N nodes and the linkage information
yi j = {0, 1} ∈ ϒ, which describes whether a link is observed be-
tween vi ,vj ∈ V . We assume Tt is a tree of t communities. For a
node vi ∈ V , we assign it with a community ci ∈ {1, · · · , t}. In
other words, we call the node vi is aliated with the community ci
and ci is the node-community aliation. The goal of hierarchical
community detection is to nd an optimal tree structure T ∗ and to
learn node-community aliation ci according to the linkage infor-
mation ϒ. Specically, for those yi j = 1, the learned communities
ci and c j should be close on T ∗ and vice versa.

Previous methods rely on heuristic algorithms to nd a solution,
e.g., greedy strategy and genetic algorithms, making them unable
to search better community tree structure and handle new observa-
tions. To address these issues, we take the lead to introduce deep
learning techniques to this traditional task. Towards the challenge
of parametrizing the community tree, we propose the following
framework which divides the hierarchical community detection
into two sub-processes. At the t-th step: (1) given a community
tree Tt , we partition nodes to communities on the tree; (2) given
the partitioning results, we further adjust the community tree and
obtain Tt+1. By alternating the above procedures, we can generate
a complete community tree TT starting from a root community T0.
The overall framework is shown in Fig. 2, where the generation of
the community tree is similar to a growing-up process.

The main advantage of the framework is that we could param-
etrize the two sub-processes, making it possible apply DNN to
implement the framework. In this paper, we propose the follow-
ing two trainable agents for the above sub-processes respectively,
which can be summarized as:

• Embedding Agent: We introduce the graph embedding tech-
nique to learn node-community aliation given a community
tree. Specically, we embed both nodes and communities to a
hyperbolic space and calculate the similarity between a node
and a community according to the metric function dened in
the hyperbolic space, which has a natural advantage in modeling
hierarchical structure of a graph (Section 3.2).

• Community Agent: There are a number of candidate opera-
tions which can be used to adjust a community tree. For example,
one can derive Tt+1 by adding, moving or deleting communities
on Tt . In this paper, we mainly consider adding a community at
each step because the adding operation is especially suitable for
dealing with incoming new observations (Sections 3.3 & 3.4).

3.2 The Embedding Agent
The goal of the embedding agent is to learn node-community af-
liation given a community tree Tt and linkage information ϒ.
Moreover, it should also describe the hierarchical structure of the
graph. In this paper, we introduce the graph embedding technique
to achieve the goal.

First, we embed both nodes and communities to the same vec-
tor space, and use the similarity between vectors to model node-
community aliation. Specically, for each node vi , we use a low-
dimensional vector ei ∈ RD to represent it. Similarly, for a commu-
nity c = {1, · · · , t} on Tt , we also embed it with a low-dimensional
vector ec ∈ RD . For the choice of the vector space, we dene it as
the Poincaré ball, which is a typical hyperbolic space [28]. Formally,
the embeddings should satisfy ‖e‖2 ≤ 1, and the similarity between
a node vi and a community c can be written as a metric between
two embedded vectors:

‖ei − ec ‖
2
H = arcosh

(
1 +

2‖ei − ec ‖2

(1 − ‖ei ‖2)(1 − ‖ec ‖2)

)
(1)

The key feature of this space is that when the norm of two vectors
becomes large, the distance between them increases exponentially.
As shown in Fig. 2, the distance between Community 3 and Commu-
nity 4 will be much larger than the distance between Community 2

and Community 3, which is dierent from the situation in the Eu-
clidean space. As a result, after the inference, nodes or communities
with higher level will have smaller norms and vice versa. Previous
work has shown the eectiveness of this technique in hierarchical
clustering for images and documents [24]. In this work, we leverage
this technique to hierarchical community detection.

Based on the denition, we present how tomodel node-community
aliation. For each node vi , we dene a Multinomial distribution
P(c |vi) = ρic over communities by calculating the similarity be-
tween the node and all the communities,

ρic ∝ exp(−‖ei − ec ‖
2
H) (2)

where ρic ∈ [0, 1],
∑t
c=1 ρic = 1. The distribution measures the

probability of a node belonging to dierent communities, e.g., in an
online social network, a user may be interested on music and sport
at the same time. In contrast, heuristic algorithms cannot model
such overlapping node-community aliation [50, 56]. For instance,
during the recursive division, each node could only be classied to
a certain partition.

