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ABSTRACT

Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset
of the input graph’s features — rationale — which guides the model prediction.
Unfortunately, the leading rationalization models often rely on data biases, es-
pecially shortcut features, to compose rationales and make predictions without
probing the critical and causal patterns. Moreover, such data biases easily change
outside the training distribution. As a result, these models suffer from a huge drop
in interpretability and predictive performance on out-of-distribution data. In this
work, we propose a new strategy of discovering invariant rationale (DIR) to con-
struct intrinsically interpretable GNNs. It conducts interventions on the training
distribution to create multiple interventional distributions. Then it approaches the
causal rationales that are invariant across different distributions while filtering out
the spurious patterns that are unstable. Experiments on both synthetic and real-
world datasets validate the superiority of our DIR in terms of interpretability and
generalization ability on graph classification over the leading baselines. Code and
datasets are available at https://github.com/Wuyxin/DIR-GNN.

1 INTRODUCTION

The eye-catching success in graph neural networks (GNNs) (Hamilton et al., 2017; Kipf & Welling,
2017; Dwivedi et al., 2020) provokes the rationalization task, answering “What knowledge drives
the model to make certain predictions?”. The goal of selective rationalization (aka. feature attribu-
tion) (Chang et al., 2020; Ying et al., 2019; Luo et al., 2020; Wang et al., 2021c) is to find a small
subset of the input’s graph features — rationale — which best guides or explains the model predic-
tion. Discovering the rationale in a model helps audit its inner workings and justify its predictions.
Moreover, it has tremendous impacts on real-world applications, such as finding functional groups
to shed light on protein structure prediction (Senior et al., 2020).

90%

Tree Ladder Wheel

5% 5%

Bases of HouseMotif

Fr
eq
ue
nc
y

…

Figure 1: Base Distribu-
tion of House Motif.

Two research lines of rationalization have recently emerged in GNNs.
Post-hoc explainability (Ying et al., 2019; Luo et al., 2020; Yuan et al.,
2021; Wang et al., 2021c) attributes a model’s prediction to the input
graph with a separate explanation method, while intrinsic interpretabil-
ity (Veličković et al., 2018; Gao & Ji, 2019) incorporates a rationaliza-
tion module into the model to make transparent predictions. Here we
focus on intrinsically interpretable GNNs. Among them, graph attention
(Veličković et al., 2018) and pooling (Lee et al., 2019; Knyazev et al.,
2019; Gao & Ji, 2019; Ranjan et al., 2020) operators prevail, which work
as a computational block of a GNN to generate soft or hard masks on the
input graph. They cast the learning paradigm of GNN as minimizing the
empirical risk with the masked subgraphs, which are regarded as ratio-
nales to guide the model predictions.

Despite the appealing nature, recent studies (Chang et al., 2020; Knyazev
et al., 2019) show that the current rationalization methods are prone to
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exploit data biases as shortcuts to make predictions and compose rationales. Typically, shortcuts
result from confounding factors, sampling biases, and artifacts in the training data. Considering
Figure 1, when the most bases of House-motif graphs are Tree, a GNN does not need to learn the
correct function to reach high accuracy for the motif type. Instead, it is much easier to learn from
the statistical shortcuts linking the bases Tree with the most occurring motifs House. Unfortunately,
when facing with out-of-distribution (OOD) data, such methods generalize poorly since the shortcuts
are changed. Hence, such shortcut-involved rationales hardly reveal the truly critical subgraphs for
the predicted labels, being at odds with the true reasoning process that underlies the task of interest
(Teney et al., 2020) and human cognition (Alvarez-Melis & Jaakkola, 2017).

Here we ascribe the failure on OOD data to the inability to identify causal patterns, which are stable
to distribution shift. Motivated by recent studies on invariant learning (IL) (Arjovsky et al., 2019;
Krueger et al., 2021; Chang et al., 2020; Bühlmann, 2018), we premise different distributions elicit
different environments of data generating process. We argue that the causal patterns to the labels
remain stable across environments, while the relations between the shortcut patterns and the labels
vary. Such environment-invariant patterns are more plausible and qualified as rationales.

Aiming to identify rationales that capture the environment-invariant causal patterns, we formalize a
learning strategy, Discovering Invariant Rationales (DIR), for intrinsically interpretable GNNs. One
major problem is how to get multiple environments from a standard training set. Differing from the
heterogeneous setting (Bühlmann, 2018) of existing IL methods, where environments are observable
and attainable, DIR does not assume prophets about environments. It instead generates distribution
perturbations by causal intervention — interventional distributions (Tian et al., 2006; Pearl et al.,
2016) — to instantiate environments and further distinguish the causal and non-causal parts.

Guided by this idea, our DIR strategy consists of four modules: a rationale generator, a distribu-
tion intervener, a feature encoder, two classifiers. Specifically, the rationale generator learns to split
the input graph into causal and non-causal subgraphs, which are respectively encoded by the en-
coder into representations. Then, the distribution intervener conducts the causal interventions on the
non-causal representations to create perturbed distributions, with which we can infer the invariant
causal parts. Then, the two classifiers are respectively built upon the causal and non-causal parts to
generate the joint prediction, whose invariant risk is minimized across different distributions. On
one synthetic and three real datasets, extensive experiments demonstrate the generalization ability
of DIR to surpass current state-of-the-art IL methods (Arjovsky et al., 2019; Krueger et al., 2021;
Sagawa et al., 2019), and the interpretability of DIR to outperform the attention- and pooling-based
rationalization methods (Veličković et al., 2018; Gao & Ji, 2019). Our main contributions are:

• We propose a novel invariant learning algorithm, DIR, for inherent interpretable models, improv-
ing the generalization ability and is suitable for any deep models.

• We offer causality theoretic analysis to guarantee the preeminence of DIR.
• We provide the implementation of DIR for graph classification tasks, which consistently achieves

excellent performance on three datasets with various generalization types.

2 INVARIANT RATIONALE DISCOVERY

With a causal look at the data-generating process, we formalize the principle of discovering invariant
rationales, which guides our discovery strategy. Throughout the paper, upper-cased letters like G
denote random variables, while lower-case letters like g denote deterministic value of variables.

2.1 CAUSAL VIEW OF DATA-GENERATING PROCESS

Generating rationales for transparent predictions requires understanding the actual mechanisms of
the task of interest. Without loss of generality, we focus on the graph classification task and present
a causal view of the data-generating process behind this task. Here we formalize the causal view
as a Structure Causal Model (SCM) (Pearl et al., 2016; Pearl, 2000) by inspecting on the causali-
ties among four variables: input graph G, ground-truth label Y , causal part C, non-causal part S.
Figure 2a illustrates the SCM, where each link denotes a causal relationship between two variables.

• C → G ← S. The input graph G consists of two disjoint parts: the causal part C and the
non-causal part S, such as the House motif and the Tree base in Figure 1.
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Figure 2: (a) Causal view of data-generating process; (b) Illustration of interventional distributions.

• C → Y . By “causal part”, we mean C is the only endogenous parent to determine the ground-
truth label Y . Taking the motif-base example in Figure 1 again, C is the oracle rationale, which
perfectly explains why the graph is labeled as Y .

