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ABSTRACT
Recommender systems should answer the intervention question

"if recommending an item to a user, what would the feedback be",

calling for estimating the causal effect of a recommendation on user

feedback. Generally, this requires blocking the effect of confounders

that simultaneously affect the recommendation and feedback. To

mitigate the confounding bias, a strategy is incorporating propensity
into model learning. However, existing methods forgo possible un-

measured confounders (e.g., user financial status), which can result

in biased propensities and hurt recommendation performance. This

work combats the risk of unmeasured confounders in recommender

systems.

Towards this end, we propose Robust Deconfounder (RD) that
accounts for the effect of unmeasured confounders on propensities,

under the mild assumption that the effect is bounded. It estimates

the bound with sensitivity analysis, learning a recommender model

robust to unmeasured confounders within the bound by adversar-

ial learning. However, pursuing robustness within a bound may

restrict model accuracy. To avoid the trade-off between robust-

ness and accuracy, we further propose Benchmarked RD (BRD) that

incorporates a pre-trained model into the learning as the bench-

mark. Theoretical analyses prove the stronger robustness of our

methods compared to existing propensity-based deconfounders,

and also prove the no-harm property of BRD. Our methods are

applicable to any propensity-based estimators, where we select

three representative ones: IPS, Doubly Robust, and AutoDebias. We

∗
Corresponding author: Peng Wu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539240

conduct experiments on three real-world datasets to demonstrate

the effectiveness of our methods.
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1 INTRODUCTION
Recommender systems play an important role in a wide range of

applications such as content-sharing [8, 36], social media [7], and

e-commerce [20, 40]. They should answer the intervention question

"if recommending an item to a user, what would the feedback be".

From the perspective of causal inference [27], this is a potential
outcome [25, 30] question calling for estimating the causal effect of

system exposure (treatment) on user feedback (outcome). Estimat-

ing the causal effect directly from historical data may suffer from

confounding biases, which are caused by the confounders between
the treatment and the output. For example, item popularity affects

user feedback due to the herd mentality of users [6] and affects

system exposure due to the uneven distribution of historical data

used for model training [45]. Neglecting such confounders will re-

sult in popularity bias [40], e.g., over-recommending popular items

regardless of item quality. It is critical to block confounding biases

in recommendation.

Existingmethodsmitigate such bias with confounder adjustment,

which are in two main categories.

• Structural Causal Models (SCM) [27] based methods, which per-

form adjustment (e.g., backdoor adjustment [45]) according to

https://doi.org/10.1145/3534678.3539240
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Figure 1: Performances of IPS on the Yahoo!R3 dataset in
the presence of unmeasured confounders (IPS_UC) or not
(IPS_Random). Gap denotes the relative performance differ-
ence from IPS_Random to IPS_UC.

the causal relations in a predefined causal graph. As relying on

causal graph, these methods can only handle a small portion of

confounders with known causal relations.

• Propensity-based methods [5, 32, 37] handle confounders without

knowing causal relations to pursue unbiased model estimators.

They estimate a propensity for each training interaction and

incorporate the propensity to the loss function. Nevertheless,

they are based on the strong ignorability assumption [13, 39], i.e.,
no unmeasured confounders.

Recommender systems face unmeasured confounders for various

reasons like technical difficulties or privacy restrictions [23, 35]. For

example, user financial status directly affects the feedback and expo-

sure probability
1
, but be immeasurable to many recommender sys-

tems. Ignoring such confounders maymislead the system to overem-

phasize item price, e.g., over-recommending cheap items. Our the-

oretical analyses show that propensity-based deconfounders are

biased in the presence of unmeasured confounders (cf. Section 3.1).

Figure 1 further shows an empirical evidence where we compare a

representative method IPS [32] on the Yahoo!R3 [37] dataset under

the scenarios with and without simulated unmeasured confounders.

IPS_UC denotes selectively masking positive feedback to simulate

unmeasured confounders. IPS_Random is a control group that ran-

domly masks feedback. The performance of IPS_UC (i.e., under
unmeasured confounders) is worse than IPS_Random in all cases

and deteriorates faster as the mask ratio increases. It is thus critical

to consider the unmeasured confounders in recommender systems.

To combat the risk of unmeasured confounders, a possible so-

lution is employing relevant causal inference methods such as in-
strumental variable estimation [12] and front door adjustment [27].
Nevertheless, it is difficult to find a convincing instrument variable

or a mediator that satisfies the front door criterion
2
[12, 15]. We

instead explore propensity-based methods to combat unmeasured

confounders, in which knowledge of causal relations are unnec-

essary. Existing methods fail since their nominal propensity is

not the true propensity to achieve the unbiased estimator [17]. To

1
Historical interactions of users reflect their financial status. Learning recommender

models from historical interactions will bring the influence of financial status.

2
In addition, to ensure the identifiability, they rely on additional assumptions unreal-

istic in recommender system. For example, front door criterion assumes there is no

unmeasured confounder between the mediator and outcome [15].

address this issue, we consider approaching the true propensity

from the nominal one. We assume the true propensity is near to

the nominal one within a bound, which is decided by the strength

of the unmeasured confounder. Through this way, we can leverage

the propensities within the bound to enhance the robustness of

methods against unmeasured confounders.

Specifically, we propose Robust Deconfounder (RD) for recom-

mender learning. We first quantify the potential effect of unmea-

sured confounders on propensities with the sensitivity analysis [9,

29], obtaining the bound of true propensity around the nominal one.

To account for all propensities within the bound, we then optimize

the model with adversarial learning, which alternatively searches

for the worst-case of the propensity within the bound and updates

model parameters accordingly. As that adversarial learning may

cause the trade-off between robustness and accuracy [3], we further

propose Benchmarked Robust Deconfounder (BRD) that incorporates
a pre-trained model into the training. We prove in theory that BRD

is no worse than the benchmark model, and both RD and BRD are

more robust to unmeasured confounders. We instantiate RD and

BRD on three representative propensity-based methods: IPS [32],

DR [37], and AutoDebias [5], and conduct experiments on three

real-world datasets to demonstrate our methods.

To summarize, our main contributions are as follows:

• We reveal the risk of unmeasured confounders in recommender

systems with theoretical and empirical analyses.

• We propose a robust deconfounding framework that combats

unmeasured confounders with theoretical accuracy guarantee.

• We conduct extensive experiments, that justified the effectiveness

and robustness of our methods to unmeasured confounders.

2 PROBLEM FORMULATION
In this section, we formulate the problem of confounders adjustment

in the presence of unmeasured confounders using potential outcome
framework [25, 30]. Let U = {𝑢} and I = {𝑖} denote the set of

users and items, respectively, potential outcome framework consists

of the key components as follows:

• Unit: a user-item pair (𝑢, 𝑖).
• Target population: the set of all user-item pairs D = U × I.
• Feature: the feature 𝑥𝑢,𝑖 describes user-item pair (𝑢, 𝑖).
• Treatment: 𝑜𝑢,𝑖 ∈ {1, 0}. It is the exposure status of (𝑢, 𝑖), where
𝑜𝑢,𝑖 = 1 or 0 denotes item 𝑖 is exposed to user 𝑢 or not.

• Outcome: the feedback 𝑟𝑢,𝑖 of user-item pair (𝑢, 𝑖).
• Potential outcome: 𝑟𝑢,𝑖 (𝑜) for 𝑜 ∈ {0, 1}. It is the outcome that

would be observed if 𝑜𝑢,𝑖 had been set to 𝑜 .

Let P and E be the distribution and expectation on the target pop-

ulation, and O = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈ D, 𝑜𝑢,𝑖 = 1} be the set of ex-

posed units. In recommendation, the target estimand [12, 16, 41]

is E(𝑟𝑢,𝑖 (1) | 𝑥𝑢,𝑖 )3, it requires to predict the potential outcome

𝑟𝑢,𝑖 (1) using feature 𝑥𝑢,𝑖 . In this article, we focus on the scenario

of unmeasured confounders. Considering both of the measured

confounders 𝑥𝑢,𝑖 and the unmeasured confounders ℎ𝑢,𝑖 , we have

𝑜𝑢,𝑖 ⊥ 𝑟𝑢,𝑖 (1) | (𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ), 𝑜𝑢,𝑖 ̸⊥ 𝑟𝑢,𝑖 (1) | 𝑥𝑢,𝑖 , (1)

where the symbols ⊥ and ̸⊥ represent independent and not inde-

pendent. A typical causal graph is displayed in Figure 2.