Then the remaining problem is how to use Tt and the link infor-
mation to learn eective embeddings. An intuitive idea is that for
nodes who have no links between other (i.e., yi j = 0), their commu-
nities should be distant on the tree Tt , and vice versa. Based on this
motivation, we propose the following distance function on the com-
munity tree Tt . Suppose communities c1, c2 ∈ Tt , and c0 ∈ Tt is the
lowest common ancestor of c1 and c2. The distance between the two
communities onTt is dened asΛ(c1, c2) = dist(c1, c0)+dist(c2, c0),
where dist(·, ·) calculates the length of the shortest path between
two communities on the tree. Then we can measure the distance
between two nodes with the following denition:

di j = Eci∼P (c |vi),c j∼P (c |vj)
[
Λ(ci , c j)

]
= ρTi Λρ j , (3)

where Λ ∈ Rt×t is the metric matrix of the community tree and
ρi ∈ Rt is the vector representation of ρic . In order to minimize
di j for yi j = 1 and vice versa, we use the ranking loss:

`(ϕ) =
∑
vi

∑
vj ,vk

max(0, β + dik − di j), (4)

where yi j = 1, yik = 0, β > 0 is a constant margin, and ϕ =
{ei ,ec } is the set of parameters in node embeddings and community
embeddings. However, optimizing ei and ec directly is dicult
because of the constraint of ‖e ‖2 ≤ 1 in the Poincaré ball. Previous
methods use projected gradient descents to solve this problem
[28]. In this paper, we alternatively propose to reparametrize the
embedding vectors as ei =

(
1 − exp(−ω(ηi)

)
·

ẽi
‖ẽi ‖2

, where ηi ∈
R is the scale parameter, ẽi is the vector in RD and ω(·) is the
ReLU function to get non-negative value. Then we can represent
embedding ei by parameters ẽi and ηi . In this way, we simplify the
original constrained optimization problem to an unconstrained one.
Similarly, we can reparametrize the community embeddings ec .
Based on this simplication, we can directly apply the standardized
gradient-based optimization algorithms to infer parameters η, ẽ .

3.3 The State Matrix
After optimizing the embedding agent, our framework learns eec-
tive overlapping node-community aliation over Tt . We present
below how to further adjust the community tree by inserting new

Figure 3: A motivating example for the criterion of commu-
nity insertion and the design of the state matrix st .

communities. We rst concisely discuss under what condition we
need to expand the community tree by insertion. From our perspec-
tive, a major condition is: the number of existing communities is
insucient to fully model the hierarchical structure of the graph.
For instance, for nodesvi ,vj with no observed links, the embedding
model may still cluster vi ,vj together in the same community. To
reduce such misttings, we need to insert a new community to
the existing community tree and separate the nodes to dierent
communities.

To further formulate the condition on insertion, we consider
a simple case in Fig. 3. Suppose a community tree Tt with size
t = 2 whose two communities are both leaves of the root. With
embeddings learned in Sec. 3.2, we can partition nodes into two
communities. However, it can be easily found that t = 2 is too small
to model the network structure. In order to improve the partition,
we suggest that the insertion choice should depend on the following
criteria:
• Case 1: If there exists a group of nodes (colored in orange) which
have relation with some nodes in Community 1 and have no
relation with nodes in Community 2, in this case, we could insert
a new Community 3′′ under Community 1.

• Case 2: If there exists a group of nodes (colored in gray) which
have few links with nodes in both communities and the embed-
ding model still divides them to two communities, then we should
separate these nodes from the two communities and insert a new
Community 3′ under the root.
Based on the above analysis, we propose to dene the state infor-

mation st by counting the improperly assigned node-community
aliation relations. Given Tt and the learned embeddings, we could
obtain a matrix st of size t × t to describe the mistting. The proce-
dural denition of st is presented in Alg. 1. Intuitively, if st (c, c) is
small, it means that there are a large number of node pairs clustered
in community c , but they have no co-relations. Similarly, if st (c1, c2)
is small, it means a large number of node pairs with observed links
are separated to communities c1 and c2.

3.4 The Community Agent
Given the state matrix st , the insertion can be described by a policy
π (at |st), where at = {0, 1, · · · , t} is the community to which we
want to insert a new community as its child. Here, 0 indexes the root
community. To this end, a straightforward thought is to implement

Algorithm 1 Calculating State Matrix for Tt .

1: Initialize st ∈ Rt×t with zeros
2: for vi ∈ V do
3: Calculate ci = argmaxcρic
4: for yi j ∈ ϒ do
5: ỹi j = 2 · yi j − 1
6: if ci = c j then
7: st (ci , c j) = st (ci , c j) + ỹi j
8: else
9: st (ci , c j) = st (ci , c j) − ỹi j · Λ(ci , c j)

return st

the policy through a pre-dened strategy. Nevertheless, designing
such strategy is extremely dicult because: (1) there may exist
more cases in addition to what we have mentioned above; (2) when
the size of community tree Tt increases, the state information st will
become extremely complex, making it dicult to determine how
to insert a new community. To tackle this challenge, we propose
to implement the policy by a multi-layer neural network, which
is proved to be eective in various complex tasks (e.g., [35, 36]).
Formally, given the state matrix st , we rst calculate the hidden
layer,

hc = tanh
(t∑
τ=1

wh · st (c,τ) + bh
)

(5)

where wh ,bh ∈ R are parameters in the hidden layer. This layer
could reduce the state matrix to a vector representation h ∈ Rt .
Based on the output from the hidden layer, we then predict the
position of the inserted community by ot = softmax[wT

o · h + bo],
where wo ∈ Rt×(t+1),bo ∈ Rt+1 are parameters in the output
layer. We model ot ∈ Rt+1 as a multinomial distribution over
communities. Finally we sample an at from the distribution as the
predicted position. The parameters of the community agent are
denoted as θ = {wh ,bh ,wo ,bo }.

