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ABSTRACT
Recommender systems usually amplify the biases in the data. The

model learned from historical interactions with imbalanced item

distribution will amplify the imbalance by over-recommending

items from the majority groups. Addressing this issue is essential

for a healthy ecosystem of recommendation in the long run.

Existing work applies bias control to the ranking targets (e.g.,
calibration, fairness, and diversity), but ignores the true reason

for bias amplification and trades off the recommendation accuracy.

In this work, we scrutinize the cause-effect factors for bias

amplification, identifying the main reason lies in the confounding

effect of imbalanced item distribution on user representation and

prediction score. The existence of such confounder pushes us to go

beyond merely modeling the conditional probability and embrace

the causal modeling for recommendation. Towards this end, we

propose a Deconfounded Recommender System (DecRS), which

models the causal effect of user representation on the prediction

score. The key to eliminating the impact of the confounder lies

in backdoor adjustment, which is however difficult to do due to

the infinite sample space of the confounder. For this challenge, we

contribute an approximation operator for backdoor adjustment

which can be easily plugged into most recommender models. Lastly,

we devise an inference strategy to dynamically regulate backdoor

adjustment according to user status. We instantiate DecRS on two

representativemodels FM [32] and NFM [16], and conduct extensive

experiments over two benchmarks to validate the superiority of

our proposed DecRS.
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1 INTRODUCTION
Recommender System (RS) has been widely used to achieve

personalized recommendation in most online services, such as

social networks and advertising [25, 42]. Its default choice is to learn

user interest from historical interactions (e.g., clicks and purchases),
which typically exhibit data bias, i.e., the distribution over item

groups (e.g., the genre of movies) is imbalanced. Consequently,

recommender models face the bias amplification issue [35]: over-

recommending the majority group and amplifying the imbalance.

Figure 1(a) illustrates this issue with an example in movie

recommendation, where 70% of the movies watched by a user are

action movies, but action movies take 90% of the recommendation

slots. Undoubtedly, over-emphasizing the items from the majority

groups will limit a user’s view and decrease the effectiveness of

recommendations. Worse still, due to feedback loop [7], such bias

amplification will intensify with time, causing more issues like filter

bubbles [23] and echo chambers [14].

Existing work alleviates bias amplification by introducing bias

control into the ranking objective of recommender models, which is

mainly from three perspectives: 1) fairness [22, 34], which pursues

equal exposure opportunities for items of different groups; 2)

diversity [6], which intentionally increases the covered groups

in a recommendation list, and 3) calibration [35], which encourages

the distribution of recommended item groups to follow that of

interacted items of the user. However, these methods alleviate

bias amplification at the cost of sacrificing recommendation

accuracy [34, 35]. More importantly, the fundamental question

is not answered: what is the root reason for bias amplification?

After inspecting the cause-effect factors in recommender

modeling, we attribute bias amplification to a confounder [28]. The
historical distribution of a user over item groups (e.g., [0.7, 0.3]
in Figure 1(a)) is a confounder between the user’s representation

and the prediction score. In the conventional RS, the user/item

representations are then fed into an interaction module (e.g.,
factorization machines (FM) [32]) to calculate the prediction

score [17]. In other words, recommender models estimate the

conditional probability of clicks given user/item representations.

From a causal view, user and item representations are the causes

of the prediction score, and the user historical distribution over

item groups affects both the user representation and the prediction

score. Inevitably, such hidden confounder makes the modeling of

conditional probability suffer from a spurious correlation between

https://doi.org/10.1145/3447548.3467249
https://doi.org/10.1145/3447548.3467249


(a) An example of bias amplification.
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Figure 1: Illustration of bias amplification.

the user and the prediction score. That is, given two item groups, the

one that the user interacted more in the history will receive higher

prediction scores, even though their items have the same matching

level. Figure 1(b) shows empirical evidence from the FM on ML-

1M dataset: among the items with the same ratings (e.g., ratings =
4), the ones in the majority group will receive higher prediction

scores. Therefore, the items in the majority group, including those

undesirable or low-quality ones (see an example in Figure 1(c)),

could deprive the recommendation opportunities of the items in

the minority group.

The key to addressing bias amplification lies in eliminating the

spurious correlation in the recommender modeling. To achieve this

goal, we need to push the conventional RS to go beyond modeling

the conditional probability and embrace the causal modeling

of user representation on the prediction score. We propose a

novel Deconfounded Recommender System (DecRS), which explicitly

models the causal relations during training, and leverages backdoor

adjustment [28] to eliminate the impact of the confounder. However,

the sample space of the confounder is huge, making the traditional

implementation of backdoor adjustment infeasible. To this end,

we derive an approximation of backdoor adjustment, which is

universally applicable to most recommender models. Lastly, we

propose a user-specific inference strategy to dynamically regulate

the influence of backdoor adjustment based on the user status. We

instantiate DecRS on two representative models: FM [32] and neural

factorization machines (NFM) [16]. Extensive experiments over two

benchmarks demonstrate that our DecRS not only alleviates bias

amplification effectively, but also improves the recommendation

accuracy over the backbone models. The code and data are released

at https://github.com/WenjieWWJ/DecRS.

Overall, the main contributions of this work are threefold:

• We construct a causal graph to analyze the causal relations

in recommender models, which reveals the cause of bias

amplification from a causal view.

• We propose a novel DecRS with an approximation of backdoor

adjustment to eliminate the impact of the confounder, which can

be incorporated into existing recommender models to alleviate

bias amplification.

• We instantiate DecRS on two representative recommender

models and conduct extensive experiments on two benchmarks,

which validate the effectiveness of our proposal.
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Figure 2: (a) The causal graph of conventional RS. (b) The
causal graph used in DecRS.

2 METHODOLOGY
In this section, we first analyze the conventional RS from a causal

view and explain the reason for bias amplification, which is followed

by the introduction of the proposed DecRS.

2.1 A Causal View of Bias Amplification
To study bias amplification, we build up a causal graph to explicitly

analyze the causal relations in the conventional RS.

2.1.1 Causal Graph. We scrutinize the causal relations in

recommender models and abstract a causal graph, as shown in

Figure 2(a), which consists of five variables:𝑈 , 𝐼 , 𝐷 ,𝑀 , and 𝑌 . Note

that we use the capital letter (e.g.,𝑈 ), lowercase letter (e.g., 𝒖), and
letter in the calligraphic font (e.g., U) to represent a variable, its

particular value, and its sample space, respectively. In particular,

• 𝑈 denotes user representation. For one user, 𝒖 = [𝒖1, ..., 𝒖𝐾 ]
represents the embeddings of 𝐾 user features (e.g., ID, gender,
and age) [32], where 𝒖𝑘 ∈ R𝐻 is one feature embedding.

