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Abstract    The  latest  advance  in  recommendation  shows  that
better  user  and  item  representations  can  be  learned  via
performing  graph  convolutions  on  the  user-item  interaction
graph.  However,  such  finding  is  mostly  restricted  to  the
collaborative  filtering  (CF)  scenario,  where  the  interaction
contexts  are  not  available.  In  this  work,  we  extend  the
advantages  of  graph  convolutions  to  context-aware  recom-
mender  system  (CARS,  which  represents  a  generic  type  of
models that  can handle various side information).  We propose
Graph Convolution Machine (GCM), an end-to-end framework
that  consists  of  three  components:  an  encoder,  graph  convo-
lution (GC) layers,  and a decoder.  The encoder projects  users,
items,  and  contexts  into  embedding  vectors,  which  are  passed
to  the  GC  layers  that  refine  user  and  item  embeddings  with
context-aware graph convolutions on the user-item graph.  The
decoder digests the refined embeddings to output the prediction
score  by  considering  the  interactions  among  user,  item,  and
context  embeddings.  We  conduct  experiments  on  three  real-
world  datasets  from  Yelp  and  Amazon,  validating  the
effectiveness  of  GCM  and  the  benefits  of  performing  graph
convolutions for CARS.

Keywords    context-aware  recommender  systems,  graph
convolution
 

1    Introduction
Recommendation  has  become  a  pervasive  service  in  today’s
Web,  serving  as  an  important  tool  to  alleviate  information
overload  and  improve  user  experience.  The  key  data  source
for  building  a  recommendation  service  is  user-item  interac-
tions, e.g., clicks  and  purchases,  which  spawn  wide  research
efforts  on  collaborative  filtering  (CF)  [1−3]  that  leverage  the
interaction  data  only  to  predict  user  preference.  Recently,
inspired  by  the  success  of  graph  neural  networks  (GNNs)
[4,5],  researchers  have  attempted  to  employ  GNNs  on

recommendation  in  which  CF  signals  are  exhibited  as  high-
order  connectivity  [3,6−8].  While  CF  provides  a  universal
solution for recommendation, it falls short in utilizing the side
information  of  interaction  contexts.  In  many  scenarios,  the
current  contexts  could  have  a  substantial  impact  on  user
choice.  For  example,  in  restaurant  recommendation,  the
current  time  and  location  can  effectively  filter  out  unsuitable
candidates;  in  E-commerce,  the  click  behaviors  in  recent
sessions provide strong signal about the user’s next purchase.
As such, it  is  important to develop context-aware recommen-
der system (CARS) that can effectively integrate contexts (and
possibly  other  side  information  like  user  profiles  and  item
attributes) into user preference prediction [9].

Inspired  by  the  matrix  completion  view  of  CF,  early
research  naturally  extended  the  problem  of  CARS  to  tensor
completion  [10],  which  however  suffers  from  high  comple-
xity.  Later  on,  Rendle  proposed  factorization  machine  (FM)
[11],  which  addressed  CARS  from  the  view  of  standard
supervised learning for the first time. Specifically, it  converts
all information related to an interaction to a feature vector via
multi-hot  encoding,  modeling  the  second-order  feature  inter-
actions  to  predict  the  interaction  label.  Due  to  its  generality
and  effectiveness,  FM soon becomes  a  prevalent  solution  for
CARS and is followed by many work. For example, in the era
of  deep  learning,  Wide&Deep  [12]  and  Deep  Crossing  [13]
replaced  the  second-order  interaction  modeling  with  a  neural
network  for  implicit  interaction  modeling;  recently,  Neural
FM  [14],  Attentional  FM  [15],  xDeepFM  [16],  and
Convolutional  FM  [17]  extended  FM  with  various  kinds  of
neural networks to enhance its expressiveness.

Summarizing  existing  CARS  models,  we  can  find  a  com-
mon  drawback:  they  follow  the  standard  supervised  learning
scheme  that  ignores  the  relationship  among  data  instances.
This  may limit  the model’s  effectiveness  in  capturing the CF
effect, since it needs to consider multiple interactions simultan-
eously to recognize the CF patterns.  An evidence is  from the
neural  graph  collaborative  filtering  (NGCF)  work  [3],  which
demonstrates that connecting the interactions in the predictive
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model  significantly  improves  the  embedding  quality  for  CF.
Since  in  CARS  user-item  interactions  still  play  an  important
role  by  reflecting  user  preference,  it  is  reasonable  to  believe
that  adequately  modeling  the  relationship  among  interactions
can  improve  the  model  quality.  Moreover,  the  recent  neural
network-based methods like xDeepFM [16] and Convolutional
FM  [17]  suffer  from  low  efficiency  in  online  serving,  since
each candidate item needs be scored separately with the deep
model  architecture  that  models  complex  feature  interactions,
which could be very time-consuming.

In  this  work,  we  aim  to  propose  new  CARS  model  by
addressing  the  above-mentioned  limitations.  Firstly,  we  cast
the data in CARS as an attributed user-item graph, where the
side  information  of  users  and  items  are  represented  as  node
features,  and  the  contexts  are  represented  as  edge  features
(Fig. 1).  Secondly,  we  propose  an  end-to-end  model  that
consists  of  three  components:  an  encoder,  graph  convolution
(GC)  layers,  and  a  decoder  (Fig. 2).  The  encoder  projects
users,  items,  and  contexts  into  embedding  vectors;  the  GC
layers  then  exploit  the  interactions  to  refine  the  embeddings
via performing graph convolutions; lastly, the decoder models
the  interactions  among  embeddings  via  FM  to  output  the
prediction  score.  After  the  model  is  trained,  the  refined
embeddings  by  GC  layers  can  be  pre-computed  before

serving. As such, the time complexity of online serving is the
same as FM, being much more efficient than the recent neural
network methods.

We summarize the contributions of this work as follows:
●  We  highlight  the  limitation  of  the  mainstream  super-

vised learning schemes and the necessity of exploiting
the relationship among data instances in the predictive
model of CARS.

●  We  propose  a  new  model  named  Graph  Convolution
Machine  (GCM),  unifying  the  strengths  of  graph
convolution  network  and  factorization  machine  for
CARS.