3
It is equivalent to P(𝑟𝑢,𝑖 | 𝑥𝑢,𝑖 , 𝑑𝑜 (𝑜𝑢,𝑖 = 1)) using do-calculus in SCM framework.



Figure 2: A typical causal graph of unmeasured confounders.
Let 𝑓𝜙 (·) be a recommendermodel with parameters𝜙 and 𝑟𝑢,𝑖 (1) =

𝑓𝜙 (𝑥𝑢,𝑖 ) be the predicted E(𝑟𝑢,𝑖 (1) | 𝑥𝑢,𝑖 ). If all potential outcomes

{𝑟𝑢,𝑖 (1) : (𝑢, 𝑖) ∈ D} were observed, the ideal loss function for

training 𝜙 is

L𝑖𝑑𝑒𝑎𝑙 (𝜙) =
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝑒𝑢,𝑖 , (2)

where 𝑒𝑢,𝑖 is the prediction error, such as the least square loss:

𝑒𝑢,𝑖 = (𝑟𝑢,𝑖 (1) − 𝑟𝑢,𝑖 (1))2 . (3)

Noticing that 𝑒𝑢,𝑖 is computable only when 𝑜𝑢,𝑖 = 1, L𝑖𝑑𝑒𝑎𝑙 (𝜙) is
infeasible due to the inaccessibility of {𝑟𝑢,𝑖 (1) : 𝑜𝑢,𝑖 = 0}. As such,
our target is constructing robust estimators

4
that approximate to

L𝑖𝑑𝑒𝑎𝑙 (𝜙) to combat unmeasured confounders.

3 PROPOSED METHODS
In this section, we first show that the existing propensity-based

methods are biased in the presence of unmeasured confounders.

Then, we propose RD and BRD frameworks that can effectively

alleviate this problem, and further extend the proposed frameworks

to a general propensity-based method. Throughout, we omit the 𝐿2
normalization term in all loss functions for brevity.

3.1 Motivation
The IPS [14, 31, 32] and doubly robust (DR) learning [11, 37, 38,

44] are main strategies to cope with confounding bias. Yet, most

existing IPS/DRmethods are designed only for addressingmeasured

confounders 𝑥 and ignore the unmeasured confounders ℎ. In this

case, the nominal propensity score is defined as 𝑝𝑢,𝑖 = P(𝑜𝑢,𝑖 =
1 | 𝑥𝑢,𝑖 ).
IPS estimator. Given the estimate of 𝑝𝑢,𝑖

5
, denoted as 𝑝𝑢,𝑖 , the IPS

estimator of the prediction inaccuracy is presented as

L𝐼𝑃𝑆 (𝜙) =
1

|D|
∑︁

(𝑢,𝑖) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
. (4)

DR estimator. It can be constructed in the augmented IPS form [2,

37]. Specifically, let 𝑒𝑢,𝑖 = 𝑔𝜃 (𝑥𝑢,𝑖 ) be an error imputation model

to fit the prediction error 𝑒𝑢,𝑖 using 𝑥𝑢,𝑖 , i.e., it estimates 𝑔𝑢,𝑖 =

E[𝑒𝑢,𝑖 |𝑥𝑢,𝑖 ]. Given the learned 𝑝𝑢,𝑖 and 𝑒𝑢,𝑖 , the DR estimator is

L𝐷𝑅 (𝜙, 𝜃 ) =
1

|D|
∑︁

(𝑢,𝑖) ∈D

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
. (5)

Joint learning [37] is a common technique for DR estimator, which

obtains 𝑒𝑢,𝑖 by minimizing

L𝐷𝑅
𝐼𝑚𝑝 (𝜙, 𝜃 ) =

1

|O|
∑︁

(𝑢,𝑖) ∈O

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

, (6)

4
In this paper estimator and loss function are interchangeable.

5
We refer [32] for the methods to estimate the nominal propensity score 𝑝𝑢,𝑖 .

and the parameters 𝜙 and 𝜃 are estimated by solving Eq. (5) and

Eq. (6) alternately. Without unmeasured confounders, it is well

known that L𝐼𝑃𝑆 (𝜙) is an unbiased estimate of the ideal loss func-

tion, provided that 𝑝𝑢,𝑖 equals 𝑝𝑢,𝑖 accurately for the exposed events.

And the DR estimator is unbiased if either 𝑝𝑢,𝑖 or 𝑒𝑢,𝑖 is estimated

precisely. Nevertheless, the existence of unmeasured confounders

will invalidate the existing IPS and DR methods.

Theorem 3.1. In the presence of unmeasured confounders ℎ,
(a) both the IPS and DR estimators are biased, even 𝑝𝑢,𝑖 and 𝑒𝑢,𝑖

estimate 𝑝𝑢,𝑖 and 𝑔𝑢,𝑖 accurately.
(b) if we define the true propensity score as

𝑝𝑢,𝑖 = P(𝑜𝑢,𝑖 = 1 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ), (7)

and assume that 𝑝𝑢,𝑖 is an accurate estimate of 𝑝𝑢,𝑖 , then both the IPS
and DR estimators are unbiased.

Theorem 3.1 indicates that the definition of propensity score

plays a key role in the unbiasedness of IPS and DR estimators. Actu-

ally, using the measured confounders 𝑥 to estimate the propensity

score only controls the confounding bias created by 𝑥 and cannot

rule out the bias induced by ℎ. To remove all the confounding bias,

both the measured confounders 𝑥 and the unmeasured confounders

ℎ should be used to estimate the propensity score. Unfortunately,

one can never accurately estimate 𝑝𝑢,𝑖 due to the full missingness

of unmeasured confounders without imposing strong assumptions.

3.2 Robust Deconfounder Framework
Sensitivity analysis [9, 29] is a basic tool to assess the robustness of

inferences to the assumption of no unmeasured confounders. Based

on the idea of sensitivity analysis on propensity scoremodel [17, 29],

we obtain the uncertainty set of 𝑝𝑢,𝑖 for each (𝑢, 𝑖) by restricting the
strength of unmeasured confounding on the treatment. Concretely,

assume the nominal propensity score can be expressed as

𝑝𝑢,𝑖 = P(𝑜𝑢,𝑖 = 1 | 𝑥𝑢,𝑖 ) =
exp(𝑚(𝑥𝑢,𝑖 ))

1 + exp(𝑚(𝑥𝑢,𝑖 ))
,

where𝑚 is an arbitrary function. Given a bound Γ ≥ 1, consider

an additive model of true propensity score that

𝑝𝑢,𝑖 = P(𝑜𝑢,𝑖 = 1 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ) =
exp(𝑚(𝑥𝑢,𝑖 ) + 𝜑 (ℎ𝑢,𝑖 ))

1 + exp(𝑚(𝑥𝑢,𝑖 ) + 𝜑 (ℎ𝑢,𝑖 ))
,

𝜑 is an arbitrary function. By assuming the strength of unmeasured

confounders is bounded as |𝜑 (ℎ) | ≤ log(Γ), we have
1

Γ
≤

(1 − 𝑝𝑢,𝑖 )𝑝𝑢,𝑖
𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )

≤ Γ. (8)

Eq. (8) restricts the value range of �̃�𝑢,𝑖 = 1/𝑝𝑢,𝑖 as

𝑎𝑢,𝑖 ≤ �̃�𝑢,𝑖 ≤ 𝑏𝑢,𝑖 , (9)

𝑎𝑢,𝑖 = 1 + (1/𝑝𝑢,𝑖 − 1)/Γ, 𝑏𝑢,𝑖 = 1 + (1/𝑝𝑢,𝑖 − 1)Γ. (10)

The hyper-parameter Γ corresponds to the strength of unmeasured

confounding, and Γ = 1 means no unmeasured confounding. Let

W = {𝑊 ∈ R |D |
+ : 𝑎𝑢,𝑖 ≤ 𝑤𝑢,𝑖 ≤ ˆ𝑏𝑢,𝑖 }, (11)

where𝑊 = {𝑤𝑢,𝑖 : (𝑢, 𝑖) ∈ D}, 𝑎𝑢,𝑖 and ˆ𝑏𝑢,𝑖 are the estimates of

𝑎𝑢,𝑖 and 𝑏𝑢,𝑖 .