• 𝐼 is item representation and each 𝒊 denotes the embeddings of

several item features (e.g., ID and genre) which are similar to 𝒖.
• 𝐷 represents the user historical distribution over item groups.

Groups can be decided by item attributes or similarity [35]. Given

𝑁 item groups {𝑔1, ..., 𝑔𝑁 }, 𝒅𝑢 = [𝑝𝑢 (𝑔1), ..., 𝑝𝑢 (𝑔𝑁 )] ∈ R𝑁 is a

particular value of𝐷 when the user is𝑢, where 𝑝𝑢 (𝑔𝑛) is the click
probability of user 𝑢 over group 𝑔𝑛 in the history

1
. For instance,

for the user 𝑢 in Figure 1(a), 𝒅𝑢 is [0.7, 0.3].
• 𝑀 is the group-level user representation. A particular value 𝒎 ∈
R𝐻 is a vector which describes how much the user likes different

item groups.𝒎 can be obtained from the values of𝑈 and 𝐷 . That

is,𝑀 is deterministic if𝑈 and𝐷 are given so that we can represent

𝒎 by a function𝑀 (𝒅, 𝒖). We incorporate𝑀 into the causal graph

because many recommender models (e.g., FM) have modeled the

user preference over item groups explicitly or implicitly by using

the group-related features (e.g., movie genre).

• 𝑌 with 𝑦 ∈ [0, 1] is the prediction score for the user-item pair.

The edges in the graph describe the causal relations between

variables, e.g.,𝑈 → 𝑌 means that𝑈 has a direct causal effect [28]
on 𝑌 , i.e., changes on𝑈 will affect the value of 𝑌 . In particular,

• 𝐷 → 𝑈 : the user historical distribution over item groups affects

user representation𝑈 , making it favor the majority group. This

is because user representation is optimized to fit the imbalanced

historical data.

1
In this work, we use click to represent any implicit feedback. For brevity, 𝑢 and 𝑖

denote the user and item, respectively. The click probability is obtained by normalizing

the click frequency over groups.

https://github.com/WenjieWWJ/DecRS


• (𝐷,𝑈 ) → 𝑀 :𝐷 and𝑈 decide the group-level user representation.

• (𝑈 ,𝑀, 𝐼 ) → 𝑌 : The edges show that 𝑈 affects 𝑌 by two paths: 1)

the direct path𝑈 → 𝑌 , which denotes the user’s pure preference

over the item; and 2) the indirect path𝑈 → 𝑀 → 𝑌 , indicating

that the prediction score could be high because the user shows

interest in the item group.

According to the causal theory [28], 𝐷 is a confounder between𝑈
and 𝑌 , resulting in the spurious correlation.

2.1.2 Conventional RS. Due to the confounder, existing recom-

mender models that estimate the conditional probability 𝑃 (𝑌 |𝑈 , 𝐼 )
face the spurious correlation, which leads to bias amplification.

Formally, given 𝑈 = 𝒖 and 𝐼 = 𝒊, we can derive the conditional

probability 𝑃 (𝑌 |𝑈 , 𝐼 ) by:
𝑃 (𝑌 |𝑈 = 𝒖, 𝐼 = 𝒊)

=

∑
𝒅∈D

∑
𝒎∈M 𝑃 (𝒅)𝑃 (𝒖 |𝒅)𝑃 (𝒎 |𝒅, 𝒖)𝑃 ( 𝒊)𝑃 (𝑌 |𝒖, 𝒊,𝒎)

𝑃 (𝒖)𝑃 ( 𝒊) (1a)

=
∑
𝒅∈D

∑
𝒎∈M

𝑃 (𝒅 |𝒖)𝑃 (𝒎 |𝒅, 𝒖)𝑃 (𝑌 |𝒖, 𝒊,𝒎) (1b)

=
∑
𝒅∈D

𝑃 (𝒅 |𝒖)𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅, 𝒖)) (1c)

= 𝑃 (𝒅𝑢 |𝒖)𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅𝑢 , 𝒖)), (1d)

where D andM are the sample spaces of 𝐷 and𝑀 , respectively
2
.

In particular, Eq. (1a) follows the law of total probability; Eq. (1b) is

obtained by Bayes rule; since𝑀 can only take a value𝑀 (𝒅, 𝒖), the
sum over M in Eq. (1b) is removed, i.e., 𝑃 (𝑀 (𝒅, 𝒖) |𝒅, 𝒖) = 1; and

𝐷 is known if 𝑈 = 𝒖 is given. Thus 𝑃 (𝒅 |𝒖) is 1 if and only if 𝒅 is

𝒅𝑢 ; otherwise 𝑃 (𝒅 |𝒖) = 0, where 𝒅𝑢 is the historical distribution of

user 𝑢 over item groups.

From Eq. (1d), we can find that 𝒅𝑢 does not only affect the

user representation 𝒖 but also affects 𝑌 via𝑀 (𝒅𝑢 , 𝒖), causing the
spurious correlation: given the item 𝑖 in a group 𝑔𝑛 , the more items

in group 𝑔𝑛 the user 𝑢 has clicked in the history, the higher the

prediction score 𝑌 becomes. In other words, the high prediction

scores are caused by the users’ historical interest in the group

instead of the items themselves. From the perspective of model

prediction, 𝒅𝑢 affects 𝒖, which makes 𝒖 favor the majority group. In

Eq. (1d), a higher click frequency 𝑝𝑢 (𝑔𝑛) in 𝒅𝑢 will make𝑀 (𝒅𝑢 , 𝒖)
represent a strong interest in group 𝑔𝑛 , increasing the prediction

scores of items in group 𝑔𝑛 via 𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅𝑢 , 𝒖)). Consequently,
the items in the majority group occupy the recommendation

opportunities of items in the minority group, leading to bias

amplification.

The spurious correlation is harmful for most users because

the items in the majority group are likely to dominate the

recommendation list and narrow down the user interest. Besides,

the undesirable and low-quality items in the majority group

will dissatisfy users, leading to poor recommendation accuracy.

Worse still, by analyzing Eq. 1(d), we have a new observation: the

prediction score 𝑌 heavily relies on the user historical distribution

over item groups, i.e., 𝒅𝑢 . Once 𝒅𝑢 exhibits drift along time (see

3(a)), the recommendations will be dissatisfying.