●  We conduct  extensive  experiments  on  three  real-world
datasets  which  demonstrate  the  effectiveness  and
efficiency of GCM. 

2    Related work
 

2.1    Context-aware recommendation
Extensive  studies  on  context-aware  recommender  system
(CARS)  [11,14,16]  have  been  conducted  and  achieved  great
success.  Learning informative representations,  based on user-
item  interactions  (e.g.,  clicks,  purchases)  and  contextual
features (e.g., location, time, last purchase), has been a central
theme  of  research  on  CARS.  Towards  this  end,  modeling
interactions  among  different  features  is  showing  promise.
Early,  factorization  machine  (FM)  [11]  embeds  each  feature
into  a  vector  representation,  and  utilizes  inner  product  to
capture  their  pairwise  relationships  (e.g.,  the  second-order
feature  interactions).  Due  to  its  generality  and  effectiveness,
FM  becomes  a  prevalent  solution  for  CARS.  Many  works
resort  to  this  paradigm,  such  as  FFM  [18].  Recent  works
[12,14−16,19] leverage deep neural networks to model higher-
order  feature interactions,  so as  to  generate  better  representa-
tions  and  enhance  recommendation  performance.  For  exam-
ple, NFM [14] proposes a bilinear interaction operation which
uses  a  sum pooling  over  the  pair-wise  dot-product  of  feature

 

 
Fig. 1    The data used for building a CARS. The mixture data of interaction
tensor  and  user/item/context  feature  matrices  are  converted  to  an  attributed
user-item bipartite graph without loss of fidelity
 

 

 
Fig. 2    The graph convolution machine model
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vectors;  AFM  [15]  learns  the  importance  of  each  feature
interaction  via  the  attention  mechanism;  xDeepFM  [16]
extends the Cross Network [20] to the Compressed Interaction
Network  (CIN)  which  models  high-order  interactions
explicitly  at  vector-wise  level;  while  Convolutional  FM  [17]
models  second-order  interaction  with  outer  product,  forming
an  interaction  cube,  then  applying  3D  convolution  to  learn
high-order  interactions.  It  is  worth  mentioning  that  another
research line close to CARS is the CTR (Click Through Rate)
prediction  [21−24],  which  also  focuses  on  modeling  the
complex  feature  interactions.  The  key  difference  lies  in  the
evaluation  protocol:  most  CARS  models  adopt  top-k  recom-
mendation  protocols,  while  CTR  prediction  models  measure
log loss or AUC metrics on positive/negative samples.

Despite effectiveness, we argue that present works treat user
interactions  as  isolated  data  instances,  while  forgoing  their
relationships  (e.g.,  user  behaviors  happened  at  the  same time
and location are highly likely to reflect user preferences). This
would  easily  lead  to  suboptimal  representations  and limit  the
performance.  We  hence  aim  to  explore  relationships  among
user behaviors in this work. 

2.2    Graph neural networks for recommendation
Another  relevant  research  line  is  to  leverage  graph  neural
networks  (GNNs)  for  recommendation.  In  particular,  GNN
models [4,5,25] exploit graph structure to guide the represen-
tation  learning.  The  basic  idea  is  the  embedding  propagation
mechanism, which aggregates the embeddings of neighbors to
update  the  target  node’s  embedding.  By  recursively  perfor-
ming  such  propagations,  the  information  from  multi-hop
neighbors is encoded into the representation of the target node.
GNN  models  have  been  widely  used  in  many  fundamental
tasks due to their strong representation ability, spanning from
node  classification  [26],  link  prediction  [27],  to  graph
classification [28], and achieved remarkable improvements.

Inspired  by  their  success,  researchers  have  attempted  to
employ  GNNs  on  recommendation.  Recent  works  on  colla-
borative  filtering  (CF),  such  as  NGCF  [3],  GC-MC  [29],
SpectralCF  [8]  and  PinSage  [30],  reorganize  historical  user
behaviors  in  the  form  of  a  user-item  bipartite  graph,  exhibit
CF signals as high-order connectivity, and encode such signals
into  representations.  For  CTR  prediction  task,  Fi-GNN  [31]
takes  multi-field  features  into  consideration  by  constructing
feature  graph  for  each  instance  and  converting  the  task  of
modeling feature interactions among fields into modeling node
interactions  on  the  feature  graph;  GIN  [32]  models  implicit
user  intention  by  the  multi-layered  intention  diffusion  and
aggregation  on  the  co-occurrence  click  relationship  graph;
[33] builds the multi-relational item graph and applies GNN to
capture  complex  transition  relations  between  items  in  user
behavior  sequences.  Moreover,  GNN  models  have  also  been
employed  on  other  recommendation  tasks,  including  social
recommendation [17,34],  sequential  recommendation [35,36],
and  knowledge-aware  recommendation  [37,38].  As  such,
aggregating  useful  information  from  multi-hop  neighbors  is
able  to  achieve  better  expressiveness,  than  single  ID  embed-

dings. Hence, it is reasonable to believe that graph learning is
a  promising  solution  to  model  the  relationships  among
interactions adequately. 

3    Problem definition

(u, i,c) u
i c

yuic = 1 u, i,c
u i c

u
i
c

We  divide  the  data  used  for  CARS  into  four  types:  users,
items,  contexts,  and  interactions.  Following  [18],  we  define
context  as  the  information  that  is  associated  with  an
interaction, e.g., the current location, time, previous click, etc.
Figure 1 illustrates the data in CARS, where the main data is
the  user-item-context  interaction  tensor.  In  the  sparse  tensor,
each  nonzero  entry  denotes  that  the  user  has
interacted  with  the  item  under  the  context ;  we  give  such
entries  a  label  of  1,  i.e., .  Each  is  respectively
associated  with  a  multi-hot  feature  vector , ,  and ,  which
contain  the  features  that  describe  the  user,  item,  and  context.
For  example,  includes  static  user  profiles  like  gender  and
interested  tags,  includes  static  item  attributes  like  category
and  price,  and  includes  dynamic  contexts  like  the  user's
current location and the time.

u
i c

Y = {(u, i,c)|yuic = 1}
u Nu = {(i,c)|yuic = 1}
i Ni = {(u,c)|yuic = 1}

Given  such  data,  we  convert  it  to  an  attributed  user-item
bipartite  graph  with  the  same  representation  power.  Speci-
fically, each vertex represents a user or an item, and each edge
represents  the  interaction  between  the  connected  user  and
item. Each vertex or edge is associated with a feature vector ,
,  or .  Note  that  there  may  exist  multiple  edges  between  a

user-item  pair,  since  a  user  may  interact  with  the  same  item
multiple times under different contexts. We denote all edges in
the graph as the set , the neighbors of the
user  as  the  set ,  and  neighbors  of  the
item  as the set .

