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ABSTRACT
Few-shot learning (FSL) is designed to explore the distribution of
novel categories from a few samples. It is a challenging task since
the classifier is usually susceptible to over-fitting when learning
from limited training samples. To alleviate this phenomenon, a com-
mon solution is to achieve more training samples using a generic
generation strategy in visual space. However, there are some limi-
tations to this solution. It is because a feature extractor trained on
base samples (known knowledge) tends to focus on the textures and
structures of the objects it learns, which is inadequate for describing
novel samples. To solve these issues, we introduce semantics and
propose a Semantic-based Selection, Synthesis, and Supervision
(4S) method, where semantics provide more diverse and informa-
tive supervision for recognizing novel objects. Specifically, we first
utilize semantic knowledge to explore the correlation of categories
in the textual space and select base categories related to the given
novel category. This process can improve the efficiency of subse-
quent operations (synthesis and supervision). Then, we analyze the
semantic knowledge to hallucinate the training samples by selec-
tively synthesizing the contents from base and support samples.
This operation not only increases the number of training samples
but also takes advantage of the contents of the base categories to
enhance the description of support samples. Finally, we also employ
semantic knowledge as both soft and hard supervision to enrich
the supervision for the fine-tuning procedure. Empirical studies on
four FSL benchmarks demonstrate the effectiveness of 4S.
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Figure 1: Given support samples and query samples from
several novel categories (in different colors), the performance
of classifiers trained with different strategies: (a) traditional
FSL methods and generative methods, (b) our method (4S).
And the different exploration strategies of our method: (c)
distribution exploration, and (d) classifier exploration.
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1 INTRODUCTION
In recent years, convolutional neural networks (CNNs) have demon-
strated remarkable capabilities in various tasks [24, 25, 37, 38]. How-
ever, such data-driven networks require an enormous amount of
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labeled training data to ensure their performance and capacity. And
the process of collecting and annotating data is time-consuming and
expensive. In contrast, humans can quickly recognize new objects
with just a few examples owing to the immense quantity of prior
knowledge that they have amassed. Therefore, few-shot learning
(FSL) task is proposed to imitate this human ability [26, 40, 41, 53].

For this imitation, a popular solution is using a CNN trained on
the base categories to extract the global features of novel objects
directly [11, 43]. It aims to yield a transferable feature representa-
tion (textures and structures) to describe the novel categories. And
then using these features to achieve classification. However, it is in-
sufficient to represent the novel samples since their global features
are insufficient to describe their category’s distribution with the
limited samples [40]. Thus, the few-shot classifier is usually sus-
ceptible to the over-fitting phenomenon. To alleviate this problem,
recent methods devoted to designing different feature synthesis
strategies and applying them in visual space to enrich training sam-
ples for classifier training [20, 28, 52]. However, these insufficient
feature representations influence the synthesis procedures in two
aspects: (1) the synthesized samples are finitely distributed around
the given training samples, and (2) the contents that the CNN does
not perceive will also be ignored in the synthesis process. There-
fore, limited samples with insufficient description exacerbate the
difficulty in perceiving novel distribution. As shown in Figure 1(a),
given several support samples (solid triangles) and query samples
(hollow triangles), the synthesized samples (dotted triangles) of
traditional methods are around the support samples. And the per-
formance of the classifiers (black lines) is slightly better than that
of the baseline (dotted gray lines, which over-fit the support sam-
ples). Furthermore, we can find that the given support samples
and the synthesized samples are distributed at the boundary of the
actual distribution of the novel categories, which also shows that
the trained CNN tends to focus on the base knowledge it learns
(gray regions) and overlooks the contents of the novel objects. It
also biases the classifier training.

To reduce the impact of insufficient feature description, recent
training strategies have introduced semantic knowledge to con-
strain the classifier [9, 44, 58]. It is because textual knowledge
provides potential contents which are already familiar with salient
features of novel categories and helps the classifier capture the
contents not in visual features [40]. Inspired by these strategies, we
analyze semantic knowledge to explore its gains for the few-shot
learning task, and propose a Semantic-based Selection, Synthesis,
and Supervision method. In this method, we focus on two core
issues: how to use semantics to (1) control the synthesized samples
to explore the potential distribution of the novel categories, namely
distribution exploration, and (2) control the classification process
to help the classifier perceive the contents that are ignored in visual
features, namely classifier exploration.