Algorithm 1: Robust Deconfounder IPS (RD-IPS)
Input: Data D, nominal propensity score 𝑝𝑢,𝑖 .

Output: An optimized recommender model.

1 Initialize a recommender model with parameters 𝜙 ;

2 Calculate the bound of true propensity score based on

Eq. (10) with hyper-parameter Γ;
3 Generate the uncertainty setW = {𝑊 } based on Eq. (11)

4 while Stop condition is not reached do
5 Fetch (𝑢, 𝑖) from D;

6 Calculate the prediction error 𝑒𝑢,𝑖 based on 𝜙 and Eq. (3);

7 Maximize the loss Eq. (12) to update𝑊 ;

8 Minimize the loss Eq. (12) to optimize 𝜙 ;

9 end
10 Return an optimized recommender model with 𝜙 ;

The uncertainty setW is the key for proposing the RD frame-

work, which introduces the adversarial learning technique by fluc-

tuating the inverse of estimated nominal propensity scores within

W. The RD framework provides an excellent opportunity to design

robust propensity-basedmethods. Specifically, the RD-IPS estimator

can be constructed as

L𝑅𝐷−𝐼𝑃𝑆 (𝜙) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝑜𝑢,𝑖𝑒𝑢,𝑖𝑤𝑢,𝑖 , (12)

In addition, a new RD-DR estimator is formulated as

L𝑅𝐷−𝐷𝑅 (𝜙, 𝜃 ) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D
[𝑒𝑢,𝑖 + 𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )𝑤𝑢,𝑖 ],

(13)

and the corresponding loss function for the imputation model is

L𝑅𝐷−𝐷𝑅
𝐼𝑚𝑝 (𝜙, 𝜃 ) = max

𝑊 ∈W
1

|O|
∑︁

(𝑢,𝑖) ∈O
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2𝑤𝑢,𝑖 . (14)

The parameters 𝜙 and 𝜃 are solved alternately: given
ˆ𝜃 , 𝜙 is up-

dated by minimizing (13); given
ˆ𝜙 , 𝜃 is updated by minimizing (14).

Algorithm 1 summarizes the procedure of RD-IPS, and Algorithm 2

in Appendix A.2 summarizes the procedure of RD-DR.

Comparing Eq. (14) with Eq. (6), the RD-DR method also adds an

adversarial procedure for the imputation model. The reason is that

using 𝑝𝑢,𝑖 directly will lead to a biased imputation model and raise

the risk of performance degradation. Thus, applying the adversarial

procedure may reduce the unstable factors resulting from unmea-

sured confounders. Intuitively, the proposed RD-IPS/DR approaches

can avoid the worst-case caused by unmeasured confounders and

are thus more robust than non-adversarial estimators.

In practice, addressing the unmeasured confounding is a very

challenging problem, because the functional relations among ℎ,

𝑜 , and 𝑟 are elusive and can be in any form. Instead of aiming to

eliminate the unmeasured confounding thoroughly, the proposed

RD framework calibrates the loss function with uncertainty sets by

leveraging the sensitivity analysis techniques in causal inference,

which provides a flexible way to mitigate the unmeasured confound-

ing and avoid the dangers of relying on unrealistic assumptions.

3.3 Benchmarked RD Framework
The proposed RD framework will improve the robustness of the

existing propensity-based methods. However, there is no theoreti-

cal evidence that the robustness improvement can boost prediction

accuracy. To tackle the problem, we propose another Benchmarked

RD framework, which guarantees the prediction accuracy advance-

ment by setting a benchmark estimator.

For clarity, the prediction error 𝑒𝑢,𝑖 is written as 𝑒𝑢,𝑖 (𝜙), a func-
tion of 𝜙 . Suppose we have access to an estimator of 𝜙 , denoted as

ˆ𝜙 (0)
, via using the existing approaches. Then the corresponding

BRD-IPS estimator is

L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝑜𝑢,𝑖 {𝑒𝑢,𝑖 (𝜙) − 𝑒𝑢,𝑖 ( ˆ𝜙 (0) )}𝑤𝑢,𝑖 .

(15)

The BRD-IPS estimator is different from the RD-IPS estimator. Com-

pared with Eq. (12), setting a benchmark would change the solution

of𝑤𝑢,𝑖 in Eq. (15), and thereby calibrate the estimation of 𝜙 . Analo-

gously, the BRD-DR estimator and the associated imputation model

are given as

L𝐵𝑅𝐷−𝐷𝑅 (𝜙, 𝜃 ) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D

{
[𝑒𝑢,𝑖 (𝜃 ) − 𝑒𝑢,𝑖 ( ˆ𝜃 (0) )]+

[𝑜𝑢,𝑖 (𝑒𝑢,𝑖 (𝜙)−𝑒𝑢,𝑖 (𝜃 )) − 𝑜𝑢,𝑖 (𝑒𝑢,𝑖 ( ˆ𝜙 (0) ) − 𝑒𝑢,𝑖 ( ˆ𝜃 (0) ))]𝑤𝑢,𝑖

}
,

L𝐵𝑅𝐷−𝐷𝑅
𝐼𝑚𝑝 (𝜙, 𝜃 ) = max

𝑊 ∈W
1

|O|
∑︁

(𝑢,𝑖) ∈D

{
[𝑒𝑢,𝑖 (𝜃 ) − 𝑒𝑢,𝑖 (𝜙)]2

− [(𝑒𝑢,𝑖 ( ˆ𝜃 (0) ) − 𝑒𝑢,𝑖 ( ˆ𝜙 (0) )]2
}
𝑤𝑢,𝑖 ,

where
ˆ𝜙 (0)

and
ˆ𝜃 (0) are the benchmark estimates of 𝜙 and 𝜃 .

The proposed BRD-IPS/DR approaches are very flexible due to

the free choice of the benchmark estimators. In addition, note that

L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙) = 0 if 𝜙 = ˆ𝜙 (0)
, which implies that the minimum

value of L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙) is non-positive. Similarly, it is not hard to

derive that min𝜙 L𝐵𝑅𝐷−𝐷𝑅 (𝜙) ≤ 0. Thus, the BRD-IPS/DR esti-

mators achieve smaller losses than the corresponding benchmark

estimators. Furthermore, the following Theorem 3.2 shows that the

BRD-IPS/DR estimators outperform the corresponding benchmark

estimators in terms of generalization error. Define

𝜙† = argmin

𝜙
L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙) , 𝜙‡ = argmin

𝜙
L𝐵𝑅𝐷−𝐷𝑅 (𝜙). (16)

Theorem 3.2 ("no-harm" property). Suppose that 𝜙 (0) is a
benchmark estimator of 𝜙 and |D| is large enough, then

(a) under the conditions of Theorem 4.1, if L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙†) < 0, we
have with probability at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙†) < L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) . (17)

(b) under the conditions of Theorem 4.2, if L𝐵𝑅𝐷−𝐷𝑅 (𝜙‡) < 0, we
have with probability at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙‡) < L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) . (18)

Theorem 3.2 indicates that the BRD-IPS/DR estimators enjoy

the "no-harm" property: they are no worse than the correspond-

ing benchmark estimators, and setting a pre-trained model as the

benchmark would guarantee no accuracy sacrifice issue. This is an



appealing and exciting result that means we can comfortably imple-

ment BRD in practical recommender systems by setting the current

recommender model as the benchmark. In Appendix A.2, Algo-

rithm 3 summarizes the procedures of BRD-IPS. RD and BRD are

general frameworks that can be applied in normal propensity-based

methods. Recent debias work in recommendation [5, 28, 47] gener-

alizes these propensity-based methods. We then consider extending

RD and BRD to a recent advance AutoDebias [5].

