
Graph convolution machine for context-aware
recommender system

Jiancan WU1, Xiangnan HE (✉)1, Xiang WANG2, Qifan WANG3, Weijian CHEN1,
Jianxun LIAN4, Xing XIE4

1 School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
2 5 Prince George’s Park, National University of Singapore, Singapore 118404, Singapore

3 Google Research, Mountain View, CA 94043, USA
4 Microsoft Research Asia, Beijing 100190, China

 Higher Education Press 2022

Abstract The latest advance in recommendation shows that
better user and item representations can be learned via
performing graph convolutions on the user-item interaction
graph. However, such finding is mostly restricted to the
collaborative filtering (CF) scenario, where the interaction
contexts are not available. In this work, we extend the
advantages of graph convolutions to context-aware recom-
mender system (CARS, which represents a generic type of
models that can handle various side information). We propose
Graph Convolution Machine (GCM), an end-to-end framework
that consists of three components: an encoder, graph convo-
lution (GC) layers, and a decoder. The encoder projects users,
items, and contexts into embedding vectors, which are passed
to the GC layers that refine user and item embeddings with
context-aware graph convolutions on the user-item graph. The
decoder digests the refined embeddings to output the prediction
score by considering the interactions among user, item, and
context embeddings. We conduct experiments on three real-
world datasets from Yelp and Amazon, validating the
effectiveness of GCM and the benefits of performing graph
convolutions for CARS.

Keywords context-aware recommender systems, graph
convolution

1 Introduction
Recommendation has become a pervasive service in today’s
Web, serving as an important tool to alleviate information
overload and improve user experience. The key data source
for building a recommendation service is user-item interac-
tions, e.g., clicks and purchases, which spawn wide research
efforts on collaborative filtering (CF) [1−3] that leverage the
interaction data only to predict user preference. Recently,
inspired by the success of graph neural networks (GNNs)
[4,5], researchers have attempted to employ GNNs on

recommendation in which CF signals are exhibited as high-
order connectivity [3,6−8]. While CF provides a universal
solution for recommendation, it falls short in utilizing the side
information of interaction contexts. In many scenarios, the
current contexts could have a substantial impact on user
choice. For example, in restaurant recommendation, the
current time and location can effectively filter out unsuitable
candidates; in E-commerce, the click behaviors in recent
sessions provide strong signal about the user’s next purchase.
As such, it is important to develop context-aware recommen-
der system (CARS) that can effectively integrate contexts (and
possibly other side information like user profiles and item
attributes) into user preference prediction [9].

Inspired by the matrix completion view of CF, early
research naturally extended the problem of CARS to tensor
completion [10], which however suffers from high comple-
xity. Later on, Rendle proposed factorization machine (FM)
[11], which addressed CARS from the view of standard
supervised learning for the first time. Specifically, it converts
all information related to an interaction to a feature vector via
multi-hot encoding, modeling the second-order feature inter-
actions to predict the interaction label. Due to its generality
and effectiveness, FM soon becomes a prevalent solution for
CARS and is followed by many work. For example, in the era
of deep learning, Wide&Deep [12] and Deep Crossing [13]
replaced the second-order interaction modeling with a neural
network for implicit interaction modeling; recently, Neural
FM [14], Attentional FM [15], xDeepFM [16], and
Convolutional FM [17] extended FM with various kinds of
neural networks to enhance its expressiveness.

Summarizing existing CARS models, we can find a com-
mon drawback: they follow the standard supervised learning
scheme that ignores the relationship among data instances.
This may limit the model’s effectiveness in capturing the CF
effect, since it needs to consider multiple interactions simultan-
eously to recognize the CF patterns. An evidence is from the
neural graph collaborative filtering (NGCF) work [3], which
demonstrates that connecting the interactions in the predictive

Received June 10, 2020; accepted May 11, 2021

E-mail: xiangnanhe@gmail.com

Front. Comput. Sci., 2022, 16(6): 166614
https://doi.org/10.1007/s11704-021-0261-8

RESEARCH ARTICLE

https://doi.org/10.1007/s11704-021-0261-8

model significantly improves the embedding quality for CF.
Since in CARS user-item interactions still play an important
role by reflecting user preference, it is reasonable to believe
that adequately modeling the relationship among interactions
can improve the model quality. Moreover, the recent neural
network-based methods like xDeepFM [16] and Convolutional
FM [17] suffer from low efficiency in online serving, since
each candidate item needs be scored separately with the deep
model architecture that models complex feature interactions,
which could be very time-consuming.

In this work, we aim to propose new CARS model by
addressing the above-mentioned limitations. Firstly, we cast
the data in CARS as an attributed user-item graph, where the
side information of users and items are represented as node
features, and the contexts are represented as edge features
(Fig. 1). Secondly, we propose an end-to-end model that
consists of three components: an encoder, graph convolution
(GC) layers, and a decoder (Fig. 2). The encoder projects
users, items, and contexts into embedding vectors; the GC
layers then exploit the interactions to refine the embeddings
via performing graph convolutions; lastly, the decoder models
the interactions among embeddings via FM to output the
prediction score. After the model is trained, the refined
embeddings by GC layers can be pre-computed before

serving. As such, the time complexity of online serving is the
same as FM, being much more efficient than the recent neural
network methods.

We summarize the contributions of this work as follows:
● We highlight the limitation of the mainstream super-

vised learning schemes and the necessity of exploiting
the relationship among data instances in the predictive
model of CARS.

● We propose a new model named Graph Convolution
Machine (GCM), unifying the strengths of graph
convolution network and factorization machine for
CARS.

● We conduct extensive experiments on three real-world
datasets which demonstrate the effectiveness and
efficiency of GCM.

2 Related work

2.1 Context-aware recommendation
Extensive studies on context-aware recommender system
(CARS) [11,14,16] have been conducted and achieved great
success. Learning informative representations, based on user-
item interactions (e.g., clicks, purchases) and contextual
features (e.g., location, time, last purchase), has been a central
theme of research on CARS. Towards this end, modeling
interactions among different features is showing promise.
Early, factorization machine (FM) [11] embeds each feature
into a vector representation, and utilizes inner product to
capture their pairwise relationships (e.g., the second-order
feature interactions). Due to its generality and effectiveness,
FM becomes a prevalent solution for CARS. Many works
resort to this paradigm, such as FFM [18]. Recent works
[12,14−16,19] leverage deep neural networks to model higher-
order feature interactions, so as to generate better representa-
tions and enhance recommendation performance. For exam-
ple, NFM [14] proposes a bilinear interaction operation which
uses a sum pooling over the pair-wise dot-product of feature

Fig. 1 The data used for building a CARS. The mixture data of interaction
tensor and user/item/context feature matrices are converted to an attributed
user-item bipartite graph without loss of fidelity

Fig. 2 The graph convolution machine model

2 Front. Comput. Sci., 2022, 16(6): 166614

vectors; AFM [15] learns the importance of each feature
interaction via the attention mechanism; xDeepFM [16]
extends the Cross Network [20] to the Compressed Interaction
Network (CIN) which models high-order interactions
explicitly at vector-wise level; while Convolutional FM [17]
models second-order interaction with outer product, forming
an interaction cube, then applying 3D convolution to learn
high-order interactions. It is worth mentioning that another
research line close to CARS is the CTR (Click Through Rate)
prediction [21−24], which also focuses on modeling the
complex feature interactions. The key difference lies in the
evaluation protocol: most CARS models adopt top-k recom-
mendation protocols, while CTR prediction models measure
log loss or AUC metrics on positive/negative samples.