For the first issue, we devise semantic-based selection and syn-
thesis strategies. Specifically, we first explore the potential knowl-
edge from base categories (base knowledge) to describe the novel
categories by calculating the correlation between these different
categories, where semantics help us to filter out irrelevant informa-
tion present in the base knowledge, and subsequently select related
base samples from the corresponding visual space for further syn-
thesis operations. Then, we design a semantic-based discriminator

to select contents from both the support and the base features for
synthesizing new training features, where these features for syn-
thesis are prepared in advance by the pre-trained backbone. In this
synthesis procedure, we aim to select the contents that may exist in
the novel categories but have not been captured by the pre-trained
backbone, where these contents can be approximated by using the
contents from base categories. These strategies serve as a precise
supplement to the support samples by leveraging base knowledge
and semantic knowledge. Meanwhile, we can maximize the de-
scription of the novel categories in the data space. As shown in
Figure 1(c), the semantically synthesized features complement the
support features. They effectively extend the data space and prompt
the classifier to concentrate on the enlarged data space formed by
both the semantically synthesized and the support features.

For the second issue, we design semantic-based supervision train-
ing strategies in three aspects. First, we use the semantic-based dis-
criminator to assign soft labels for the synthesized samples, which
effectively expands the label space and aids in the development of a
robust classifier. Second, we combine soft labels and hard labels to
constrain the learning process of the visual classifier, where these
labels help the visual classifier focus on different contents from the
samples. Finally, we integrate textual information as hard supervi-
sion and propose a semantic-supervised classifier. This classifier
takes both textual information and training samples as input while
using textual information as supervision to direct the classifier’s
learning process for visual samples. As shown in Figure 1(d), se-
mantic supervision guides the classifier to move toward semantic
points. For instance, in the data space, all semantic representations
are positioned in the clockwise direction relative to the support
samples. This encourages the classifier to shift clockwise, leading
to the formation of flexible classification boundaries.

Our method couples the aforementioned training strategies into
one framework to train a powerful classifier. As depicted in Fig-
ure 1(b), benefiting from the aforementioned strategies, it not only
expands the data space of novel categories through semantic selec-
tion and synthesis but also achieves flexible classification bound-
aries by semantic supervision. In summary, the main contributions
of our method are threefold:

(1) We explore the effect of semantic knowledge in capturing
the potential distribution of the novel categories and select
related categories and contents from potential base knowl-
edge to supplement the support samples, which helps the
classifier to expand the perception of novel categories.

(2) We explore the benefit of semantic knowledge in the classifier
learning process and introduce semantic supervision as both
soft and hard supervision in training procedures to construct
flexible classification boundaries.

(3) We align the synthesis and supervision within a unified
framework. And ourmethod outperforms existing approaches
and achieves state-of-the-art performances on four popular
FSL datasets under three settings, which boosts the recogni-
tion results of novel categories with limited samples.

2 RELATEDWORK
In this section, we first briefly introduce common solutions for
FSL and related knowledge exploration strategies, and then we list
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Figure 2: An overview of our semantic-based selection, synthesis, and supervision method.

recent data synthesis methods in FSL. Finally, we enumerate the
differences between our methods and those of related methods.

2.1 Traditional Methods
The general solution to FSL is developing a robust feature extractor
(backbone) on base data and then designing adaptation strategies
to recognize novel objects [40, 41]. Fueled by the explosion of deep
learning [23, 39, 42], Many deep-learning-based methods are pro-
posed [22, 26]. Specifically, researchers have explored two different
branches. One branch involves meta-learning. It trains a meta-
learner on numerous FSL tasks (with base categories) to make the
meta-learner learn how to solve FSL tasks, thus it can be easily
adapted to new FSL tasks (with novel categories). Meta-learning
methods can be divided into two groups: (1) Metric-based meta-
learning, it aims at training a network that is capable of bringing
samples from the same category closer together while pushing sam-
ples from different categories farther apart by mapping the given
samples into feature space [31, 33, 35]. (2) Optimization-based meta-
learning, it aims at training a network that is capable of generalizing
to new FSL tasks with a small number of parameter updates by
designing optimization strategies to learn a better initialization
point or update direction [17, 29]. Another branch involves transfer
learning; it trains a backbone on known (base) categories, aiming
to produce a transferable feature representation (textures and struc-
tures) to describe novel categories. Specifically, [4, 32, 34] leverage
features extracted by a pre-trained backbone to fine-tune a classifier
for FSL task and show promising classification results.