We formulate the problem of CARS as:
Input : {(u, i,c)|yuic = 1}

{u} {i} {c}
 User-item-context  interactions ,

feature vectors of users , items , and contexts .
Output : f : u, i,c→ R Prediction  function ,  which  takes

the  feature  vector  of  a  user,  an  item,  and  a  context  as
the  input,  and  outputs  a  real  value  that  estimates  how
likely  the  user  will  interact  with  the  item  under  the
context. 

4    Graph convolution machine (GCM)
We present  our  method  in  this  section.  We  first  describe  the
predictive model, followed by the model complexity analyses
and optimization details. 

4.1    Predictive model
Figure 2 illustrates  the  model  framework,  which  consists  of
three components: an encoder, graph convolution layers, and a
decoder. We next describe each component one by one. 

4.1.1    Encoder
u

i c
The input to the encoder has three fields: user-field features ,
item-field  features ,  and  the  context-field  features .  We
include  the  ID  feature  into  the  user-field  and  item-field
features, since it helps to differentiate users (items) when their
profiles  (attributes)  are  the same1).  For  each nonzero feature,
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c c1) Note that there is no need to include ID into the context-field features, since a context  and its features  are one-to-one mapping.



we associate it with an embedding vector, resulting in a set of
embeddings  to  describe  the  input  user,  item,  and  context,
respectively. We then pool the set of user (and item) field into
a vector, so as to feed the vector into the following GC layers
to  refine the user  (and item) representations.  Specifically,  we
adopt average pooling, that is,
 

p(0)
u =

1
|u|P

Tu, (1)

|u| u
P ∈ RU×D U

D
p(0)

u
u
i q(0)

i

where  denotes  the  number  of  nonzero  features  in ,  and
 is the embedding matrix for user features, where 

denotes  the  number  of  total  user  features  and  denotes  the
embedding  size.  denotes  the  initial  representation  vector
for .  Similarly,  we  get  the  initial  representation  vector  for
item  as .

Vc = {vs|s ∈ c} s ∈ c
c vs

s p(0)
u q(0)

i Vc

Note  that  other  pooling  mechanisms  can  be  applied  here,
such  as  the  attention-based  pooling  [17,39,40]  which  learns
varying  weights  for  feature  embeddings.  However,  we  tried
that and found it does not improve the performance. Thus we
keep  the  simplest  average  pooling  and  avoid  introducing
additional  parameters.  Since  we  do  not  update  the  context
representation in the following GC layers, we do not perform
pooling on the context field. We denote the set of context-field
embeddings  as ,  where  denotes  the
nonzero feature in  and  stands for the embedding vector of
context  feature .  The  encoder  outputs , ,  and ,
which are fed into the next component of GC layers. 

4.1.2    Graph convolution layers

p(0)
u q(0)

i

This is  the core component of  GCM, designed to address the
limitation  of  existing  supervised  learning-based  CARS  mo-
dels.  It  refines  and  by  exploiting  holistic  user-item
interaction data, which can augment the user and item represen-
tations with explicit collaborative filtering signal [3]. The GC
on  the  user-item  graph  is  typically  formulated  as  a  message
propagation framework:
 

p(l+1)
u =

∑
i∈Nu

g(p(l)
u ,q

(l)
i ); q(l+1)

i =
∑
u∈Ni

g(q(l)
i ,p

(l)
u ), (2)

p(l)
u q(l)

i
l g(·)

where  and  denote  the  refined user  representation and
item representation of the th GC layer,  respectively, and 
is a self-defined function. Recursively conducting such mess-
age  propagation  relates  the  representation  of  a  user  with  her
high-order neighbors, e.g., first-order for interacted items and
second-order  for  co-interacted  users,  which  is  beneficial  for
collaborative  filtering;  and  the  same  logic  applies  to  item
representation.

However, the standard GC does not consider the features on
edges. In our constructed user-item graph, the edges between a
user  and  an  item  carry  the  context  features,  which  are
important for understanding the context-dependent interaction
patterns. For example, a user may prefer bars on Friday, and a
restaurant is more popular at lunch time. As such, better user
and  item  representations  can  be  obtained  if  the  context
features can be adequately integrated into the GC.

To  this  end,  we  propose  a  new  GC  operation  that  incor-
porates the edge features of contexts: 

p(l+1)
u =

∑
(i,c)∈Nu

1
√
|Nu|
(
q(l)

i +
1
|Vc|

∑
vs∈Vc

vs
)
,

q(l+1)
i =

∑
(u,c)∈Ni

1
√
|Ni|
(
p(l)

u +
1
|Vc|

∑
vs∈Vc

vs
)
. (3)

|Nu| u
1
√
|Nu|

Vc q(l)
i

Next, we explain the rationality of the GC of the user side,
since  the  item side  can  be  interpreted  in  the  same way.  Here

 denotes  the  number  of  edges  connected  with  the  user ,

and the coefficient  is a normalization term to avoid the

scale  of embedding  values  increasing  with  the  GC.  We
incorporate  the  context  features  by  averaging  their  embed-
dings and adding to the connected user embedding. This way,
we  build  the  connection  between  a  user  with  both  her
interacted  item  and  the  interacted  context.  It  is  expected  to
capture the effect that if a user likes to choose an item under a
certain  context,  then  their  representations  are  similar.  Note
that  we  have  tried  more  complicated  mechanisms  like  incor-
porating  the  pairwise  interactions  among  and ,  and
using  a  MLP  to  capture  high-order  interactions.  However,
these  ways  do  not  lead  to  performance  improvements.  Thus
we  use  this  simple  average  operation,  which  is  easy  to
interpret and train (no additional parameters are introduced).