• C L9999K S. This dashed arrow indicates additional probabilistic dependencies (Pearl, 2000;
Pearl et al., 2016) between C and S. We consider three typical relationships here: (1) C is
independent of S, i.e., C |= S; (2) C is the direct cause of S, i.e., C → S; and (3) There exists a
common cause E, i.e., C ← E → S. See Appendix B for the corresponding examples.

C L9999K S can create spurious correlations between the non-causal part S and the ground-truth
label Y . Assuming C → S, C is a confounder between S and Y , which opens a backdoor path
S ← C → Y , thus making S and Y spuriously correlated (Pearl et al., 2016). We systematize such
spurious correlations as Y 6⊥⊥ S. Wherein, we make feature induction assumption on S to avoid
the confusion of the induced subset of S between C. See Appendix C for the formal assumption.
Furthermore, data collected from different environments exhibit various spurious correlations (Teney
et al., 2020; Arjovsky et al., 2019), e.g., one mostly picks House motifs with Tree bases as the
training data, while another selects House motifs with Wheel bases as the testing data. Hence, such
spurious correlations are unstable and variant across different distributions.

2.2 TASK FORMALIZATION OF INVARIANT RATIONALIZATION

Oracle Rationale. With the causal theory (Pearl et al., 2016; Pearl, 2000), for each variable X in a
SCM, there exists a directed link from each of its parent variables PA(X) to X , if and only if the
causal mechanism X = fX(PA(X), εX) persists, where εX |= PA(X) is the exogenous noise of
X . For simplicity, we omit the exogenous noise and simplify it as X = fX(PA(X)). Hence, there
exist a function fY : C → Y in our SCM, where the “oracle rationale” C satisfies:

Y = fY (C), Y |= S | C, (1)

where Y |= S | C indicates that C shields Y from the influence of S, making the causal relationship
C → Y invariant across different S.

Rationalization. In general, only the pairs of input G and label Y are observed during training,
while neither oracle rationale C nor oracle structural equation model fY is available. The absence of
oracles calls for the study on intrinsic interpretability. We systematize an intrinsically-interpretable
GNN as a combination of two modules, i.e., h = hŶ ◦ hC̃ , where hC̃ : G→ C̃ discovers rationale
C̃ from the observed G, and hŶ : C̃ → Ŷ outputs the prediction Ŷ to approach Y . Distinct from
C and Y which are the variables in the causal mechanisms, C̃ and Ŷ represent the variables in the
modeling process to approximateC and Y . To optimize these modules, most of current intrinsically-
interpretable GNNs (Veličković et al., 2018; Lee et al., 2019; Knyazev et al., 2019; Gao & Ji, 2019;
Ranjan et al., 2020) adopt the learning strategy of minimizing the empirical risk:

min
hC̃ ,hŶ

R(hŶ ◦ hC̃(G), Y ), (2)

where R(·, ·) is the risk function, which can be the cross-entropy loss. Nevertheless, this learning
strategy relies heavily on the statistical associations between the input features and labels, and can
potentially exhibit non-causal rationales.
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Invariant Rationalization. We ascribe the limitation to ignoring Y |= S | C in Equation 1, which
is crucial to refine the causal relationship C → Y that is invariant across different S. By introducing
this independence, we formalize the task of invariant rationalization as:

min
hC̃ ,hŶ

R(hŶ ◦ hC̃(G), Y ), s.t. Y |= S̃ | C̃, (3)

where S̃ = G \ C̃ is the complement of C̃. This formulation encourages the rationale C̃ seeking the
patterns that are stable across different distributions, while discarding the unstable patterns.

2.3 PRINCIPLE & LEARNING STRATEGY OF DIR

Interventional Distribution. However, it is difficult to recover the oracle rationale from the joint
distribution over the inputs and labels — that is, the causal and non-causal relations are hardly
distinguished from each other. We get inspirations from invariant learning (Arjovsky et al., 2019;
Krueger et al., 2021; Chang et al., 2020), which constructs different environments to infer the invari-
ant features or predictors. To obtain the environments, previous studies mostly partition the training
set by prior knowledge (Teney et al., 2020) or adversarial environment inference (Creager et al.,
2021; Wang et al., 2021b). Different from partitioning the training data, we do not assume prophets
about environments but introduce the interventional distribution (Tian et al., 2006; Pearl et al., 2016)
instead to model the DIR task. Specifically, on the top of our SCM, we generate s-interventional dis-
tribution by doing intervention do(S = s) on S, which removes every link from the parents PA(S)
to the variable S and fixes S to the specific value s. By stratifying different values S = {s}, we can
obtain multiple s-interventional distributions.

With interventional distributions, we propose the principle of discovering invariant rationale (DIR)
to identify a rationale C̃ whose relationship with the label Y is stable across different distributions.

Definition 1 (DIR Principle) An intrinsically-interpretable model h satisfies the DIR principle if it

1. minimizes all s-interventional risks: Es[R(h(G), Y |do(S = s))], and simultaneously

2. minimizes the variance of various s-interventional risks: Vars({R(h(G), Y |do(S = s))}),

where the s-interventional risk is defined over the s-interventional distribution for specific s ∈ S.

Guided by the proposed principle, we design the learning strategy of DIR as:

minRDIR = Es[R(h(G), Y |do(S = s))] + λVars({R(h(G), Y |do(S = s))}), (4)

whereR (h(G), Y | do(S = s)) computes the risk under the s-interventional distribution, which we
will elaborate in Section 2.4. Var(·) calculates the variance of risks over different s-interventional
distributions; λ is a hyper-parameter to control the strength of invariant learning.

Justification. We theoretically justify the DIR principle’s ability to discover invariant rationales.
Specifically, Theorem 1 shows that the oracle model fY respects the DIR principle. Moreover, we
suggest that C can be inferred by making the intrinsically interpretable model h conform to the DIR
principle under the uniqueness condition (cf. Corollary 1). We leave the detailed proofs in Appendix
C due to the limited space. By making the distribution-relevant risks indifferent while pursuing low
risks, the DIR principle is able to discover the invariant rationales C̃ as the approximation of the
oracle rationales C, while encouraging hŶ approaching the oracle model fY .

2.4 DIR-GUIDED IMPLEMENTATION OF INTRINSICALLY-INTERPRETABLE GNNS

With the DIR principle and objective, we present how to implement the intrinsically-interpretable
GNNs. We summarize the key notations of this section in Appendix A for clarity. Following Equa-
tion 2, a model h with intrinsic interpretability consists of two modules: h = hŶ ◦ hC̃ , where hC̃
is to extract a possible rationale, and hŶ is to make prediction based on the rationale. Moreover, to
establish the s-interventional distributions, we design an additional module to do the interventions.
In a nutshell, our framework consists of four components, as Figure 3 shows.

Rationale Generator. It aims to split the input graph instance g into two subgraphs: causal part c̃
and non-causal part s̃. Specifically, given an input graph instance g = (V, E) with the node set V
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Figure 3: DIR Implementation on GNNs, which includes a rationale generator, a distribution inter-
vener, an encoder and two classifiers. For the inference, we only use ŷc̃ as the prediction.

and the edge set E , its adjacency matrix is A ∈ {0, 1}|V|×|V|, where Aij = 1 denotes the edge from
node i to node j, and Aij = 0 otherwise. The rationale generator first adopts a GNN to generate the
mask matrix M ∈ R|V|×|V| on A, where mask Mij indicates the importance of edge Aij :

Z = GNN1(g), Mij = σ(Z>i Zj), (5)

where σ(·) is the sigmoid function and Z ∈ R|V|×d summarizes the d-dimensional representations
of all nodes. The generator then selects the edges with the highest masks to construct the rationale c̃
and collects c̃’s complement as s̃, as follows:

Ec̃ = Topr(M�A), Es̃ = Top1−r((1−M)�A), (6)

where Ec̃ and Es̃ are the edge sets of c̃ and s̃, respectively; Topr(·) selects the top-K edges with
K = r × |E|, and r is the hyper-parameter (e.g., 40%); � is the element-wise product. Having
obtained the edge sets, we can distill the nodes appearing in the edges to establish c̃ and s̃.