2.2 Knowledge Exploration
Knowledge-based FSL methods have attracted attention for their
strong performance. It is because knowledge from external sources
can provide more information for novel categories. These methods
focus primarily on the use of semantic information, such as explor-
ing semantic relationships between different categories, bridging
the gap between visual and semantic modalities, and using semantic
information to enrich the supervision for classifier training. Specif-
ically, Li et al. propose an adaptive margin loss using semantic
similarity, which improves the supervision of the classifier and

facilitates the separation of similar classes [18]. The work in [40]
employs textual knowledge to generate soft labels, which serve
as supervision information to help learn a robust classifier. Chen
et al. introduce a knowledge graph transfer network (KGTN) that
explores semantic relationships between categories using a graph
and transfers similar classifier information from base categories to
novel categories through these semantic relationships [3]. The work
in [41] proposes a multi-directional knowledge transfer (MDKT),
where knowledge from different modalities is fused through a bidi-
rectional knowledge connection. Peng et al. put forward a knowl-
edge transfer network (KTN) that incorporates a graph convolution
network (GCN) to merge the visual and textual spaces, which as-
sists in recognizing novel samples [26]. AM3 [49] combines textual
features with visual features using an adaptive modality mixture
mechanism, which helps to improve the performance of metric-
based methods. Zhang et al. explore more detailed attributes or part
information to complete visual prototypes [55].

2.3 Data Synthesis
Recent work has demonstrated that data synthesis can bring steady
and effective improvement for few-shot learning. Synthesis-based
FSL methods aim to design effective strategies to generate more
training data to complete the novel categories. Thus, generative
models are the direct choice for data synthesis, the work in [7, 20,
43] train generative adversarial networks(GAN) on the base data,
and use the optimized generative model to synthesize novel samples.
Similarly, Schwartz et al. train an auto-encoder (AE) on the base
data and synthesize new samples for the novel category [30]. Since
learning generative patterns from base data using generativemodels
is time-consuming and expensive, [11, 12, 28, 52] propose to directly
use base data for synthesis. Hariharan et al. learn variations between
different base data from the same category and transfer variation
patterns for novel data generation [11], The work in [12] assigns
labels from the novel domain for base data by pseudo-labeling. Yang
et al. use the statistics from base categories to calibrate the novel
categories and sample features from the calibrated categories to
complete the novel descriptions [52]. The work in [10, 54] can also
be viewed as synthesis methods, Yue et al. split the novel features
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into different equal parts, which enlarges the training samples,
and they fuse the classification result of different parts as the final
prediction[54]. The work in [10] takes few-shot learning as a binary
ranking classification problem. It groups the novel samples into
image triplets and takes the image triplets as input, which also
enlarges the training samples.

Based on the aforementioned analysis, our method explores the
semantic knowledge and synthesizes training samples for few-shot
learning. The differences between the above methods and ours can
be summarized in two aspects: (1) we utilize textual relations to filter
base knowledge for further usage instead of directly using whole
base knowledge, which avoids introducing irrelevant noise during
the synthesis procedure. (2) We do not need to design complex
exploration networks, such as the knowledge graph [3, 26], in the
exploration of knowledge, which simplifies the calculation process
and increases the efficiency of classifier training.

3 APPROACH
An overview of our framework is shown in Figure 2. Specifically,
given a support sample and its label from the novel category, we
first represent them into features by a pre-trained visual model and
language model, respectively. Then we use the correlation between
semantics to select the base sample close to the given novel category
for the feature synthesis procedure. Meanwhile, we use semantics
to distinguish the contents between different samples for synthesis.
Finally, we enrich the supervision from semantic knowledge to train
both semantic-supervised and visual classifiers. For inference, we
fuse these classifiers to predict a given query sample. To illustrate
the details of our method in this section, we first briefly revisit the
preliminaries of the few-shot learning task. Then, we illustrate the
operations of Semantic-Based Selection, Synthesis, and Supervision
(4S). Finally, we describe the training and inference procedures.

3.1 Preliminaries
Given a dataset for the few-shot learning task, we follow the com-
mon solution to divide it into three parts: training set Dtrain, sup-
port setDsupport, and testing setDtest. Specifically, the training set
Dtrain is used to pre-train the backbone, it has large-scale training
samples (e.g., about hundreds of samples in one category), and the
categories of these samples are denoted as Cbase. The support set
Dsupport and the testing set Dtest have the same categories, called
Cnovel, which are disjoint with that of the training set Cbase. The
goal of few-shot learning is to learn an image classification model
that generalizes well to the 𝑁 -way-𝐾-shot task. Training samples
for the 𝑁 -way-𝐾-shot task are sampled from Dsupport and the test-
ing samples belong to Dtest, and a 𝑁 -way-𝐾-shot task identifies 𝑁
novel categories, and each category has 𝐾 support samples.