Despite effectiveness, we argue that present works treat user
interactions as isolated data instances, while forgoing their
relationships (e.g., user behaviors happened at the same time
and location are highly likely to reflect user preferences). This
would easily lead to suboptimal representations and limit the
performance. We hence aim to explore relationships among
user behaviors in this work.

2.2 Graph neural networks for recommendation
Another relevant research line is to leverage graph neural
networks (GNNs) for recommendation. In particular, GNN
models [4,5,25] exploit graph structure to guide the represen-
tation learning. The basic idea is the embedding propagation
mechanism, which aggregates the embeddings of neighbors to
update the target node’s embedding. By recursively perfor-
ming such propagations, the information from multi-hop
neighbors is encoded into the representation of the target node.
GNN models have been widely used in many fundamental
tasks due to their strong representation ability, spanning from
node classification [26], link prediction [27], to graph
classification [28], and achieved remarkable improvements.

Inspired by their success, researchers have attempted to
employ GNNs on recommendation. Recent works on colla-
borative filtering (CF), such as NGCF [3], GC-MC [29],
SpectralCF [8] and PinSage [30], reorganize historical user
behaviors in the form of a user-item bipartite graph, exhibit
CF signals as high-order connectivity, and encode such signals
into representations. For CTR prediction task, Fi-GNN [31]
takes multi-field features into consideration by constructing
feature graph for each instance and converting the task of
modeling feature interactions among fields into modeling node
interactions on the feature graph; GIN [32] models implicit
user intention by the multi-layered intention diffusion and
aggregation on the co-occurrence click relationship graph;
[33] builds the multi-relational item graph and applies GNN to
capture complex transition relations between items in user
behavior sequences. Moreover, GNN models have also been
employed on other recommendation tasks, including social
recommendation [17,34], sequential recommendation [35,36],
and knowledge-aware recommendation [37,38]. As such,
aggregating useful information from multi-hop neighbors is
able to achieve better expressiveness, than single ID embed-

dings. Hence, it is reasonable to believe that graph learning is
a promising solution to model the relationships among
interactions adequately.

3 Problem definition

(u, i,c) u
i c

yuic = 1 u, i,c
u i c

u
i
c

We divide the data used for CARS into four types: users,
items, contexts, and interactions. Following [18], we define
context as the information that is associated with an
interaction, e.g., the current location, time, previous click, etc.
Figure 1 illustrates the data in CARS, where the main data is
the user-item-context interaction tensor. In the sparse tensor,
each nonzero entry denotes that the user has
interacted with the item under the context ; we give such
entries a label of 1, i.e., . Each is respectively
associated with a multi-hot feature vector , , and , which
contain the features that describe the user, item, and context.
For example, includes static user profiles like gender and
interested tags, includes static item attributes like category
and price, and includes dynamic contexts like the user's
current location and the time.

u
i c

Y = {(u, i,c)|yuic = 1}
u Nu = {(i,c)|yuic = 1}
i Ni = {(u,c)|yuic = 1}

Given such data, we convert it to an attributed user-item
bipartite graph with the same representation power. Speci-
fically, each vertex represents a user or an item, and each edge
represents the interaction between the connected user and
item. Each vertex or edge is associated with a feature vector ,
, or . Note that there may exist multiple edges between a

user-item pair, since a user may interact with the same item
multiple times under different contexts. We denote all edges in
the graph as the set , the neighbors of the
user as the set , and neighbors of the
item as the set .

We formulate the problem of CARS as:
Input : {(u, i,c)|yuic = 1}

{u} {i} {c}
 User-item-context interactions ,

feature vectors of users , items , and contexts .
Output : f : u, i,c→ R Prediction function , which takes

the feature vector of a user, an item, and a context as
the input, and outputs a real value that estimates how
likely the user will interact with the item under the
context.

4 Graph convolution machine (GCM)
We present our method in this section. We first describe the
predictive model, followed by the model complexity analyses
and optimization details.

4.1 Predictive model
Figure 2 illustrates the model framework, which consists of
three components: an encoder, graph convolution layers, and a
decoder. We next describe each component one by one.

4.1.1 Encoder
u

i c
The input to the encoder has three fields: user-field features ,
item-field features , and the context-field features . We
include the ID feature into the user-field and item-field
features, since it helps to differentiate users (items) when their
profiles (attributes) are the same1). For each nonzero feature,

Jiancan WU et al. Graph convolution machine for context-aware recommender system 3

c c1) Note that there is no need to include ID into the context-field features, since a context and its features are one-to-one mapping.

we associate it with an embedding vector, resulting in a set of
embeddings to describe the input user, item, and context,
respectively. We then pool the set of user (and item) field into
a vector, so as to feed the vector into the following GC layers
to refine the user (and item) representations. Specifically, we
adopt average pooling, that is,

p(0)
u =

1
|u|P

Tu, (1)

|u| u
P ∈ RU×D U

D
p(0)

u
u
i q(0)

i

where denotes the number of nonzero features in , and
 is the embedding matrix for user features, where

denotes the number of total user features and denotes the
embedding size. denotes the initial representation vector
for . Similarly, we get the initial representation vector for
item as .

Vc = {vs|s ∈ c} s ∈ c
c vs

s p(0)
u q(0)

i Vc

Note that other pooling mechanisms can be applied here,
such as the attention-based pooling [17,39,40] which learns
varying weights for feature embeddings. However, we tried
that and found it does not improve the performance. Thus we
keep the simplest average pooling and avoid introducing
additional parameters. Since we do not update the context
representation in the following GC layers, we do not perform
pooling on the context field. We denote the set of context-field
embeddings as , where denotes the
nonzero feature in and stands for the embedding vector of
context feature . The encoder outputs , , and ,
which are fed into the next component of GC layers.