Distribution Intervener. It targets at creating interventional distributions. Formally, it first collects
the non-causal part of all the instances into a memory bank as S̃. It next samples a memory s̃i ∈ S̃ to
conduct the intervention do(S = s̃i), replacing the complement of the critical subgraph c̃j at hand
and constructing an intervened pair (c̃j , s̃i), where i, j are indices.

Graph Encoder & Classifiers . Here we represent hŶ as a combination of a graph encoder and
two classifiers. Specifically, it employs another GNN encoder on c̃ to generate node representations
Zc̃ ∈ R|V|×d, and then combines them as graph representation Hc̃ ∈ RD via a global pooling
operator, e.g., average pooling. Then it uses a classifier Φc to project the graph representation into a
probability distribution over class labels ŷc̃. More formally, the process is as follows:

Zc̃ = GNN2(c̃), Hc̃ = Pooling(Zc̃), ŷc̃ = Φc(Hc̃). (7)

Analogously, we can obtain ŷs̃ for s̃ via the shared encoder and another classifier Φs. ŷc̃ is the pre-
diction based merely on the causal part c̃, while ŷs̃ measures the predictive power of the intervened
part s̃. Inspired by Cadène et al. (2019), we formulate the joint prediction ŷ under the intervention
do(S = s̃) as ŷc̃ masked by ŷs̃:

ŷ = ŷc̃ � σ(ŷs̃), (8)

where the sigmoid function adjusts the output logits of c̃ to compensate for the spurious biases. In
Appendix E, we present examples of how this operation helps discover the causal part.

Optimization. Having established the prediction ŷ of an instance g under the intervention do(S =
s̃), we are capable of getting the s̃-interventional risk similar as Equation 4 as follows:

R(h(G), Y |do(S = s̃)) = E(g,y)∈O,S=s̃,C=hC̃(g)l(ŷ, y), (9)

where (g, y) ∈ O is a pair of graph instance g and its ground-truth label y from the training set O;
l(·) denotes the loss function on a single instance. Moreover, we define the loss for Φs module as:

RS̃ = E(g,y)∈O,s̃=g/hC̃(g)l(ŷs̃, y) (10)

Specifically, RS̃ is only backpropagated to the classifier Φs and we set apart the other components
from its backpropagation to avoid interference with representation learning. Thus, this loss promotes
the S̃-only branch to learn spurious biases given the non-causal features only. Overall, we can jointly
optimize these components via the DIR objective and shortcut loss, i.e.,
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min φs
RS̃ + min γ,θ,φc

RDIR. (11)
where γ, θ and (φc, φs) are the parameters of the generator, encoder and two classifiers. While in

the inference phase, we yield c̃ and ŷc̃ as the causal rationale and the causal prediction of a testing
graph g, which exclude the influence of the non-causal part s̃.

3 EXPERIMENTS

In this section, we conduct extensive experiments to answer the research questions:
• RQ1: How effective is DIR in discovering causal features and improving model generalization?
• RQ2: What are the learning patterns and insights of DIR training? Especially, how does invariant

rationalization help to improve generalization?

3.1 SETTINGS

Datasets. We use one synthetic dataset and three real datasets of graph classification tasks. Different
GNNs are used in different datasets to achieve DIR and early stopping is exploited during training.
Here we briefly introduce the datasets, while the details of dataset statistics, deployed GNNs, and
training process are summarized in Appendix D.
• Spurious-Motif is a synthetic dataset created by following Ying et al. (2019), which involves

18, 000 graphs. Each graph is composed of one base (Tree, Ladder, Wheel denoted by S = 0, 1, 2
respectively) and one motif (Cycle, House, Crane denoted by C = 0, 1, 2, respectively). The
ground-truth label Y is determined by C solely. Moreover, we manually construct false relations
of different degrees between S and label Y in the training set. Specifically, in the training set, we
sample each motif from a uniform distribution, while the distribution of its base is determined by
P (S) = b × I(S = C) + 1−b

2 × I(S 6= C). We manipulate b to create Spurious-Motif datasets
of distinct biases. In the testing set, the motifs and bases are randomly attached to each other.
Besides, we include graphs with large bases to further magnify the distribution gaps.

• MNIST-75sp (Knyazev et al., 2019) converts the MNIST images into 70, 000 superpixel graphs
with at most 75 nodes each graph. The nodes in the graphs are superpixels, while edges are the
spatial distance between the nodes. Every graph is labeled as one of 10 classes. Random noises
are added to nodes’ features in the testing set.

• Graph-SST2 (Yuan et al., 2020; Socher et al., 2013) Each graph is labeled by its sentence senti-
ment and consists of nodes representing tokens and edges indicating node relations. Graphs are
split into different sets according to their average node degree to create dataset shifts.

• Molhiv (OGBG-Molhiv) (Hu et al., 2020; 2021; Wu et al., 2017) is a molecular property predic-
tion dataset consisting of molecule graphs, where nodes are atoms, and edges are chemical bonds.
Each graph is labeled according to whether a molecule inhibits HIV replication or not.

Baselines. We thoroughly compare DIR with Empirical Risk Minimization (ERM) and two classes
of baselines:

• Interpretable Baselines: Graph Attention (Veličković et al., 2018) and graph pooling opera-
tions including ASAP (Ranjan et al., 2020), Top-k Pool (Gao & Ji, 2019) and SAG Pool (Lee
et al., 2019). We use their generated masks on graph structures as rationales. We also include
GSN (Bouritsas et al., 2020), a topologically-aware message passing scheme which enriches
GNNs with interpretable structural features.

• Robust/Invariant Learning Baselines: Group DRO (Sagawa et al., 2019), IRM (Arjovsky et al.,
2019), V-REx (Krueger et al., 2021). This class of algorithms improves the robustness and
generalization for GNNs, which helps the models better generalize in unseen groups or out-of-
distribution datasets. We use random groups or partitions during the model training.

We also include an ablation model of DIR, DIR-Var, which sets λ = 0, i.e., discards the variance
term inRDIR, to show the effectiveness of the variance regularization in the DIR objective.

Metrics. We use ROC-AUC for Molhiv and ACC for the other three datasets. Moreover, for
Spurious-Motif dataset, we use the precision metric to evaluate the coincidence between model
rationales and the ground-truth rationales, and validate the interpretability ability quantitatively.
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Table 1: Performance on the Synthetic Dataset and Real Datasets. In Spurious-Motif dataset, we
color brown for the results lower than ERM, where b is the indicator of the confounding effect.