3.2 Selection
Our method is based on knowledge exploration. Therefore, we first
introduce knowledge processing and illustrate the operation of
semantic-based selection. Given several labels from base categories
and novel categories, we use an available Word2Vec embedding
method [19] to represent these labels into features as 𝒕Cbase and
𝒕Cnovel , respectively. Then, we calculate the relations between the
novel and base categories from these label features and select the

base category for the synthesizing procedure. Specifically, given
the label feature of 𝑛th novel category as 𝒕Cnovel

𝑛 , the relation with
the 𝑏th base category can be calculated by similarity scores:

𝑟 (𝑛,𝑏 ) =
⟨𝒕Cnovel
𝑛 , 𝒕Cbase

𝑏
⟩

∥𝒕Cnovel
𝑛 ∥2 · ∥𝒕Cbase

𝑏
∥2
, (1)

where ⟨•, •⟩ denotes the inner product between two features. We
calculate the relations between 𝑛th novel category and whole base
categories as 𝑹𝑛 = {𝑟 (𝑛,𝑏 ) }𝑏=1,..., | Cbase | and sort the relations to
select the 𝛽th related base category for synthesizing. For conve-
nience, we denote the selected base category and its label feature
as C𝛽 and 𝒕𝛽 , respectively. Meanwhile, we use the superscript 𝛽 to
conveniently represent samples or visual features of the selected
base category. The category selection brings semantic relevance
into visual space, thus the irrelevant information in base categories
can be filtered out for subsequent synthesis procedure.

3.3 Synthesis
For synthesis procedure, we first express the samples into features.
Specifically, given a support sample of 𝑛th novel category as 𝑰𝑛 and
its related base category C𝛽 . We first randomly select a base sample
from the related base category C𝛽 as 𝑰𝛽 . Then we use a CNN 𝚽 to
extract the features of support sample 𝑰𝑛 and selected base sample
𝑰𝛽 as𝒇𝑛 and𝒇𝛽 , respectively, where𝚽 is pre-trained on the base data
Dtrain. In the extraction procedure, we remove the last prediction
layer of CNN 𝚽. Then, we design a semantic discriminator 𝛀 to
precisely discriminate the contents of the novel feature 𝒇𝑛 and the
selected base feature 𝒇𝛽 . The discriminator employs the textual
features of the base categories 𝑻𝐵 = {𝒕𝑏 }𝑏=1,..., | Cbase | and the novel
categories 𝑻𝑁 = {𝒕𝑛}𝑛=1,..., | Cnovel | as the category descriptor, which
can be formalized as 𝑻 = 𝑻𝐵 ∪𝑻𝑁 . To connect the textual descriptor
to the visual space, we use a projection head𝑾𝑑 ∈ R𝑑𝑣×𝑑𝑡 , and the
discriminator 𝛀 can be formalized as follows:

𝛀 = 𝑻𝑾⊤
𝑑
. (2)

Then, to better explore the potential knowledge of semantics, we
use the novel feature to optimize the discriminator 𝛀 in advance:

LD = CE((𝒇𝑛𝛀⊤), 𝑙𝑛), (3)

where CE is the cross-entropy loss, and 𝑙𝑛 is the one-hot label of
the 𝑛th novel category.

After this pre-optimization stage, we denote the optimized dis-
criminator as �̄� and use it to distinguish the support feature 𝒇𝑛
and the selected base feature 𝒇𝛽 by classifying them into the same
novel category 𝒍𝑛 , and the prediction scores are denoted as the con-
tent screening rate. Then, we calculate the fusion ratio for feature
synthesis. Specifically, denoted content screening rate as 𝛾𝑛 and 𝛾𝛽 ,
respectively, the fusion ratio can be calculated as:

𝛼 (𝑛,𝛽 ) = 𝛾𝑛 − 𝛾𝛽 , (4)

where 𝛼 (𝑛,𝛽 ) helps the synthesis procedure focus on the important
contents of the novel category.