The remaining problem is that the shape of the input and output
varies from dierent step. To tackle the challenge, we use global
parameters wo ∈ RT×(T+1) and bo ∈ RT+1. At each step t , we
obtain part of the parameters wo,t = wo (0 : t , 0 : t + 1) and
bo,t = bo (0 : t + 1).

4 THE REINFORCED FRAMEWORK
4.1 Optimizing the Community Agent
Dierent from the training of the embedding agent, it is however
dicult to optimize the community agent due to the lack of ground-
truth labels, i.e., there is no supervision signal about which position
at is the best choice. In this part, we propose to leverage rein-
forcement learning (RL) to tackle this challenge. Specically, we
dene the following game-playing procedure to train the commu-
nity agent’s policy:
• Randomly initialize the embedding agent;
• For t = 1, · · · ,T − 1:
– Update the embedding agent with community tree Tt ;
– Calculate the state matrix st with the learned node-community
aliations;

– Use the community agent π (a |s) to build Tt+1;

• Calculate the rewards of the generated community trees {Tt };
• Update the community agent by maximizing the rewards.

During each round, we rst generate a complete community
tree TT , then we estimate the quality of the generation and provide
rewards to the community agent. After receiving the signals, the
community agent updates its parameters to maximize the rewards.
In the next round, it is expected to generate a better community
tree. In other words, instead of feeding to the community agent
which position at is the best choice, we optimize the community
agent by indirect labels, that is, by maximizing the quality of the
generated tree.

Formally, at each step t , we use the ne-tuned embedding model
to output both the state matrix st and the reward rt . The st is used
to predict at to form a new community tree Tt+1, and rt is used to
estimate the quality of current tree Tt . The reward rt is dened as,

rt =
∑

(vi ,vk)∈yik=0

dik −
∑

(vi ,vj)∈yi j=1

dik (6)

where di j is the distance between nodesvi ,vj as dened in Eq. 3. A
larger rt means that the model can better cluster similar nodes and
better separate distant nodes, vice versa. Based on the denition,
in each round of generating a complete community tree, we can
sample a sequence of state-action-reward tuples (st ,at , rt)Tt=1, or
namely, an episode. Then the objective function can be written as,

max
θ
E(st ,at ,rt)Tt=1∼π

[T∑
t=1

γT−t · rt
]

(7)

where γ is a hyper-parameter called the discount factor. In this
work, we use the PPO algorithm to infer the parameters, which is
the state-of-the-art method towards this problem [33]. Specically,
the PPO algorithm optimizes the following loss function:

`(Θ) = EΛt .at∼π

[
−Ât ·min

(
Rt (Θ), clip

(
Rt (Θ), 1 − ϵ, 1 + ϵ

))
+ ζ1 · A2

t − ζ2 · qπ (st |at)

]
(8)

where ζ1, ζ2 are regularization coecients, qπ (at |st) is the entropy
of the multinomial distribution on at , and:

At = [

T∑
τ=t

γ τ−t rτ] − νt , , Rt (Θ) =
π (at |st)

πold(at |st)
(9)

where νt = wT
h h + bh is the value function to estimate the current

reward based on st , wh ∈ Rt ,bh ∈ R are parameters of the value
function νt , πold is the policy in the last round, and gradients will
not go through πold and Ât . Then we can use algorithm such as
Adam [17] to infer Θ = {wh ,wo ,wv ,bh ,bo ,bv }.

During the game-playing process, the embedding agent gives
feedback to the community agent and help it learn better commu-
nity trees. In the meantime, better community trees will help the
embedding model learn more eective results. After several rounds
the community agent will be able to generate a well-qualied com-
munity tree. Besides, we can use the learned embedding results to
assign each node a community.

4.2 Online Updating
We further describe the online updating strategy used in our frame-
work. Given a graph with linkage information set ϒ0, we can use the

Algorithm 2 The proposed jointly learning framework.
1: repeat
2: Initialize T1 = {Root}, s1 = [0] and Λ1 = [0].
3: for t = 1, · · · ,T do
4: Use the policy π (at |st) to sample a community at .
5: Insert a new community under at .
6: Form a new community tree Tt+1.
7: Calculate the distance matrix Λt+1 of tree Tt+1.
8: Use (ϒ,Λt+1) to train embeddings and output {ρic }tc=1.
9: Use (ϒ,Λt+1, {ρic }tc=1) to calculate the reward rt .
10: Use (ϒ,Λt+1, {ρic }tc=1) to calculate state matrix st+1.
11: Use (st ,at , rt)Tt=1 to update the parameters θ by PPO.
12: until Convergence

above framework to learn a community tree and node-community
aliation. When there are new nodes and edges added to the graph
(i.e., linkage information set ϒt), we can use ϒt and the existing
community tree TT to perform mini-batch updating for the embed-
ding agent. If the community tree TT is not able to describe the new
graph structure, e.g., the decreased performance of hierarchical
community detection is larger than a pre-dened threshold, we can
use the embedding agent to calculate the state matrix sT+1, and
insert a new community under aT+1 by the community agent. With
the new community tree TT+1, we can further ne-tune the com-
munity agent to obtain better hierarchical community detection
results.