4.1.2 Graph convolution layers

p(0)
u q(0)

i

This is the core component of GCM, designed to address the
limitation of existing supervised learning-based CARS mo-
dels. It refines and by exploiting holistic user-item
interaction data, which can augment the user and item represen-
tations with explicit collaborative filtering signal [3]. The GC
on the user-item graph is typically formulated as a message
propagation framework:

p(l+1)
u =

∑
i∈Nu

g(p(l)
u ,q

(l)
i); q(l+1)

i =
∑
u∈Ni

g(q(l)
i ,p

(l)
u), (2)

p(l)
u q(l)

i
l g(·)

where and denote the refined user representation and
item representation of the th GC layer, respectively, and
is a self-defined function. Recursively conducting such mess-
age propagation relates the representation of a user with her
high-order neighbors, e.g., first-order for interacted items and
second-order for co-interacted users, which is beneficial for
collaborative filtering; and the same logic applies to item
representation.

However, the standard GC does not consider the features on
edges. In our constructed user-item graph, the edges between a
user and an item carry the context features, which are
important for understanding the context-dependent interaction
patterns. For example, a user may prefer bars on Friday, and a
restaurant is more popular at lunch time. As such, better user
and item representations can be obtained if the context
features can be adequately integrated into the GC.

To this end, we propose a new GC operation that incor-
porates the edge features of contexts:

p(l+1)
u =

∑
(i,c)∈Nu

1
√
|Nu|
(
q(l)

i +
1
|Vc|

∑
vs∈Vc

vs
)
,

q(l+1)
i =

∑
(u,c)∈Ni

1
√
|Ni|
(
p(l)

u +
1
|Vc|

∑
vs∈Vc

vs
)
. (3)

|Nu| u
1
√
|Nu|

Vc q(l)
i

Next, we explain the rationality of the GC of the user side,
since the item side can be interpreted in the same way. Here

 denotes the number of edges connected with the user ,

and the coefficient is a normalization term to avoid the

scale of embedding values increasing with the GC. We
incorporate the context features by averaging their embed-
dings and adding to the connected user embedding. This way,
we build the connection between a user with both her
interacted item and the interacted context. It is expected to
capture the effect that if a user likes to choose an item under a
certain context, then their representations are similar. Note
that we have tried more complicated mechanisms like incor-
porating the pairwise interactions among and , and
using a MLP to capture high-order interactions. However,
these ways do not lead to performance improvements. Thus
we use this simple average operation, which is easy to
interpret and train (no additional parameters are introduced).

By stacking multiple such GC layers, a user (or an item)
representation can be refined by its multi-hop neighbors. Since
the representations of different layers carry different seman-
tics, we next combine the representations of all layers to form
a more comprehensive representation:

pu =

L∑
l=0

αlp(l)
u ; qi =

L∑
l=0

αlq(l)
i , (4)

αl l

αl ⩾ 0
∑L

l=0αl = 1

αl 1/(L+1)
αl 1/(L+1)
αl

where denotes the weight of the th layer representation,
which can be treated as hyper-parameter and tuned via a grid
search with the constraint that and .
However, the workload of tuning them increases exponen-
tially, as the GCN goes deep. In our experiments, we find that
setting to generally leads to satisfactory perfor-
mance. Therefore, we fix to for simplicity. A
possible extension is to learn , e.g., designing attention
mechanisms or optimizing them on the validation data. We
leave this extension as future work, since it is not the focus of
this work.

Rui ∈ RN×M N M
rui ∈ Rui u
i Ruc ∈ RN×K

Ric ∈ RM×K

K

In what follows, we provide the matrix form of GC layers
for implementation. Let the user-item interaction matrix be

, where and denotes the number of users and
items. Each entry is the number of times user
interacts with item . Similarly, we utilize and

 to denote user-context interaction matrix and
item-context interaction matrix, respectively, where is the
number of contexts. Then we define the adjacency matrix of
the user-item-context graph as

A =


0 Rui Ruc

RT
ui 0 Ric

0 0 2I

 , (5)

0 I Dwhere is all-zero matrix, is identity matrix. Let be

4 Front. Comput. Sci., 2022, 16(6): 166614

A t
Dtt =

∑
j At j

diagonal degree matrix of , that is, the th diagonal element
. The normalized adjacency matrix can be

expressed as

Â =
√

2D−
1
2 A. (6)

Then, we get the matrix form of the layer-wise propagation
rule which is equivalent to Eq. (3):

E(l) = ÂE(l−1), (7)
E(l) ∈ R(N+M+K)×D

E(0)
where is the concatenate of user, item and
context embedding matrix. is set as the concatenate matrix
of encoded embedding tables from Encoder, which can be
expressed as

E(0) = [p(0)
u1 , . . . ,p

(0)
uN︸ ︷︷ ︸

user embeddings

, q(0)
i1
, . . . ,q(0)

iM︸ ︷︷ ︸
item embeddings

, rc1 , . . . ,rcK︸ ︷︷ ︸
context embeddings

]T. (8)

Lastly, we get the final embedding matrix

E = α0E(0)+α1E(1)+α2E(2)+ · · ·+αLE(L)

= α0E(0)+α1ÂE(0)+α2Â2E(0)+ · · ·+αLÂLE(0).
(9)

4.1.3 Decoder
pu

qi

The GC layers output refined representation of user and
item , and keep the embeddings of context features
unchanged. The role of the decoder is to output the prediction
score by taking in the representations. The standard choice of
decoder is multi-layer perceptron (MLP), which, however,
falls short here since it only models feature interactions in an
implicit way. In CARS, explicitly modeling the interactions
between features is known to be important for user preference
estimation [14]. For example, the classic factorization machine
(FM) models the pairwise interactions between feature
embeddings and has long been a competitive model for
CARS.

V Vc∪{pu,qi}

Inspired by the simplicity (linear model) and the effecti-
veness of FM, we adopt it as the decoder of GCM. The idea is
to explicitly model the pairwise interactions between the
(refined) representations of user, item, and contexts with inner
product. Specifically, let the set of vectors be ,
the decoder outputs the prediction score as:

ŷuic =
1
2

∑
vs∈V

∑
vt∈V

vT
s vt −

∑
vs∈V

vT
s vs

 . (10)

vT
s vsHere the self-interactions are excluded since they are

useless for the prediction. The bias terms for each user, item,
and context feature are omitted for clarity.

Note that our FM-based decoder slightly differs from the
vanilla FM, which models the interactions between the
embeddings of all input features. Here we project each user
(item) into a vector, rather than retaining the embeddings of
her (its) features. An advantage is that this way abandons the
internal interactions of user-field (item-field) features, shed-
ding more light on the interactions between user (item) and
context features, which is as expected.

4.2 Model complexity analyses
We analyze the complexity of GCM from two aspects: the
number of trainable parameters and the time complexity.

U, I,
C D

(U + I+C)×D

All trainable parameters come from the encoder layer, i.e.,
the embeddings of input features, since the GC layers and the
decoder layer introduce no parameters to train. Let the feature
number for the user field, item field, and context field as
and , respectively, and the embedding size be . Then the
embedding layer costs parameters. This demon-
strates the low model complexity of GCM, since the number
of trainable parameters is the same as FM — the simplest
embedding-based CARS model.