3.4 RD and BRD AutoDebias
AutoDebias [5] is a general propensity-based method that learns

the propensity score from uniform data and imputes ratings of

unobserved data in training phase to boost the prediction accuracy.

Based on the RD framework, the new RD AutoDebias (RD-Auto)

estimator is given as

L𝑅𝐷−𝐴𝑢𝑡𝑜 (𝜙) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D

[
𝑜𝑢,𝑖𝑒𝑢,𝑖 (𝜙)𝑤𝑢,𝑖 + L𝐴𝑢𝑡𝑜

𝐼𝑚𝑝 (𝜙)
]
,

where L𝐴𝑢𝑡𝑜
𝐼𝑚𝑝

(𝜙) is the loss that measures the distance between

model predictions and the imputation ratings. Moreover, the BRD

AutoDebias (BRD-Auto) estimator is presented as

L𝐵𝑅𝐷−𝐴𝑢𝑡𝑜 (𝜙) = max

𝑊 ∈W
1

|D|
∑︁

(𝑢,𝑖) ∈D

{
L𝐴𝑢𝑡𝑜
𝐼𝑚𝑝 (𝜙)

−L𝐴𝑢𝑡𝑜
𝐼𝑚𝑝 ( ˆ𝜙 (0) ) + 𝑜𝑢,𝑖 (𝑒𝑢,𝑖 (𝜙) − 𝑒𝑢,𝑖 ( ˆ𝜙 (0) ))𝑤𝑢,𝑖

}
.

(19)

4 THEORETICAL ANALYSIS
We present the generalization bounds of the proposed methods.

The bounds depend on the complexity of the prediction model class.

Letting F be a class of functions and assume 𝑓𝜙 ∈ F , we define the

Rademacher complexity

R(F ) = E𝜎∼{−1,+1} |D| sup
𝑓𝜙 ∈F

[
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝜎𝑢,𝑖𝑒𝑢,𝑖

]
,

where 𝜎 = {𝜎𝑢,𝑖 : (𝑢, 𝑖) ∈ D} is a Rademacher sequence [24].

Assume that F has a vanishing complexities, i.e., R(F ) → 0 as

|D| → ∞. This is a very weak assumption, which is satisfied by

common models including matrix factorization [21, 34] considered

in this paper.

Theorem 4.1 (generalization bound of RD-IPS and BRD-IPS).

Suppose that �̃�𝑢,𝑖 ∈ [𝑎𝑢,𝑖 , ˆ𝑏𝑢,𝑖 ], 𝑒𝑢,𝑖 ≤ 𝐶1, and �̃�𝑢,𝑖 ≤ 𝐶2 for all (𝑢, 𝑖)
pairs. Then for any 𝑓𝜙 ∈ F and 𝜂 > 0, we have that with probability
at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙) ≤ L𝑅𝐷−𝐼𝑃𝑆 (𝜙) + B(𝜂,D, F ), (20)

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) ≤ L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙) + 2B(𝜂,D, F ) . (21)

where 𝜙 (0) is a pre-trained IPS estimator of 𝜙 ,

B(𝜂,D, F ) = 2(𝐶2 + 1)R(F ) +𝐶1 (𝐶2 + 1)

√︄
18 log(2/𝜂)

|D| .

Eq. (20) and Eq. (21) hold for any 𝜙 . In particular, let 𝜙∗ =

argmin𝜙 L𝑅𝐷−𝐼𝑃𝑆 (𝜙), the right side of (20) reaches the minimum.

Thus, the RD-IPS estimator is asymptotically an upper bound of

the ideal estimator by noting that B(𝜂,D, F ) → 0 as |D| → ∞. In

Table 1: The statistics of Yahoo!R3, Coat, and Product.
Dataset #User #Item #Biased Data #Unbiased Data

Yahoo!R3 15,400 1,000 311,704 54,000

Coat 290 300 6,960 4,640

Product 7,176 10,729 1,325,197 270,180

addition, Theorem 3.2(a) can be deduced by Eq. (21). For 𝜙† defined
in Eq. (16), if L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙†) < 0, then we have L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙†)
≤ −𝜖 for a positive constant 𝜖 . When |D| is large enough, such that

B(𝜂,D, F ) < 𝜖/2. Then Theorem 3.2(a) follows immediately from

the truth that the right side of (21) is negative by setting 𝜙 = 𝜙†.
For RD-DR and BRD-DR estimators, we have the similar results as

shown in the following Theorem 4.2. And Theorem 3.2(b) also can

be deduced by Theorem 4.2.

Theorem 4.2 (generalization bound of RD-DR and BRD-DR).

Suppose that �̃�𝑢,𝑖 ∈ [𝑎𝑢,𝑖 , ˆ𝑏𝑢,𝑖 ], |𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 | ≤ 𝐶3, and �̃�𝑢,𝑖 ≤ 𝐶2,
given imputed errors {𝑒𝑢,𝑖 : (𝑢, 𝑖) ∈ D}, then for any 𝑓𝜙 ∈ F and
𝜂 > 0, we have that with probability at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙) ≤ L𝑅𝐷−𝐷𝑅 (𝜙) + B2 (𝜂,D, F ),

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) ≤ L𝐵𝑅𝐷−𝐷𝑅 (𝜙) + 2B2 (𝜂,D, F ),

where 𝜙 (0) is a pre-trained DR estimator of 𝜙 ,

B2 (𝜂,D, F ) = 2(𝐶2 + 1)R(F ) + (2𝐶1 +𝐶3) (𝐶2 + 1)

√︄
2 log(2/𝜂)

|D| .

5 EXPERIMENTS
We conduct experiments to answer the following questions:

• RQ1: Do the proposed RD and BRD boost the performance of

propensity-based methods?

• RQ2: Do our methods stably perform well under the scenarios

with different extents of unmeasured confounder?

• RQ3:What factors influence the effectiveness of our methods?

5.1 Experimental Settings

Datasets. To validate the effectiveness of RD and BRD, we utilize

three datasets with unbiased data [32] in different application do-

mains: 1) Yahoo!R3
6
, 2) Coat

7
, and 3) Product

8
, which are obtained

from the music, coat, and micro-video recommendations, respec-

tively. All datasets contain a set of biased data collecting the normal

interactions of users in the platform, and a set of unbiased data col-

lecting from a randomized controlled trial where items are assigned

randomly (See Table. 1). Following [5, 19], the biased data is used

to train, and we extract a small part (5% on Yahoo!R3 and Coat, 1%

on Product) of unbiased data as unbiased training data, and set 5%

unbiased data as the validation set for choosing hyper-parameters,

and the rest of unbiased is used to test. As to Yahoo!R3 and Coat,

explicit feedback with ratings larger than 3 is treated as 1, otherwise

the feedback is labeled as −1. For the Product dataset, the feedback
is defined by the platform based on user’s playing time.

Compared methods. We implement RD and BRD in three ba-

sic propensity-based methods Inverse Propensity Score (IPS) [32],

6
https://webscope.sandbox.yahoo.com/.

7
https://www.cs.cornell.edu/~schnabts/mnar/.

8
It is a popular micro-video sharing platform.

https://webscope.sandbox.yahoo.com/.
https://www.cs.cornell.edu/~schnabts/mnar/.


Table 2: Recommendation performances on Yahoo!R3, Coat, and Product. The best results relevant to each basic propensity-
based method are highlighted with bold. RI refers to the relative improvement of RD or BRD over the corresponding baseline.