Finally, based on the fusion ratio 𝛼 (𝑛,𝛽 ) , we fuse the support fea-
ture and the selected base feature to synthesize a new one. Specifi-
cally, we design two different fusion operations and set 𝛼 (𝑛,𝛽 ) as
the weighting ratio and the thresholding ratio, respectively. For
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the weighting synthesis, the synthesis of the new feature 𝒇𝑠 can be
described as:

𝒇𝑠 = 𝛼 (𝑛,𝛽 )𝒇𝛽 + (1 − 𝛼 (𝑛,𝛽 ) )𝒇𝑛 . (5)

For the thresholding synthesis, we first sample a uniformly dis-
tributed random vector 𝑽 ∈ (0, 1) which is the same size as the
feature 𝒇𝑛 , and then put 𝛼 (𝑛,𝛽 ) as the thresholding on the random
vector 𝑽 . Thus, the mask vector �̄� can be formalized as:

𝑣𝑖 =

{0, if 𝑣𝑖 ⩾ 𝛼 (𝑛,𝛽 ) .

1, if 𝑣𝑖 < 𝛼 (𝑛,𝛽 ) .
(6)

where 𝑣𝑖 is the 𝑖th element of the random vector 𝑽 , and 𝑣𝑖 denotes
the 𝑖th element of the mask vector �̄� . Then, the synthesized feature
of this operation can be calculated as:

𝒇𝑠 = �̄� ⊗ 𝒇𝛽 + (1 − �̄� ) ⊗ 𝒇𝑛, (7)

where ⊗ is the hardmard product. The synthesis strategy provides
precise supplementary contents for the given support sample, thus
the potential space of the novel objects can be expanded.

3.4 Supervision
We design two format supervisions except for hard labels to train
the classifier: (1) semantic supervision, and (2) soft labels. For se-
mantic supervision, we design a semantic-supervised classifier,
which transfers the knowledge containing textual descriptions of
both the novel categories and the base categories from the textual
space to the visual space and supervises the visual feature learn-
ing. Specifically, given the category descriptor 𝑻 , which contains
the description of both base categories and novel categories in the
textual space, the transfer operation can be described as follows:

�̂� = LeakyReLU(𝑻𝑨), (8)

where 𝑨 is a matrix that connects the textual space with the visual
space, 𝑨 ∈ R𝑑𝑡×𝑑𝑣 , and LeakyReLU is the activation function. �̂� is
the category descriptor transferred into the visual space, we then
define the semantic-supervised classifier 𝚪𝑡 as:

𝚪𝒕 = �̂�𝑾𝑡 , (9)

where𝑾𝑡 is the visual learning matrix and𝑾𝑡 ∈ R𝑑𝑣×𝑑𝑣 . Further-
more, we keep the vanilla visual classifier to boost the performance,
and the visual classifier 𝚪𝒗 is described as:

𝚪𝒗 =𝑾𝑣, (10)

where 𝑾𝑣 ∈ R( | Cbase |+| Cnovel | )×𝑑𝑣 . Compared to the visual classi-
fier that directly learns the mapping of the visual feature to the
novel category, the learning process of the semantic classifier is
constrained by the category descriptor �̂� , and thus semantic super-
vision prevents the classifier from overfitting the visual feature and
enlarges the classification boundaries.

To further identify the novel contents of the synthesized features,
we assign soft labels for the synthesized features based on the
feature synthesis. Specifically, given a synthesized feature 𝒇𝑠 , we
use the fusion ratio 𝛼 (𝑛,𝛽 ) in Eq. (4) to control the label synthesis:

𝒍𝑠 = (1 − 𝛼 (𝑛,𝛽 ) )𝒍𝑛 + 𝛼 (𝑛,𝛽 ) 𝒍𝛽 , (11)

where 𝒍𝑛 and 𝒍𝛽 is the label of 𝑛th novel category and 𝛽th base
category, respectively, and 𝒍𝑠 is a multi-label for synthesized feature

𝒇𝑠 . Both the original feature-label pairs (𝒇𝑛, 𝒍𝑛) and the synthe-
sized feature-label pairs (𝒇𝑠 , 𝒍𝑠 ) are handled for classifier learning
to learn a powerful classifier. In summary, the selection and syn-
thesis strategies enrich the data space of the novel category, and
the supervision strategies enrich the supervision of the learning
process. Our method benefits from these two strategies. As shown
in Figure 2, given the query sample, these help the classifier to con-
centrate more on the novel category and make a precise prediction.

3.5 Training and Inference
For the training stage, given 𝐾 support samples from the 𝑛th novel
category, we formalize the feature-label pairs as N =

{
𝒇 𝑖𝑛, 𝒍

𝑖
𝑛

}𝐾
𝑖=1.