2
Theoretically, 𝐷 has an infinite sample space. But the values are finite in a specific

dataset. To simplify the notations, we use the discrete set D to represent the sample

space of 𝐷 , and so is𝑀 .
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2.2 Deconfounded Recommender System
To resolve the impact of the confounder, DecRS estimates the causal

effect of user representation on the prediction score. Experimentally,

the target can be achieved by collecting intervened data where the

user representation is forcibly adjusted to eliminate the impact

of the confounder. However, such an experiment is too costly to

achieve in large-scale and faces the risk of hurting user experience

in practice. DecRS thus resorts to the causal technique: backdoor
adjustment [28, 29, 44], which enables the estimation of causal effect

from the observational data.

2.2.1 Backdoor Adjustment. According to the theory of backdoor

adjustment [28], the target of DecRS is formulated as: 𝑃 (𝑌 |𝑑𝑜 (𝑈 =

𝒖), 𝐼 = 𝒊) where 𝑑𝑜 (𝑈 = 𝒖) can be intuitively seen as cutting off the

edge 𝐷 → 𝑈 in the causal graph and blocking the effect of 𝐷 on𝑈

(cf. Figure 2(b)). We then derive the specific expression of backdoor

adjustment. Formally,

𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝐼 = 𝒊)

=
∑
𝒅∈D

𝑃 (𝒅 |𝑑𝑜 (𝑈 = 𝒖))𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝒊, 𝑀 (𝒅, 𝑑𝑜 (𝑈 = 𝒖))) (2a)

=
∑
𝒅∈D

𝑃 (𝒅)𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝒊, 𝑀 (𝒅, 𝑑𝑜 (𝑈 = 𝒖))) (2b)

=
∑
𝒅∈D

𝑃 (𝒅)𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅, 𝒖)), (2c)

where the derivation of Eq. (2a) is the same as Eq. (1c), which follows

the law of total probability and Bayes rule. Besides, Eq. (2b) and

Eq. (2c) are obtained by two do calculus rules: insertion/deletion of
actions and action/observation exchange in Theorem 3.4.1 of [28].

As compared to Eq. 1(d), DecRS estimates the prediction score

with consideration of every possible value of 𝐷 subject to the prior

𝑃 (𝒅), rather than the probability of 𝒅 conditioned on 𝒖. Therefore,
the items in the majority group will not receive high prediction

scores purely because of a high click probability in 𝒅𝑢 . It thus
alleviates bias amplification.

Intuitively, as shown in Figure 3(b), 𝐷 has extensive possible

values in a specific dataset, i.e., users have various historical

distributions over item groups. In DecRS, the prediction score 𝑌

considers various possible values of 𝐷 . As such, 1) DecRS removes

the dependency on 𝒅𝑢 in Eq. 1(d) and mitigates the spurious



correlation, and 2) theoretically, when user interest drift happens,

DecRS can produce more robust and satisfying recommendations

because the model has “seen” many different values of 𝐷 during

training and doesn’t heavily depend on the unreliable distribution

𝒅𝑢 in Eq. 1(d).

2.2.2 Backdoor Adjustment Approximation. Theoretically, the

sample space of 𝐷 is infinite, which makes the calculation of Eq.

(2c) intractable. Therefore, it is essential to derive an efficient

approximation of Eq. (2c).

• Sampling of 𝐷 . To estimate the distribution of 𝐷 , we sample

users’ historical distributions over item groups in the training data,

which comprise a discrete set
˜D. Formally, given a user 𝑢, 𝒅𝑢 =

[𝑝𝑢 (𝑔1), ..., 𝑝𝑢 (𝑔𝑁 )] ∈ ˜D and each click frequency 𝑝𝑢 (𝑔𝑛) over
group 𝑔𝑛 is calculated by:

𝑝𝑢 (𝑔𝑛) =
∑
𝑖∈I

𝑝 (𝑔𝑛 |𝑖)𝑝 (𝑖 |𝑢) =
∑
𝑖∈H𝑢 𝑞

𝑖
𝑔𝑛

|H𝑢 |
, (3)

where I is the set of all items, H𝑢 denotes the clicked item set

by user 𝑢, and 𝑞𝑖𝑔𝑛 represents the probability of item 𝑖 belonging

to group 𝑔𝑛 . For instance, 𝒒𝑖 = [1, 0, 0] with 𝑞𝑖𝑔1

= 1 denotes that

item 𝑖 only belongs to the first group. In this work, we sample 𝐷

according to the user-item interactions in the training data, and

thus the probability 𝑃 (𝒅𝑢 ) of user 𝑢 is obtained by
|H𝑢 |∑
𝑣∈U H𝑣

where

U represents the user set. After that, we can estimate Eq. (2c) by:

𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝐼 = 𝒊) ≈
∑
𝒅∈ ˜D

𝑃 (𝒅)𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅, 𝒖))

=
∑
𝒅∈ ˜D

𝑃 (𝒅) 𝑓 (𝒖, 𝒊, 𝑀 (𝒅, 𝒖)),
(4)

where each 𝒅 is a distribution from one user, and we use a

function 𝑓 (·) (e.g., FM [32]) to calculate the conditional probability

𝑃 (𝑌 |𝒖, 𝒊, 𝑀 (𝒅, 𝒖)), similar to conventional recommender models.

• Approximation of E𝒅 [𝑓 (·)]. The expected value of function

𝑓 (·) of 𝒅 in Eq. 4 is hard to compute because we need to calculate the

results of 𝑓 (·) for each 𝒅 and the possible values in
˜D are extensive.

A popular solution [1, 38] in statistics and machine learning theory

is to make the approximation E𝒅 [𝑓 (·)] ≈ 𝑓 (𝒖, 𝒊, 𝑀 (E𝒅 [𝒅], 𝒖)).
Formally, the approximation takes the outer sum

∑
𝒅 𝑃 (𝒅) 𝑓 (·) into

the calculation within 𝑓 (·):

𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝐼 = 𝒊) ≈ 𝑓 (𝒖, 𝒊, 𝑀 (
∑
𝒅∈ ˜D

𝑃 (𝒅)𝒅, 𝒖)) .
(5)

The error of the approximation 𝜖 is measured by the Jensen gap [1]:

𝜖 = |E𝒅 [𝑓 (·)] − 𝑓 (𝒖, 𝒊, 𝑀 (E𝒅 [𝒅], 𝒖)) |. (6)

Theorem 2.1. If 𝑓 is a linear function with a random variable 𝑋
as the input, then 𝐸 [𝑓 (𝑋 )] = 𝑓 (𝐸 [𝑋 ]) holds under any probability
distribution 𝑃 (𝑋 ). Refer to [1, 13] for the proof.