Datasets

Yahoo!R3 Coat Product

UAUC RI NDCG@5 RI UAUC RI NDCG@5 RI UAUC RI NDCG@50 RI

Base model 0.6507 - 0.5449 - 0.6575 - 0.4761 - 0.6269 - 0.0914 -

DCF 0.6542 - 0.5489 - 0.6490 - 0.5016 - 0.6680 - 0.1204 -

IPS 0.6542 - 0.5525 - 0.6612 - 0.4858 - 0.6587 - 0.1131 -

RD-IPS 0.6791 3.8% 0.5808 5.1% 0.6712 1.5% 0.5145 5.9% 0.6680 1.4% 0.1266 12%

BRD-IPS 0.6810 4.1% 0.5825 5.4% 0.6819 3.1% 0.5028 3.5% 0.6753 2.5% 0.1300 15.0%

DR 0.6633 - 0.5622 - 0.6689 - 0.4949 - 0.6612 - 0.1144 -

RD-DR 0.6785 2.3% 0.5799 3.1% 0.6803 1.7% 0.5092 2.9% 0.6787 2.6% 0.1277 11.6%

BRD-DR 0.6801 2.5% 0.5842 3.9% 0.6770 1.2% 0.5080 2.8% 0.6832 3.3% 0.1428 24.8%

AutoDebias 0.7279 - 0.6421 - 0.6857 - 0.5264 - 0.6879 - 0.1365 -

RD-AutoDebias 0.7328 0.7% 0.6453 0.6% 0.6891 0.5% 0.5337 1.4% 0.6962 1.2% 0.2183 59.9%

BRD-AutoDebias 0.7400 1.7% 0.6580 2.6% 0.6950 1.4% 0.5647 7.3% 0.6989 1.6% 0.1493 9.4%

Doubly Robust (DR) [37], and AutoDebias [5] to validate their effec-

tiveness. we also compare the methods above with DCF [39] that

can alleviate the effect of unmeasured confounders.

Base model [18]. We employ widely used Matrix Factorization

(MF) as the base model for propensity-based methods, and adopt

the public implement [5] to train it with biased data.

IPS [32]. IPS is a classical propensity-based method. It estimates

the propensity, and uses the inverse propensity score to weight the

loss function. We adopt the public implementation [5] and employ

MF as the base model of IPS with the biased data for training.

DR [37]. DR is another classical propensity-based method. It trains

a base model and a imputation model with loss functions adjusted

by the propensity score. In this work we use the unbiased training

data to estimate the propensity score, and implement DR base on

MF with public implementation [5].

AutoDebias [5]. AutoDebias is a general propensity-based method

that learns the propensity score from unbiased training data with

a meta-learning module. We adopt the source code and hyper-

parameter ranges for grid search released in the original paper.

DCF [39]. DCF is a deconfounded recommender that tries to make

MF more robust to unobserved confounders. It trains an exposure

model with exposure data to predict which item will be exposed

to a user. By leveraging the training data and the predictions of

the exposure model, DCF can learn a model that is more robust to

unobserved confounders than MF. In our work, we use the com-

bination of biased data and unbiased training data to train DCF.

To obtain the exposure data, we set all −1 and 1 feedback in the

training data as 1. We adopt the public implementation and tune

the hyper-parameters following the official code.

RD. RD is our proposed method, and we apply RD in IPS, DR, and

AutoDebias as RD-IPS, RD-DR, and RD-AutoDebias respectively.
9

BRD. BRD is our proposed method, and we apply BRD in IPS,

DR, and AutoDebias as BRD-IPS, BRD-DR, and BRD-AutoDebias

respectively.

Evaluation Metrics. We adopt UAUC and NDCG@K to evalu-

ate performances. For each user, we calculate the AUC [5] and

NDCG@K [5] over the exposed items in the unbiased testing data,

9
https://github.com/Dingseewhole/Robust_Deconfounder_master/

and then take the average scores of all users
10

to obtain UAUC and

NDCG@K, respectively. Here K is set to 5 for Yahoo!R3 and Coat,

and is set to 50 for Product due to its low positive ratio (2.12%).

5.2 Performance Comparison (RQ1)
Table 2 reports the performance comparison on three datasets. From

the table, we have the following observations:

• Both RD and BRD boost the performances of corresponding

IPS, DR, and AutoDebias regarding UAUC and NDCG across all

datasets, which demonstrates the effectiveness of RD and BRD.

We attribute the performance gain to calibrating the loss func-

tion with uncertainty sets obtained through sensitivity analysis,

which accounts for the impact of unmeasured confounders.

• BRD-IPS, BRD-DR, and BRD-AutoDebias outperform the cor-

responding IPS, DR, and AutoDebias in all cases. These results

validate the “no-harm” property of BRD, which are consistent

with our theoretical analysis (Theorem 3.2). That is, incorporat-

ing the pre-trained propensity-based model into the loss function

can guarantee no worse performance. Therefore, it will be safe

to directly apply BRD to existing models.

• BRD achieves larger performance gains than RD in most cases.

We postulate the reason is that BRD further incorporates a pre-

trained propensity-based model as the benchmark. It is also rea-

sonable that RD achieves the best performance in a few cases if

the impact of unmeasured confounders is strong and the bench-

mark model is largely affected. Moreover, in some cases BRD

achieves higher UAUC but lower NDCG@K than RD. In these

cases, BRD ranks the tail items in the ranking list more accurately

than RD. We postulate the reason is the benchmark model in

BRD ensures the mismatched items don’t receive higher scores

during adversarial training.

• As to the previous propensity-based methods, IPS, AutoDebias,

and DR all achieve better performances than the base model

regarding both UAUC and NDCG across all datasets. It validates

that using the nominal propensity 𝑝𝑢,𝑖 to construct the estimator

10
In order to compare each method more accurately, we remove the testing users that

only have positive (i.e., 1) or only have negative (i.e., -1) testing feedback, since their
NDCG and AUC of all methods are always −1 or 1.

https://github.com/Dingseewhole/Robust_Deconfounder_master/


can still help deconfounding. It is because adjusting the loss

function with 𝑝𝑢,𝑖 can block the effect of measured confounders.

• DCF also considers unmeasured confounders, which outperforms

MF and IPS inmost cases, while performsworse than RD and BRD.

We postulate the reason is that DCF assumes all confounders

are relevant to the probability of exposure, which is not exactly

satisfied. Moreover, the two-stage training strategy of DCF may

raise the error amplification issue: the error of the exposure

model may cause the performance degradation of DCF.

5.3 In-depth Analysis (RQ2, RQ3)

Study on Confounding Strength. We further investigate how

RD and BRD perform as the impact of unmeasured confounder

getting stronger. We test RD, BRD and the three basic propensity-

based methods on semi-simulated datasets from Yahoo!R3. The

semi-simulated data is generated by selectively masking a ratio

of positive feedback in training data. The masking can be viewed

as having unmeasured confounders that impact treatment (item

exposure) and outcome (positive feedback). The mask ratios are set

to {0.1, 0.2, 0.5, 0.8}, and the larger ratio means the stronger effect of

the unmeasured confounder. To block the effect of training data re-

duction, we take random masking as a reference, which randomly
masks training data regardless of the label at the ratios of {0.1, 0.2,

0.5, 0.8}. We denote the reference performance of IPS, DR, and Au-

todebias as IPS_Random, DR_Random, and AutoDebias_Random.

The performance of all methods are shown in Figure 3. As to

each mask ratio, we also show the relative improvement (i.e., RI) of
RD and BRD over the basic propensity-based methods. From the

figures, we have the following observations: 1) the performance of

IPS, DR, and AutoDebias deteriorates as the mask ratio increases,

i.e., the effect of unmeasured confounder increases. 2) IPS, DR, and

AutoDebias perform worse than the corresponding IPS_Random,

DR_Random, AutoDebias_Random across all mask ratios. These re-

sults confirm the performance degradation of the basic propensity-

based methods are mainly caused by the unmeasured confounder

that we simulated. 3) RD and BRD stably outperform the correspond-

ing IPS, DR, and AutoDebias w.r.t. both UAUC and NDCG across

all mask ratios. It indicates that our methods make the propensity-

based methods robust to unmeasured confounders with different

strengths. 4) In most cases, the largest RI is achieved under the high-

est mask ratio when the confounding effect is the strongest. In other

words, our methods achieve the most outstanding performance gain

when the effect of unmeasured confounders is significant. We be-

lieve the reason is our methods leverage the adversarial learning

to consider the worst-case caused by unmeasured confounders. 5)

In some instances, basic propensity-based methods perform better

under the randomly masking setting (e.g., IPS_Random). Since the

original training data of Yahoo!R3 is biased, not all training samples

play a positive role of unbiased test. We believe that, in these cases,

the masked samples are the ones that are difficult to debias, and

masking these samples improves the unbiasedness of prediction.

