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ABSTRACT
Unsupervised video hashing typically aims to learn a compact bi-
nary vector to represent complex video content without using man-
ual annotations. Existing unsupervised hashing methods generally
suffer from incomplete exploration of various perspective dependen-
cies (e.g., long-range and short-range) and data structures that exist
in visual contents, resulting in less discriminative hash codes. In this
paper, we propose a Multi-granularity Contextualized and Multi-
Structure preserved Hashing (MCMSH) method, exploring multiple
axial contexts for discriminative video representation generation
and various structural information for unsupervised learning si-
multaneously. Specifically, we delicately design three self-gating
modules to separately model three granularities of dependencies
(i.e., long/middle/short-range dependencies) and densely integrate
them into MLP-Mixer for feature contextualization, leading to a
novel model MC-MLP. To facilitate unsupervised learning, we in-
vestigate three kinds of data structures, including clusters, local
neighborhood similarity structure, and inter/intra-class variations,
and design a multi-objective task to train MC-MLP. These data
structures show high complementarities in hash code learning. We
conduct extensive experiments using three video retrieval bench-
mark datasets, demonstrating that our MCMSH not only boosts
the performance of the backbone MLP-Mixer significantly but also
outperforms the competing methods notably. Code is available at
https://github.com/haoyanbin918/MCMSH.
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Figure 1: Overall structure of the proposed MCMSH. The
MC-MLP module is designed to learn discriminative video
representations by capturing multiple granularities of axial
contexts. Three kinds of unsupervised learning objectives
are developed to optimize the hash code generation.
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1 INTRODUCTION
Hashing is a technique that generates low-dimensional, compact
binary codes that convey the information within data. Its main ad-
vantages include low storage cost and high matching speed, greatly
boosting the development of applications such as data retrieval
[9, 11, 26, 28, 34, 37, 48, 54, 60], data indexing [8, 47], digital signa-
tures [7, 10], etc. This paper focuses on learning compact hash codes
for video data in an unsupervised manner. Since video contents
are much richer and more complex due to 3-dimensional spatio-
temporal variations, and the huge and rapidly increasing amount of
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video data make manual labelling impossible, unsupervised video
hashing, thereby, is becoming more challenging and continuing to
engage research attentions.

The main challenge of unsupervised video hashing is twofold: (1)
how to maximally convey the spatio-temporal contents presented in
video to a limited number of binary codes and (2) how to accurately
preserve the relevance structure within video data for a retrieval
task. The �rst one is challenging because that video is a temporal
sequence of image frames and the extra time dimension greatly
enriches the visual variations. Current video hashing approaches
[4, 25, 38, 49, 51] address this challenge by mainly following the
pipeline that �rstly uses a feature extractor, e.g., convolutional neu-
ral networks (CNNs), to generate frame-level embedding for all
frames, and then applies a temporal calculational unit, e.g., recur-
rent neural networks (RNNs) or transformers [46], to model tempo-
ral relations among frames. For example, the works [24, 57] utilize
long short-term memory (LSTM) network [18] to encode the tem-
poral correlations. As RNNs process the video frame by frame, the
in�uence of the current frame on the latter frames would degenerate
with the growing of temporal distance, preferring the short-range
context information. Recently, attention mechanisms, e.g., trans-
formers [46], show promising performance on various research
tasks [6, 56]. The work [26] adopts the bidirectional transformer to
model correlations among frames. Transformers holistically pro-
cess a video sequence and conduct a pair-wise comparison between
every frame, building long-range context interactions. However,
the pairwise comparison of transformers may also increase the
computational complexity much.

Existing works [13, 23, 25, 26, 57] address the second issue by
approximating the relevance structure within videos and preserv-
ing it in the hash code space, because the relevance or similarity
information is crucial for a retrieval task. In general, these works
mainly explore one or two types of structural information. For
example, [23] explores both video appearance and temporal struc-
tures to learn hash codes with the use of autoencoder. [13, 25]
turn to build the neighborhood similarities for all training video
instances and preserve them through a structure reconstruction
loss. [26] extends [25] by additionally introducing cluster alignment
for hidden representation encoding. In terms of the retrieval perfor-
mance, neighborhood preservation used by [13, 25, 26] shows more
promising results than feature reconstruction [23, 57]. Neverthe-
less, it is non-trivial to completely express the relevance structures
with one or two types of structural simulations. Consequently, the
exploration of structural information is still an open question for
unsupervised video hashing.