Theorem 2.2. If a random variable 𝑋 with the probability
distribution 𝑃 (𝑋 ) has the expectation 𝜇, and the non-linear function
𝑓 : 𝐺 → R where 𝐺 is a closed subset of R, following:

(1) 𝑓 is bounded on any compact subset of 𝐺 ;
(2) |𝑓 (𝑥) − 𝑓 (𝜇) | = 𝑂 ( |𝑥 − 𝜇 |𝛽 ) at 𝑥 → 𝜇 for 𝛽 > 0;
(3) |𝑓 (𝑥) | = 𝑂 ( |𝑥 |𝛾 ) as 𝑥 → +∞ for 𝛾 ≥ 𝛽 ,

Table 1: Key notations and descriptions.
Notation Description

𝒖 = [𝒖1, ..., 𝒖𝐾 ], 𝒖𝑘 ∈ R𝐻 The representation vectors of 𝐾 user features.

𝒙𝑢 = [𝑥𝑢,1, ..., 𝑥𝑢,𝐾 ] The feature values of a user’s 𝐾 features [32], e.g.,
[0.5, 1, ..., 0.2].

𝒅𝑢 = [𝑝𝑢 (𝑔1), ..., 𝑝𝑢 (𝑔𝑁 ) ] 𝑝𝑢 (𝑔𝑛) denotes the click frequency of user𝑢 over

group 𝑔𝑛 in the history, e.g., 𝒅𝑢 = [0.8, 0.2].

𝒎 = 𝑀 (𝒅, 𝒖) ∈ R𝐻 The group-level representation of user 𝑢 under a

historical distribution 𝒅 .

H𝑢 The set of the items clicked by user 𝑢.

U, I The user and item sets, respectively.

𝒒𝑖 = [𝑞𝑖𝑔
1

, ..., 𝑞𝑖𝑔𝑁
] ∈ R𝑁 𝑞𝑖𝑔𝑛 denotes the probability of item 𝑖 belonging to

group 𝑔𝑛 , e.g., 𝒒𝑖 = [1, 0, 0].
𝒗 = [𝒗1, ..., 𝒗𝑁 ], 𝒗𝑛 ∈ R𝐻 𝒗𝑛 denotes the representation of group 𝑔𝑛 .

𝜂𝑢 , 𝜂𝑢
The symmetric KL divergence value of user 𝑢 and

the normalized one, respectively.

then the inequality holds: |E[𝑓 (𝑋 )] − 𝑓 (𝜇) | ≤ 𝑇 (𝜌𝛽
𝛽
+ 𝜌𝛾𝛾 ), where

𝜌𝛽 =
𝛽

√
E[|𝑋 − 𝜇 |𝛽 ], and 𝑇 = sup𝑥 ∈𝐺\{𝜇 }

|𝑓 (𝑥)−𝑓 (𝜇) |
|𝑥−𝜇 |𝛽+|𝑥−𝜇 |𝛾 does not

depend on 𝑃 (𝑋 ). The proof can be found in [13].

From Theorem 2.1, we know that the error 𝜖 in Eq. 6 is zero if 𝑓 (·)
in Eq. 5 is a linear function. However, most existing recommender

models use non-linear functions to increase the representation

capacity. In these cases, there is an upper bound of 𝜖 which can

be estimated by Theorem 2.2. It can be proven that the common

non-linear functions in recommender models satisfy the conditions

in Theorem 2.2, and the upper bound is small, especially when the

distribution of 𝐷 concentrates around its expectation [13].

2.3 Backdoor Adjustment Operator
To facilitate the usage of DecRS, we design the operator to

instantiate backdoor adjustment, which can be easily plugged into

recommender models to alleviate bias amplification. From Eq. 5,

we can find that in addition to 𝒖 and 𝒊, 𝑓 (·) takes 𝑀 ( ¯𝒅, 𝒖) as the
model input where

¯𝒅 =
∑
𝒅∈ ˜D 𝑃 (𝒅)𝒅. That is, if we can implement

𝑀 ( ¯𝒅, 𝒖), existing recommender models can take it as one additional

input to achieve backdoor adjustment.

Recall that 𝑀 denotes the group-level user representation

which describes the user preference over item groups. Given

¯𝒅 = [𝑝 (𝑔1), ..., 𝑝 (𝑔𝑁 )], item group representation 𝒗 = [𝒗1, ..., 𝒗𝑁 ],
and user representation 𝒖 = [𝒖1, ..., 𝒖𝐾 ] with feature values 𝒙𝑢 =

[𝑥𝑢,1, ..., 𝑥𝑢,𝐾 ] [16], we calculate𝑀 ( ¯𝒅, 𝒖) by:

𝑀 ( ¯𝒅, 𝒖) =
𝑁∑
𝑎=1

𝐾∑
𝑏=1

𝑝 (𝑔𝑎)𝒗𝑎 ⊙ 𝑥𝑢,𝑏𝒖𝑏 , (7)

where ⊙ denotes the element-wise product, and 𝒗𝑎 ∈ R𝐻 is the

item group representation for group 𝑔𝑎 proposed by us, which is

randomly initialized like 𝒖. The feature values in 𝒙𝑢 are usually one,

but in some special cases, it could be a float number. For instance,

a user may have two jobs and the feature value for these two

features can be set as 0.5 separately. Besides, we can also leverage

a FM module [32] or other high-order operators [10]. Formally,

we can obtain 𝒘 = [ ¯𝒅, 𝒙𝑢 ] = [𝑝 (𝑔1), ..., 𝑝 (𝑔𝑁 ), 𝑥𝑢,1, ..., 𝑥𝑢,𝐾 ] and
𝒄 = [𝒗, 𝒖] = [𝒗1, ..., 𝒗𝑁 , 𝒖1, ..., 𝒖𝐾 ] via concatenation, and then



𝑀 ( ¯𝒅, 𝒖) can be calculated by a second-order FM module:

𝑀 ( ¯𝒅, 𝒖) =
𝑁+𝐾∑
𝑎=1

𝑁+𝐾∑
𝑏=1

𝑤𝑎𝒄𝑎 ⊙𝑤𝑏𝒄𝑏 , (8)

where 𝑀 ( ¯𝒅, 𝒖) considers the interactions within 𝒖 and 𝒗 like FM,

which is the main difference from Eq. 7.