Effects on Propensities. The adversarial learning process of RD
makes perturbations on every nominal propensity given by IPS or

DR. To investigate the effects of RD, we calculate the absolute gap

between the inverse of the nominal propensity and final propensity

(a) IPS with UAUC (b) IPS with NDCG

(c) DR with UAUC (d) DR with NDCG

(e) AutoDebias with UAUC (f) AutoDebias with NDCG

Figure 3: Performances of basic propensity-based methods
under settings with and without the simulated unmeasured
confounders, and the performance of RD and BRD applied in
corresponding basic propensity-based methods on Yahoo!R3.

(a) IPS (b) DR

Figure 4: Distribution of inverse nominal propensity scores
and those given by RD after the optimization.

given by RD. Figure 4 shows that the average gap on each item is

positively correlated to item frequency. In Theorem 3.1 we proved

the objective function of IPS/DR is biased since they use the nom-

inal propensity. Also, the frequent items have more critical bias

issue, because their embedding are trained more frequently to fit

the biased objective function. Therefore, RD-IPS/DR makes larger

perturbations for the frequent items’ propensities to debias.

To further evaluate whether the larger perturbations are benefi-

cial, we report the group-wise performance of IPS, DR, RD-IPS/DR



Table 3: Group-wise performance of IPS, DR, and RD-IPS/DR.

Item set

High frequency Low frequency

UAUC RI NDCG@5 RI UAUC RI NDCG@5 RI

IPS 0.6536 - 0.7370 - 0.6254 - 0.7151 -

RD-IPS 0.6867 5.06% 0.7576 2.80% 0.6310 0.90% 0.7164 0.18%

DR 0.6713 - 0.7464 - 0.6206 - 0.7118 -

RD-DR 0.6845 1.97% 0.7540 1.02% 0.6250 0.71% 0.7138 0.28%

(a) UAUC (b) NDCG

Figure 5: Performances of different optimizing methods.

Table 4: Performances of DR, RD-DR and RD-NI-DR.

Dataset

Yahoo!R3 Coat Product

UAUC NDCG@5 UAUC NDCG@5 UAUC NDCG@50

DR 0.6633 0.5622 0.6689 0.4949 0.6612 0.1144

RD-NI-DR 0.6664 0.5642 0.6734 0.5027 0.6782 0.1265

RD-DR 0.6785 0.5799 0.6803 0.5092 0.6787 0.1277

on the high/low frequency item sets of Yahoo!R3. According to the

item frequency in the training set, the high frequency set includes

the testing samples related to the 50% highest frequency items, and

the low frequency set includes the rest testing samples. As shown

in Table 3, RD-IPS and RD-DR achieve higher relative performance

gains on the high frequency set as compared to the correspond-

ing IPS and DR. These results validate the benefit of adding larger

perturbations on frequent items.

Ablation Study. Recall that we adopt adversarial learning to opti-

mize the worst-case in the uncertainty set W. To further validate

the effectiveness of this design, we compare it with two variants:

RD-IPS-r and RD-IPS-n. In each training epoch, RD-IPS-r randomly

selects inverse propensities from W to construct the loss function

in Eq. (12). RD-IPS-n adds a Gaussian white noise to the nominal

inverse propensity score𝑤𝑢,𝑖 in each training epoch to construct

the loss function. We set the standard deviation of the Gaussian

white noise as ( ˆ𝑏𝑢,𝑖 − 𝑎𝑢,𝑖 )/2. Figure 5 shows that RD-IPS achieves
better performances than its variants, validating the effectiveness

of the adversarial learning.

Recall that DR estimator consists of two losses Eq. (5) and Eq. (6),

which are both adjusted by propensities. When implementing RD-

DR, we calibrate both losses with the uncertainty set (i.e., Eq. (13)
and Eq. (14)). To validate the necessity of using adversarial learning

to train the imputation model with Eq. (14), we make an ablation

study of RD-DR by comparing it with RD-NI-DR. RD-NI-DR only

employs the adversarial procedure for base model, i.e., RD-NI-DR
jointly optimizes Eq. (13) and Eq. (6). Table. 4 shows the performance

of DR, RN-NI-DR, and RD-DR. Notably, RD-DR outperforms RD-NI-

DR in all cases, which indicates that adding an adversarial procedure

for the imputationmodel reduces the unstable factors resulting from

unmeasured confounders. RD-NI-DR still outperforms DR, which

further validates the rationality of our methods.

6 RELATEDWORK
In this section, we review existing work on Causal Inference in

Recommendation and Debias in Recommendation, which are most

relevant with this work.

Causal Inference in Recommendation. Causal inference [27]
is the science that aims to estimate the causal effects between

the variables, and has been widely used in natural language infer-

ence [10], computer vision [26], and recommendation [37]. The

first line of causal inference in recommendation is on confounding

effects [39, 42]. For example, [4] explores recommender systems are

affected by algorithmic confounding. PD [45] reveals item popular-

ity is a confounder that affects both item exposure and probability

of interaction. By measuring the extent of item popularity, PD

eliminates the confounding bias caused by popularity and boosts

the recommendation performance. Another line is counterfactual

learning methods [36, 40, 43]. For example, [36] imagines a coun-

terfactual world to reduce the direct effect of the exposure features,

and trains a recommender model that overcomes the clickbait is-

sue. [43] proposes CPR that can generate counterfactual samples

for promoting recommendation performance. MACR [40] proposes

a counterfactual inference framework to remove the effect of item

popularity for better recommendation. In this paper we propose a

general solution that makes the propensity-based methods robust to

unmeasured confounders, which is parallel with the deconfounding

or counterfactual methods.

Debias in Recommendation. Bias is a common problem in rec-

ommender systems that getting more and more attention. Since

recommender systems are trained with historical data that has in-

trinsic biases [6], the system always suffers from bias issues such

as, popularity bias [45], position bias [1], and conformity bias [22].

To mitigate the bias issue, many solutions have been proposed.

For example, propensity-based methods [6, 32, 37] estimate the

propensity score and try to construct the unbiased estimator as the

objective function for unbiased learning. Causal inference meth-

ods [40, 45] aim to block the effect of variables that cause the bias.

Causal embedding-based methods [19, 46] aim to learn more ratio-

nal causal embedding for mitigating the effect of bias. Different with

existing works that aim to alleviate one or several bias, our work

focuses on mitigating the confounding bias caused by unmeasured

confounders.

7 CONCLUSION
In this work, we studied how to combat the unmeasured con-

founders in recommendation. By theoretically analyzing the exist-

ing propensity-based methods, we found that they are biased in the

presence of unmeasured confounders due to adjusting the estimator

with nominal propensities. However, the true propensity can never

be accurately estimated, so we proposed Robust Deconfounder that
leverages the sensitivity analysis to estimate the uncertainty set of

the true propensity. To learn models that are robust to unmeasured

confounders, RD leverages the adversarial learning technique to

optimize the worst-case with the propensity in the uncertainty set.



Furthermore, we proposed Benchmarked Robust Deconfounder that
incorporates a pre-trained propensity-based model as a benchmark

to avoid the trade-off issue between robustness and accuracy, and

we proved the no-harm property of BRD through theoretical anal-

ysis. We conducted experiments on three real-world datasets and

did the theoretical analysis, proving the robustness and superiority

of RD and BRD.