4.3 Parallel Acceleration
To further improve the training, during each game-playing round,
we propose to generate L community trees {T (l)

T }Ll=1 simultane-
ously, and use these episodes to update the community agent. Com-
pared with only using one episode, multiple episodes help the agent
to explore more possible structures in parallel and hence speed up
the convergence of learning. Nevertheless, such mechanism will
increase the time cost in fact. To tackle the challenge, we design
a distributed strategy that scales our algorithm to multiple GPU
devices. Specically, at each step t , we rst use the community
agent to generate L trees {T (l)

t+1}
L
l=1 given {T

(l)
t }Ll=1 in the last step.

Then we distribute these trees to workers on multiple GPUs, where
each worker learns an embedding agent independently. After the
learning, we collect the results (s(l)t+1, r

(l)
t) and pass them to the

community agent to generate trees {T (l)
t+2}

L
l=1. Consider that the

eciency bottleneck is the node representation learning as it needs
to go through the link set ϒ, we use parallelization on GPUs to
reduce the computation time of sampling multiple episodes.

4.4 Complexity Analysis
We provide a concise analysis on the complexity of our model
here. For each step t , the complexity of the community agent is
O(t2), and the complexity of the embedding agent isO(|ϒ|(t2 +D)),
where D is the dimension of node embeddings. For T steps, the
complexity isO(|ϒ |(T 3+T ·D)). In our parallelized implementation,
the complexity isO(L · |ϒ | · (T 3 +T · D)), where L is the number of
workers in sampling episodes. Compared with the state-of-the-art

Table 1: Statistics of datasets.

Aminer BlogCatalog Wiki-Vote Deezer-RO
Nodes 12840 8943 3513 11847
Edges 190658 660840 95028 105844
Labels 4 39 NA 78

Modularity X X X X
NMI X × × ×

AUC X X X X
F1 × X × X

approaches, the complexity of our original design has a constant
scale L larger time cost, while, after the parallelization, the actual
running time of our method is the same scale as most of the existing
methods. Section 5.5 further compares the empirical time cost.

5 EMPIRICAL RESULTS
In this section, we validate the eectiveness of our proposed frame-
work. We aim to answer the following research questions:
• RQ 1: Is our proposed model able to discover better community
tree compared with state-of-the-art methods?

• RQ 2: Is our proposed model able to perform eective online
updating?

• RQ 3: Does our proposed model learn eective node embed-
dings?

5.1 Experimental Settings
We use four kinds of downstream graph applications in the ex-
periments: graph visualization, clustering analysis, link prediction
and multi-label node classication (for simplicity, we refer it as
node classication in the following). The former two tasks evalu-
ate the quality of community detection results, and the latter two
tasks are designed to validate the eectiveness of the learned node
embeddings.
Datasets.We evaluate the eectiveness of our model on 4 graph
datasets: Aminer1, BlogCatalog2,Wiki-Vote andDeezer3. All datasets
except Wiki-Vote and Aminer have multiple ground-truth labels
for nodes, which can be used for node classication.
Metrics. For clustering analysis, we use modularity and normalized
mutual information (NMI) to quantify the community detection
results. The modularity is an unsupervised metric, where a larger
modularity value means the model can better cluster similar nodes
together. The NMI is a supervised metric, which measures the
similarity between the community structure and the ground-truth
structure. For link prediction, we randomly divide the edges set
ϒ to a train set and a test set with a ratio of 8:2. Then we use
the edges in the train set to infer parameters in the model, and
predict the probability of links in the test set by node embeddings.
We use Area Under the relative operating Characteristic (AUC)
[5], which is widely used in the performance evaluation of binary
classication tasks, to measure whether the embeddings capture
the correct graph structure. For multi-label node classication, each
1https://www.aminer.cn/billboard/aminernetwork
2http://socialcomputing.asu.edu/datasets/BlogCatalog3
3https://snap.stanford.edu/data

Table 2: Results for community detection (Modularity) and link prediction (AUC), where - means the results are unavailable,
e.g., Louvain does not have node embeddings, and N/A means the model fails to converge in 2 days.