Spurious-Motif MNIST-75sp Graph-SST2 MolhivBalance b = 0.5 b = 0.7 b = 0.9

ERM 42.99±1.93 39.69±1.73 38.93±1.74 33.61±1.02 12.71±1.43 81.44±0.59 76.20±1.14

Attention 43.07±2.55 39.42±1.50 37.41±0.86 33.46±0.43 15.19±2.62 81.57±0.71 75.84±1.33

ASAP 44.44±8.19 44.25±6.87 39.19±4.39 31.76±2.89 15.54±1.87 81.57±0.84 73.81±1.17

Top-k Pool 43.43±8.79 41.21±7.05 40.27±7.12 33.60±0.91 14.91±3.25 79.78±1.35 73.01±1.65

SAG Pool 45.23±6.76 43.82±6.32 40.45±7.50 33.60±1.18 14.31±2.44 80.24±1.72 73.26±0.84

GSN 43.18±5.65 34.67±1.21 34.03±1.69 32.60±1.75 19.03±2.39 82.54±1.16 74.53±1.90

Group DRO 41.51±1.11 39.38±0.93 39.32±2.23 33.90±0.52 15.13±2.83 81.29±1.44 75.44±2.70

V-REx 42.83±1.59 39.43±2.69 39.08±1.56 34.81±2.04 18.92±1.41 81.76±0.08 75.62±0.79

IRM 42.26±2.69 41.30±1.28 40.16±1.74 35.12±2.71 18.62±1.22 81.01±1.13 74.46±2.74

DIR-Var 45.87±2.61 43.81±1.93 42.69±1.77 37.12±1.56 17.74±4.17 81.74±0.89 76.05±0.86

DIR 47.03±2.46 45.50±2.15 43.36±1.64 39.87±0.56 20.36±1.78 83.29±0.53 77.05±0.57

Table 2: Precision@5 on Spurious-Motif.
Model Balance b = 0.5 b = 0.7 b = 0.9

Attention 0.183±0.018 0.183±0.130 0.182±0.014 0.134±0.013

ASAP 0.187±0.030 0.188±0.023 0.186±0.027 0.121±0.021

Topk Pool 0.215±0.061 0.207±0.057 0.212±0.056 0.148±0.018

SAG Pool 0.212±0.033 0.198±0.062 0.201±0.064 0.136±0.014

DIR 0.257±0.014 0.255±0.016 0.247±0.012 0.192±0.044

3.2 MAIN RESULTS (RQ1)

To fairly compare the methods, we train each model under the same training settings as described in
Appendix D. The overall results are summarized Table 1, and we have the following observations:

1. DIR has better generalization ability than the baselines. DIR outperforms the baselines con-
sistently by a large margin. Specifically, for MNIST-75sp dataset, DIR surpasses ERM by 7.65%
and ASAP by 4.82%. Although structure features are shown to be helpful in mitigating feature
distribution shift, DIR still performs better than GSN. For Graph-SST2 and Molhiv, DIR achieves
the highest performance with low variance. For Spurious-Motif, DIR outstrips IRM averagely by
4.23% and SAG by 3.16% across different degrees of spurious bias. Such improvements strongly
validate that DIR can generalize better in various environments.

2. DIR is consistently effective under different bias degrees, while the baselines easily fail. For
interpretable baselines, Attention fails to make salient improvements when bias exists, and pool-
ing methods also fall through under severe bias. This is empirically in line with our presumption
that GNNs are easily biased to latch on spurious relations or non-causal features and thus gen-
eralize poorly in OOD data. For robust/invariant learning baselines, IRM underperforms ERM
when b is small. This evidence is accordant with the conclusion in Ahuja et al. (2021) that IRM
is guaranteed to be close to the desired OOD solutions when confounders exist, while it has no
obvious advantage to ERM under covariate shift. Moreover, Group DRO and V-REx follow a
similar pattern. In contrast, DIR works well in various scenarios. We credit such reliability to the
rationales discovery from which the causal features C are potentially extracted, and the relation
C → Y learned by the GNNs is invariant across the distribution changes in the testing set.

3. Data augmentation by intervention is beneficial while the variance regularization further
boosts model performance. Interestingly, the ablation model DIR-Var has already exceeded
some of the baselines. We attribute such improvement to data augmentation via interventional
distributions. On top of DIR-Var, DIR improves the model performance by averagely 1.57%
in Spurious-Motif and 2.62% in MNIST-75sp. This suggests that the variance regularization
demands a stronger invariance condition and is instructive for searching causal features.

4. DIR has better intrinsic interpretability than the baselines. In Table 2, we report intrinsic
interpretable models’ performance w.r.t. Precision@5. From the consistent improvements over
the baselines, we find DIR has an advantage in discovering causal features. And the performance
gap between DIR and the baselines becomes more significant when the bias increases.
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(a) Training rationale: Positive sentiment. (b) Training rationale: Negative sentiment.

(c) Testing rationale: Positive sentiment. (d) Testing rationale: Negative sentiment.

Figure 4: Visualization of DIR Rationales. Each graph shows a comment, e.g., “a majestic achieve-
ment, an epic of astonishing grandeur” in (a), where rationales are highlighted by deep colors.

③① ②

adaption fitting adaption fitting

③

①

②

③① ②

(a) The first two subfigures show the training curves w.r.t. variance penalty and precision, on Spurious-Motif.
The last three subfigures present the rationale distributions of the inspection points, which are visualized by
t-SNE (van der Maaten, 2008).

③① ②

adaption fitting adaption fitting

③

①

②

③① ②

(b) The first three subfigures present the training curves w.r.t. variance penalty and ACC on MNIST-75sp, while
the last three illustrate the curves w.r.t. variance penalty and AUC-ROC on Molhiv.

Figure 5: Two-stage Training Dynamics of DIR.

3.3 IN-DEPTH STUDY (RQ2)

We empirically analyze the DIR’s properties which hopefully give insights into its mechanisms and
can be instructive for the existing training paradigms of deep models.

Rationale Visualization. Towards an intuitive understanding of DIR, we first present some cases
of the discovered rationale for Graph-SST2 in Figure 4. DIR is able to emphasize the tokens that
directly result in the sentences’ positive or negative sentiments, which are reliable and faithful ra-
tionales. Specifically, DIR highlights the positive words “majestic achievement” and “astonishing
grandeur” in Figure 4a and underscores the negative words “worst dialogue” in Figure 4b as the
rationales, which are clearly salient for the positive and negative sentiments, respectively. Further-
more, DIR can focus persistently on the causal features for OOD testing data. For example, it
selects surprisingly engrossing and “admittedly middling” in Figures 4c and 4d, respectively. This
again validates the effectiveness of DIR: (1) hC̃ is well-learned to distinguish causal and non-causal
features under various interventional distributions; and (2) hỸ conducts message-passing on the
highlighted rationales, extracts the graph representations, and finally outputs the predictions with
high accuracy. See Appendix F.1 for more examples in Graph-SST2 and Spurious-Motif datasets.