To jointly address the aforementioned two limitations for unsu-
pervised video hashing, speci�cally hash code learning and unsu-
pervised training, we propose amulti-granularity contextual-
ized and multi-structure preserved hashing (MCMSH) method.
Figure 1 illustrates the overall structure of MCMSH. Firstly, three
self-gating modules are purposely designed to model various gran-
ularities of video feature contexts and incorporated densely into
the multi-layer perceptron (MLP) based mixer (MLP-Mixer) [44]
to derive accurate and compact video hash codes, resulting in a
novel video hashing model multi-granularity contextualized MLP
(MC-MLP). Particularly, the three self-gating modules separately

capture long-range, middle-range and short-range axial dependen-
cies (contexts) from video features, referred to as L-RD, M-RD, and
S-RD modules, and re�ne parallelly the MLP features with element-
wise multiplication. Contexts used by them are feature dynamics
aggregated from di�erent perspectives and potentially can model
diverse contents of videos. Secondly, to facilitate unsupervised
learning, we investigate various types of structural patterns within
the data, including cluster information, neighborhood similarity,
and inter/intra-class variations, to guide both the hidden repre-
sentation encoding and hash code generation of MC-MLP. These
structural patterns explicitly cover a broad range of relevance struc-
tures, such as local neighborhood structure, intra-class closeness
and inter-class separation, and are maximally preserved in the hash
code space through the multi-objective optimization, which thereby
can boost the video retrieval task signi�cantly.

We summarize the contributions as follows:

� Multi-granularity contextualized MLP . We propose a
new model named multi-granularity contextualized MLP
(MC-MLP) for compact hash codes learning for videos. MC-
MLP contains three self-gating modules (L/M/S-RD) to ex-
plicitly model multi-granularity contexts and re�ne video
features in parallel.

� Multi-structure preservation . We explore multiple struc-
tural patterns from video data to facilitate unsupervised
learning. These structures accurately approximate the un-
derlying similarity and group patterns, and are preserved as
many as possible in the Hamming space.

� Superior retrieval performance . We verify that our MC-
MLP can signi�cantly improve the performance of the back-
bone MLP-Mixer on the hashing-based video retrieval task,
and the proposed MCMSH with multi-structure preservation
also achieves either state-of-the-art or comparable retrieval
results on three commonly used video benchmark datasets.

2 RELATED WORK
Our work is mainly relevant to unsupervised video hashing lit-
eratures. Below, we organize the review in the order of classical
machine learning based approaches and advanced deep learning
based approaches primarily, clarifying both model architectures
and learning strategies.

Classical machine learning based . The classical machine
learning based hashing methods mainly extract static image-level
features from video frames, such as global histogram (e.g., HSV
[52]) and local pattern features (SIFT [33], LBP [58]), and then use a
hash function to compute binary hash codes. Representative works
include spectral hashing (SH) [50], self-taught hashing (STH) [55],
multiple feature hashing (MFH) [40], unsupervised stochastic multi-
view hashing (USMVH) [13] and its extension t-distributed USMVH
(t-USMVH) [12]. SH and STH use a single feature to represent video
frames and learn hash code or hash function by schemes such as the
binarization of the eigenvectors of the graph. MFH, USMVH, and
t-USMVH extract multiple features and learn hash codes by manu-
ally weighting the importance of di�erent types of feature sources.
For model optimization, MFH is also based on spectral factorization,
while USMVH and t-USMVH use a composite Kullback-Leibler (KL)
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divergence to achieve similarity structure preservation from feature
space to Hamming space.

Advanced deep learning based. In recent years, deep learning
technologies, e.g., MLPs [44], CNNs [17], RNNs and transformers
[46], have gained signi�cant breakthroughs and greatly boosted
the development of various multimedia related research tasks. In
the studied hashing �eld, there are also a lot of works [4, 5, 23�
27, 41, 51, 57] that use deep neural networks for either/both feature
extraction or/and hash code generation. The most previous ap-
proaches include, to name a few, [4] and [51], where [4] simply
squeezes the CNN features over frames to obtain the video repre-
sentation while [51] additionally extracts the optical �ow features
to enhance the recognition for temporal variations. Since video
contents are dynamics presented in sequential order, both spatial
and temporal clues should be considered jointly. Subsequently, ben-
e�ting from RNN or its variants [18, 59] which inherently possess
the ability of modeling temporal relations, current video hashing
approaches design their model architecture following the form of
�CNN+RNN�, for example, self-supervised temporal hashing (SSTH)
[57], joint appearance and temporal encoding (JTAE) [23], self-
supervised video hashing (SSVH) [41], neighborhood preserving
hashing (NPH) [25], structure-adaptive neighborhood preserving
hashing (SNPH) [27] and unsupervised variational video hashing
(UVVH) [24]. To achieve more reliable temporal information cap-
turing, BTH [26] employs the bidirectional transformers to fully
exploit the long-range bidirectional correlations among frames. In
terms of the model learning, most of the above works investigate
one or two types of similarity structures. For example, SSTH [57]
and JTAE [23] use the temporal order of the video sequence as a
self-supervision for learning to hash. SSVH [41], NPH [25], SNPH
[27] and BTH [26] learn to reconstruct the similarity structure built
with the original features from the relaxed hash codes, and SNPH
and BTH further consider the content reconstruction (SNPH) and
cluster alignment (BTH). UVVH [24] applies a probabilistic latent
loss to approximate the posterior distribution learned by the model
to a prede�ned prior.

The proposed multi-granularity contextualized MLP (MC-MLP)
model originates from MLP-Mixer [44], which uses the token-
mixing layers to capture cross-token interactions. Recently, there
are also some vision MLPs that improve the MLP-Mixer, such as
MLP with gating (gMLP) [30], axial shifted MLP (AS-MLP) [29], spa-
tial shift MLP (s2-MLP) [53] and Permute-MLP [19]. These vision
MLPs aim at building e�cient token-mixing operations. Whereas,
our MC-MLP turns to improve MLP-Mixer by introducing various
axial contexts.