By  stacking  multiple  such  GC  layers,  a  user  (or  an  item)
representation can be refined by its multi-hop neighbors. Since
the  representations  of  different  layers  carry  different  seman-
tics, we next combine the representations of all layers to form
a more comprehensive representation:
 

pu =

L∑
l=0

αlp(l)
u ; qi =

L∑
l=0

αlq(l)
i , (4)

αl l

αl ⩾ 0
∑L

l=0αl = 1

αl 1/(L+1)
αl 1/(L+1)
αl

where  denotes  the  weight  of  the th  layer  representation,
which can be treated as hyper-parameter and tuned via a grid
search  with  the  constraint  that  and .
However,  the  workload  of  tuning  them  increases  exponen-
tially, as the GCN goes deep. In our experiments, we find that
setting  to  generally  leads  to  satisfactory  perfor-
mance.  Therefore,  we  fix  to  for  simplicity.  A
possible  extension  is  to  learn ,  e.g., designing  attention
mechanisms  or  optimizing  them  on  the  validation  data.  We
leave this extension as future work, since it is not the focus of
this work.

Rui ∈ RN×M N M
rui ∈ Rui u
i Ruc ∈ RN×K

Ric ∈ RM×K

K

In  what  follows,  we  provide  the  matrix  form of  GC layers
for  implementation.  Let  the  user-item  interaction  matrix  be

, where  and  denotes the number of users and
items.  Each  entry  is  the  number  of  times  user 
interacts  with  item .  Similarly,  we  utilize  and

 to  denote  user-context  interaction  matrix  and
item-context  interaction  matrix,  respectively,  where  is  the
number  of  contexts.  Then  we  define  the  adjacency  matrix  of
the user-item-context graph as
 

A =


0 Rui Ruc

RT
ui 0 Ric

0 0 2I

 , (5)

0 I Dwhere  is  all-zero  matrix,  is  identity  matrix.  Let  be
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A t
Dtt =

∑
j At j

diagonal degree matrix of ,  that is,  the th diagonal element
.  The  normalized  adjacency  matrix  can  be

expressed as
 

Â =
√

2D−
1
2 A. (6)

Then, we get the matrix form of the layer-wise propagation
rule which is equivalent to Eq. (3):
 

E(l) = ÂE(l−1), (7)
E(l) ∈ R(N+M+K)×D

E(0)
where  is  the  concatenate  of  user,  item and
context embedding matrix.  is set as the concatenate matrix
of  encoded  embedding  tables  from  Encoder,  which  can  be
expressed as
 

E(0) = [p(0)
u1 , . . . ,p

(0)
uN︸        ︷︷        ︸

user embeddings

, q(0)
i1
, . . . ,q(0)

iM︸        ︷︷        ︸
item embeddings

, rc1 , . . . ,rcK︸       ︷︷       ︸
context embeddings

]T. (8)

Lastly, we get the final embedding matrix
 

E = α0E(0)+α1E(1)+α2E(2)+ · · ·+αLE(L)

= α0E(0)+α1ÂE(0)+α2Â2E(0)+ · · ·+αLÂLE(0).
(9)

 

4.1.3    Decoder
pu

qi

The  GC  layers  output  refined  representation  of  user  and
item ,  and  keep  the  embeddings  of  context  features
unchanged. The role of the decoder is to output the prediction
score by taking in the representations. The standard choice of
decoder  is  multi-layer  perceptron  (MLP),  which,  however,
falls short here since it only models feature interactions in an
implicit  way.  In  CARS,  explicitly  modeling  the  interactions
between features is known to be important for user preference
estimation [14]. For example, the classic factorization machine
(FM)  models  the  pairwise  interactions  between  feature
embeddings  and  has  long  been  a  competitive  model  for
CARS.

V Vc∪{pu,qi}

Inspired  by  the  simplicity  (linear  model)  and  the  effecti-
veness of FM, we adopt it as the decoder of GCM. The idea is
to  explicitly  model  the  pairwise  interactions  between  the
(refined) representations of user, item, and contexts with inner
product. Specifically, let the set of vectors  be ,
the decoder outputs the prediction score as:
 

ŷuic =
1
2

∑
vs∈V

∑
vt∈V

vT
s vt −

∑
vs∈V

vT
s vs

 . (10)

vT
s vsHere  the  self-interactions  are  excluded  since  they  are

useless for the prediction. The bias terms for each user, item,
and context feature are omitted for clarity.

Note  that  our  FM-based  decoder  slightly  differs  from  the
vanilla  FM,  which  models  the  interactions  between  the
embeddings  of  all  input  features.  Here  we  project  each  user
(item)  into  a  vector,  rather  than  retaining  the  embeddings  of
her (its) features. An advantage is that this way abandons the
internal  interactions  of  user-field  (item-field)  features,  shed-
ding  more  light  on  the  interactions  between  user  (item)  and
context features, which is as expected. 

4.2    Model complexity analyses
We  analyze  the  complexity  of  GCM  from  two  aspects:  the
number of trainable parameters and the time complexity.

U, I,
C D

(U + I+C)×D

All  trainable  parameters  come  from the  encoder  layer,  i.e.,
the embeddings of input features, since the GC layers and the
decoder layer introduce no parameters to train. Let the feature
number for the user field, item field, and context field as 
and ,  respectively,  and  the  embedding  size  be .  Then  the
embedding layer costs  parameters. This demon-
strates  the  low model  complexity  of  GCM, since  the  number
of  trainable  parameters  is  the  same  as  FM  —  the  simplest
embedding-based CARS model.

O((|Y|+N +M)D) N M

For model training, since the complexity of the encoder plus
the  decoder  is  the  same  as  that  of  FM,  we  analyze  the
additional  time  complexity  caused  by  the  GC  layers.  We
implement the training in the batch-wise matrix form. Assume
a  batch  contains  all  interactions.  Then  performing  one  GC
layer  takes  time ,  where  and  denote
the number  of  users  and items,  respectively.  This  complexity
increases linearly with the number of GC layers.