O((|Y|+N +M)D) N M

For model training, since the complexity of the encoder plus
the decoder is the same as that of FM, we analyze the
additional time complexity caused by the GC layers. We
implement the training in the batch-wise matrix form. Assume
a batch contains all interactions. Then performing one GC
layer takes time , where and denote
the number of users and items, respectively. This complexity
increases linearly with the number of GC layers.

After the model is trained, we perform one pass of GC
layers to obtain the refined representations of all users and
items, which can be done offline before online serving. As
such, during online serving, we only need to execute the
decoder, which has the same time complexity of FM. This is
much faster than the recently emerging deep neural network-
based CARS models like xDeepFM [16] and Convolutional
FM [17]. Table 1 shows the model inference time of
evaluating 1000 Yelp-OH users in which each interaction has
10 nonzero features of embedding size 64 and batch size is
4000. The testing platform is GeForce GTX 1080Ti with
16GB memory CPU. As can be seen, GCM takes a similar
time as FM, being 24.5 and 157.7 times faster than xDeepFM
and Convolutional FM, respectively.

4.3 Optimization

Y
Y−

(u, i,c) ∈ Y
u

c

We opt for the pointwise log loss to optimize model para-
meters, which is a common choice in recommender system
[1,16]. In each training epoch, we randomly sample non-
observed interactions for each instance in to form the
negative set . That is, for each observed instance

 of Yelp (or Amazon) dataset, we randomly match
4 (or 2) items from the item pool that user has not interacted
under context . Then we minimize the following objective
function:

L = −
∑

(u,i,c)∈Y
logσ(ŷuic)−

∑
(u,i,c)∈Y−

log(1−σ(ŷuic))+λ∥Θ∥22 , (11)

σ(·) λ L2where is the sigmoid function, controls the
regularization to prevent over-fitting. The optimization is done
by mini-batch Adam [41].

5 Experiments
We evaluate experiments on three benchmark datasets, aiming
to answer the following research questions:

Table 1 Model inference time of evaluating 1,000 Yelp-OH users (14
million interactions and 10 nonzero features per interaction)

Model FM GCM GIN xDeepFM Convolutional FM
Time/s 8.51 14.93 35.45 365.82 2354.25

Jiancan WU et al. Graph convolution machine for context-aware recommender system 5

k
● RQ1: Compared with the state-of-the-art models, how

does GCM perform w.r.t. top- recommendation?
● RQ2: How do different settings (e.g., depth of layer,

modeling of context features, design of decoder) affect
GCM?

● RQ3: How do the representation learning benefit from
multiple interactions among users, items and contexts
for item cold start issue?

5.1 Experimental settings

5.1.1 Dataset description
To demonstrate the effectiveness of GCM, we conduct
experiments on three datasets from Yelp and Amazon, which
are publicly available and vary in domain and size. We
summarize the statistics of datasets in Table 2.

● Yelp: This dataset is released by Yelp and records users'
reviews on local businesses like bars and restaurants. In
particular, we extract records happened in two different
areas of USA — North Carolina, Ohio States — to
construct datasets, termed Yelp-NC and Yelp-OH
respectively.

● Amazon: Amazon review data is widely used in
recommendation [3]. We select book subset from the
collection in this work, and term it Amazon-book.

In what follows, we briefly introduce the features of users,
items, and contexts. Specifically, for Yelp-NC and Yelp-OH,
each user profile includes yelping_since_year2) and average_
stars, while the pre-existing features of items are composed of
three attributes: city, stars and is_open. We treat each review
record as an observed instance, and collect city3), month, hour,
day_of_the_week and last_purchase as its context feature. For
Amazon-book, the static features of items are composed of
two attributes: price and brand. Similarly, each review record
is treated as an observed instance, and year, month, day,
day_of_the_week and last_purchase are collected as its
context feature. Moreover, for all datasets, the 10-core setting
is adopted to ensure data quality, i.e., retaining users with at
least ten interactions.

For each user, we select the last interaction record to
constitute the test set, while the remains are served as the
training set. To emphasize model capability in recommending
novel items for a user, we further filter the training set if the
user-item pairs have appeared in the test set.

5.1.2 Evaluation metrics
In the evaluation phase, for each user in the test set, we view

K
K K

K = 10 K = 50

all items that she has not consumed before as recommendation
candidates. Each method outputs a ranking list over the
candidates. We then adopt two widely-used protocols to
evaluate the quality of ranking lists: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). In
particular, HR@ measures whether the test item is in the
top- positions of the recommended list, whereas NDCG@
assigns higher scores to the top-ranked items. In our
experiments, we report the results of and .

5.1.3 Baselines
We compare our GCM with several methods as follows:

● MF [42]: This exploits the user-item interactions only to
learn user and item embeddings, while forgoing the
context features.

● LightGCN [43]: Such model is the state-of-the-art
GNN-based CF recommender, which incorporates
high-order connectivity in user-item interaction graph
into embeddings, while neglecting context features.

● FM [11]: This takes into account all information related
to an interaction by converting all information to a
feature vector then modeling second-order feature
interaction to predict user preference.

● NFM [14]: This model leverages a MLP to capture
nonlinear and high-order interaction among user, item,
and context features.

● xDeepFM [16]: This is a recent neural FM model which
combines explicit and implicit high-order feature
interactions.

● GIN [32]: This is a graph-based model which mines
user intention by applying implicit intention propaga-
tion and attention mechanism on a commodity simil-
arity graph.

Fi-GNN [31] is a recent work on click-through rate predic-
tion with graph neural networks, which is highly relevant to
our work. It differs from GCM in graph construction — it
builds a feature graph for each interaction, rather than the
user-item graph. As a graph needs to be built for each
interaction to obtain its prediction, the method is very slow in
evaluation since all recommendation candidates need to be
scored. As such, this method is not suitable for our all-ranking
CARS evaluation, and we do not further compare with it. The
Convolutional FM is not compared for the same reason (see
Table 1 for model inference time).

5.1.4 Parameter settings

0.001

{1,2,3,4}

{0.9,0.8, . . . ,0.1}

We implement our GCM model and all baselines in
Tensorflow. We apply the mini-batch Adam to optimize all
models; the learning rate and batch size are set to and
2048, respectively. A grid search is conducted for confirming
optimal hyperparameters: for LightGCN, the number of gcn
layers is searched in ; for NFM, the number of
hidden layers is set to 1, the dropout rate is tuned in

 for bi-interaction layer and hidden layer
respectively; for xDeepFM, the number of cross layers is

Table 2 Statistics of the datasets. We omit the ID feature when counting the
number of user and item features

Dataset Yelp-NC Yelp-OH Amazon-book
#User 6,336 5,170 44,709
#Item 13,003 12,997 46,831
#Instance 185,408 143,884 1,174,785
#User Feature 24 24 −
#Item Feature 68 213 24,816
#Context Feature 13,209 13,347 46,900

6 Front. Comput. Sci., 2022, 16(6): 166614

2) We only keep the year of the yelping_since field which indicates the time the user joined Yelp.
3) The context feature city means which city does the interaction happen on. It is set as the city of the interacted item.