3 PROPOSED METHOD
An overview of the proposed unsupervised video hashing method
(i.e., multi-granularity contextualized and multi-structure preserved
hashing, MCMSH for abbreviation) is illustrated in Figure 1. The
model architecture of MCMSH is based primarily on MLP-Mixer
and further enhanced with diverse axial (frame and channel) con-
texts. To accomplish unsupervised learning, we explore various
types of structural information within videos, including clusters
analysis, neighborhood similarity, and inter/intra-class variation,
and preserve them in the learnt video hash code space.

Figure 2: The schema of the proposed (a) MC-MLP model. It
mainly consists of four blocks, i.e., (b) L-RD, (c) M-RD, (d)
S-RD and (e) MLP.

3.1 Video Representation Encoding and Hash
Code Generation

The notation for the video input is as follows. We are given a set of

# training videos denoted byV =
�
V8 2 R) � � 	 #

8=1. Here, a video

is represented by a) � � feature matrixV8 =
�
v8

1•v
8
2•� � � •v8

)

� ) ,
where) and� are the number of sampled frames (tokens in MLP-
Mixer) and the channel dimensionality per frame respectively. In
the implementation, we use the CNN features extracted from VGG
[39] as the frame features. To generate hash codes for each video,
we �rst introduce the proposed multi-granularity contextualized
MLP (MC-MLP) to learn discriminative representation from the
complex sequential video features and then design a hash layer
on top of MC-MLP to generate compact hash codes. In addition,
since the original video embeddingsV8 generally possess a high
channel dimensionality (e.g., 4,096), we use a fully connected (FC)
layer activated by ReLU to reduce� to a relatively lower value�
before feeding into the mixing layers of MC-MLP.

Multi-granularity contextualized MLP . MC-MLP improves
the capability of modeling multi-granularity dependencies for MLP-
Mixer by densely re�ning its per-mixing features with various
dynamics aggregated from di�erent feature axes. MLP-Mixer is
originally proposed for image processing, which separately models
the per-location (channel-mixing) interaction and cross-location
(token-mixing) interaction by pure MLPs, achieving comparable
performance with the advanced CNNs and transformers but re-
quiring a lower computational cost. Since MLP-Mixer regards the
data sample (image) as a set of sequential tokens with the tensor
shape of) � � , it can be naturally extended to facilitate the video
representation learning from the5 A0<4� 2�0==4;video feature
map. However, although MLP-Mixer inherently models the inter-
actions between channels or between tokens, it lacks of explicit
exploration for various axial content dependencies which have been
demonstrated to be promising in learning discriminative represen-
tation. To address this issue, we propose three kinds of self-gating
modules, including, along-range dependency (L-RD) module, a
middle-range dependency (M-RD) module and ashort-range
dependency (S-RD)module, to jointly adjust the per-mixing fea-
ture maps. Details of the three module variants (L/M/S-RD) are
presented below.
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We derive the three self-gating modules following the squeeze-
and-excitation paradigm, i.e., �{Operators1}-ReLU-{Operators2}-Sigmoid�,
proposed by SE-Net [20] and extended by [15, 16, 42]. Since MLP-
Mixer contains two types of mixing layers, i.e., channel-mixing and
token-mixing, we formulate the feature contextualization modules
in a general fashion regardless of the mixing type. Their gating unit
is de�ned as below. Formally, given the MLP-based input feature
mapX 2 R� 1� � 2, the re�ned featureZ 2 R� 1� � 2 is computed as
follows

Y* ¹� º = ReLU
�
5>?1

�
X* ¹� º ; � >?1

� �
• (1)

G* ¹� º = Sigmoid
�
5>?2

�
Y* ¹� º ; � >?2

� �
• (2)

Z* ¹� º = G* ¹� º � X* ¹� º • (3)

* ¹� º � f¹ 8• 9ºgj� 1•� 2
8•9=1 •

* ¹� º � f¹ 8• 9ºgj
� 1
' 1

•� 2
' 2

8•9=1 •

where� >?1 and� >?2 are parameters for operators5>?1 and 5>?2,
respectively;Y* ¹� º is the axial context andG* ¹� º is a gating mask;
* ¹� º and* ¹� º are index sets for¹8• 9º-th element on the feature
map;' 1• ' 2 denote dimensionality reduction ratios caused by ax-
ial pooling and reduction. Through adjusting the dimensionality
reduction ratios, multiple axial contexts can thus be obtained. For ex-
ample, when instantiating5>?1 with �AvgPool1d(� 1)� (i.e.,' 1 = � 1)

and �FC(� 2, � 2
A )� (i.e.,' 2 = A), the global context over� 1 axis is

generated. �� � is the Hadamard product operator.
The L-RD module squeezes input along an axis by global 1D