Next, the group-level user representation 𝑀 ( ¯𝒅, 𝒖) can be

incorporated into existing recommender models as one additional

user representation. Formally, if the generalized recommender

models (e.g., FM) are able to incorporate multiple feature

representations,𝑀 ( ¯𝒅, 𝒖) is directly fed into the models to calculate

𝑓 (𝒖, 𝒊, 𝑀 ( ¯𝒅, 𝒖)). Otherwise, 𝑓 (·) can be implemented by a later-

fusion manner [40], i.e., 𝑓 (·) = 𝛿 ∗ 𝑓 ′ (𝒖, 𝒊) + (1− 𝛿) ∗ 𝑓 ′ (𝑀 ( ¯𝒅, 𝒖), 𝒊)
where 𝛿 is a hyperparameter and 𝑓

′ (·) denotes the interaction

module (e.g., dot product) in recommender models to calculate

the prediction score given user/item representations, such as

neural collaborative filtering [17]. Then the parameters 𝜃 in the

recommender models are optimized by:

arg min

𝜃

∑
(𝑢,𝑖,𝑦𝑢,𝑖 ) ∈T

𝑙
(
𝑓 (𝒖, 𝒊, 𝑀 ( ¯𝒅, 𝒖)), 𝑦𝑢,𝑖

)
,

(9)

where 𝑦𝑢,𝑖 ∈ {0, 1} represents whether user 𝑢 has interacted with

item 𝑖 (i.e., 𝑦𝑢,𝑖 = 1) or not (i.e., 𝑦𝑢,𝑖 = 0), T denotes the training

data, and 𝑙 (·) is the loss function, e.g., log loss [17].

2.4 Inference Strategy
As mentioned before, DecRS alleviates bias amplification and

produces more robust predictions when user interest drift happens.

Indeed, for some users, bias amplification might be beneficial to

exclude the item groups they dislike. For example, users might only

like action movies so that they don’t watch the movies in other

groups. In these special cases, it makes sense to purely recommend

extensive action movies. Therefore, it is better to develop a user-

specific inference strategy to regulate the impact of backdoor

adjustment dynamically.

By analyzing the user behavior, we find that many users have

diverse interest and are likely to have interest drift while few

users have stable interest. This inspires us to explore the user

characteristics: is this user easy to change the interest distribution

over item groups? Based on that, we propose a user-specific

inference strategy for item ranking. If the user is easy to change the

interest distribution over item groups in the history, we assume that

he/she has diverse interest and will change it easily in future. And

thus backdoor adjustment is essential to alleviate bias amplification.

Otherwise, the impact of backdoor adjustment should be controlled.

• Symmetric KL Divergence. We employ the symmetric

Kullback–Leibler (KL) divergence to quantify the user interest drift

in the history. In detail, we divide the historical interaction sequence

of user 𝑢 into two parts according to the timestamps. For each part,

we calculate the historical distribution over item groups by Eq. 3,

obtaining 𝒅1

𝑢 = [𝑝1

𝑢 (𝑔1), ..., 𝑝1

𝑢 (𝑔𝑁 )] and 𝒅2

𝑢 = [𝑝2

𝑢 (𝑔1), ..., 𝑝2

𝑢 (𝑔𝑁 )].
Then, the distance between these two distributions is measured by

the symmetric KL divergence:

𝜂𝑢 = 𝐾𝐿(𝒅1

𝑢 |𝒅2

𝑢 ) + 𝐾𝐿(𝒅2

𝑢 |𝒅1

𝑢 )

=

𝑁∑
𝑛=1

𝑃1

𝑢 (𝑔𝑛) log

𝑃1

𝑢 (𝑔𝑛)
𝑃2

𝑢 (𝑔𝑛)
+
𝑁∑
𝑛=1

𝑃2

𝑢 (𝑔𝑛) log

𝑃2

𝑢 (𝑔𝑛)
𝑃1

𝑢 (𝑔𝑛)
,

(10)

where 𝜂𝑢 denotes the distribution distance of user 𝑢. A higher 𝜂𝑢
represents that the user is easier to change the interest distribution

over item groups. Here, we only divide the historical interaction

sequence into two parts to reduce the computation cost. More fine-

grained division can be explored in future work if necessary.

Based on the signal of 𝜂𝑢 , we utilize an inference strategy to

adaptively fuse the prediction scores from the conventional RS

and DecRS. Specifically, we first train the recommender model by

𝑃 (𝑌 |𝑈 = 𝒖, 𝐼 = 𝒊) and 𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝐼 = 𝒊), respectively, and
their prediction scores are then automatically fused to regulate the

impact of backdoor adjustment. Formally,

𝑌𝑢,𝑖 = (1 − 𝜂𝑢 ) ∗ 𝑌𝑅𝑆𝑢,𝑖 + 𝜂𝑢 ∗ 𝑌𝐷𝐸𝑢,𝑖 , (11)

where 𝑌𝑢,𝑖 is the inference score for user 𝑢 and item 𝑖 , 𝑌𝑅𝑆
𝑢,𝑖

and

𝑌𝐷𝐸
𝑢,𝑖

are the prediction scores from the conventional RS and DecRS,

respectively. In particular, 𝜂𝑢 is calculated by:

𝜂𝑢 = ( 𝜂𝑢 − 𝜂𝑚𝑖𝑛
𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛

)𝛼 , (12)

where the normalized 𝜂𝑢 ∈ [0, 1], 𝜂𝑚𝑖𝑛 and 𝜂𝑚𝑎𝑥 are the minimum

and maximum symmetric KL divergence values across all users,

respectively. Besides, 𝛼 ∈ [0, +∞) is a hyper-parameter to further

control the weights of 𝑌𝑅𝑆
𝑢,𝑖

and 𝑌𝐷𝐸
𝑢,𝑖

by human intervention.

Specifically, 𝜂𝑢 becomes larger if 𝛼 → 0 due to 𝜂𝑢 ∈ [0, 1] which
makes 𝑌𝑢,𝑖 favor 𝑌

𝐷𝐸
𝑢,𝑖

, and 𝜂𝑢 decreases if 𝛼 → +∞.

From Eq. 11, we can find that the inference for the users with

high 𝜂𝑢 will rely more on 𝑌𝐷𝐸
𝑢,𝑖

. That is, 𝜂𝑢 automatically adjusts

the balance between 𝑌𝑅𝑆
𝑢,𝑖

and 𝑌𝐷𝐸
𝑢,𝑖

. Besides, we can regulate the

impact of backdoor adjustment by tuning the hyper-parameter 𝛼 in

Eq. 12 for different datasets or recommender models. Theoretically,

𝛼 is usually close to 0 because mitigating the spurious correlation

improves the recommendation accuracy for most users.