Two-stage Training Dynamics. As Figure 5a displays, we find a pattern from the Var-Time curve
— during training DIR, the variance penalty (i.e., Vars in Equation 4) first increases and then de-
creases to almost zero. Moreover, there exists an interesting correlation between the variance penalty
and the precision metrics — that is, the precision rises dramatically as the penalty increases while
growing slowly as the penalty decreases. To probe this learning pattern, we further visualize the
rationale distribution in three turning points: (1) the start, (2) the middle, and (3) the end of train-
ing. Interestingly, the rationale distribution at the middle point is highly similar to that at the ending
point. This illustrates two stages, adaption and fitting, in the patterns. By “adaption”, we mean that
the exhibition of hC̃ , i.e., learning to select salient feature C̃, is mainly conducted during the initial
training stage. Since the penalty value can be seen as the magnitude to violate the invariance con-
dition, this stage explores the rationales that satisfy the DIR principle. Correspondingly, hỸ adapts
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quickly with the input of varying rationales generated by hC̃ . By “fitting”, we mean that, in the later
training process, hC̃ only makes small changes, resulting in the substantially unchanged rationales
compared to the initial training process, which is learned from the rationale generator to conform
to the DIR principle. This could also imply that based on the well-learned rationales, DIR mainly
optimizes hỸ to consolidate the functional relation C̃ → Y until model convergence.

Moreover, we compare the learning patterns of IRM and DIR in Figure 5b, where the penalty term
of IRM (the gradient norm penalty in IRMv1 (Arjovsky et al., 2019)) follows a similar pattern to
the DIR penalty. Notably, in MNIST-75sp, while IRM consistently outperforms DIR w.r.t. Training
ACC, it does not improve and even degrades the performance in the testing dataset due to over-
fitting. However, DIR shows the solid resistance for over-fitting, partly thanks to the valid rationales
exhibited in the adaption stage. For Molhiv, DIR outperforms IRM as the rationales filter out irrele-
vant or spurious structures bootless for classification tasks and are beneficial for generalization.

Sensitivity Analysis. We conduct a sensitivity analysis of model performance w.r.t. λ in Appendix
F.2, which shows that DIR surpasses the best baselines under a relatively large range of λ.

4 RELATED WORKS

Inherent Interpretability of GNNs. We summarize two classes of the existing methods to build
deep interpretable GNNs, (i) Attention (Vaswani et al., 2017; Veličković et al., 2018), which can be
broadly interpreted as importance weights on representations.(ii) Pooling (Lee et al., 2019; Knyazev
et al., 2019; Gao & Ji, 2019), which selectively performs down-sampling on representations. We
include it in this category when it involves selection importance. However, the mechanisms to
generate the rationales could be epistemic, as they only reflect the probabilistic relations between
data and predicted labels (Pearl, 2000), which may not hold true in all data distributions. Thus, the
rationales could fail to align with causal features and even degrade model performance due to being
“fooled” by spurious features (Chang et al., 2020).

Invariant Learning. Backed by causal theory, invariant learning assumes the causal relation from
the causal factors C to the response variable Y remains invariant unless we intervene on Y . As
the most prevailing formulation, IRM (Arjovsky et al., 2019) extends the invariance assumption
from feature level to representation level and finds a data representation Φ such that Ω ◦ Φ matches
for all environments, where Ω is the classifier. However, concerns about its feasibility (Rosenfeld
et al., 2021; Ahuja et al., 2021) and optimality (Kamath et al., 2021) have been discussed recently.
Besides IRM, variance penalization across environments is shown to be effective for recovering in-
variance (Krueger et al., 2021; Xie et al., 2020; Teney et al., 2020). Notably, the existing methods
generally require accessing different environments, thus additionally involving environment infer-
ence (Creager et al., 2021; Wang et al., 2021b). Similarly motivated as ours, Chang et al. (2020)
discover rationales Z by minimizing the performance gap between environment-agnostic predictor
f(Z) and environment-aware predictor f(Z,E). In graph domain, Bevilacqua et al. (2021) con-
struct graph representations from subgraph densities and use attribute symmetry regularization to
mitigate the shift of graph size and vertex attribute distributions.

5 CONCLUSION & FUTURE WORK

In this work, we rigorously study the intrinsic interpretability of Graph Neural Networks from a
causal perspective. Our concerns are towards the exhibition of shortcut features when generating the
rationales. And we proposed an invariant learning algorithm, DIR, to discover the causal features
for rationalization. The core of DIR lies in the construction of environments (i.e., interventional
distributions) and thus distilling the salient features as rationales that are consistently informative
and uniform across these environments. Such rationales serve as the probing towards model mech-
anisms and are demonstrated to be effective in generalization. In the experiments, we highlight
an adaption-fitting training dynamics for DIR to reveal its learning pattern. In the future, we will
build more reliable and expressive interpretable models that are feasible under various assumptions,
which potentially calls for high-level interpretability. We recommend interested readers go to the
open discussion in Appendix G for the detailed description.
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A NOTATIONS & ALGORITHM

Key Notations in the Main Paper.

Symbol Definition

g graph instance
c / s ground truth causal or confounding subgraph
c̃ / s̃ generated rationale or complement of rationale instance
C / S variables in the causal graph
S / S̃ space of the ground truth or identified spurious features
ŷc̃ / ŷs̃ causal or spurious prediction
ŷ joint prediction
hC̃ rationale generator
Φ1 / Φ2 causal or spurious classifier

Algorithm 1 Pseudocode for DIR in training interpretable Graph Neural Networks (Batch Version)

Require: Training data distribution Ptr(G); number of classes Q; Stepsize α; hyper-parameter λ
1: Randomly initialize the parameters of generator hC̃ , encoder hθ (includes GNN2 and Pooling

layer), two classifiers Φ1 and Φ2, which are denoted as γ, θ, φ1, φ2, respectively.
2: while not converge do
3: Sample graphs {(gi, yi)}Bi=1 from Ptr(G)
4: Generate each rationale and its complement: (c̃i, s̃i)← hC̃(g

i), for i = 1, . . . , B.
5: for each s̃i do
6: Intervener hI operates do(S = s̃i)
7: Model forward: ŷs̃ = Φ2(hθ(s̃

i)) ∈ R1×Q, {ŷc̃}Bi=1 = Φ1(hθ({c̃i}Bi=1)) ∈ RB×Q
8: # block BP of DIR risk to shortcut branch

Obtain joint prediction ŷ = [ŷ1, . . . , ŷB ], where ŷj = ŷc̃ � σ(ŷjs̃).detach()
9: Compute and record risk R(ŷs̃, yi)

10: Compute and record s̃i-interventional risk.
11: end for
12: ComputeRDIR via Eq. 4 andRS̃ via Eq. 11
13: Update parameters: φ2 = φ2 − α∇φ2

RS̃ ; φ1 = φ1 − α∇φ1
RDIR;

γ = γ − α∇γRDIR; θ = θ − α∇θRDIR
14: end while

B INSTANTIATED CAUSAL GRAPHS

We instantiate possible causal graphs in Figure 2a. Specifically, we use the example of Base-Motif
graphs, whose labels are determined by the motif types. We use C = 0, 1, 2 to denote cycle, house,
crane, respectively; And use S = 0, 1, 2 to denote ladder, tree, wheels, respectively.