average pooling, representing axial context as a global vector, and
uses two FC layers (5>?1 and5>?2) to calculate the gating weights,
as shown in Figure 2(b). Hereby,' 1 = � 1 and' 2 = A. TheM-RD
module uses a relative smaller pooling kernel (e.g.,3) to aggregate
middle-scale dynamics, and facilitates5>?1 and5>?2 with 1D con-
volutions with a3 kernel to assign the regional context, as shown
in Figure 2(c), where' 1 = 3 and' 2 = A. Unlike L-RD and M-RD
that adopt pooling operation to aggregate axial contexts, theS-RD
module employs a convolutional operator (1D convolution with
3 kernel) to capture local contexts within a neighboring �eld, as
shown in Figure 2(d). Hereby,' 1 = 1 and ' 2 = A. Finally, three
gating masks solely calculated by L/M/S-RD are summed up. It is
worth noting that � 1 and � 2 could be the number of frames or
channels. In addition, we also add a FC layer before and after the
gating unit.

Hash layer . By inputting a video represented byV8 into the
proposed MC-MLP, we can obtain its new) � � embedding matrix
E8. To generate hash codes fromE8, we �rstly use a FC layer to
projectE8 to )  -dimensional real-valued vectors stored inH8 =
�
h8

1•h
8
2•� � � •h8

)

� ) , where is the hash code length. Then, we fuse
f h8

9g
)
9=1 via mean pooling and activate the fused values with)0=�

to the range of¹� 1•1º, resulting in the relaxed hash code vector
�h8. In the end, a(86=function, given as(6=¹Gº = 1 if G � 0 and
(6=¹Gº = � 1 otherwise, is applied to convert the real-valued vector
�h8 to a binary vectorb8. The calculation is as follows:

H8 = �� ¹E8• � !  º• (4)

�h8 = )0=� ¹
1
)

)Õ

C=1

h8
Cº• (5)

b8 = (6=¹ �h8º” (6)

3.2 Structure Preservation for Unsupervised
Learning

To facilitate unsupervised (or self-supervised) learning, we investi-
gate various types of structural information from the video data, in-
cluding cluster information, neighborhood similarity, and inter/intra-
class variations.

Cluster approximation and alignment . The intrinsic cluster
information plays an important role in various tasks, such as re-
trieval [28,34] and classi�cation [32]. Unlike the supervised training
that cluster labels are given, there is no human-labeled semantics
available for unsupervised learning. As a result, we need to seek a
breakthrough from the data itself. Clustering algorithm is a poten-
tial way of producing pseudo labels, which learns statistical cohort
characteristics without any human e�ort. In the implementation,
we apply K-means on the training video instancesV for cluster
centers approximation. Speci�cally, we �rstly adopt the average
pooling on the) frame featuresfv8

Cg)
C=1 to obtain a video vector

embedding�v8, and then conduct K-means to learn" cluster centers
f u9g"

9=1, where here PCA is also used for reducing the dimension-
ality of � to the same value� with e. To align the learnt video
representation�e8 = 1

)
Í )

C=1 e8
Cwith its the nearest class centeru1

8,
we formulate the cluster lossL 2;DBC4Aas MSE, that is

L 2;DBC4A=
1
�

�Õ

8=1

k�e8 � u1
8k2

2• (7)

where� is the training batch size.
Neighborhood similarity reconstruction . The cluster align-

ment brings video instances closer to its nearest class center but
takes too little account of local neighborhood structure which is
essential for the studied retrieval task [13, 14, 26]. Towards this
goal, we �rstly construct a pairwise similarity graphS 2 R# � #

with each element representing the similarity of a video pair in
the training data set, and then reconstruct the pairwise similari-
ties in the embedded hash code space with the local neighborhood
structure being wished to preserve.

We follow the works [26, 31] to accomplish the construction
of S. Speci�cally, for each video8represented by�v8, its< nearest
cluster centersf u1

8•u2
8•� � � •u<

8 gare picked out. Then, a truncated
similarity matrix P 2 R# � " is calculated as

P8•9=

8>>>><

>>>>
:

exp¹�k �v8 � u9
8k2

2•f º
Í <

;=1 exp¹�k �v8 � u;
8k2

2•f º
• 8u9

8 2 fu�
8g•

0• otherwise•

(8)

wherek � k2 denotes the;2-norm (i.e., Euclidean distance), andf is a
bandwidth parameter. Afterwards, we compute an# � # adjacency
matrix asA = P� � 1P) , where� = 3806¹P) 1º 2 R" � " . A is an
nonnegative sparse symmetric matrix with elements of each row
sum to 1, indicating a relevance structure computed based on the
truncated similarities. Furthermore, we discretizeA to a bi-level
similarity matrix A0by settingA0

8 9= 1 if A8 9¡ 0 andA0
8 9= � 1 oth-

erwise. The pairwise similarity matricesA andA0are determined
by the number (i.e.,< ) of nearest cluster centers. Consequently,
when setting< with di�erent values, we can compute multiple
similarity matrices that consider di�erent relevance degrees among
video instances. In practice, we follow [26] and set three numbers
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for < ,< 1•<2•<3 (< 1 Ÿ < 2 Ÿ < 3), resulting in three corresponding
matricesA0¹1º , A0¹2º andA0¹3º . Based on them, we construct the
ultimate similarity matrix Sas

S8 9=

8>>><

>>>
:

1• A0¹1º = 1•

� 1• A0¹2º = � 1 andA0¹3º = 1•

0• otherwise”

(9)

Compared with the bi-level similarity matrixA0, the fused similarity
matrix Sadds a new similarity degree of 0 to separate boundary
cases. Given a video query, boundary cases are mostly dissimilar
within small neighborhoods (e.g.,< 1•<2) but possess similarity
in a larger area (e.g.,< 3). So, to enhance the cluster separability,
we forcefully pull them away from each other by assigning the
similarity score with -1.