To summarize, the proposed DecRS has three main differences

from the conventional RS:

• DecRS models the causal effect 𝑃 (𝑌 |𝑑𝑜 (𝑈 = 𝒖), 𝐼 = 𝒊) instead of

the conditional probability 𝑃 (𝑌 |𝑈 = 𝒖, 𝐼 = 𝒊).
• DecRS equips the recommender models with a backdoor

adjustment operator (Eq. 8).

• DecRS makes recommendations with a user-specific inference

strategy instead of the simple model prediction (e.g., a forward
propagation).

3 RELATEDWORK
In this work, we explore how to alleviate bias amplification of

recommender models by causal inference, which is highly related

to fairness, diversity, and causal recommendation.

Negative Effect of Bias Amplification. Due to the existence

of feedback loop [7], bias amplification will become increasingly

serious. Consequently, it will result in many negative issues: 1)

narrowing down the user interest gradually, which is similar



to the effect of filter bubbles [23]. Worse still, the issue might

evolve into echo chambers [14], in which users’ imbalanced interest

is further reinforced by the repeated exposure to similar items;

2) low-quality items that users dislike might be recommended

purely because they are in the majority group, which deprive the

recommendation opportunities of other high-quality items, causing

low recommendation accuracy and unfairness.

Fairness in Recommendation. With the increasing attention

on the fairness of machine learning algorithms [20], many

studies explore the definitions of fairness in recommendation and

information retrieval [21, 27, 30]. Generally speaking, they have

two categories: individual fairness and group fairness. Individual

fairness denotes that similar individuals (e.g., users or items)

should receive similar treatments (e.g., exposure or clicks), such as

amortized equity of attention [3]. Besides, group fairness indicates

that all groups are supposed to be treated fairly where individuals

are divided into groups according to the protected attributes (e.g.,
item category and user gender) [22]. The particular definitions span

from discounted cumulative fairness [46], fairness of exposure [34],

to multi-sided fairness [5].

Another representative direction in fairness to reduce bias

amplification is calibrated recommendation [35]. It re-ranks

the items to make the distribution of the recommended item

groups follow the proportion in the browsing history. For

example, if a user has watched 70% action movies and 30%

romance movies, the recommendation list is expected to have the

same proportion. Although the fairness-related studies, including

calibrated recommendation, may alleviate bias amplification well,

they are making the trade-off between ranking accuracy and

fairness [22, 34, 35]. The reason possibly lies in that they neglect

the true cause of bias amplification.

Diversity in Recommendation. Diversity is regarded as one

essential direction to get users out of filter bubbles in the

information filtering systems [35]. As to recommendation, diversity

pursues the dissimilarity of the recommended items [8, 36], where

similarity can be measured by many factors, such as item category

and embeddings [6, 18]. However, most studies might recommend

many dissatisfying items when making diverse recommendations.

For example, the recommender model may trade off the accuracy

to reduce the intra-list similarity by re-ranking [49].

Causal Recommendation.Causal inference has beenwidely used
in many machine learning applications, spanning from computer

vision [26, 37], natural language processing [11, 12], to information

retrieval [4, 47]. In recommendation, most studies on causal

inference [28] focus on debiasing various biases in user feedback,

including position bias [19], clickbait issue [40], and popularity

bias [48]. The most representative idea in the existing work is

Inverse Propensity Scoring (IPS) [2, 31, 44], which first estimates the

propensity score based on some assumptions, and then uses the

inverse propensity score to re-weight the samples. For instance,

Saito et al. estimated the exposure propensity for each user-item

pair, and re-weighted the samples via IPS to solve the miss-not-at-

random problem [33]. However, IPS methods heavily rely on the

accurate propensity estimation, and usually suffer from the high

propensity variance. Thus it is often followed by the propensity

Table 2: The statistics of the datasets.
Dataset #Users #Items #Interactions #Features #Group
ML-1M 3,883 6,040 575,276 13,408 18

Amazon-Book 29,115 16,845 1,712,409 46,213 253

clipping technique [2, 33]. Another line of causal recommendation

studies the effect of taking recommendations as treatments on

user/system behaviors [50], which is totally different from our

work because we focus on debiasing recommendation.

4 EXPERIMENTS
We conduct extensive experiments to demonstrate the effectiveness

of our DecRS by investigating the following research questions:

• RQ1: How does the proposed DecRS perform across different

users in terms of recommendation accuracy?

• RQ2: How does DecRS perform to alleviate bias amplification,

compared to the state-of-the-art methods?

• RQ3: How do the different components affect the performance

of DecRS, such as the inference strategy and the implementation

of function𝑀 (·)?

4.1 Experimental Settings
Datasets.We use two benchmark datasets, ML-1M and Amazon-

Book, in different real-world scenarios. 1) ML-1M is a movie

recommendation dataset
3
, which involves rich user/item features,

such as user gender, and movie genre. We partition the items into

groups according to the movie genre. 2) Amazon-Book is one of the

Amazon product datasets
4
, where the book items can be divided

into groups based on the book category (e.g., sports). To ensure data
quality, we adopt the 20-core settings, i.e., discarding the users and

items with less than 20 interactions. We summarize the statistics of

datasets in Table 2.

For each dataset, we sort the user-item interactions by the

timestamps, and split them into the training, validation, and testing

subsets with the ratio of 80%, 10%, and 10%. For each interactionwith

the rating ≥ 4, we treat it as a positive instance. During training, we

adopt the negative sampling strategy to randomly sample one item

that the user did not interact with before as a negative instance.

Baselines. As our proposed DecRS is model-agnostic, we

instantiate it on two representative recommender models, FM [32]

and NFM [16], to alleviate bias amplification and boost the

predictive performance. We compare DecRS with the state-of-the-

art methods that might alleviate bias amplification of FM and NFM

backbone models. In particular,

• Unawareness [15, 20] removes the features of item groups (e.g.,
movie genre in ML-1M) from the input of item representation 𝐼 .

• FairCo [22] introduces one error term to control the exposure

fairness across item groups. In this work, we calculate the error

term based on the ranking list sorted by relevance, and its

coefficient 𝜆 in the ranking target is tuned in {0.01, 0.02, ..., 0.5}.
• Calibration [35] is one state-of-the-art method to alleviate bias

amplification. Specifically, it proposes a calibration metric𝐶𝐾𝐿 to

measure the imbalance between the history and recommendation

3
https://grouplens.org/datasets/movielens/1m/.

4
https://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens/1m/.
https://jmcauley.ucsd.edu/data/amazon/.


Table 3: Overall performance comparison between DecRS and the baselines on ML-1M and Amazon-Book. %improv. denotes
the relative performance improvement achieved by DecRS over FM or NFM. The best results are highlighted in bold.