After  the  model  is  trained,  we  perform  one  pass  of  GC
layers  to  obtain  the  refined  representations  of  all  users  and
items,  which  can  be  done  offline  before  online  serving.  As
such,  during  online  serving,  we  only  need  to  execute  the
decoder,  which has the same time complexity of  FM. This  is
much faster  than the recently  emerging deep neural  network-
based  CARS  models  like  xDeepFM  [16]  and  Convolutional
FM  [17]. Table 1 shows  the  model  inference  time  of
evaluating 1000 Yelp-OH users in which each interaction has
10  nonzero  features  of  embedding  size  64  and  batch  size  is
4000.  The  testing  platform  is  GeForce  GTX  1080Ti  with
16GB  memory  CPU.  As  can  be  seen,  GCM  takes  a  similar
time as FM, being 24.5 and 157.7 times faster than xDeepFM
and Convolutional FM, respectively. 

4.3    Optimization

Y
Y−

(u, i,c) ∈ Y
u

c

We  opt  for  the  pointwise  log  loss  to  optimize  model  para-
meters,  which  is  a  common  choice  in  recommender  system
[1,16].  In  each  training  epoch,  we  randomly  sample  non-
observed  interactions  for  each  instance  in  to  form  the
negative  set .  That  is,  for  each  observed  instance

 of Yelp (or Amazon) dataset, we randomly match
4 (or 2) items from the item pool that user  has not interacted
under  context .  Then  we  minimize  the  following  objective
function:
 

L = −
∑

(u,i,c)∈Y
logσ(ŷuic)−

∑
(u,i,c)∈Y−

log(1−σ(ŷuic))+λ∥Θ∥22 , (11)

σ(·) λ L2where  is  the  sigmoid  function,  controls  the 
regularization to prevent over-fitting. The optimization is done
by mini-batch Adam [41]. 

5    Experiments
We evaluate experiments on three benchmark datasets, aiming
to answer the following research questions:
   
Table  1    Model  inference  time  of  evaluating  1,000  Yelp-OH  users  (14
million interactions and 10 nonzero features per interaction)

Model FM GCM GIN xDeepFM Convolutional FM
Time/s 8.51 14.93 35.45 365.82 2354.25
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k
● RQ1: Compared  with  the  state-of-the-art  models,  how

does GCM perform w.r.t. top-  recommendation?
● RQ2: How  do  different  settings  (e.g.,  depth  of  layer,

modeling of context features, design of decoder) affect
GCM?

● RQ3: How do the representation learning benefit  from
multiple  interactions  among  users,  items  and  contexts
for item cold start issue? 

5.1    Experimental settings 

5.1.1    Dataset description
To  demonstrate  the  effectiveness  of  GCM,  we  conduct
experiments on three datasets from Yelp and Amazon, which
are  publicly  available  and  vary  in  domain  and  size.  We
summarize the statistics of datasets in Table 2.

● Yelp: This dataset is released by Yelp and records users'
reviews on local businesses like bars and restaurants. In
particular, we extract records happened in two different
areas  of  USA  —  North  Carolina,  Ohio  States  —  to
construct  datasets,  termed  Yelp-NC  and  Yelp-OH
respectively.

● Amazon:  Amazon  review  data  is  widely  used  in
recommendation  [3].  We  select  book  subset  from  the
collection in this work, and term it Amazon-book.

In  what  follows,  we briefly  introduce the  features  of  users,
items,  and contexts.  Specifically,  for  Yelp-NC and Yelp-OH,
each user profile includes yelping_since_year2) and average_
stars, while the pre-existing features of items are composed of
three attributes: city, stars and is_open.  We treat each review
record as an observed instance, and collect city3), month, hour,
day_of_the_week and last_purchase as its context feature. For
Amazon-book,  the  static  features  of  items  are  composed  of
two attributes: price and brand. Similarly, each review record
is  treated  as  an  observed  instance,  and year, month, day,
day_of_the_week and last_purchase are  collected  as  its
context feature. Moreover, for all datasets, the 10-core setting
is  adopted  to  ensure  data  quality,  i.e.,  retaining  users  with  at
least ten interactions.

For  each  user,  we  select  the  last  interaction  record  to
constitute  the  test  set,  while  the  remains  are  served  as  the
training set. To emphasize model capability in recommending
novel  items for  a  user,  we further  filter  the training set  if  the
user-item pairs have appeared in the test set. 

5.1.2    Evaluation metrics
In the evaluation phase, for each user in the test set, we view

K
K K

K = 10 K = 50

all items that she has not consumed before as recommendation
candidates.  Each  method  outputs  a  ranking  list  over  the
candidates.  We  then  adopt  two  widely-used  protocols  to
evaluate  the  quality  of  ranking  lists:  Hit  Ratio  (HR)  and
Normalized  Discounted  Cumulative  Gain  (NDCG).  In
particular,  HR@  measures  whether  the  test  item  is  in  the
top-  positions of the recommended list, whereas NDCG@
assigns  higher  scores  to  the  top-ranked  items.  In  our
experiments, we report the results of  and . 

5.1.3    Baselines
We compare our GCM with several methods as follows:

● MF [42]: This exploits the user-item interactions only to
learn  user  and  item  embeddings,  while  forgoing  the
context features.

● LightGCN [43]:  Such  model  is  the  state-of-the-art
GNN-based  CF  recommender,  which  incorporates
high-order  connectivity  in  user-item  interaction  graph
into embeddings, while neglecting context features.

● FM [11]: This takes into account all information related
to  an  interaction  by  converting  all  information  to  a
feature  vector  then  modeling  second-order  feature
interaction to predict user preference.

● NFM [14]:  This  model  leverages  a  MLP  to  capture
nonlinear and high-order interaction among user, item,
and context features.

● xDeepFM [16]: This is a recent neural FM model which
combines  explicit  and  implicit  high-order  feature
interactions.

● GIN [32]:  This  is  a  graph-based  model  which  mines
user  intention  by  applying  implicit  intention  propaga-
tion  and  attention  mechanism  on  a  commodity  simil-
arity graph.

Fi-GNN [31] is a recent work on click-through rate predic-
tion  with  graph  neural  networks,  which  is  highly  relevant  to
our  work.  It  differs  from  GCM  in  graph  construction  —  it
builds  a  feature  graph  for  each  interaction,  rather  than  the
user-item  graph.  As  a  graph  needs  to  be  built  for  each
interaction to obtain its prediction, the method is very slow in
evaluation  since  all  recommendation  candidates  need  to  be
scored. As such, this method is not suitable for our all-ranking
CARS evaluation, and we do not further compare with it. The
Convolutional  FM  is  not  compared  for  the  same  reason  (see
Table 1 for model inference time). 