In the hash code space, we compute the pairwise similarity be-
tween the relaxed hash code vectors�h8and�h9as dot product (cosine
similarity) 1

 
�h)
8

�h9, considering the fact that(6= function makes
the optimization intractable. However, to reduce the gap between
the relaxed real-valued codes and the binary codes, we also involve
a quantization error as a penalty term. The �nal neighborhood
similarity reconstruction loss is as follows

L B8< =
1
�

Õ

B8 92S

¹
1
 

�h)
8

�h9 � B8 9º2 ¸ 0”1
1
�

�Õ

8=1

kb8 � �h8k2
2” (10)

Since the hash code vector18 is computed by(6= which is non-
di�erentiable, we use straight-through estimator (STE) [1] to ap-
proximate the derivative calculation.

Inter/Intra-class variation control . Neighborhood similarity
structure re�ects the local pairwise relevance in the (relaxed) hash
code space. As a complement to the structure, we additionally use a
quadruplet ranking loss to achieve a large inter-class variation and
a small intra-class variation among the binary representations. This
loss has been demonstrated to be bene�cial to the generalization
from the training set to the testing set [3]. Its formulation is as
below:

L @D03=
1
#

#Õ

8•9•:

max¹0•k�h8 � �h9k2
2 � k �h8 � �h: k2

2 ¸ U1º•

¸
1
#

#Õ

8•9•:•;

max¹0•k�h8 � �h9k2
2 � k �h; � �h: k2

2 ¸ U2º•

(11)

where the¹8• 9º video pair is a positive pair and others such as¹8• ;º,
¹8• :º and¹;• : º are negative pairs, andU1 andU2 are margins set em-
pirically following [35] (¹U1• U2º is set asf¹ 4•0”25º•¹8•0”5º•¹16•1ºg
for hash code lengthf 16•32•64gbits.). The quadruplet loss is modi-
�ed based on the triplet loss [36]. The �rst term in L @D03shares
the same idea with triplet loss that obtains the correct orders for
positive (e.g.,¹8• 9º) and negative pairs (e.g.,¹8• :º) w.r.t the same
probe video. The additional second term brings a new constraint to
push away negative pairs (e.g.,¹;• : º) from positive pairs (e.g.,¹8• 9º)
but w.r.t di�erent probe videos. As a result, this quadruplet loss
can control the minimum inter-class distance to be larger than the
maximum intra-class distance regardless of whether pairs contain
the same probe.

The studied three data structures (i.e., neighborhood, cluster,
and inter/intra-class variation) show di�erent structural patterns
in hashing code learning. First, the neighborhood, which re�ects
pairwise similarities between videos, is a general consensus among
existing hashing works [12, 13, 25, 27]. However, considering neigh-
borhood alone has a drawback in that the distribution of the holis-
tic samples could not be captured within a small training batch
[26, 28, 32, 39]. As a complementary, the clustering technique cap-
tures statistics re�ecting cohort characteristics of whole samples.
Besides, the loss of cluster alignment would pull a sample point
closer to its assigned cluster, encouraging the correct prediction
of clusters. Finally, both the neighborhood and clustering do not
focus on promoting high inter-class separability, which has been
veri�ed to be useful in recognition & re-identi�cation tasks [3, 36].
Inspiringly, we adopt the quadruplet loss to maintain small intra-
class and large inter-class variations, also known as ranking orders.
Besides, we conduct experiments on pair-wise combinations of the
three structures and observe their complementary nature.

Model optimization . The optimization of MCMSH is based
on a multi-objective formulation combining the three proposed
loss functionsL 2;DBC4A, L B8< andL @D03. By arranging them with
balancing parameters, we have the overall loss

L 0;; = UL 2;DBC4A̧VL B8< ¸ WL @D03” (12)

4 EXPERIMENT
We conduct extensive experiments on three standard benchmarks
for video retrieval and evaluate the performance with the mean
average precision at top-k retrieved results (mAP@k) mainly.

4.1 Datasets
� FCVID. FCVID [21] consists of 91,223 videos for 239 manu-

ally annotated categories. Videos in this dataset show various
activities, objects, events, etc. We follow [41] to use 91,185
videos, where 45,585 videos for training and the other 45,600
videos for evaluation.

� ActivityNet . ActivityNet [2] has 28k videos of 203 activity
categories collected from YouTube. We follow [25] to use
9,722 videos for training, and 4,758 videos for evaluation of
which 1,000 videos are as queries and the rest 3,758 videos
are as retrieval database.