This work shows the limitation of propensity-based methods in

recommendation, and proposes a general solution. In the future, we

are interested in testing our methods on more recommender models

such as graph convolutional network based models. Moreover, we

would like to explore how to automatically estimate the hyper-

parameter Γ from the data of different scenarios.
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A APPENDIX
A.1 Theoretical Proof

Lemma A.1 (McDiarmid’s ineqality). Let 𝑋1, ..., 𝑋𝑚 ∈ X𝑚 be
a set of𝑚 ≥ 1 independent random variables and assume that there
exist 𝑐1, ..., 𝑐𝑚 > 0 such that 𝑓 : X𝑚 → R satisfies the following
conditions:

|𝑓 (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑚) − 𝑓 (𝑥1, ..., 𝑥 ′𝑖 , ..., 𝑥𝑚) | ≤ 𝑐𝑖 ,

for all 𝑖 ∈ {1, 2, ...,𝑚} and any points 𝑥1, ..., 𝑥𝑚, 𝑥 ′
𝑖
∈ X. Let 𝑓 (𝑆)

denote 𝑓 (𝑋1, ..., 𝑋𝑚), then for all 𝜖 > 0, the following inequalities
hold:

P[𝑓 (𝑆) − E{𝑓 (𝑆)} ≥ 𝜖] ≤ exp

(
− −2𝜖2∑𝑚

𝑖=1 𝑐
2

𝑖

)
P[𝑓 (𝑆) − E{𝑓 (𝑆)} ≤ −𝜖] ≤ exp

(
− −2𝜖2∑𝑚

𝑖=1 𝑐
2

𝑖

)
.

Proof. The proof can be found in Appendix D.2 of [24]. □

Lemma A.2 (Rademacher comparison lemma). Let 𝑋 ∈ X be a
random variable with distribution P,𝑋1, ..., 𝑋𝑚 be a set of independent
copies of 𝑋 , G be a class of real-valued functions on X. Then we have

E sup
𝑔∈G

����� 1𝑚 𝑚∑︁
𝑖=1

𝑔 (𝑋𝑖 ) − E(𝑔 (𝑋𝑖 ))
����� ≤ 2E

[
E𝜎∼{−1,+1}𝑚 sup

𝑔∈G

����� 1𝑚 𝑚∑︁
𝑖=1

𝑔 (𝑋𝑖 )𝜎𝑖

�����
]
,

where 𝜎 = (𝜎1, ..., 𝜎𝑚) is a Rademacher sequence.

Proof. The proof can be found in Lemma 26.2 of [33]. □

Proof of Theorem 3.1. We first prove conclusion (b). If 𝑝𝑢,𝑖 =

𝑝𝑢,𝑖 , we have

E
(
L𝐼𝑃𝑆 (𝜙)

)
= E

(𝑜𝑢,𝑖𝑒𝑢,𝑖
𝑝𝑢,𝑖

)
= E

{
E
(𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
| 𝑥𝑢,𝑖 , ℎ𝑢,𝑖

)}
= E

{E(𝑜𝑢,𝑖𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )
𝑝𝑢,𝑖

}
= E

{E(𝑜𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )
𝑝𝑢,𝑖

}
= E

{𝑝𝑢,𝑖E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )
𝑝𝑢,𝑖

}
= E[E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )]
= E[𝑒𝑢,𝑖 ] = L𝑖𝑑𝑒𝑎𝑙 (𝜙).

where the second and the second last equations follow by the law

of iterated expectations, the third equation follows from the truth

that 𝑝𝑢,𝑖 is a function of (𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ). Since (𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ) include all

confounders, 𝑜𝑢,𝑖 ⊥ 𝑟𝑢,𝑖 (1) | (𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ), which leads to 𝑜𝑢,𝑖 ⊥ 𝑒𝑢,𝑖 |
(𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ) and hence the fourth equation holds.

Similarly, if 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 , 𝑒𝑢,𝑖 = 𝑔𝑢,𝑖 , E(L𝐷𝑅 (𝜙)) equals

E

[
𝑒𝑢,𝑖 +

{𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 } · {𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 }
𝑝𝑢,𝑖

]
= L𝑖𝑑𝑒𝑎𝑙 (𝜙) + E

[ {𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 } · {𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 }
𝑝𝑢,𝑖

]
= L𝑖𝑑𝑒𝑎𝑙 (𝜙) + E

{E(𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )E(𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 )
𝑝𝑢,𝑖

}
= 0.

The last equation holds due to E(𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ) = 0.

Next we prove conclusion (a). If 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 , note that

E
(
L𝐼𝑃𝑆 (𝜙)

)
= E

{
E
(𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
| 𝑥𝑢,𝑖

)}
= E

{E(𝑜𝑢,𝑖𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 )
𝑝𝑢,𝑖

}
and

L𝑖𝑑𝑒𝑎𝑙 (𝜙) = E{E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 )} = E
{E(𝑜𝑢,𝑖 | 𝑥𝑢,𝑖 ) · E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 )

𝑝𝑢,𝑖

}
.

Since 𝑒𝑢,𝑖 is associated with 𝑜𝑢,𝑖 given 𝑥𝑢,𝑖 due to the hidden con-

founder, we have E(𝑜𝑢,𝑖𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 ) ≠ E(𝑜𝑢,𝑖 | 𝑥𝑢,𝑖 ) · E(𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 ),
which implies E(L𝐼𝑃𝑆 (𝜙)) ≠ L𝑖𝑑𝑒𝑎𝑙 (𝜙).

For DR estimator, if 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 , 𝑒𝑢,𝑖 = 𝑔𝑢,𝑖 , E(L𝐷𝑅 (𝜙)) equals

E

[
𝑒𝑢,𝑖 +

{𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 } · {𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 }
𝑝𝑢,𝑖

]
= L𝑖𝑑𝑒𝑎𝑙 (𝜙) + E

[ {𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 } · {𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 }
𝑝𝑢,𝑖

]
= L𝑖𝑑𝑒𝑎𝑙 (𝜙) + Cov((𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 )/𝑝𝑢,𝑖 , 𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 ).

The last equation follows by noting that E[(𝑝𝑢,𝑖 − 𝑜𝑢,𝑖 )/𝑝𝑢,𝑖 ] =

0 and E(𝑔𝑢,𝑖 − 𝑒𝑢,𝑖 ) = 0. In the presence of hidden confounder,

Cov((𝑝𝑢,𝑖 −𝑜𝑢,𝑖 )/𝑝𝑢,𝑖 , 𝑔𝑢,𝑖 −𝑒𝑢,𝑖 ) ≠ 0. This completes the proof. □

Proof of Theorem 4.1. For any 𝑓𝜙 ∈ F , since �̃�𝑢,𝑖 ∈ [𝑎𝑢,𝑖 , ˆ𝑏𝑢,𝑖 ],
we have

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑅𝐷−𝐼𝑃𝑆 (𝜙)

≤ L𝑖𝑑𝑒𝑎𝑙 (𝜙) −
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝑜𝑢,𝑖𝑒𝑢,𝑖�̃�𝑢,𝑖

≤ sup

𝑓𝜙 ∈F

(
1

|D|
∑︁

(𝑢,𝑖) ∈D
𝑒𝑢,𝑖 {1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }

)
𝑑𝑒𝑓
= [𝐵 − E(𝐵)] + E(𝐵),

where 𝐵 = sup𝑓𝜙 ∈F
(

1

|D |
∑

(𝑢,𝑖) ∈D 𝑒𝑢,𝑖 {1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }
)
.

Note that |𝑒𝑢,𝑖 {1−𝑜𝑢,𝑖�̃�𝑢,𝑖 }| ≤ 𝐶1 (𝐶2+1), applying McDiarmid’s

inequality yields that

P
(
𝐵 − E(𝐵) ≥ 𝜖

)
≤ exp

{
− 𝜖2 |D|
2𝐶2

1
(𝐶2 + 1)2

}
Nextwe considerE(𝐵). SinceE[𝑒𝑢,𝑖 (1−𝑜𝑢,𝑖�̃�𝑢,𝑖 )] = 0. By Lemma

A.2,

E(𝐵) ≤ 2E
{
sup

𝑓𝜙 ∈F
E𝜎∼{−1,+1} |D|𝜎𝑢,𝑖𝑒𝑢,𝑖 (1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 )

}
≤ 2(𝐶2 + 1)E{R(F )}.