5.1.4    Parameter settings

0.001

{1,2,3,4}

{0.9,0.8, . . . ,0.1}

We  implement  our  GCM  model  and  all  baselines  in
Tensorflow.  We  apply  the  mini-batch  Adam  to  optimize  all
models;  the  learning  rate  and  batch  size  are  set  to  and
2048, respectively. A grid search is conducted for confirming
optimal  hyperparameters:  for  LightGCN,  the  number  of  gcn
layers  is  searched  in ;  for  NFM,  the  number  of
hidden  layers  is  set  to  1,  the  dropout  rate  is  tuned  in

 for  bi-interaction  layer  and  hidden  layer
respectively;  for  xDeepFM,  the  number  of  cross  layers  is

   
Table 2    Statistics of the datasets. We omit the ID feature when counting the
number of user and item features

Dataset Yelp-NC Yelp-OH Amazon-book
#User 6,336 5,170 44,709
#Item 13,003 12,997 46,831
#Instance 185,408 143,884 1,174,785
#User Feature 24 24 −
#Item Feature 68 213 24,816
#Context Feature 13,209 13,347 46,900
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2) We only keep the year of the yelping_since field which indicates the time the user joined Yelp.
3) The context feature city means which city does the interaction happen on. It is set as the city of the interacted item.



{1,2,3}
{10,20,50,100,200}

{1,2,3,4}
{10,20}

L {1,2,3}
αl = 1/(L+1)

L2
{10−5,10−4,10−3,10−2,10−1}

searched  in  with  neuron  number  per  layer  in
,  the  number  of  DNN  layers  is  same  to

that of cross layers, while the neuron number per layer is set to
100; for GIN, the length of previous records is 1 since we only
keep  the  last  purchase  information  in  the  datasets,  the  depth
parameter  is  searched  in ,  the  number  of  neighbor
nodes is tuned in , the neighbor is selected by the Top-
N function according to the edge weight  (for  nodes with few
neighbors,  we  randomly  sample  from  unconnected  nodes  as
their potential neighbors), a 5-layer full-connection perception
with ReLU activation is adopted as the setting in [32]; for the
proposed GCM, we search the model depth  amongst 
with , and adopt average pooling to generate the
final refined representations of GC layers. For all models, the
coefficient  of  regularization  term  is  searched  in

.  Moreover,  we  set  the  embed-
ding size to 64 and train all models from the scratch. 

5.2    Performance comparison (RQ1)
We  report  the  empirical  results  of  all  models  in Table 3 and
have the following observations:

●  Clearly,  MF  achieves  the  worst  performance  on  three
datasets,  indicating  that  modeling  user-item  pairs  as
isolated  instances  limits  the  representation  ability
severely.  LightGCN  obtains  consistent  improvements
over  MF.  We  attribute  such  improvements  to  the
modeling  of  user-item  connectivity.  However,  neither
MF  nor  LightGCN  considers  the  context  features,
ignoring  important  factors  and  being  insufficient  for
CARS.

●  FM,  NFM  and  xDeepFM  consistently  outperform  MF
and LightGCN across all cases. This is reasonable since
they incorporate context features into the representation
learning,  so  as  to  achieve  better  expressiveness  and
help  to  solve  the  data  sparsity  issue;  Among  them,
NFM and xDeepFM perform better than FM by a large
margin  since  they  model  more  complex  feature
interactions:  NFM  employs  MLP  on  user,  item,  and
context features to capture their nonlinear and complex
interactions,  while  xDeepFM learns  high-order  feature
interactions  in  a  more  explicit  way  through  a  CIN
network. This verifies that simply linear functions (e.g.,
inner  product  adopted  by  MF  and  LightGCN)  might
limit  the  representation  learning  and  interaction
modeling.

●  GIN  is  the  strongest  baseline  in  all  cases  except  for
NDCG@10  and  NDCG@50  in  Yelp-NC.  Such
improvements  are  mainly  because  of  GIN’s  capability
to model  user  intention by applying message propaga-
tion  in  the  commodity  similarity  graph,  which  also
verifies  the  necessity  of  bridging  the  relationship
among data instances.

p < 0.05

●  GCM  consistently  outperforms  all  baselines  w.r.t.  all
measures.  In  particular,  GCM  achieves  noticeable
improvements  over  the  strongest  baselines  w.r.t.
HR@10 by 20.78%,  14.93%,  and 3.08%,  in  Yelp-NC,
Yelp-OH, and Amazon-book, respectively. From t-test,
we can find -value  across the board, indicating
that  the  improvements  of  GCM  over  the  strongest
baseline  are  statistically  significant.  We  attribute  such
improvements  to:  1)  GCM  employs  the  embedding
propagation  over  the  attributed  graph  to  distill  useful
information from neighbors and connected edges,  thus
improving  the  representation  ability;  2)  Comparing
with GIN which only propagates item embedding in the
graph,  GCM  integrates  the  representations  of  users,
items  and  contexts  into  the  graph  for  information
propagation,  which  may  results  in  a  more  unified
representations;  and  3)  Having  established  the  refined
representations,  GCM  further  adopts  FM  to  explicitly
model the feature interactions. 

5.3    Study of GCM (RQ2)
We  next  report  ablation  studies  to  verify  the  rationality  of
some designs in GCM, i.e.,  analyzing the influence of  model
depth, context modeling, normalization term, and decoder. 

5.3.1    Impact of model depth

L
{0,1,2,3}

As  GC  is  the  core  of  GCM  and  stacking  more  GC  layers  is
expected  to  augment  the  user  and  item  representations  with
information  propagated  from  multi-hop  neighbors,  we  inves-
tigate  how the number  of  GC layers  affects  the  performance.
In  particular,  we  search  the  number  of  GC  layers, ,  in  the
range of  and report the empirical results in Fig. 3.