� YFCC. YFCC [43] consists of 0.8M video clips for 80 cate-
gories. We follow [57] to use 101,256 videos, where 409,788
videos for training and 101,256 videos for evaluation.

4.2 Implementation Details
During feature preparation , for FCVID and YFCC datasets, we
sample 25 (i.e.,) = 25) frames for each video, and use VGG-16
[39] network to extract 4096-D (i.e.,� = 4096) frame-level features.
For ActivityNet dataset, we follow [23] to sample 30 (i.e.,) = 30)
frames per video, and use ResNet-50 [17] to extract 2048-D (i.e.,� =
2048) frame-level features. The above features are provided by [41]
(FCVID and YFCC) and [26] (ActivityNet) respectively. Formodel
architecture design, we set the reduced feature dimensionality
as� = 256, and the reduction ratioAused in L/M/S-RD modules
to 16 when integrating into channel-mixing block and4 when
integrating into token-mixing block. Formulti-objective loss
functions , we empirically �x the number of clusters produced by
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K-means to 2,000 and the nearest neighbors< 1 = 3•<2 = 4•<3 = 5
following [26]. The balancing parametersU• V•Wused in Eq. (12) are
�ne-tuned and �nally set asU = 0”8• V= 0”1•W= 0”01. Formodel
optimization , the training settings are set as: 55 epochs with batch
size 256, learning rate (lr) 0.0003, decaying lr by 0.9 at epoch 20 and
40, and Adam [22] optimizer with momentum 0.9.

4.3 Ablation Study
In this section, we study the impacts of hyperparameters, including
self-gating modules (i.e., L/M/S-RD) of MC-MLP, the dimension
reduction ratioAused in MC-MLP, and balancing factorsfU• V•Wg
in the ultimate loss function Eq. (12), using FCVID dataset.

Impact of L/M/S-RD modules . We �rstly verify the impacts
of the proposed self-gating module types. Table 1 demonstrates
the performances of baseline and MC-MLP variants with di�erent
L/M/S-RD and combined modules. Here, results are obtained by �x-
ing the objective balancing parametersU = 0”8, V = 0”1andW= 0”01.
We observe that the proposed self-gating modules, regardless of
their types, consistently improve the base network (i.e., MLP-Mixer),
indicating their e�ectiveness (e.g., 0.288! 0.298 mAP@20 with L-
RD, 0.288! 0.298 mAP@20 with M-RD and 0.288! 0.295 mAP@20
with S-RD). Moreover, compared to the single self-gating module,
the MC-MLP, which combines the three L/M/S-RD modules in
parallel, achieves much better performance with the same back-
bone (0.302 vs. 0.288 of backbone with� 5% relative performance
improvement).

Impact of dimension reduction ratio A. Secondly, we compare
di�erent MC-MLP nets with variousA. The dimension reduction
ratio Ais introduced to ensure that a self-gating module's capacity
and computational cost can be controlled. It is notable that there are
two kinds of MLP blocks, i.e., token-mixing and channel-mixing,
and the channel commonly has a larger dimension (e.g., 256) than
the tokens (e.g., 25 or 30). In this case, we mainly tune the ratio
used in the channel-mixing block. Table 2 shows the performance
changes when settingA= f 2•8•16•32g. We can �nd that increasing
Adoes not lead to monotonic performance degradation but signif-
icantly reduce the number of parameters (e.g., from 1.88M with
A = 2 to 1.75M withA = 32). Considering the trade-o� between
the performance and the number of parameters, we setA= 16for
L/M/S-RD modules when integrating them into the channel-mixing
block.

Impact of di�erent structures and their combinations . Next,
we test the impacts of di�erent objectives by tuning their assigned
factorsfU• V•Wg in Eq. (12).

First, we assess the contribution of di�erent structures by setting
the studied loss factor as1 and others as0. Here, the hash code
length  = 64is adopted. As denoted in section 3.2, we build three
types of structures within data for unsupervised learning, i.e., clus-
ter (L 2;DBC4A), neighborhood similarity (L B8<) and inter/intra-class
variation (L @D03). Table 3 shows the performance changes with a
single structure and their combinations. We observe that the cluster
structural information can provide a higher performance than the
other two, the combinations of two structures outperform that of a
single structure, and adopting all three structures performs the best.
This shows an evidence that di�erent structures are complemen-
tary to each other and also proves the feasibility of the proposed
multi-structure preservation mechanism.

Figure 3: Performance changes varying fU• V•Wgfor MCMSH.
The hash code length is �xed as  = 64. The settings used for
reporting the performance in the tables are as fU = 0”8• V=
0”1•W= 0”01g.

Then, we tune the values offU• V•Wg with much �ner granu-
larities for a relative optimal setting using FCVID dataset. Figure
3 demonstrates the performance changes while varyingfU• V•Wg
with three settings, i.e.,U 2 f1”0•0”8•0”6g, V 2 f0”05•0”1•0”2g and
W2 f 0”01•0”05•0”1g. The selected value ranges are preliminarily nar-
rowed down through empirically testing rough settings. As shown
in the sub�gure 3(e), the chosen settings offU = 0”8• V= 0”1•W=
0”01gprovide a generally better performance across di�erent mAP
metrics.