Modularity AUC NMI
Aminer Wiki-Vote BlogCatalog Deezer-RO Aminer Wiki-Vote BlogCatalog Deezer-RO Aminer

LINE - - - - 0.583 0.691 0.526 0.500 -
GNE - - - - 0.670 0.666 0.565 0.582 -

GEMSEC 0.661 0.211 0.021 0.649 0.941 0.742 0.506 0.498 0.361
Louvain 0.647 0.307 0.159 0.603 - - - - 0.539
HCDE 0.689 0.210 0.180 0.037 - - - - 0.410
MNMF 0.709 0.297 0.154 0.665 0.950 0.843 0.725 0.923 0.294
vGraph 0.710 0.258 N/A N/A 0.824 0.685 N/A N/A 0.001
ComE 0.745 0.309 0.139 0.740 0.505 0.530 0.699 0.912 0.765

ReinCom 0.759 0.403 0.224 0.742 0.960 0.884 0.848 0.912 0.798

node has several ground-truth labels. We split nodes to a train set
and a test set of rate 8:2. Then we train a multi-layer neural network
as the classier. Given a node, the classier learns to output the
probability that the node belongs to each categories of dierent
labels. Finally, we predict the probabilities for the test set and use
the F1 score to measure the accuracy.
Baselines.We choose 6 state-of-the-art community detectionmeth-
ods as the baselines. Specically, we compare our methods with 4
non-hierarchical methods: Graph Embedding with Self Clustering
(GEMSEC) [32], vGraph [40], Modularity Nonnegative Mattrix Fac-
torization (MNMF) [46] and Community Embedding (ComE) [6].
These non-hierarchical community detection methods also leverage
the graph embedding technique, which is proved to be eective in
various applications. We also compare our model with two hier-
archical methods. The rst is the Louvain algorithm [25], which
leverages a division-based heuristic strategy to search for a commu-
nity tree which maximizes the modularity. This method is proved to
be eective among various traditional approaches such as the label
propagation algorithm (LPA). The second is the Hierarchical Com-
munity Detection by Embeddings (HCDE) [38], which proposes
to perform hierarchical clustering on learned node embeddings.
Furthermore, in order to validate the quality of our learned node
embeddings, we compare our methods with 2 node representation
learning baseline methods: Large-scale Information Network Em-
bedding (LINE) [41] and Galaxy Network Embedding (GNE) [10],
where the GNE rst nds a community tree by Louvain algorithm
and learns node embeddings given the tree. Finally, we also conduct
several self-comparison to validate the design of our framework.
Others.For more implementation details of our model, we use
Adam [17] as the gradient optimizer, with the learning rate 0.003
and the regularization coecient 0.5. For all community detection
methods, we set T = 15 for the Wiki-Vote dataset, and T = 20 for
the others. The reason is the that Wiki-Vote dataset is smaller than
the others. Since Louvain and HCDE use a dendrogram to represent
the community tree and are not able to output a xed number of
communities as a result, we extract their learned communities by a
threshold of depth 4. For the dimension of node embeddings, we
choose 50 for our method and use the optimal setting reported in
the original papers of the baselines. Besides:

Table 3: F1 value for node classication.

Deezer-RO BlogCatalog
Macro-F1 Micro-F1 Macro-F1 Micro-F1

LINE 0.023 0.302 0.062 0.190
GNE 0.029 0.396 0.016 0.071
ComE 0.029 0.314 0.018 0.053

GEMSEC 0.023 0.277 0.107 0.263
ReinCom 0.058 0.401 0.138 0.281

• Rather than starting from T0, we initialize the tree with TT0
,

where there are T0 leaves under the root community. In our
experiment we set T0 = 4.

• As for γ in calculating the discounted accumulative rewards, we
have tried γ = 0.6, 0.8, 0.95, 0.99, among which γ = 0.95 is
proved to be the optimal choice.

• For the number of workers in our parallel implementation, a
larger L usually provides better results. In this paper we set
L = 90 based on our computation resources.

• For the choice of yi j , we use the same setup as in Node2vec.
For predictive applications, we use 10-fold cross validation. All

the experiments are conducted on a machine with two Intel Xeon
4210 CPUs and six NVIDIA RTX 2080Ti GPUs.

5.2 The Results for RQ 1
5.2.1 Main Results. We rst validate the eectiveness of hierar-
chical modeling in community detection. As we can see from the
comparison between hierarchical method such as Louvain and non-
hierarchical method GEMSEC, the hierarchical modeling leads to
better community detection results. For instance, on Wiki-Vote,
the modularity of Louvain is 0.307, while the one of GEMSEC is
only 0.211. Besides, our model achieves noticeable improvements
on most datasets compared with previous hierarchical methods.
Especially on Wiki-Vote, our modularity is 0.403, which is about
33% relatively higher than that of the best baseline. Furthermore,
we take a deeper look at the hierarchical structure discovered by
our model and previous hierarchical methods. We dene the metric

Figure 4: The curves of modeling eectiveness in terms of modularity during the online updating process.
Table 4: Comparisons of the average tree distance between
nodes w. and w/o. a link between one another.

Aminer Wiki-Vote Deezer-RO
d̄+ d̄− d̄+ d̄− d̄+ d̄−

Louvain 9.119 9.135 7.794 7.959 5.904 5.905
HCDE 5.803 5.809 5.120 5.121 6.858 6.864

ReinCom 0.631 3.707 0.821 2.191 0.949 1.873

as d̄+ = 1
|ϒ+ |

∑
(i, j)∈yi j=1 Λ(ci , c j), where Λ(ci , c j) is the distance

of two communities on the community tree dened in Section 3.2.
Similarly, we can dene d̄− for those yi j = 0. A smaller d̄+ means
that the model could cluster similar nodes together, and a larger d̄−
means that the model could separate dissimilar nodes. As we can
see from Table 4, for previous hierarchical methods, the negative
distance d̄− is close to the positive distance d̄+. In contrast, our
model distinguishes yi j = 1 and yi j = 0 well. On Aminer, for the
node pairs which have a link between one another, the averaged dis-
tances on the community tree is 0.631, while the distance becomes
3.707 if there is no link between them.