• C |= S: Base graphs and motif graphs are independently sampled and attached to each other.
• C → S: Type of each motif respects to a given (static) probability distribution. According to the

value of C, the probability distribution of its base graph is given by

P (S) =

{
0.6 if S = C
0.2 otherwise (12)

• S → C: Similar to the example for C → S.
• S ← E → C: Suppose there is a latent variable E takes continuous value from 0 to 1. Then the

probability distribution of S and C s.t.
S ∼ B(3, E) C ∼ B(3, 1− E) (13)

where B stands for binomial distribution, i.e., for variable X , if X ∼ B(n, p), then we have

P (X = k | p, n) =

(
n
k

)
pk(1− p)n−k
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C THEORY

C.1 ASSUMPTION

We phrase the SCM in Figure 2a as the following assumption:

Assumption 1 (Invariant Rationalization (IR)) There exists a rationale C ⊆ G, such that the
structural equation model

Y ← fY (C, εY ) , εY |= C
and the probability relation

S |= Y | C
hold for every distribution P̃ over P(G, Y ), where S denotes the complement of C. Also, we denote
fY as the oracle structural equation model.

By “oracle”, we mean that fY is the perfect structure equation model, which, when C is available,
predicts the response variable with the minimum expected loss over any distribution P̃ . Or formally,

fY := arg min
f

R(f) = arg min
f

E(G,Y )∼P̃,εY [l(f(C, Y ), εY ), Y )]. (14)

where l is the task-specific loss function and we ignore the exogenous noise εY in fY ’s input except
as otherwise noted.

Next, we argue that the assumption is commonly satisfied. For example, for sentences labeled by
sentiment, C can represent the positive/negative words that cause the sentiment, while S includes
the prepositions and linking words. For molecule graphs labeled by specific properties, C and S
can represent the functional groups and carbon structures, respectively. Note that IR assumption
enables and calls the introduction of interpretability, highlighting salient features and exhibiting
human accessible checks. More importantly, it guarantees the model performance under possible
feature reduction, i.e., C ⊂ G.

We also see cases going beyond the IR Assumption. For example, G could be a generic function
of S and C, instead of a simple joint. We use a toy example to elaborate this point. Following the
Spurious-Motif dataset, we assume each graph has multiple motifs (house, cycle, crane) with only
one type and is labeled by the motif type. Thus, the causal feature C will be the motifs. Let the
spurious feature S be ”the way we connect the motifs”. For example, we can place the house motifs
in a queue sequence and connect the adjacent motifs, thus forming the graph in a ”line” shape. Or
we can place the houses in a cycle order and connect them into a ring. We further make such graph
structures strongly correlated with the motif types. Thus, individual S and C may be intractable
individually in the feature level. For example, if we separate the cycle-shaped houses into two lines,
the spurious pattern could be broken while the part of the causal feature would be lost. In other
words, S and C are dependent variables. Thus, they can’t be extracted and modeled separately,
which goes out of the scope of our work.

Given that S and C are separable, we further make the following assumption to avoid the confusion
of S and C:

Assumption 2 (Feature Induction) Define power set operation as P∗(·). For data G = S ∪ C
and label Y , if S |= Y | C holds for any distribution P̃ over P(G, Y ), then it implies that for any
induced feature S′ ∈ P∗(S), we have S′ |= Y | C holds for the distribution P̃ .

This assumption also implies that C could not be induced by S when |C| ≤ |S|. Thus, any feature
subset C ′ except for C would violate the conditional independence condition. For images, this
assumption is natural for the splicing of S doesn’t typically change its semantics. For example,
the splicing of land background would still be divided land. While for graphs, here we assume the
causal subgraph’s uniqueness among the induced complement graphs.

C.2 PROOFS

Theorem 1 (Necessity) Suppose S → C does not exist, then the oracle function fY satisfies the
DIR Principle (where C is given) over every distribution P̃ ∈ P(G, Y ).
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Proof: We first prove the fact that P (Y = y | do(S = s)) = P (Y = y) for distribution P̃ .
Specifically, we use P (s)

I to denote the s-interventional distribution.

• If C → S,

P (Y = y | do(S = s))
by definition

======== P
(s)
I (Y = y | S = s)

=
∑
c

P
(s)
I (Y = y | S = s, C = c)P

(s)
I (C = c | S = s)

given C→S
======== P

(s)
I (Y = y | S = s, C = c)P

(s)
I (C = c)

given (Y |= S|C)P̃=============
∑
c

P
(s)
I (Y = y | C = c)P

(s)
I (C = c)

given invariance condition
===============

∑
c

P (Y = y | C = c)P (C = c)

== P (Y = y)

• If C |= S,

P (Y = y | do(S = s))
by definition

======== P
(s)
I (Y = y | S = s)

given S has no endogenous parent
=================== P (Y = y | S = s)

givenC |= S=========
∑
c

P (Y = y | C = c, S = s)P (C = c)

=
∑
c

P (Y = y | C = c, S = s)P (C = c | S = s)

given (Y |= S|C)P̃=============
∑
c

P (Y = y | C = c)P (C = c)

== P (Y = y)

• If C ← E → S,

P (Y = y | do(S = s))

by definition
======== P

(s)
I (Y = y | S = s)

givenE→S
========

∑
e

P
(s)
I (Y = y | S = s, E = e)P

(s)
I (E = e)

=
∑
e

∑
c

P
(s)
I (Y = y | S = s, E = e, C = c)P

(s)
I (C = c|S = s, E = e)P

(s)
I (E = e)

given (Y |= {S,E}|C) and (C |= S|E)
========================

∑
e

∑
c

P
(s)
I (Y = y | C = c)P

(s)
I (C = c|E = e)P

(s)
I (E = e)

=
∑
e

∑
c

P (Y = y | C = c)P (C = c|E = e)P (E = e)

=
∑
e

∑
c

P (Y = y | C = c, E = e)P (C = c|E = e)P (E = e)

== P (Y = y)

As P (Y = y | do(S = s)) = P (Y = y) holds true for every distribution P̃ , which is invariant w.r.t.
iterative variable S. Moreover, we have P (C = c | do(S = s)) = P

(s)
I (C = c) = P (C = c). This
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indicates that the intervention on S leave the causal structure C → Y untouched. Thus, we have

Var ({R(fY | do(s)) | s ∈ S}) = Var
({

E
(G,Y )∼P (s)

I (G,Y ),C⊂G[l(fY (C), Y )] | s ∈ S
})

= Var
({

E(C,Y )[l(fY (C), Y )] | s ∈ S
})

= 0

Finally, taking the definition of f , we have

fY = arg min
f

Es∈S
[
E
(G,Y )∼P (s)

I (G,Y ),C⊂G[l(f(C), Y )]
]

= arg min
f

Es∈S
[
E(C,Y )[l(f(C), Y )]

]
= arg min

f
Es∈S[R(f | do(s))]

Hence, fY takes the minimum penalty and satisfies the DIR Principle. �

Notably, if S → C, then Var ({R(fY | do(s)) | s ∈ S}) may not equal to zero since c ∼
P

(s)
I (C|S = s). In such case, fY is not necessarily satisfied to DIR Principle. That is, al-

though fY still minimizes R(f | do(S)), we can’t be sure whether it reaches the lower bound
of Var ({R(fY | do(s)) | s ∈ S}) without knowledge about the specific data distribution. Thus, we
only consider the cases of C → S, C |= S and C ← E → S in the following discussion.

Theorem 2 (Uniqueness) Suppose l is a strict loss function and there exists one and only one non-
trivial subset C, then there exists a unique structure equation model fY s.t. it satisfies the DIR
Principle.