4.4 Comparison with State-of-the-arts
We compare our MCMSH with several state-of-the-art unsuper-
vised hashing methods, including both shallow learning method
MFH [40], and deep learning methods DH [5], JTEA [23], SSTH [57],
SSVH [41] and BTH [26]. Following [26], The image hashing method
DH is extended to video hashing by using the same CNN features.
Here, we test their results with hash code lengths of 16, 32 and 64
bits.

Results on FCVID. Figure 4(a-c) show the comparison between
MCMSH and SOTAs on FCVID. Overall, our MCMSH, regardless of
hash code length, achieves the best performance among all the com-
peting methods. Compared to the more sophisticated transformer-
based BTH, the absolute performance improvements of MCMSH
are as high as 11.8%, 8.9%, 7.8%, 6.9%, 6.5% and 5.9% for mAP@k
(k=5, 20, 40, 60, 80, 100) respectively with 16-bits. These consid-
erable increases demonstrate strong proof of MCMSH's superi-
ority in video hash code generation and structural information
preservation. Particularly, as BTH adopts transformer as network
model, it inherently possesses the ability of long-range dependency
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Table 1: Performance (mAP@k) comparison with di�erent MC-MLP variants on FCVID with 32 bits and 64 bits hash code
lengths.

Model
32 bits 64 bits

k=20 k=40 k=60 k=80 k=100 k=20 k=40 k=60 k=80 k=100

MLP-Mixer 0.288 0.244 0.223 0.208 0.195 0.323 0.277 0.254 0.237 0.223
+L-RD 0.298 0.253 0.229 0.212 0.198 0.330 0.283 0.258 0.240 0.225
+M-RD 0.298 0.253 0.230 0.213 0.199 0.332 0.284 0.258 0.240 0.225
+S-RD 0.295 0.250 0.226 0.209 0.195 0.329 0.282 0.257 0.239 0.224

MC-MLP 0.302 0.258 0.235 0.217 0.202 0.335 0.288 0.263 0.245 0.230

Table 2: Performance (mAP@k) comparison of MCMSH with
di�erent dimension reduction ratio Aon FCVID with hash
code length 64 bits.

A k=20 k=40 k=60 k=80 k=100 Param.

2 0.333 0.287 0.262 0.243 0.228 1.88M
8 0.335 0.289 0.264 0.246 0.231 1.78M

16 0.335 0.288 0.263 0.245 0.230 1.76M
32 0.331 0.286 0.262 0.244 0.229 1.75M

Table 3: Performance (mAP@k) comparison with a single
data structure and their combination using FCVID dataset
with 64 bits codes.

Loss k=5 k=20 k=40 k=60 k=80 k=100

! 2;DBC4A¹U = 1º 0.466 0.304 0.256 0.230 0.211 0.197
! B8< ¹V = 1º 0.430 0.270 0.228 0.206 0.190 0.176
! @D03¹W= 1º 0.441 0.262 0.211 0.185 0.167 0.154
0”8! 2;DBC4A̧ 0”1! B8< 0.490 0.332 0.285 0.260 0.241 0.225
0”8! 2;DBC4A̧ 0”01! @D03 0.486 0.328 0.282 0.257 0.239 0.224
0”1! B8< ¸ 0”01! @D03 0.464 0.290 0.239 0.213 0.195 0.181
MCMSH 0.494 0.335 0.288 0.263 0.245 0.230

Figure 4: Performance (mAP@k) comparison with state-of-
the-arts on FCVID (a-c), ActivityNet (d-f) and YFCC (g-i)
datasets. The results of the competing methods are cited
from [26].

modeling. As compared, our MLP-based MC-MLP model considers
multi-granular dependencies, i.e., long-range, middle-range and
short-range. Hence, it is not surprising that MCMSH obtains such
signi�cant performance improvements. This further demonstrates

Figure 5: mAP curve with di�erent hash code length (k bits)
on FCVID dataset.

that the idea of contextualizing frame/video features with various
dependencies is promising. In addition, we also draw the mAP
curve with di�erent hash code lengths for MCMSH in Figure 5 and
observe the same trend as reported individual results.

Results on ActivityNet . Figure 4(d-f) present the performance
comparison on ActivityNet. We observe similar performance trends
with those on FCVID. That is, our MCMSH outperforms other
methods with hash code lengths 16 and 32 bits by large margins
(0.8%-4.0% for 16-bits, 0.5%-6.5% for 32-bits) and is competitive with
code length 64 bits. We speculate that as videos in both FCVID and
ActivityNet datasets contain rich human-object interactions, mod-
eling multi-granular motion dependencies is especially essential
for video content understanding. This further proves the feasibility
of the hash code learning strategy of MCMSH.

Results on YFCC. Figure 4(g-i) list the results of di�erent meth-
ods on YFCC. Except for BTH, MCMSH signi�cantly outperforms
all the other SOTAs under all evaluation con�gurations. While the
results of MCMSH and BTH are very similar (actually MCMSH is
slightly better than BTH with 16 and 32 code bits). The performance
trend is slightly di�erent from those on other two datasets. One
possible reason might be that the discriminatory power of a smaller
model (1.76M of MCMSH vs. 3.17M of BTH as shown in the table
that follows) tends to saturate easily when processing large-scale
datasets like YFCC (around 410k training samples). Considering
the trade-o� between e�ectiveness and e�ciency, MCMSH is still
superior to BTH.