We speculate that the improved modeling eectiveness of Rein-
Com mainly comes from the following reasons. On one side, our
community agent could discover a better hierarchical structure
of the graph. On the other side, our embedding agent could learn
better node-community aliation based on the community tree.
To validate this, we conduct the following experiments. First, we
replace the learned community tree TT by a non-hierarchical tree
and a random tree respectively. Then we train the embedding agent
with these two community trees and report the results. As we can
see from Table 5, the performance is greatly reduced after using
incorrect community trees. The second self-comparison is to re-
place the hyperbolic space of the embedding agent with a Euclidean
space. As we can see from Table 5, the modularity also decreases on
both datasets after this modication. In summary, the capability of
ReinCom in modeling hierarchical community structures and over-
lapping node-community aliation is a key factor to its improved
performance.

5.2.2 The Influence of Overlapping Modeling. We further inves-
tigate the inuence of overlapping modeling. As shown in Table
2, for those non-hierarchical methods, the overlapping modeling
could help the model learn better node-community aliation. For
instance, the MNMF and vGraph outperform GEMSEC on most
datasets. Furthermore, an interesting nding is that overlapping
modeling is more important than hierarchical modeling on certain

Table 5: Self-comparisons on two datasets.

Aminer Wiki-Vote
Modularity AUC Modularity AUC

Non-hierarchical 0.703 0.950 0.326 0.853
Random 0.719 0.957 0.295 0.846

w/o. Hyperbolic 0.728 0.948 0.295 0.870
ReinCom 0.759 0.960 0.327 0.884

graphs. For instance, on Aminer, the ComE outperforms hierar-
chical community detection methods Louvain and HCDE. As the
rst hierarchical method which is able to model overlapping node-
community aliation, ReinCom outperforms these baselines on all
datasets.

5.3 The Results for RQ 2
We validate our proposed online updating strategy on four datasets.
We divide the datasets into several parts. For t = 0, we construct ϒ0
by 91% nodes and their edges. For t = 1 to t = 6, we incrementally
add 1.5% nodes and their edges to the graph at each timestamp.
When the model receive ϒt , it rst updates the embedding agent
with these incremental data. If the drop of the modularity is greater
than a threshold, we use the community agent to insert a new com-
munity to build Tt+1 and further ne-tune the embedding agent.
The results are shown in Fig. 4. The orange line is the performance
of conducting mini-batch updating on the embedding agent without
updating the community tree, and the blue line is the performance
of inserting a new community when the drop of the modularity
is greater than a threshold. The green line is the result of train-
ing both agents on the whole data (from t = 0 to t = 6). As we
can see, the utility of our model still remains high after receiving
new nodes and edges. Furthermore, after inserting a new commu-
nity, ReinCom can even improve the modeling eectiveness at the
previous timestamp. For instance, on Aminer and Wiki-Vote, the
result is close to training the model on the whole dataset. We also
validate the change of the existing partitions, where we nd that
previous node-community aliation only slightly changes after the
online updating. The above experimental results strongly justify
the eectiveness of our proposed online updating strategy.

5.4 The Results for RQ 3
For RQ 3, we validate the eectiveness of our model in three graph
applications: link prediction, node classication and graph visu-
alization. According to the link prediction results in Table 2, our
method outperforms all baselines in AUC by a large margin on

Figure 5: Visualization of the hierarchical architecture of the Aminer network learned by our proposed ReinCom.

most datasets. For example, on BlogCatalog, the result of our model
is 0.848, while the best baseline is 0.725. For node classication,
our method also consistently shows better performance over all
datasets. We do not provide the results of vGraph and MNMF in
this scenario because they fail to converge in 2 days.

Finally, we present an interesting graph visualization method
based on ReinCom. Specically, we rst visualize the community
tree. Then for each community on the tree, we conduct t-SNE [22]
with embeddings ei that belong to the community, and scale the
coordinates. We visualize the learned community tree and the node
embeddings after dimension reduction on Aminer in Fig. 5. To ex-
plain, there are four kinds of papers in the Aminer citation network:
data mining, computer vision, natural language processing and
database. As we can see from Fig. 5, our model separates dierent
kinds of papers well without knowing the ground-truth label. Be-
sides, there are several interesting ndings. First, if the number of
database papers becomes much larger, our model could capture
this feature and model these nodes with larger sub-trees. Second,
nodes belong to deeper communities have more specic topics. For
instance, papers belong to Cluster 13 often discuss general prob-
lems in computer vision such as graphics and deformation, while
papers belong to Cluster 15 often discuss more specic topics such
as real-time rendering. Third, our model captures the overlapping
node-community aliation. For instance, some papers in Cluster
18 also belong to Clusters 4 & 5 because they discuss topics such
as semantic mining and text database, which are also relevant to
natural language processing.