Proof: Since fY exists and satisfies the DIR Principle, we only need to prove its uniqueness
under the given conditions. Otherwise, suppose we have another structure equation f ′Y 6= fY
satifies the DIR Principle. Specifically, there exists a datum (g, y) s.t. f ′Y (c) 6= fY (c).
Thus, we have l(f ′Y (c), y) > l(fY (c), y). Given that Var ({R(f ′Y | do(s)) | s ∈ S}) ≥ 0 =
Var ({R(fY | do(s)) | s ∈ S}), we haveRDIR(f ′Y ) > RDIR(fY ). �

In reality, there could be multiple candidates of C, e.g., Ci, Cj s.t. RDIR(f
(Ci)
Y ) = RDIR(f

(Cj)
Y ),

where f (Ci)
Y is the structure equation corresponds to Ci. Thus, it calls for the selection of C to avoid

the learning of suboptimal fY . Inspired by Occam’s Razor, we define

C∗ = arg min |C| (15)

as the preferred rationale, or rationale of parsimony. We argue that rationales are not to be extended
beyond necessity, which poses simpler hypotheses about causality. As the search of C∗ is NP-
hard (the worst time complexity is exponential), we use fixed size for the learned rationales in our
experiments and leave a better optimization to future work.

Corollary 1 (Necessity and Sufficiency) Suppose l is a strict loss function and there exists one and
only one non-trival subset C, then any structure causal model f ′Y s.t. it satisfies the DIR Principle
iff. f ′Y = fY .

This is directly obtained from Theorem 2. Thus, under the unique constraint of C, we can approach
the oracle fY by optimizing the DIR objective, which maintains the invariant causal relation between
the causal feature and the response variable Y . In another way, based on the uniqueness of the
feasible rationale, the optimization of the DIR Principle on the intrinsic interpretable model h (where
C is exhibited inside of h) pushes the approach to C with rationales C̃. Then, fY can also be
approached as an invariant predictor based on the learning from C̃.
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D SETTING DETAILS

Table 3: Statistics of Graph Classification Datasets.

Spurious-Motif MNIST-75sp (reduced) Graph-SST2 OGBG-Molhiv
Train Val Test Train Val Test Train Val Test Train Val Test

Classes# 3 10 2 2
Graphs# 9,000 3,000 6,000 20,000 5,000 10,000 28,327 3,147 12,305 32,901 4,113 4,113
Avg. N# 25.4 26.1 88.7 66.8 67.3 67.0 17.7 17.3 3.45 25.3 27.79 25.3
Avg. E# 35.4 36.2 131.1 539.3 545.9 540.4 33.3 33.5 4.89 54.1 61.1 55.6

Backbone Local Extremum GNN k-GNNs ARMA GIN + Virtual nodes
(Ranjan et al., 2020) (Morris et al., 2019) (Bianchi et al., 2019) (Xu et al., 2019; Hu et al., 2021)

Neuron# [4,32,32,32] [5,32,32,32] [768,128,128,2] [9,300,300,300,1]
Global Pool global mean pool global max pool global mean pool global add pool

Gen. Type Scale & Correlation Shift Noise Degree & Scale Shift /

Datasets We summarize dataset statistics in Table 3, and introduce the node/edge features and the
preprocessing in each datasets:

• Spurious-Motif. We use random node features and constant edge weights in this dataset.

• MNIST-75sp. The nodes in the graphs are superpixels, and node features are the concatenation
of pixel intensities (RGB channels) and coordinates of their mass centers. Edges are the spatial
distance between the superpixel centers, while we filter the edges with a distance less than 0.1 to
make the graphs sparser.

• Graph-SST2. We use constant edge weight and filter the graphs with edges less than three. We
initialize the node features by the pre-trained BERT (Devlin et al., 2018) word embedding.

• OGBG-Molhiv. We use the official released dataset in our experiment.

GNNs. We summarize the backbone GNNs for each dataset in Table 3. The number of neurons in
the sequent layers (in forwarding order) is reported. We use ReLU as activation layers and different
global pooling layers. In OGBG-Molhiv, we adopt one fully connected layer for the prediction
layers while using two fully connected layers for the models in other datasets. For baselines with
node pooling/node attention, we add one node pooling/attention layer in the second convolution
layer.

Training Optimization & Early Stopping. All experiments are done on a single Tesla V100
SXM2 GPU (32 GB). During training, we use Adam (Kingma & Ba, 2015) optimizer. The max-
imum number of epochs is 400 for all datasets. We use Stochastic Gradient Descent (SGD) for
the optimization on Graph-SST2 and OGBG-Molhiv and Gradient Descent (GD) for the other two
datasets. Also, we exhibit early stopping to avoid overfitting of the training dataset. Specifically, in
MNIST-75sp, Graph-SST2 and OGBG-Molhiv, each model is evaluated on a holdout in-distribution
validation dataset after each epoch. While for Spurious-Motif, we use an unbiased validation dataset
(i.e., without spurious relations compared to the training dataset). If the model’s performance on
the validation dataset is without improvement (i.e., validation accuracy begins to decrease) for five
epochs, we stop the training process to prevent increased generalization error.

Hyper-Parameter Settings. We set the causal feature ratio and λ as (r = 0.8, λ = 10−4), (r =
0.25, λ = 10−2), (r = 0.6, λ = 102), (r = 0.8, λ = 10−3) for MNIST-75sp, Spurious-Motif,
Graph-SST2 and OGBG-Molhiv respectively. For other baselines, we adopt grid search for the best
parameters using the validation datasets.

Model Selection. We select each model based on its performance on the corresponding validation
dataset. We repeat each experiment at least five times and report the average values and the standard
errors in the paper.
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E UNIMODAL ADJUSTMENT

We follow Cadène et al. (2019) to demonstrate how the shortcut prediction can help to remove model
bias. For clarity, we refer to the model parameters except for Φ2 as the main branch, i.e., except for
the S-only branch.

Given a house-tree graph as the input graph, we suppose the shortcut prediction ŷs̃ of the tree sub-
graph leans towards the house class. Then after reweighting σ(ŷs̃) on ŷc̃, the softmax readout on
the house class in the joint prediction ŷ will be magnified, which results in a smaller loss back-
propagated to the main branch and prevents ŷc̃ from inductive bias.

In another situation where a house-wheel graph is given as the input, we similarly suppose the
shortcut prediction ŷs̃ of the wheel subgraph leans towards other classes except the house, say, the
circle class. Then after reweighting σ(ŷs̃) on ŷc̃, the softmax readout on the house class in the joint
prediction ŷ will be reduced, which results in a larger loss back-propagated to the main branch and
encourages the model to learn from these examples.

Furthermore, we offer the causal- and information-theoretical justifications: (1) From the perspec-
tive of causal theory (Pearl, 2000; Pearl et al., 2016), the element-wise multiplication enforces the
spurious prediction to estimate the pure indirect effect (PIE) of the shortcut features, while the causal
prediction captures the natural direct effect (NDE) of the causal patterns (VanderWeele, 2013); (2)
From the perspective of information theory (Kullback, 1997), the element-wise multiplication makes
the causal prediction reflect the conditional mutual information between the causal patterns and
ground-truths, conditioning on the complement patterns.

F MORE EXPERIMENTAL RESULTS

F.1 VISUALIZATION

We provide more visualization cases in Graph-SST2 dataset as shown in Figure 6 and Figure 7. The
rationales are highlighted in deep colors.

(a) (b)

(c) (d)
Figure 6: Visualization of Training Rationales. Each graph represents a comment, e.g., , ”determined
to uncover the truth and hopefully inspire action” in (a).