We use GCM-1 to represent  the model  with one GC layer,
and similar notations for others. We have several findings:

●  GCM-0  disables  the  embedding  propagation  over  the
user-item  attributed  graph  and  downgrades  to  a  FM-
like linear model, thereby achieving poor performance.
This again justifies the importance of GC layers.

   
Table 3    Overall performance comparison. The bold indicates the best result, while the second-best performance is underlined

Yelp-NC Yelp-OH Amazon-book
HR NDCG HR NDCG HR NDCG

@10 @50 @10 @50 @10 @50 @10 @50 @10 @50 @10 @50
MF 0.0384 0.1173 0.0175 0.0341 0.0429 0.1261 0.0206 0.0383 0.0402 0.1243 0.0203 0.0382
LightGCN 0.0499 0.1394 0.0241 0.0431 0.0518 0.1520 0.0249 0.0461 0.0543 0.1466 0.0274 0.0473
FM 0.0739 0.1804 0.0396 0.0624 0.1959 0.4201 0.1049 0.1538 0.0587 0.1477 0.0323 0.0514
NFM 0.0824 0.2110 0.0419 0.0695 0.2248 0.4836 0.1161 0.1725 0.0808 0.1954 0.0444 0.0692
xDeepFM 0.0851 0.2086 0.0458 0.0723 0.2296 0.4799 0.1218 0.1762 0.0886 0.2119 0.0481 0.0748
GIN 0.0866 0.2175 0.0449 0.0722 0.2304 0.4965 0.1238 0.1818 0.0939 0.2189 0.0502 0.0774
GCM 0.1046 0.2421 0.0557 0.0854 0.2648 0.5166 0.1457 0.2008 0.0968 0.2232 0.0536 0.0810
Improv./ % 20.78 11.31 21.62 18.12 14.93 4.05 17.69 10.45 3.08 1.96 6.77 4.65
p-value 3.35e−9 4.37e−7 6.75e−10 5.91e−10 5.36e−12 9.10e−6 8.22e−9 2.45e−8 1.86e−4 3.41e−4 1.70e−3 1.05e−3
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L = 0
● Obviously,  increasing  the  number  of  GC layers  results

in  better  performance  from  to  2.  In  particular,
GCM-2  performs  better  than  GCM-1  in  both  datasets.
It  is  reasonable  since  the  signals  passing  from  multi-
hop  neighbors  (e.g.,  the  second-order  connectivity
between  behaviorally  similar  users  or  co-purchased
items)  are  encoded  into  user  and  item  representations
of  GCM-2,  while  GCM-1  only  exploits  personal
history  to  enrich  representations.  This  observation  is
consistent with that in NGCF [3]. We also tried to stack
more  GC  layers  (i.e.,  GCM-3),  finding  improvement
degrades  and over-smoothing issue.  This  suggests  that
GCM  benefits  most  from  the  first-  and  second-order
neighbors,  but  may  suffer  from  degradation  when
higher-order neighbors are involved. 

5.3.2    Impact of context modeling
One  major  contribution  of  GCM  is  to  organize  the  context
features as edges in the attributed user-item graph. We hence
perform  ablation  studies,  to  demonstrate  the  rationality  and
effectiveness  of  this  design.  In  particular,  we  build  three
different  propagation  rules  for  the  GC  layers  of  GCM:  1)
GCM-GC-C removes  the  context  features  from the  attributed
graph and keeps  the  vanilla  user-item interaction  graph only;
2)  GCM-GC-MLP  first  replaces  the  addition  operation  with
concatenation  in  Eq.  (3),  then  generates  the  message  vector
through  a  MLP;  3)  GCM-GC-HP  encodes  the  Hadamard
product  of  the  representations  of  neighboring  node  and  their
connected edge into the message during message passing. We
show the comparison results in Fig. 3 and have the following
observations.

●  Modeling  context  features  as  the  edges  endows  GCM
with  better  generalization  ability.  In  particular,  GCM-
GC-C performs worst  among four  competing  methods
in  all  cases,  demonstrating  the  necessity  of  modeling
context  features  when  performing  message  propaga-
tion.

● GCM-GC-MLP consistently achieves better recommen-
dation  accuracy  than  GCM-GC-HP.  One  possible
reason is that equipped with MLP, GCM-GC-MLP can
model  non-linear  and  high-order  feature  interactions,
resulting in better representation ability.

●  On  both  datasets,  the  best  performance  is  always

achieved  by  2-layers  GCM,  which  again  justifies  the
rationality of our context modeling strategy. Mathema-
tically, GCM can be viewed as a special case of GCM-
GC-MLP in which the learnt weights are the concatena-
tion  of  two  identity  matrices.  However,  as  more
trainable  parameters  are  involved,  it  would  require
more  data  to  learn  the  function  which  may  encounter
difficulty  in  the  actual  learning  process,  especially  for
the notorious problem of data sparsity in recommenda-
tion system [44].

● Jointly analyzing Table 3 and Fig. 3, we find that GCM-
GC-C  without  considering  contexts  achieves  better
performance  than  other  baselines  in  Yelp-NC  and
comparable performance in Yelp-OH. This empirically
suggests  that  propagating  embeddings  over  interaction
graphs is of importance to generate high-quality repre-
sentations. 

5.3.3    Impact of normalization term

1
√
|Nu|

1
√
|Nu|
√
|Ni|

L1
1
|Nu|

L1

For convenience, we only present the variants of the GC of the
user side, since the same logic can be applied to the item side.

In  GCM,  we  employ  sqrt  normalization  term  on  each

neighbor embedding when performing neighborhood aggrega-
tion. To verify its rationality, we explore two different variants
and  report  their  empirical  results  here.  The  first  variant  uses

symmetric  normalization  term,  i.e., ,  which  is  a

common choice in GCN-based models [43], we term it GCM-

sym.  The  other  variant  uses  normalization,  i.e., ,  we

term  it  GCM- . Table 4 shows  the results  of  the  2-layer
GCM. We have the following observations:

●  The  best  setting  in  general  is  using  the  sqrt  normali-
zation term on a single side (i.e., the current degign of
GCM).  Adding  additional  regularization  coefficients
would significantly drop the performance.