By McDiarmid’s inequality again, we have

P
(
R(F ) − E[R(F )] ≥ 𝜖

)
≤ exp

{
− 𝜖2 |D|

2𝐶2

1

}
.

Letting exp

{
− 𝜖2 |D |

2𝐶2

1
(𝐶2+1)2

}
= 𝜂/2 leads to that 𝜖 =

√
2𝐶1 (𝐶2 +

1)
√︃

log(2/𝜂)
|D | , and exp

{
−𝜖2 |D |

2𝐶2

1

}
= 𝜂/2 gives that 𝜖 =

√
2𝐶1

√︃
log(2/𝜂)

|D | .

Then, we have with probability at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑅𝐷−𝐼𝑃𝑆 (𝜙) ≤ 2(𝐶2 + 1)R (F) +𝐶1 (𝐶2 + 1)

√︄
18 log(2/𝜂)

|D | .



For BRD-IPS estimator with a benchmark 𝑓
ˆ𝜙 (0) , the conclusion

follows immediately from the truth that

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) − L𝐵𝑅𝐷−𝐼𝑃𝑆 (𝜙)

≤ L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) − 1

|D |
∑︁

(𝑢,𝑖 )∈D
𝑜𝑢,𝑖 {𝑒𝑢,𝑖 (𝜙) − 𝑒𝑢,𝑖 ( ˆ𝜙 (0) ) }�̃�𝑢,𝑖

=
1

|D |
∑︁

(𝑢,𝑖 )∈D
𝑒𝑢,𝑖 (𝜙) {1 − 𝑜𝑢,𝑖 �̃�𝑢,𝑖 } −

1

|D |
∑︁

(𝑢,𝑖 )∈D
𝑒𝑢,𝑖 ( ˆ𝜙 (0) ) {1 − 𝑜𝑢,𝑖 �̃�𝑢,𝑖 }

≤ 2 sup

𝑓𝜙 ∈F

(
1

|D |
∑︁

(𝑢,𝑖 )∈D
𝑒𝑢,𝑖 (𝜙) {1 − 𝑜𝑢,𝑖 �̃�𝑢,𝑖 }

)
.

□

Proof of Theorem 4.2. Given the imputed errors {𝑒𝑢,𝑖 : (𝑢, 𝑖) ∈
D}, For any 𝑓𝜙 ∈ F , we have

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑅𝐷−𝐷𝑅 (𝜙, 𝜃 )

≤ sup

𝑓𝜙 ∈F

(
1

|D|
∑︁

(𝑢,𝑖) ∈D
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ){1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }

)
𝑑𝑒𝑓
= 𝐵2 .

Due to | (𝑒𝑢,𝑖 −𝑒𝑢,𝑖 ){1−𝑜𝑢,𝑖�̃�𝑢,𝑖 }| ≤ 𝐶3 (𝐶2 + 1), using McDiarmid’s

inequality leads to that

P
(
𝐵2 − E(𝐵2) ≥ 𝜖

)
≤ exp

{
− 𝜖2 |D|
2𝐶2

3
(𝐶2 + 1)2

}
Next we focus on E(𝐵2). By Lemma A.2 and the property of

Rademacher complexity,

E(𝐵2) ≤ 2E
{
sup

𝑓𝜙 ∈F
E𝜎∼{−1,+1} |D|𝜎𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) (1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 )

}
≤ 2(𝐶2 + 1)E

{
sup

𝑓𝜙 ∈F
E𝜎∼{−1,+1} |D|𝜎𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

}
≤ 2(𝐶2 + 1)E{R(F )}.

By McDiarmid’s inequality again,

P
(
R(F ) − E[R(F )] ≥ 𝜖

)
≤ exp

{
− 𝜖2 |D|

2𝐶2

1

}
.

Letting exp

{
− 𝜖2 |D |

2𝐶2

3
(𝐶2+1)2

}
= 𝜂/2 and exp

{
− 𝜖2 |D |

2𝐶2

1

}
= 𝜂/2, we

have with probability at least 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑅𝐷−𝐷𝑅 (𝜙)

≤ 2(𝐶2 + 1)R(F ) + (2𝐶1 +𝐶3) (𝐶2 + 1)

√︄
2 log(2/𝜂)

|D| .

The result of BRD-DR estimator with a benchmark 𝑓
ˆ𝜙 (0) holds by

noting that

L𝑖𝑑𝑒𝑎𝑙 (𝜙) − L𝑖𝑑𝑒𝑎𝑙 ( ˆ𝜙 (0) ) − L𝐵𝑅𝐷−𝐷𝑅 (𝜙, 𝜃 )

≤ 1

|D|
∑︁

(𝑢,𝑖) ∈D
{𝑒𝑢,𝑖 (𝜙) − 𝑒𝑢,𝑖 (𝜃 )}{1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }+

1

|D|
∑︁

(𝑢,𝑖) ∈D
{𝑒𝑢,𝑖 ( ˆ𝜙 (0) ) − 𝑒𝑢,𝑖 (𝜃 (0) )}{1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }

≤ 2 sup

𝑓𝜙 ∈F

(
1

|D|
∑︁

(𝑢,𝑖) ∈D
{𝑒𝑢,𝑖 (𝜙) − 𝑒𝑢,𝑖 (𝜃 )}{1 − 𝑜𝑢,𝑖�̃�𝑢,𝑖 }

)
.

□

A.2 Algorithm

Algorithm 2: Robust Deconfounder DR (RD-DR)

Input: Data D, nominal propensity score 𝑝𝑢,𝑖 .

Output: An optimized recommender model.

1 Initialize a recommender model with parameters 𝜙 ;

2 Initialize an imputation model with parameters 𝜃 ;

3 Calculate the bound of true propensity score based on

Eq. (10) with hyper-parameter Γ;
4 Generate the uncertainty setW = {𝑊 } based on Eq. (11)

5 while Stop condition is not reached do
6 Fetch (𝑢, 𝑖) from D;

7 Calculate the prediction error 𝑒𝑢,𝑖 based on 𝜙 and Eq. (3);

8 Calculate 𝑒𝑢,𝑖 = 𝑔𝜃 (𝑥𝑢,𝑖 ) based on 𝜃 ;

9 Maximize the loss Eq. (13) to update𝑊 ;

10 Minimize the loss Eq. (13) to optimize 𝜙 ;

11 Maximize the loss Eq. (14) to update𝑊 ;

12 Minimize the loss Eq. (14) to optimize 𝜃 ;

13 end
14 Return an optimized recommender model with 𝜙 ;

Algorithm 3: Benchmarked Robust Deconfounder IPS

Input: Data D, nominal propensity score 𝑝𝑢,𝑖 .

Output: An optimized recommender model.

1 Use D and 𝑝𝑢,𝑖 to train an IPS model by minimizing Eq. (4),

and fix its model parameters
ˆ𝜙 (0)

as the benchmark;

2 Initialize a recommender model with model parameters 𝜙 ;

3 Calculate the bound of true propensity score based on

Eq. (10) with hyper-parameter Γ;
4 Generate the uncertainty setW = {𝑊 } based on Eq. (11)

5 while Stop condition is not reached do
6 Fetch (𝑢, 𝑖) from D;

7 Calculate the prediction error 𝑒𝑢,𝑖 (𝜙) based on 𝜙 and

Eq. (3);

8 Use the pre-trained IPS model to calculate 𝑒𝑢,𝑖 ( ˆ𝜙 (0) )
based on

ˆ𝜙 (0)
and Eq. (3);

9 Maximize the loss Eq. (15) to update𝑊 ;

10 Minimize the loss Eq. (15) to optimize 𝜙 ;

11 end
12 Return an optimized recommender model with 𝜙 ;
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