FM NFM

Method ML-1M Amazon-Book ML-1M Amazon-Book
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

FM/NFM [16, 32] 0.0676 0.1162 0.0566 0.0715 0.0213 0.0370 0.0134 0.0187 0.0659 0.1135 0.0551 0.0697 0.0222 0.0389 0.0144 0.0199

Unawareness [15] 0.0679 0.1179 0.0575 0.0730 0.0216 0.0377 0.0138 0.0191 0.0648 0.1143 0.0556 0.0708 0.0206 0.0381 0.0133 0.0190

FairCo [22] 0.0676 0.1165 0.0570 0.0720 0.0212 0.0370 0.0135 0.0188 0.0651 0.1152 0.0554 0.0708 0.0219 0.0390 0.0142 0.0199

Calibration [35] 0.0647 0.1149 0.0539 0.0695 0.0202 0.0359 0.0129 0.0181 0.0636 0.1131 0.0526 0.0682 0.0194 0.0335 0.0131 0.0178

Diversity [49] 0.0670 0.1159 0.0555 0.0706 0.0207 0.0369 0.0131 0.0185 0.0641 0.1133 0.0540 0.0693 0.0215 0.0386 0.0140 0.0197

IPS [33] 0.0663 0.1188 0.0556 0.0718 0.0213 0.0369 0.0135 0.0187 0.0648 0.1135 0.0544 0.0692 0.0213 0.0370 0.0137 0.0189

DecRS 0.0704 0.1231 0.0578 0.0737 0.0231 0.0405 0.0148 0.0205 0.0694 0.1218 0.0580 0.0742 0.0236 0.0413 0.0153 0.0211
%improv. 4.14% 5.94% 2.12% 3.08% 8.45% 9.46% 10.45% 9.63% 5.31% 7.31% 5.26% 6.46% 6.31% 6.17% 6.25% 6.03%

Table 4: Performance comparison across different user groups on ML-1M and Amazon-Book. Each line denotes the
performance over the user group with 𝜂𝑢 > the threshold. We omit the results of threshold > 4 due to the similar trend.

ML-1M Amazon-Book
FM R@20 N@20 R@20 N@20

Threshold FM DecRS %improv. FM DecRS %improv. FM DecRS %improv. FM DecRS %improv.
0 0.1162 0.1231 5.94% 0.0715 0.0737 3.08% 0.0370 0.0405 9.46% 0.0187 0.0205 9.63%

0.5 0.1215 0.1296 6.67% 0.0704 0.0730 3.69% 0.0383 0.0424 10.70% 0.0192 0.0213 10.94%

1 0.1303 0.1412 8.37% 0.0707 0.0741 4.81% 0.0430 0.0479 11.40% 0.0208 0.0232 11.54%

2 0.1432 0.1646 14.94% 0.0706 0.0786 11.33% 0.0518 0.0595 14.86% 0.0231 0.0274 18.61%

3 0.1477 0.1637 10.83% 0.0620 0.0711 14.68% 0.0586 0.0684 16.72% 0.0256 0.0318 24.22%

4 0.1454 0.1768 21.60% 0.0595 0.0737 23.87% 0.0659 0.0793 20.33% 0.0284 0.0362 27.46%

NFM R@20 N@20 R@20 N@20
Threshold NFM DecRS %improv. NFM DecRS %improv. NFM DecRS %improv. NFM DecRS %improv.

0 0.1135 0.1218 7.31% 0.0697 0.0742 6.46% 0.0389 0.0413 6.17% 0.0199 0.0211 6.03%

0.5 0.1187 0.1280 7.83% 0.0688 0.0735 6.83% 0.0401 0.0426 6.23% 0.0202 0.0218 7.92%

1 0.1272 0.1391 9.36% 0.0692 0.0747 7.95% 0.0438 0.0473 7.99% 0.0212 0.0234 10.38%

2 0.1452 0.1584 9.09% 0.0701 0.0771 9.99% 0.0530 0.0580 9.43% 0.0234 0.0269 14.96%

3 0.1478 0.1740 17.73% 0.0639 0.0723 13.15% 0.0614 0.0660 7.49% 0.0275 0.0319 16.00%

4 0.1442 0.1775 23.09% 0.0542 0.0699 28.97% 0.0709 0.0795 12.13% 0.0308 0.0371 20.45%

list, and minimizes𝐶𝐾𝐿 by re-ranking. Here the hyper-parameter

𝜆 in the ranking target is searched in {0.01, 0.02, ..., 0.5}.
• Diversity [49] aims to decrease the intra-list similarity, where

the diversification factor is tuned in {0.01, 0.02, ..., 0.2}.
• IPS [33] is a classical method in causal recommendation. Here we

use 𝑃 (𝒅𝑢 ) as the propensity of user𝑢 to down-weight the items in

the majority group during debiasing training, and we employ the

propensity clipping technique [33] to reduce propensity variance,

where the clipping threshold is searched in {2, 3, ..., 10}.

Evaluation Metrics. We evaluate the performance of all methods

from two perspectives: recommendation accuracy and effectiveness

of alleviating bias amplification. In terms of accuracy, two widely-

used metrics [24, 43], Recall@K (R@K) and NDCG@K (N@K), are

adopted under all ranking protocol [39, 42], which test the top-K

recommendations over all items that users never interact with in

the training data. As to alleviating bias amplification, we use the

representative calibration metric 𝐶𝐾𝐿 [35], which quantifies the

distribution drift over item groups between the history and the new

recommendation list (comprised by the top-20 items). Higher 𝐶𝐾𝐿
scores suggest a more serious issue of bias amplification.

Parameter Settings. We implement our DecRS in the PyTorch

implementation of FM and NFM. Closely following the original

papers [16, 32], we use the following settings: in FM and NFM,

the embedding size of user/item features is 64, log loss [17] is

applied and the optimizer is set as Adagrad [9]; in NFM, a 64-

dimension fully-connected layer is used. We adopt a grid search

to tune their hyperparameters: the learning rate is searched in

{0.005, 0.01, 0.05}; the batch size is tuned in {512, 1024, 2048};
the normalization coefficient is searched in {0, 0.1, 0.2}, and the

dropout ratio is confirmed in {0.2, 0.3, ..., 0.5}. Besides, 𝛼 in the

proposed inference strategy is tuned in {0.1, 0.2, ..., 10}, and the

model performs the best in {0.2, 0.3, 0.4}, where 𝛼 is close to 0,

proving the advantages of our DecRS over the conventional RS as

discussed in Section 2.4. We use Eq. 8 to implement 𝑀 ( ¯𝒅, 𝒖) and
the backbone models take 𝑀 ( ¯𝒅, 𝒖) as one additional feature. The
exploration of the late-fusion manner is left to future work because

it is not our main contribution. Furthermore, we use the early

stopping strategy [41, 45] — stop training if R@10 on the validation

set does not increase for 10 successive epochs. For all approaches,

we tune the hyper-parameters to choose the best modelsw.r.t. R@10

on the validation set, and report the results on the testing set.