{1,2,3}
{10,20,50,100,200}

{1,2,3,4}
{10,20}

L {1,2,3}
αl = 1/(L+1)

L2
{10−5,10−4,10−3,10−2,10−1}

searched in with neuron number per layer in
, the number of DNN layers is same to

that of cross layers, while the neuron number per layer is set to
100; for GIN, the length of previous records is 1 since we only
keep the last purchase information in the datasets, the depth
parameter is searched in , the number of neighbor
nodes is tuned in , the neighbor is selected by the Top-
N function according to the edge weight (for nodes with few
neighbors, we randomly sample from unconnected nodes as
their potential neighbors), a 5-layer full-connection perception
with ReLU activation is adopted as the setting in [32]; for the
proposed GCM, we search the model depth amongst
with , and adopt average pooling to generate the
final refined representations of GC layers. For all models, the
coefficient of regularization term is searched in

. Moreover, we set the embed-
ding size to 64 and train all models from the scratch.

5.2 Performance comparison (RQ1)
We report the empirical results of all models in Table 3 and
have the following observations:

● Clearly, MF achieves the worst performance on three
datasets, indicating that modeling user-item pairs as
isolated instances limits the representation ability
severely. LightGCN obtains consistent improvements
over MF. We attribute such improvements to the
modeling of user-item connectivity. However, neither
MF nor LightGCN considers the context features,
ignoring important factors and being insufficient for
CARS.

● FM, NFM and xDeepFM consistently outperform MF
and LightGCN across all cases. This is reasonable since
they incorporate context features into the representation
learning, so as to achieve better expressiveness and
help to solve the data sparsity issue; Among them,
NFM and xDeepFM perform better than FM by a large
margin since they model more complex feature
interactions: NFM employs MLP on user, item, and
context features to capture their nonlinear and complex
interactions, while xDeepFM learns high-order feature
interactions in a more explicit way through a CIN
network. This verifies that simply linear functions (e.g.,
inner product adopted by MF and LightGCN) might
limit the representation learning and interaction
modeling.

● GIN is the strongest baseline in all cases except for
NDCG@10 and NDCG@50 in Yelp-NC. Such
improvements are mainly because of GIN’s capability
to model user intention by applying message propaga-
tion in the commodity similarity graph, which also
verifies the necessity of bridging the relationship
among data instances.

p < 0.05

● GCM consistently outperforms all baselines w.r.t. all
measures. In particular, GCM achieves noticeable
improvements over the strongest baselines w.r.t.
HR@10 by 20.78%, 14.93%, and 3.08%, in Yelp-NC,
Yelp-OH, and Amazon-book, respectively. From t-test,
we can find -value across the board, indicating
that the improvements of GCM over the strongest
baseline are statistically significant. We attribute such
improvements to: 1) GCM employs the embedding
propagation over the attributed graph to distill useful
information from neighbors and connected edges, thus
improving the representation ability; 2) Comparing
with GIN which only propagates item embedding in the
graph, GCM integrates the representations of users,
items and contexts into the graph for information
propagation, which may results in a more unified
representations; and 3) Having established the refined
representations, GCM further adopts FM to explicitly
model the feature interactions.

5.3 Study of GCM (RQ2)
We next report ablation studies to verify the rationality of
some designs in GCM, i.e., analyzing the influence of model
depth, context modeling, normalization term, and decoder.

5.3.1 Impact of model depth

L
{0,1,2,3}

As GC is the core of GCM and stacking more GC layers is
expected to augment the user and item representations with
information propagated from multi-hop neighbors, we inves-
tigate how the number of GC layers affects the performance.
In particular, we search the number of GC layers, , in the
range of and report the empirical results in Fig. 3.

We use GCM-1 to represent the model with one GC layer,
and similar notations for others. We have several findings:

● GCM-0 disables the embedding propagation over the
user-item attributed graph and downgrades to a FM-
like linear model, thereby achieving poor performance.
This again justifies the importance of GC layers.

Table 3 Overall performance comparison. The bold indicates the best result, while the second-best performance is underlined

Yelp-NC Yelp-OH Amazon-book
HR NDCG HR NDCG HR NDCG

@10 @50 @10 @50 @10 @50 @10 @50 @10 @50 @10 @50
MF 0.0384 0.1173 0.0175 0.0341 0.0429 0.1261 0.0206 0.0383 0.0402 0.1243 0.0203 0.0382
LightGCN 0.0499 0.1394 0.0241 0.0431 0.0518 0.1520 0.0249 0.0461 0.0543 0.1466 0.0274 0.0473
FM 0.0739 0.1804 0.0396 0.0624 0.1959 0.4201 0.1049 0.1538 0.0587 0.1477 0.0323 0.0514
NFM 0.0824 0.2110 0.0419 0.0695 0.2248 0.4836 0.1161 0.1725 0.0808 0.1954 0.0444 0.0692
xDeepFM 0.0851 0.2086 0.0458 0.0723 0.2296 0.4799 0.1218 0.1762 0.0886 0.2119 0.0481 0.0748
GIN 0.0866 0.2175 0.0449 0.0722 0.2304 0.4965 0.1238 0.1818 0.0939 0.2189 0.0502 0.0774
GCM 0.1046 0.2421 0.0557 0.0854 0.2648 0.5166 0.1457 0.2008 0.0968 0.2232 0.0536 0.0810
Improv./ % 20.78 11.31 21.62 18.12 14.93 4.05 17.69 10.45 3.08 1.96 6.77 4.65
p-value 3.35e−9 4.37e−7 6.75e−10 5.91e−10 5.36e−12 9.10e−6 8.22e−9 2.45e−8 1.86e−4 3.41e−4 1.70e−3 1.05e−3

Jiancan WU et al. Graph convolution machine for context-aware recommender system 7

L = 0
● Obviously, increasing the number of GC layers results

in better performance from to 2. In particular,
GCM-2 performs better than GCM-1 in both datasets.
It is reasonable since the signals passing from multi-
hop neighbors (e.g., the second-order connectivity
between behaviorally similar users or co-purchased
items) are encoded into user and item representations
of GCM-2, while GCM-1 only exploits personal
history to enrich representations. This observation is
consistent with that in NGCF [3]. We also tried to stack
more GC layers (i.e., GCM-3), finding improvement
degrades and over-smoothing issue. This suggests that
GCM benefits most from the first- and second-order
neighbors, but may suffer from degradation when
higher-order neighbors are involved.