1
√
|Nu|
>

1
√
|Nu|
√
|Ni|
>

1
√
|Nu|
√
|Nu|
=

1
|Nu|

●  The  smaller  the  normalization  term,  the  worse  the
performance.  To  understand  this  observation,  we  can

see  the  following  inequalities: 

.  The  second  inequality  is  due  to

 

 
Fig. 3    The impact of depth and propagation rule in GC. (a) Yelp-NC; (b) Yelp-OH
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|Nu| > |Ni| on average in Yelp-NC and Yelp-OH. 

5.3.4    Impact of decoder
Having applied GC layers,  we equip GCM with a decoder to
model the pairwise interactions between the refined represen-
tations  of  users,  items,  and  contexts.  Here  we  investigate  the
role  of  such  decoder.  Towards  this  end,  we  compare  GCM
with  three  variants:  1)  GCM-APC,  which  performs  average
pooling on context features before pair-wise inner product; 2)
GCM-MLP,  which  replaces  the  decoder  with  MLP;  and  3)
GCM-MF, which replaces FM with inner product on user and
item representations. Table 4 shows the comparison of results.
There are several observations:

●  Clearly,  modeling  feature  interactions  in  the  decoder
enhances  the  predictive  results.  In  particular,  GCM,
GCM-APC and GCM-MLP perform consistently better
than GCM-MF, which relies only on the inner product
of user and item representations.

●  While  having  encoded  context  features  into  user  and
item  representations  via  GC  layer,  GCM  and  GCM-
APC  highlight  their  influence  in  an  explicit  fashion,
while  GCM-MLP  models  the  feature  interactions  in  a
rather  implicit  way.  The  better  performances  of  GCM
and  GCM-APC  again  verify  the  rationality  and
effectiveness  of  FM-based  decoder.  In  addition,  after
performing average pooling on context features, GCM-
APC  degenerates  the  performance  by  a  noticeable
margin; the reason is that GCM endows higher weights
on  feature  interaction  between  context  field  and  user
(item) field, which is the core of CARS. 

5.4    Performance w.r.t. item popularity (RQ3)
To  alleviate  the  issue  of  the  item  cold  start  of  CF  models,
taking  side  information  into  account  is  an  auxiliary  strategy
that  goes  beyond  modeling  user-item  interaction.  In  the
proposed  GCM,  we  apply  gc  layers  to  capture  high-order
connectivity  on  the  user-item  graph,  which  breaks  down  the
independent  interaction  assumption  of  non-graph-based
methods.  We  argue  that  such  connectivity  is  a  potential  side
information  for  the  cold-start  issue.  To verify  this  viewpoint,
we split the test set according to the popularity (the number of
interaction  records)  of  the  target  item,  and  report  the
performance  of  MF  [42],  GCM-0  and  GCM  in Fig. 4.  We
have the following observations:

● MF performs poorly at unpopular items, which indicates
the  item  cold-start  issue  for  CF  models.  GCM-0  has
significant improvements in recommending uncommon
items  by  introducing  side  information  and  modeling

feature  interactions.  Our  GCM  can  further  improve
performance by 20%–30%. We attribute such improve-
ments  to  modeling  high-order  connectivity  since  gnn
increases  the  possibility  of  unpopular  items  being
exposed  through  high-order  links,  thereby  expanding
the training data of unpopular items.

●  For  popular  items,  MF achieves  comparable  performa-
nce  with  GCM, even  prevails  over  GCM in  Yelp-NC.
The  possible  reason  is  that  the  data  of  popular  items
occupies the majority of the training data,  making MF
adopt  a  cautious  strategy  —  biased  to  recommending
generally  accepted  items.  Instead,  GCM  recommends
items that are more niche but still consistent with user’s
taste.

● The gain brought by gcn decreases as the popularity of
items  increases.  This  shows  that  as  the  number  of
neighbors  increases,  gcn  may  suffer  from  over-smoo-
thing  since  these  items  have  too  many  audiences,
causing  collecting  information  from  neighbor  nodes
will also bring in noises. 

6    Conclusion and future work
In  this  work,  we  emphasize  the  importance  of  exploiting
multiple  interactions  in  CARS.  Towards  this  end,  we  first
convert  the  features  of  users,  items,  and  contexts  into  an
attributed graph involving the contexts as edges between user
and item nodes. We then develop a new model, GCM, which
captures  the  interactions  among  multiple  user  behaviors  via
graph  neural  networks,  and  then  models  the  interactions
among  features  of  individual  behavior  via  factorization
machine. To demonstrate the effectiveness of GCM, we test it
on  three  public  datasets,  and  it  shows  significant  improve-
ments  over  the  state-of-the-art  CF  and  CARS  baselines.
Extensive  experiments  also  are  conducted  to  verify  the
rationality  of  attributed graph and offer  insights  into how the

   
Table  4    The  variants  of  GCM  with  different  normalization  terms  and
decoders

Yelp-NC Yelp-OH
HR@10 NDCG@10 HR@10 NDCG@10

GCM 0.1046 0.0557 0.2648 0.1457
GCM-L1 0.0810 0.0421 0.2373 0.1246
GCM-sym 0.0994 0.0527 0.2507 0.1383
GCM-APC 0.0947 0.0497 0.2321 0.1265
GCM-MLP 0.0892 0.0458 0.2263 0.1211
GCM-MF 0.0497 0.0253 0.0520 0.0251
 

 

 
Fig. 4    Performances with respect to item popularity. (a) Yelp-NC; (b) Yelp-OH
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representations benefit from such graph learning.
Organizing  user  behaviors  with  contextual  information  in

graphs  is  a  promising  direction  to  build  an  effective  context-
aware  recommender.  It  helps  build  strong  representations  for
users  and  items.  However,  GCM  simply  unifies  all  context
features as an edge,  neglecting the dynamic characteristics of
some  contexts  (e.g.,  time)  and  hardly  capturing  the  dynamic
preference  of  users  [45].  In  the  future,  we  plan  to  build
dynamic  graphs  based  on  contextual  information,  instead  of
one static graph, and devise a dynamic graph neural network.
Furthermore, rich side information is beneficial for explaining
diverse  intents  behind  user  behaviors  [46].  We hence  plan  to
model  user-item  relationships  at  a  granular  level  of  user
intents to generate disentangled representations [47].
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