4.2 Performance Comparison (RQ1 & RQ2)
4.2.1 Overall Performance w.r.t. Accuracy. We present the

empirical results of all baselines and DecRS in Table 3. Moreover,

to further analyze the characteristics of DecRS, we split users into

groups based on the symmetric KL divergence (cf. Eq. 10) and report



the performance comparison over the user groups in Table 4. From

the two tables, we have the following findings:

• Unawareness and FairCo only achieve comparable performance

or marginal improvements over the vanilla FM and NFM on the

two datasets. Possible reasons are the trade-offs among different

user groups. To be more specific, for some users, discarding

group features or preserving group fairness is able to reduce bias

amplification and recommend more satisfying items. However,

for most users with imbalanced interest in item groups, these

approaches possibly recommend many disappointing items by

pursuing group fairness.

• Calibration and Diversity perform worse than the vanilla

backbonemodels, suggesting that simple re-ranking does hurt the

recommendation accuracy. This is consistent with the findings in

[35, 49]. Moreover, we ascribe the inferior performance of IPS to

the inaccurate estimation and high variance of propensity scores.

That is, the propensity cannot precisely estimate the effect of 𝐷

on𝑈 , even if the propensity clipping technique [33] is applied.

• DecRS effectively improves the recommendation performance of

FM andNFMon the two datasets. As shown in Table 3, the relative

improvements of DecRS over FM w.r.t. R@20 are 5.94% and 9.46%

on ML-1M and Amazon-Book, respectively. This verifies the

effectiveness of backdoor adjustment, which enables DecRS to

remove the effect of confounder for many users. As a result, many

less-interested or low-quality items from the majority group will

not be recommended, thus increasing the accuracy.

• As Table 4 shows, with the increase of 𝜂𝑢 , the performance

gap between DecRS and the backbone models becomes larger.

For example, in the user group with 𝜂𝑢 > 4, the relative

improvements w.r.t. N@20 over FM and NFM are 23.87% and

28.97%, respectively. We attribute such improvements to the

robust recommendation produced by DecRS. Specifically, DecRS

equipped with backdoor adjustment is superior in reducing

the spurious correlation and predicting users’ diverse interest,

especially for the users with the interest drift (i.e., high 𝜂𝑢 ).

4.2.2 Performance on Alleviating Bias Amplification. In
Figure 4, we present the performance comparison w.r.t. 𝐶𝐾𝐿
between the vanilla FM/NFM, calibrated recommendation, and

DecRS on ML-1M. Due to space limitation, we omit other baselines

that perform worse than calibrated recommendation and the results

on Amazon-Book which have similar trends. We have the following

observations from Figure 4. 1) As compared to the vanilla models,

calibrated recommendation achieves lower 𝐶𝐾𝐿 scores, suggesting

that the bias amplification is reduced. However, it comes at the

cost of lower recommendation accuracy, as shown in Table 3. 2)

Our DecRS consistently achieves lower 𝐶𝐾𝐿 scores than calibrated

recommendation across all user groups. More importantly, DecRS

does not hurt the recommendation accuracy. This evidently shows

that DecRS solves the bias amplification problem well by embracing

causal modeling for recommendation, and justifies the effectiveness

of backdoor adjustment on reducing spurious correlations.

4.3 In-depth Analysis (RQ3)
4.3.1 Effect of the Inference Strategy. We first answer the

question: is it of importance to conduct the inference strategy for

DecRS? Towards this end, one variant “DecRS (w/o)” is constructed
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Figure 4: The performance comparison between the base-
lines and DecRS on alleviating bias amplification.
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Figure 5: Ablation study of DecRS on ML-1M.

Table 5: Effect of the design of𝑀 (·).
Method R@10 R@20 N@10 N@20
FM 0.0676 0.1162 0.0566 0.0715

DecRS-EP 0.0685 0.1205 0.0573 0.0730

DecRS-FM 0.0704 0.1231 0.0578 0.0737

by disabling the inference strategy and only using the prediction

𝑌𝐷𝐸 in Eq. 11 for inference. We illustrate its results in Figure 5 with

the following key findings. 1) The performance of “DecRS (w/o)”

drops as compared with that of DecRS, indicating the effectiveness

of the inference strategy. 2) “DecRS (w/o)” still outperforms FM

and NFM consistently, especially over the users with high 𝜂𝑢 . This

suggests the superiority of DecRS over the conventional RS. It

achievesmore accurate predictions of user interest bymitigating the

effect of the confounder via backdoor adjustment approximation.

4.3.2 Effect of the Implementation of𝑀 (·). As mentioned in

Section 2.3, we can implement the function𝑀 (·) by either Eq. 7 or

Eq. 8. We investigate the influence of different implementations and

construct two variants, DecRS-EP and DecRS-FM, which employ

the element-wise product in Eq. 7 and the FM module in Eq. 8,

respectively. We summarize their performance comparison over

FM onML-1M in Table 5. While being inferior to DecRS-FM, DecRS-

EP still performs better than FM. This validates the superiority of

DecRS-FM over DecRS-EP, and also shows that DecRSwith different

implementations still surpasses the vanilla backbone models, which

further suggests the stability and effectiveness of DecRS.



5 CONCLUSION AND FUTUREWORK
In this work, we explained that bias amplification in recommender

models is caused by the confounder. To alleviate bias amplification,

we proposed a novel DecRS with an approximation operator for

backdoor adjustment. DecRS explicitly models the causal relations

in recommender models, and leverages backdoor adjustment

to remove the spurious correlation caused by the confounder.

Besides, we developed an inference strategy to regulate the

impact of backdoor adjustment. Extensive experiments validate

the effectiveness of DecRS on alleviating bias amplification and

improving recommendation accuracy.

This work takes the initial step to incorporate backdoor

adjustment into existing recommender models, which opens up

many promising research directions. For instance, 1) the discovery

of more fine-grained causal relations. Recommendation is a complex

scenario, involving many observed/hidden variables, which can

result in confounding. 2) DecRS has the potential to reduce various

biases caused by the imbalanced training data, such as position bias

and popularity bias. 3) Bias amplification is one essential cause of

the filter bubble [23] and echo chambers [14]. The effect of DecRS

on mitigating these issues can be studied in future work.
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