5.3.2 Impact of context modeling
One major contribution of GCM is to organize the context
features as edges in the attributed user-item graph. We hence
perform ablation studies, to demonstrate the rationality and
effectiveness of this design. In particular, we build three
different propagation rules for the GC layers of GCM: 1)
GCM-GC-C removes the context features from the attributed
graph and keeps the vanilla user-item interaction graph only;
2) GCM-GC-MLP first replaces the addition operation with
concatenation in Eq. (3), then generates the message vector
through a MLP; 3) GCM-GC-HP encodes the Hadamard
product of the representations of neighboring node and their
connected edge into the message during message passing. We
show the comparison results in Fig. 3 and have the following
observations.

● Modeling context features as the edges endows GCM
with better generalization ability. In particular, GCM-
GC-C performs worst among four competing methods
in all cases, demonstrating the necessity of modeling
context features when performing message propaga-
tion.

● GCM-GC-MLP consistently achieves better recommen-
dation accuracy than GCM-GC-HP. One possible
reason is that equipped with MLP, GCM-GC-MLP can
model non-linear and high-order feature interactions,
resulting in better representation ability.

● On both datasets, the best performance is always

achieved by 2-layers GCM, which again justifies the
rationality of our context modeling strategy. Mathema-
tically, GCM can be viewed as a special case of GCM-
GC-MLP in which the learnt weights are the concatena-
tion of two identity matrices. However, as more
trainable parameters are involved, it would require
more data to learn the function which may encounter
difficulty in the actual learning process, especially for
the notorious problem of data sparsity in recommenda-
tion system [44].

● Jointly analyzing Table 3 and Fig. 3, we find that GCM-
GC-C without considering contexts achieves better
performance than other baselines in Yelp-NC and
comparable performance in Yelp-OH. This empirically
suggests that propagating embeddings over interaction
graphs is of importance to generate high-quality repre-
sentations.

5.3.3 Impact of normalization term

1
√
|Nu|

1
√
|Nu|
√
|Ni|

L1
1
|Nu|

L1

For convenience, we only present the variants of the GC of the
user side, since the same logic can be applied to the item side.

In GCM, we employ sqrt normalization term on each

neighbor embedding when performing neighborhood aggrega-
tion. To verify its rationality, we explore two different variants
and report their empirical results here. The first variant uses

symmetric normalization term, i.e., , which is a

common choice in GCN-based models [43], we term it GCM-

sym. The other variant uses normalization, i.e., , we

term it GCM- . Table 4 shows the results of the 2-layer
GCM. We have the following observations:

● The best setting in general is using the sqrt normali-
zation term on a single side (i.e., the current degign of
GCM). Adding additional regularization coefficients
would significantly drop the performance.

1
√
|Nu|
>

1
√
|Nu|
√
|Ni|
>

1
√
|Nu|
√
|Nu|
=

1
|Nu|

● The smaller the normalization term, the worse the
performance. To understand this observation, we can

see the following inequalities:

. The second inequality is due to

Fig. 3 The impact of depth and propagation rule in GC. (a) Yelp-NC; (b) Yelp-OH

8 Front. Comput. Sci., 2022, 16(6): 166614

|Nu| > |Ni| on average in Yelp-NC and Yelp-OH.

5.3.4 Impact of decoder
Having applied GC layers, we equip GCM with a decoder to
model the pairwise interactions between the refined represen-
tations of users, items, and contexts. Here we investigate the
role of such decoder. Towards this end, we compare GCM
with three variants: 1) GCM-APC, which performs average
pooling on context features before pair-wise inner product; 2)
GCM-MLP, which replaces the decoder with MLP; and 3)
GCM-MF, which replaces FM with inner product on user and
item representations. Table 4 shows the comparison of results.
There are several observations:

● Clearly, modeling feature interactions in the decoder
enhances the predictive results. In particular, GCM,
GCM-APC and GCM-MLP perform consistently better
than GCM-MF, which relies only on the inner product
of user and item representations.

● While having encoded context features into user and
item representations via GC layer, GCM and GCM-
APC highlight their influence in an explicit fashion,
while GCM-MLP models the feature interactions in a
rather implicit way. The better performances of GCM
and GCM-APC again verify the rationality and
effectiveness of FM-based decoder. In addition, after
performing average pooling on context features, GCM-
APC degenerates the performance by a noticeable
margin; the reason is that GCM endows higher weights
on feature interaction between context field and user
(item) field, which is the core of CARS.

5.4 Performance w.r.t. item popularity (RQ3)
To alleviate the issue of the item cold start of CF models,
taking side information into account is an auxiliary strategy
that goes beyond modeling user-item interaction. In the
proposed GCM, we apply gc layers to capture high-order
connectivity on the user-item graph, which breaks down the
independent interaction assumption of non-graph-based
methods. We argue that such connectivity is a potential side
information for the cold-start issue. To verify this viewpoint,
we split the test set according to the popularity (the number of
interaction records) of the target item, and report the
performance of MF [42], GCM-0 and GCM in Fig. 4. We
have the following observations:

● MF performs poorly at unpopular items, which indicates
the item cold-start issue for CF models. GCM-0 has
significant improvements in recommending uncommon
items by introducing side information and modeling

feature interactions. Our GCM can further improve
performance by 20%–30%. We attribute such improve-
ments to modeling high-order connectivity since gnn
increases the possibility of unpopular items being
exposed through high-order links, thereby expanding
the training data of unpopular items.

● For popular items, MF achieves comparable performa-
nce with GCM, even prevails over GCM in Yelp-NC.
The possible reason is that the data of popular items
occupies the majority of the training data, making MF
adopt a cautious strategy — biased to recommending
generally accepted items. Instead, GCM recommends
items that are more niche but still consistent with user’s
taste.

● The gain brought by gcn decreases as the popularity of
items increases. This shows that as the number of
neighbors increases, gcn may suffer from over-smoo-
thing since these items have too many audiences,
causing collecting information from neighbor nodes
will also bring in noises.

6 Conclusion and future work
In this work, we emphasize the importance of exploiting
multiple interactions in CARS. Towards this end, we first
convert the features of users, items, and contexts into an
attributed graph involving the contexts as edges between user
and item nodes. We then develop a new model, GCM, which
captures the interactions among multiple user behaviors via
graph neural networks, and then models the interactions
among features of individual behavior via factorization
machine. To demonstrate the effectiveness of GCM, we test it
on three public datasets, and it shows significant improve-
ments over the state-of-the-art CF and CARS baselines.
Extensive experiments also are conducted to verify the
rationality of attributed graph and offer insights into how the

Table 4 The variants of GCM with different normalization terms and
decoders

Yelp-NC Yelp-OH
HR@10 NDCG@10 HR@10 NDCG@10

GCM 0.1046 0.0557 0.2648 0.1457
GCM-L1 0.0810 0.0421 0.2373 0.1246
GCM-sym 0.0994 0.0527 0.2507 0.1383
GCM-APC 0.0947 0.0497 0.2321 0.1265
GCM-MLP 0.0892 0.0458 0.2263 0.1211
GCM-MF 0.0497 0.0253 0.0520 0.0251

Fig. 4 Performances with respect to item popularity. (a) Yelp-NC; (b) Yelp-OH

Jiancan WU et al. Graph convolution machine for context-aware recommender system 9

representations benefit from such graph learning.
Organizing user behaviors with contextual information in

graphs is a promising direction to build an effective context-
aware recommender. It helps build strong representations for
users and items. However, GCM simply unifies all context
features as an edge, neglecting the dynamic characteristics of
some contexts (e.g., time) and hardly capturing the dynamic
preference of users [45]. In the future, we plan to build
dynamic graphs based on contextual information, instead of
one static graph, and devise a dynamic graph neural network.
Furthermore, rich side information is beneficial for explaining
diverse intents behind user behaviors [46]. We hence plan to
model user-item relationships at a granular level of user
intents to generate disentangled representations [47].