5.5 More Results
Additionally, we present the running time of our methods. As an-
alyzed in Section 4.4, the time complexity of our method is con-
stant times to size of ϒ. The results in Table 6 empirically prove
the theoretical time complexity. We compare our methods with
two non-hierarchical community detection methods MNMF and
vGraph, which are also graph embedding based approaches. The
complexity of MNMF and vGraph are constant times to N × N and

Table 6: Inference time of dierent methods.

Wiki-Vote Deezer-RO Deezer-HR
Nodes 3513 11847 42586
Edges 95028 105844 935138
MNMF 4min 39min N/A
vGraph 240min N/A N/A
ReinCom 45min 50min 500min

ϒ respectively. With the help of distributed training strategy, our
methods could be even faster than some non-hierarchical counter-
parts. For instance, in Deezer-HR dataset, vGraph and MNMF fail
to model this dataset due to the intractable time cost, while our
method converges within hours.

6 CONCLUSION
In this paper, we present the rst deep learning based framework
on hierarchical community detection. With the aid of deep learn-
ing techniques, our proposed framework, ReinCom, shows its ad-
vantages not only in discovering hierarchical structures, but also
in enabling online updating and facilitating various downstream
graph-based tasks including link prediction, node classication
and visualization. Empirical results on four real-world complex
networks validate the aforementioned strengths of ReinCom. For
future works, it would be interesting to integrate more candidate op-
erations on the community tree into the community agent. Besides,
as this work is the rst step in leveraging deep learning techniques
for hierarchical community detection, we mainly conduct proof-of-
concept evaluation. Although the proposed ReinCom is by-design
able to be applied to networks with millions of nodes, as is discussed
in the time complexity analysis in Section 4.4, it may need extra
optimization eorts to cater for industry-scale networks such as
the Twitter social network, which is left as a future work.

ACKNOWLEDGMENTS
This work was supported in part by National Natural Science Foun-
dation of China (61972099, U1836213,U1836210,U1736208), and Nat-
ural Science Foundation of Shanghai (19ZR1404800). Min Yang is a
faculty of Shanghai Institute of Intelligent Electronics & Systems,
Shanghai Institute for Advanced Communication and Data Science,
and Engineering Research Center of CyberSecurity Auditing and
Monitoring, Ministry of Education, China.

REFERENCES
[1] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. 2008.

Mixed membership stochastic blockmodels. JMLR (2008).
[2] Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh. 2011.

Noise thresholds for spectral clustering. In NeurIPS.
[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[4] Charles Blundell and Yee Whye Teh. 2013. Bayesian hierarchical community
discovery. In NeurIPS.

[5] Kendrick Boyd, Kevin H Eng, and C David Page. 2013. Area under the precision-
recall curve: point estimates and condence intervals. In Joint European conference
on machine learning and knowledge discovery in databases. Springer, 451–466.

[6] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. 2017. Learning community embedding with community
detection and node embedding on graphs. In CIKM.

[7] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. 2006. Structural in-
ference of hierarchies in networks. In ICML Workshop on Statistical Network
Analysis. Springer, 1–13.

[8] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classication.
IEEE transactions on information theory 13, 1 (1967), 21–27.

[9] Anirban Dasgupta, John Hopcroft, Ravi Kannan, and Pradipta Mitra. 2006. Spec-
tral clustering by recursive partitioning. In European Symposium on Algorithms.

[10] Lun Du, Zhicong Lu, Yun Wang, Guojie Song, Yiming Wang, and Wei Chen. 2018.
Galaxy Network Embedding: A Hierarchical Community Structure Preserving
Approach.. In IJCAI. 2079–2085.

[11] Illés Farkas, Dániel Ábel, Gergely Palla, and Tamás Vicsek. 2007. Weighted
network modules. New Journal of Physics 9, 6 (2007), 180.

[12] Santo Fortunato. [n.d.]. Community detection in graphs. Physics reports ([n. d.]).
[13] Sara E Garza and Satu Elisa Schaeer. 2019. Community detection with the

label propagation algorithm: a survey. Physica A: Statistical Mechanics and its
Applications (2019), 122058.

[14] Michelle Girvan and Mark EJ Newman. [n.d.]. Community structure in social
and biological networks. PNAS ([n. d.]).

[15] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.
Knowledge transfer for out-of-knowledge-base entities: A graph neural network
approach. arXiv preprint arXiv:1706.05674 (2017).

[16] Alexandre Hollocou, Thomas Bonald, and Marc Lelarge. 2016. Improving PageR-
ank for local community detection. arXiv preprint arXiv:1610.08722 (2016).

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classication with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Tianxi Li, Lihua Lei, Sharmodeep Bhattacharyya, Koen Van den Berge, Purnamrita
Sarkar, Peter J Bicke, and Elizaveta Levina. [n.d.]. Hierarchical community
detection by recursive partitioning. J. Amer. Statist. Assoc. ([n. d.]).