(a) (b)

(c) (d)
Figure 7: Visualization of Testing Rationales. Each graph represents a comment, e.g., , ”whimsical
and relevant today” in (a).
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Table 4: Confidence of the Spurious Predictions. Uniform is the reference indicates the uniform
distributions across the classes.

Spurious-Motif (b=0.9) MNIST-75sp GraphSST2 Molhiv

Uniform 1.10 2.30 0.693 0.693
Spurious Predictions 0.529 1.93 0.265 0.187

(a) Cycle-Tree (b) House-Ladder (c) Crane-Tree
Figure 8: Visualization of Training Rationales in Spurious-Motif Dataset. Structures with deeper
colors mean higher importance. Nodes of ground truth rationales are colored by green.

(a) Cycle-Tree (b) House-Ladder (c) Crane-Wheel
Figure 9: Visualization of Testing Rationales in Spurious-Motif Dataset. Structures with deeper
colors mean higher importance. Nodes of ground truth rationales are colored by green.

F.2 SENSITIVITY ANALYSIS

MNIST-75spSpurious-Motif Graph-SST2 OGBG-Molhiv

Figure 10: Sensitivity of Hyper-Parameter λ. In each chart, dash line represents the performance
of the best baseline in the corresponding dataset, and the area between ACC±std are colored.

We analyze the performance of DIR w.r.t. the hyper-parameter λ. As shown in Figure 10, with λ→
0, DIR degrades to optimize the performance in each environment only, without explicitly penalizing
the shortcuts’ influence on the model predictions. We also see that all testing performances drop
sharply if λ is too large. Since a large weight on the variance term emphasis on the invariance
condition while leading to the overlook on the performance loss, it could fail to exhibit fỸ correctly.
Notably, such a trade-off in the DIR objective is commonly shared among all the datasets.

F.3 STUDY OF THE SPURIOUS CLASSIFIERS

Here we provide more observations about the predictions of the learned spurious classifier, which
sheds light on the designed model mechanism. We first look into the confidence of predictions and
define

ν = E(g,y)∈O,s̃=g/hC̃(g)H (Softmax(ŷs̃)) (16)
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Table 5: Performance of the Spurious Classifiers. ∆ ↓ indicates the performance gap of the spurious
classifiers and the corresponding causal classifiers.

Spurious-Motif (b=0.9) MNIST-75sp GraphSST2 Molhiv

Spurious Classifiers 33.43±0.22 17.09±0.44 81.14±1.35 51.13±1.29

∆ ↓ 6.44 3.27 2.15 25.92

where H is the entropy function, and a lower ν indicates higher confidence. We report the results
for the trained spurious classifiers in Table 4. Thus, the results demonstrate the marked tendency of
the spurious predictions and validate the design of the S−only branch.

However, we show that spurious classifiers are over-confident and potentially overfit to spurious
features, which fails to generalize out-of-distribution. In Table 5, we evaluate the spurious classifiers
(taking non-causal features as inputs) on the testing sets. We argue that the performance degradation
is caused by (i) feature-level problem: it could be theoretically inadequate to infer the label given
the non-causal features, and (ii) paradigm-level problem: minimizing the empirical risk only can
hardly exhibit stable relations between the features and labels.

F.4 COMPARISON OF POST-HOC EXPLANATIONS AND INTRINSIC RATIONALES.

Here we aim to compare the explanations generated by GNNExplainer (Ying et al., 2019) and the
rationales exhibited by DIR. Specifically, we generate post-hoc explanations from GNNExplainer
for Spurious-Motif, where we use the models trained under ERM as the models to explain. We
compute the precision of the explanations in Table 6.

Table 6: Explanation/Rationale Accuracy in Spurious-Motif dataset. The results of DIR is consistent
with Table 1 and we repeat them here for better view.

Balance b=0.5 b=0.7 b=0.9

GNNExplainer 0.249±0.011 0.203±0.019 0.167±0.039 0.066±0.007

DIR 0.257±0.014 0.255±0.016 0.247±0.012 0.192±0.044

The explanations generated by GNNExplainer reflect the models’ inner mechanism, which backs
that deep models easily learn from data bias (especially when b is large), being at odds with the
true reasoning process that underlies the task. Moreover, even when spurious correlations do not
exist, the precisions of rationales generated by DIR still outperform the precisions of the post-hoc
explanations, showing the effectiveness of DIR when identifying causal features.

G OPEN DISCUSSIONS

Based on this work, we provide open discussions and future directions for the research community,
which are inspired by the insightful comments of the ICLR reviewers.

G.1 EXPRESSIVENESS OF RATIONALE GENERATORS

High expressiveness of the rationale generators could be beneficial for the identification of causal
features. Therefore, we have offered additional techniques in our implementation to improve the ex-
pressiveness of the graph encoder. Specifically, we incorporate distance encoding measures (Li et al.,
2020) like shortest-path distances as the extra node features for better structural representation learn-
ing. Also, more powerful graph encoders like RingGNN (Chen et al., 2019) and 3WLGNN (Maron
et al., 2019) can be used as the graph encoders to distinguish different substructures better.
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G.2 GENERALIZATION TO UNSEEN SPURIOUS PATTERNS

In our implementation, the memory bank only contains the spurious patterns seen in the training set,
while it could possibly fail to unseen spurious patterns. And we provide discussions and solutions
to solve this limitation:

• Attribute level perturbation. When the spurious patterns in the testing are different from those in
training set only on the attribute level, we can perturb the node/edge attributes of the subgraphs
before intervention. And such perturbation is expected to improve the model’s robustness during
inference.

• External knowledge base. When the spurious patterns also change on the structure level, for exam-
ple, a star-shaped unseen base graph appears in the testing set of the Spurious-Motif, one potential
solution is to resort to prior knowledge. We can enrich the memory bank with possible spurious
patterns, e.g., tree (seen) and star (unseen) base graphs. With the external knowledge base, the
model can be trained to recognize these possible spurious patterns and be well generalized to the
testing dataset.

• Subgraph matching. In a more tricky scenario when the external knowledge base is not available,
we can integrate our model with subgraph matching algorithms in the inference. For example, we
can extract the training rationales into another bank C̃ and use them to query the testing graphs,
i.e., checking if similar patterns exist in the testing graphs. The match results may assist the
rationale generator in highlighting the causal features and avoiding unseen spurious features.

G.3 HIGHER LEVEL INTERPRETABILITY

The interpretability of GNNs in the feature level implicitly demands the separability of a graph into
causal and non-causal features. At the same time, we see cases going beyond such assumption (cf.
Appendix C.1). We believe we could resort to higher level interpretability. For example,

• Interpretability of representations (Wang et al., 2021a; Chan et al., 2021). Instead of highlighting
important features for the model decisions, the general goal of representation interpretability an-
swers “What’s the information encoded by the i-th element of the embedding in the j-th layer?”.

• Interpretations on top of disentangled variables. Each disentangled latent variable reveals one
independent generative factor in the data (Bengio et al., 2013). By generating importance score
on these variables, we could possibly obtain more semantically rich interpretations than feature-
level interpretability.

Wherein, we believe there are fewer constraints on the separability of features. Thus, the models
equipped with higher level interpretability could be applied to a broader range of data-generating
assumptions.
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