Acknowledgements This work was supported by the National Key
Research and Development Program of China (2020AAA0106000) and the
National Natural Science Foundation of China (Grant Nos. 61972372,
U19A2079, 62121002).

References

 He X, Liao L, Zhang H, Nie L, Hu X, Chua T S. Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World
Wide Web. 2017, 173–182

1.

 Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR:
Bayesian personalized ranking from implicit feedback. In: Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence. 2009,
452–461

2.

 Wang X, He X, Wang M, Feng F, Chua T. Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval.
2019, 165–174

3.

 Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks. In: Proceedings of the 5th International
Conference on Learning Representations. 2017

4.

 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y.
Graph attention networks. In: Proceedings of the 6th International
Conference on Learning Representations. 2018

5.

 Wei Y, Wang X, Nie L, He X, Hong R, Chua T. MMGCN: multi-modal
graph convolution network for personalized recommendation of micro-
video. In: Proceedings of the 27th ACM International Conference on
Multimedia. 2019, 1437−1445

6.

 Wu L, Sun P, Fu Y, Hong R, Wang X, Wang M. A neural influence
diffusion model for social recommendation. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2019, 235–244

7.

 Zheng L, Lu C T, Jiang F, Zhang J, Yu P S. Spectral collaborative
filtering. In: Proceedings of the 12th ACM Conference on Recom-
mender Systems. 2018, 311–319

8.

 Shi Y, Larson M, Hanjalic A. Collaborative filtering beyond the user-
item matrix: a survey of the state of the art and future challenges. ACM
Computing Surveys, 2014, 47(1): 1–45

9.

 Karatzoglou A, Amatriain X, Baltrunas L, Oliver N. Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering. In: Proceedings of the 2010 ACM Conference on
Recommender Systems. 2010, 79–86

10.

 Rendle S. Factorization machines. In: Proceedings of the 10th IEEE
International Conference on Data Mining. 2010, 995–1000

11.

 Cheng H T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H,
Anderson G, Corrado G, Chai W, Ispir M, et al. Wide & deep learning
for recommender systems. In: Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems. 2016, 7–10

12.

 Shan Y, Hoens T R, Jiao J, Wang H, Yu D, Mao J. Deep crossing: web-
scale modeling without manually crafted combinatorial features. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2016, 255–262

13.

 He X, Chua T. Neural factorization machines for sparse predictive
analytics. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval.
2017, 355–364

14.

 Xiao J, Ye H, He X, Zhang H, Wu F, Chua T. Attentional factorization
machines: learning the weight of feature interactions via attention
networks. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence. 2017, 3119−3125

15.

 Lian J, Zhou X, Zhang F, Chen Z, Xie X, Sun G. xdeepfm: combining
explicit and implicit feature interactions for recommender systems. In:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2018, 1754−1763

16.

 Xin X, Chen B, He X, Wang D, Ding Y, Jose J. CFM: convolutional
factorization machines for context-aware recommendation. In: Procee-
dings of the 28th International Joint Conference on Artificial Intelli-
gence. 2019, 3926−3932

17.

 Rendle S, Gantner Z, Freudenthaler C, Schmidt-Thieme L. Fast context-
aware recommendations with factorization machines. In: Proceedings of
the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2011, 635–644

18.

 Guo H, Tang R, Ye Y, Li Z, He X. Deepfm: a factorization-machine
based neural network for CTR prediction. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. 2017, 1725-
1731

19.

 Wang R, Fu B, Fu G, Wang M. Deep & cross network for ad click
predictions. In: Proceedings of the ADKDD’17. 2017, 1–7

20.

 Juan Y, Zhuang Y, Chin W, Lin C. Field-aware factorization machines
for CTR prediction. In: Proceedings of the 10th ACM Conference on
Recommender Systems. 2016, 43–50

21.

 Liu B, Tang R, Chen Y, Yu J, Guo H, Zhang Y. Feature generation by
convolutional neural network for clickthrough rate prediction. In:
Proceedings of the Web Conference. 2019, 1119–1129

22.

 Liu W, Tang R, Li J, Yu J, Guo H, He X, Zhang S. Fieldaware
probabilistic embedding neural network for CTR prediction. In:
Proceedings of the 12th ACM Conference on Recommender Systems.
2018, 412–416

23.

 Qu Y, Fang B, Zhang W, Tang R, Niu M, Guo H, Yu Y, He X. Product-
based neural networks for user response prediction over multi-field
categorical data. ACM Transactions on Information Systems, 2019,
37(1): 1–35

24.

 Hamilton W L, Ying R, Leskovec J. Inductive representation learning
on large graphs. In: Proceedings of the 31st International Conference on
Neural Information Processing. 2017

25.

 Gong L, Cheng Q. Exploiting edge features for graph neural networks.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, 9211−9219

26.

 Zhang M, Chen Y. Link prediction based on graph neural networks. In:
Proceedings of the 32nd International Conference on Neural
Information Processing Systems. 2018, 5171−5181

27.

 Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural28.

10 Front. Comput. Sci., 2022, 16(6): 166614

networks? In: Proceedings of the 7th International Conference on
Learning Representations. 2019
 Berg R, Kipf T N, Welling M. Graph convolutional matrix completion.
2017, arXiv preprint arXiv: 1706.02263

29.

 Ying R, He R, Chen K, Eksombatchai P, Hamilton W L, Leskovec J.
Graph convolutional neural networks for web-scale recommender
systems. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2018, 974–983

30.

 Li Z, Cui Z, Wu S, Zhang X, Wang L. Fi-gnn: modeling feature
interactions via graph neural networks for ctr prediction. In:
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. 2019, 539–548

31.

 Li F, Chen Z, Wang P, Ren Y, Zhang D, Zhu X. Graph intention
network for click-through rate prediction in sponsored search. In:
Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2019, 961–964

32.

 Wang W, Zhang W, Liu S, Liu Q, Zhang B, Lin L, Zha H. Beyond
clicks: modeling multi-relational item graph for session-based target
behavior prediction. In: Proceedings of the Web Conference. 2020,
3056−3062

33.