[20] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Jian Yang, and Philip S Yu. 2020. Deep learning for community detection:
progress, challenges and opportunities. arXiv preprint arXiv:2005.08225 (2020).

[21] Vince Lyzinski, Minh Tang, Avanti Athreya, Youngser Park, and Carey E Priebe.
2016. Community detection and classication in hierarchical stochastic block-
models. IEEE Transactions on Network Science and Engineering 4, 1 (2016), 13–26.

[22] Laurens van der Maaten and Georey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[23] Fragkiskos D Malliaros and Michalis Vazirgiannis. [n.d.]. Clustering and commu-
nity detection in directed networks: A survey. Physics reports ([n. d.]).

[24] Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr
Ahmed. 2019. Gradient-based Hierarchical Clustering using Continuous Repre-
sentations of Trees in Hyperbolic Space. In KDD.

[25] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

[26] Mark EJ Newman and Elizabeth A Leicht. 2007. Mixture models and exploratory
analysis in networks. PNAS (2007).

[27] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:
Analysis and an algorithm. In NeurIPS.

[28] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning
hierarchical representations. In NeurIPS.

[29] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering
the overlapping community structure of complex networks in nature and society.
nature 435, 7043 (2005), 814–818.

[30] Giulio Rossetti and Rémy Cazabet. 2018. Community discovery in dynamic
networks: a survey. ACM Computing Surveys (CSUR) 51, 2 (2018), 1–37.

[31] Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim. 2019. Linear-
time Hierarchical Community Detection. arXiv preprint arXiv:1906.06432 (2019).

[32] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. 2019. Gem-
sec: Graph embedding with self clustering. In IEEE/ACM ASONAM.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint (2017).

[34] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
TPAMI (2000).

[35] David Silver, Aja Huang, Chris J Maddison, et al. 2016. Mastering the game of
Go with deep neural networks and tree search. nature 529, 7587 (2016), 484.

[36] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[37] Jiří Šíma and Satu Elisa Schaeer. 2006. On the NP-completeness of some graph
cluster measures. In International Conference on Current Trends in Theory and
Practice of Computer Science. Springer, 530–537.

[38] Blaž Škrlj, Jan Kralj, and Nada Lavrač. 2019. Embedding-based Silhouette Com-
munity Detection. arXiv preprint arXiv:1908.02556 (2019).

[39] Tom AB Snijders and Krzysztof Nowicki. 1997. Estimation and prediction for
stochastic blockmodels for graphs with latent block structure. Journal of classi-
cation (1997).

[40] Fan-Yun Sun, Meng Qu, Jordan Homann, Chin-Wei Huang, and Jian Tang.
2019. vGraph: A Generative Model for Joint Community Detection and Node
Representation Learning. In NeurIPS. 512–522.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In WWW.

[42] Lei Tang and Huan Liu. 2011. Leveraging social media networks for classication.
Data Mining and Knowledge Discovery 23, 3 (2011), 447–478.

[43] Joshua R Tyler, Dennis MWilkinson, and Bernardo A Huberman. 2005. E-mail as
spectroscopy: Automated discovery of community structure within organizations.
The Information Society 21, 2 (2005), 143–153.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[45] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. In WWW.

[46] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community preserving network embedding. In AAAI.

[47] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative ltering. In SIGIR.

[48] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering (SIGIR).

[49] Bryce G Westlake and Martin Bouchard. 2016. Liking and hyperlinking: Com-
munity detection in online child sexual exploitation networks. Social science
research 59 (2016), 23–36.

[50] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping commu-
nity detection in networks: The state-of-the-art and comparative study. (2013).

[51] Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. 2011. Slpa: Uncovering
overlapping communities in social networks via a speaker-listener interaction
dynamic process. In IEEE international conference on data mining workshops.

[52] Dongkuan Xu and Yingjie Tian. 2015. A comprehensive survey of clustering
algorithms. Annals of Data Science 2, 2 (2015), 165–193.

[53] Jaewon Yang and Jure Leskovec. 2012. Community-aliation graph model for
overlapping network community detection. In ICDM.

[54] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD.

[55] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with dierentiable
pooling. In Advances in neural information processing systems. 4800–4810.

[56] Wayne W Zachary. 1977. An information ow model for conict and ssion in
small groups. Journal of anthropological research 33, 4 (1977), 452–473.

[57] Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. 2007. Identication of
overlapping community structure in complex networks using fuzzy c-means
clustering. Physica A: Statistical Mechanics and its Applications 374, 1 (2007).

[58] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

	Abstract
	1 Introduction
	2 Related Works
	3 Generating a Community Tree
	3.1 The Growing-up Process
	3.2 The Embedding Agent
	3.3 The State Matrix
	3.4 The Community Agent

	4 The Reinforced Framework
	4.1 Optimizing the Community Agent
	4.2 Online Updating
	4.3 Parallel Acceleration
	4.4 Complexity Analysis

	5 Empirical Results
	5.1 Experimental Settings
	5.2 The Results for RQ 1
	5.3 The Results for RQ 2
	5.4 The Results for RQ 3
	5.5 More Results

	6 Conclusion
	Acknowledgments
	References