Table 4: Cross-dataset mAP@20 gain when training on FCVID
and test on YFCC with 64 bits. Results of competing methods
are cited from [26].

Method SSTH SSVH BTH MCMSH

mAP@20 � 6”3%# � 7”8%# � 5”7%# � 3”2%#

4.5 Cross-dataset Performance Comparison
We conduct cross-dataset retrieval to investigate the generalization
of MCMSH by following the standard protocol, i.e., training on
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Figure 6: Visualizing feature distributions with di�erent MC-MLP variants and the backbone MLP-Mixer via t-SNE.

Figure 7: Top-5 retrieved results of BTH and MCMSH on Ac-
tivityNet dataset. The selected four action categories contain
various human-object interactions and thus require strong
spatio-temporal modeling. The video in a green square is cor-
rectly retrieved, while the video in a red square is an error.

a dataset and test on another dataset. In the implementation, we
report the cross-dataset performance when training on FCVID and
test on YFCC. As shown in Table 4, all methods su�er a considerable
performance drop. This is probably because there is an obvious
discrepancy between the training dataset (around 45k videos) and
the test dataset (around 100k videos). In other words, when the
training dataset is much smaller than the test dataset, the gener-
alization of the data-driven hash methods is limited. In particular,
the performance drop of MCMSH is less than the other methods,
indicating a better generalization across datasets.

Table 5: Comparison of parameters, FLOPs and average en-
coding time between BTH and MCMSH. The average encod-
ing time is computed in the same platform.

Method Param. FLOPs Average Encoding Time

BTH 3.17M 0.05G 0.53ms
MCMSH 1.76M 0.05G 0.47ms

4.6 Model Complexity Comparison
Model complexity is another important measurement for method
evaluation. We show the model complexity comparison between
the most competitive method BTH and our MCMSH in Table 5. The
number of parameters, computational FLOPs, and average encoding
time are reported with settings of 64 bits and 25 frames. As observed,
MCMSH has 1.76M parameters, which is only 55% of BTH (3.17M).
The average encoding time is computed as the amount of time
spent on hash code generation for a single instance. It can be found
that our MCMSH requires less encoding time (0.47ms) than BTH
(0.57ms). In terms of FLOPs, they have a similar number, i.e., 0.05G.

4.7 Qualitative Results
To contrast the features of di�erent MC-MLP variants and the
backbone MLP-Mixer, we apply t-SNE [45] to project the features

(relaxed hash codes with 64 bits) for visualization. Figure 6 shows
t-SNE visualization plots on videos randomly sampled on FCVID
dataset. It is obvious that the features of di�erent semantic classes
learned from MC-MLP with a single self-gating module (e.g., L-RD,
M-RD, or S-RD) are better separated compared to those from the
backbone MLP-Mixer. The complete version of MC-MLP, i.e., w/
L-RD, M-RD, and S-RD, further increases the distinguishability of
hash codes.

We also visually compare the retrieval results of the most compet-
itive BTH and our MCMSH by showing their top-5 video samples
retrieved from ActivityNet dataset. The results are based on the
setting of hash code length 64 bits. The selected four video classes,
e.g., �Rafting�, � Braiding hair�, � Wrapping presents� and �Spring-
board diving�, contain rich human-object interactions and thus
require strong spatio-temporal modeling. As shown in Figure 7,
our MCMSH can generally return more accurate results than BTH.
Particularly, for the class �Braiding hair� which needs to model
the hand-hair interaction, our MCMSH successfully retrieves three
correct videos while BTH fails to �nd any correct sample. More-
over, the other two incorrect samples (�Brushing hair�) retrieved
by MCMSH have higher semantic relevance to the query action
�Braiding hair�, compared to the samples retrieved by BTH. The
above examples indicate that MCMSH performs better than the
transformer based BTH for modeling temporal correlations within
the video.

5 CONCLUSION
We have presented an unsupervised video hashing method, MCMSH,
which explores multiple axial contexts for discriminative video rep-
resentation and various structural information for unsupervised
learning simultaneously. MCMSH builds a MLP based neural net-
work model MC-MLP for hash code generation. MC-MLP enhances
the backbone with three self-gating modules, including long-range,
middle-range, and short-range dependency modules (i.e., L/M/S-
RD). The three modules L/M/S-RD focus on di�erent kinds of axial
contexts to model multi-granular spatio-temporal interactions. To
facilitate unsupervised learning, we investigate three kinds of struc-
tural information within data, including clusters, neighborhood
similarity, and intra/inter-class variation. The three data structures
are crucial for video retrieval. In the experiment, we thoroughly
verify the impacts of the designed self-gating modules and the
constructed structures. Experimental results conducted on three
commonly used benchmark datasets demonstrate the e�ectiveness
and e�ciency of MCMSH compared with state-of-the-arts.
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