 Fan W, Ma Y, Li Q, He Y, Zhao Y E, Tang J, Yin D. Graph neural
networks for social recommendation. In: Proceedings of the Web
Conference. 2019, 417–426

34.

 Song W, Xiao Z, Wang Y, Charlin L, Zhang M, Tang J. Session-based
social recommendation via dynamic graph attention networks. In:
Proceedings of the 12th ACM International Conference on Web Search
and Data Mining. 2019, 555–563

35.

 Wu S, Tang Y, Zhu Y, Wang L, Xie X, Tan T. Sessionbased
recommendation with graph neural networks. In: Proceedings of the
33rd AAAI Conference on Artificial Intelligence. 2019, 346–353

36.

 Cao Y, Wang X, He X, Hu Z, Chua T. Unifying knowledge graph
learning and recommendation: towards a better understanding of user
preferences. In: Proceedings of the 2019 World Wide Web Conference.
2019, 151–161

37.

 Wang X, He X, Cao Y, Liu M, Chua T. KGAT: knowledge graph
attention network for recommendation. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2019, 950–958

38.

 Mei L, Ren P, Chen Z, Nie L, Ma J, Nie J Y. An attentive interaction
network for context-aware recommendations. In: Proceedings of the
27th ACM International Conference on Information and Knowledge
Management. 2018, 157–166

39.

 Wu C, Wu F, Qi T, Ge S, Huang Y, Xie X. Reviews meet graphs:
enhancing user and item representations for recommendation with
hierarchical attentive graph neural network. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing.
2019, 4886−4895

40.

 Kingma D P, Ba J. Adam: a method for stochastic optimization. In:
Proceedings of the 3rd International Conference on Learning Represen-
tations. 2015

41.

 Koren Y, Bell R, Volinsky C. Matrix factorization techniques for
recommender systems. Computer, 2009, 42(8): 30–37

42.

 He X, Deng K, Wang X, Li Y, Zhang Y, Wang M. Lightgcn:
simplifying and powering graph convolution network for
recommendation. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval.
2020

43.

 Rendle S, Krichene W, Zhang L, Anderson J R. Neural collaborative44.

filtering vs. matrix factorization revisited. In: Proceedings of the 14th
ACM Conference on Recommender Systems. 2020, 240–248
 Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, Chi E H. Latent
cross: making use of context in recurrent recommender systems. In:
Proceedings of the 11th ACM International Conference on Web Search
and Data Mining. 2018, 46–54

45.

 Wang X, He X, Feng F, Nie L, Chua T S. Tem: treeenhanced
embedding model for explainable recommendation. In: Proceedings of
the 2018 World Wide Web Conference. 2018, 1543−1552

46.

 Ma J, Cui P, Kuang K, Wang X, Zhu W. Disentangled graph
convolutional networks. In: Proceedings of the 36th International
Conference on Machine Learning. 2019, 4212-4221

47.

Jiancan Wu received his BS degree in Electronic
Engineering and Information Science from the
University of Science and Technology of China
(USTC) , China in 2017. He is currently a PhD
student at USTC. His research interests focus on
Recommender Systems, Machine Learning, and
Graph Neural Networks.

Xiangnan He is a professor at the University of
Science and Technology of China (USTC), China.
He received his PhD in Computer Science from
the National University of Singapore (NUS) ,
Singapore in 2016. His research interests span
information retrieval, data mining, and multi-
media analytics. He has over 70 publications that

appeared in several top conferences such as SIGIR, WWW, and MM,
and journals including TKDE, TOIS, and TMM. His work on
recommender systems has received the Best Paper Award Honorable
Mention in WWW 2018 and ACM SIGIR 2016. Moreover, he has
served as the PC chair of CCIS 2019, area chair of MM (2019, 2020)
ECML-PKDD 2020, and PC member for several top conferences
including SIGIR, WWW, KDD, WSDM, etc., and the regular
reviewer for journals including TKDE, TOIS, TMM, etc.

Xiang Wang is now a research fellow at National
University of Singapore, Singapore. He received
his PhD degree from National University of
Singapore, Singapore in 2019. His research
interests include recommender systems, graph
learning, and deep learning techniques. He has
published some academic papers on international

conferences such as KDD, WWW, SIGIR, and AAAI. He serves as a
program committee member for several top conferences such as
SIGIR and WWW.

Qifan Wang received the BS and MS degrees
from Tsinghua University, China, and the PhD
degree from Purdue University, USA, all in
computer science. He is a researcher in Google
Research, and his research interests include mac-
hine learning, information retrieval, data mining,
computer vision, and natural language processing.

Jiancan WU et al. Graph convolution machine for context-aware recommender system 11

Weijian Chen is currently a PhD student at the
University of Science and Technology of China
(USTC), China. His research interests focus on
User Profiling, Recommender Systems, and Graph
Neural Networks. He has served as a research
intern in the JD Data Science Laboratory and a
project intern in the Kwai Multimedia Understan-

ding Department.

Jianxun Lian is now a senior researcher at Micr-
osoft Research Asia. He received his PhD degree
from University of Science and Technology of
China, China in 2018. His research interests
include recommender systems and deep learning
techniques. He has published some academic
papers on international conferences such as KDD,

IJCAI, WWW, SIGIR, and CIKM. He serves as a program

committee member for several top conferences such as AAAI,
WWW, and IJCAI.

Xing Xie is currently a senior principal research
manager at Microsoft Research Asia, and a guest
PhD advisor at the University of Science and
Technology of China, China. He received his BS
and PhD degrees in Computer Science from the
University of Science and Technology of China,
China in 1996 and 2001, respectively. He joined

Microsoft Research Asia in July 2001, working on data mining,
social computing and ubiquitous computing. During the past years,
he has published over 300 referred journal and conference papers,
won the 10-year impact award in ACM SIGSPATIAL 2019, the best
student paper award in KDD 2016, and the best paper awards in
ICDM 2013 and UIC 2010.

12 Front. Comput. Sci., 2022, 16(6): 166614

	1 Introduction
	2 Related work
	2.1 Context-aware recommendation
	2.2 Graph neural networks for recommendation

	3 Problem definition
	4 Graph convolution machine (GCM)
	4.1 Predictive model
	4.1.1 Encoder
	4.1.2 Graph convolution layers
	4.1.3 Decoder

	4.2 Model complexity analyses
	4.3 Optimization

	5 Experiments
	5.1 Experimental settings
	5.1.1 Dataset description
	5.1.2 Evaluation metrics
	5.1.3 Baselines
	5.1.4 Parameter settings

	5.2 Performance comparison (RQ1)
	5.3 Study of GCM (RQ2)
	5.3.1 Impact of model depth
	5.3.2 Impact of context modeling
	5.3.3 Impact of normalization term
	5.3.4 Impact of decoder

	5.4 Performance w.r.t. item popularity (RQ3)

	6 Conclusion and future work