We first optimize the discriminator 𝛀 by N , then we select the re-
lated base category and synthesize samples based on the optimized
discriminator �̄�, the synthesized feature-label pairs are denoted as
S =

{
𝒇 𝑖𝑠 , 𝒍

𝑖
𝑠

}𝐾
𝑖=1. In our method, these synthesized samples are com-

bined with support samples for classifier training. Specifically, we
use the cross-entropy(CE) loss with the support feature-label pairs
N and the multi-label cross-entropy(MCE) with the synthesized
feature-label pairs S to train both the visual classifier 𝚪𝑣 and the
semantic-supervised classifier 𝚪𝑡 .

The training loss of the visual classifier 𝚪𝑣 can be formalized by
the following equation:

LV =
1

2𝐾

𝐾∑︁
𝑖=1

CE((𝒇 𝑖𝑛𝚪⊤𝑣 ), 𝒍𝑖𝑛) + MCE((𝒇 𝑖𝑠 𝚪⊤𝑣 ), 𝒍𝑖𝑠 ). (12)

The training loss of the semantic-supervised classifier 𝚪𝑡 is:

LT =
1

2𝐾

𝐾∑︁
𝑖=1

CE((𝒇 𝑖𝑛𝚪⊤𝑡 ), 𝒍𝑖𝑛) + MCE((𝒇 𝑖𝑠 𝚪⊤𝑡 ), 𝒍𝑖𝑠 ). (13)

Thus, the total loss of training can be defined as follows:

L = 𝜇1LD + 𝜇2LV + 𝜇3LT, (14)

where 𝜇1, 𝜇2, 𝜇3 are weighting factors.
For the inference stage, to boost the generalization and classifi-

cation performance of the classifier, we define the classifier as the
fusion of the semantic-supervised classifier and the visual classifier,
which can be formalized as:

𝚪 = 𝜆𝚪𝑣 + (1 − 𝜆)𝚪𝑡 , (15)

where 𝜆 is a hype parameter of the fusion operation, we use the
classifier 𝚪 to classify the query features into a specific novel cat-
egory, and the query features are extracted from the last average
pooling layer of the pre-trained CNN 𝚽.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance
of our proposed method. We first introduce the experimental set-
tings, then illustrate the ablation studies, and finally, we show the
comparison with the state-of-the-art methods. Our experiments are
intended to address the following research questions (RQs):
RQ1: What are the influences of different semantic selection (𝛽)?
RQ2: What are the effects of selected synthesis?
RQ3: What are the influences of fusion ratios between the visual
and the semantic-supervised classifier (𝜆)?
RQ4: What are the influences of different feature fusion strategies
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on the synthesis procedure?
RQ5: How does the performance comparison between our method
and the state-of-the-art methods?

4.1 Experimental Settings
Datasets.We evaluate our method on four benchmark datasets, i.e.,
Mini-ImageNet [35], CIFAR-FS [2], Caltech-UCSD Birds-200-2011
(CUB) [36], and ImageNet-FS [11]. Specifically, Mini-ImageNet and
CIFAR-FS are the common few-shot classification datasets. Mini-
ImageNet consists of 100 categories, and each category has 600
images. It is divided into three parts: 64 base categories for training,
16 novel categories for validation, and 20 novel categories for testing.
CIFAR-FS is randomly sampled from CIFAR100 [15]. It has 100
categories with 60000 images, and it is divided into three parts:
64 base categories for training, 16 novel categories for validation,
and 20 novel categories for testing. CUB is a fine-grained dataset,
it contains 200 bird categories with 11788 images. Following the
split strategy in [4], we divide this dataset into three parts, where
100 base categories for training, 50 novel categories for validation,
50 novel categories for testing. ImageNet-FS [11] is a large-scale
few-shot classification dataset. it has 389 base categories and 611
novel categories, where 300 novel categories are used for validation,
and the remaining 311 novel categories are used for testing.
Evaluation. For Mini-ImageNet, CIFAR-FS and CUB, the perfor-
mance is evaluated on several 𝑁 -way-𝐾-shot classification tasks.
In each task, 𝑁 novel categories are sampled first, then 𝐾 samples
in each of the 𝑁 categories are sampled for training, and the other
15 samples in each of the 𝑁 categories are sampled for testing. To
report the results, we sample 600 such tasks and report average
accuracies with 95% confidence interval over all the tasks. In our
experiments,𝑁 = 5 and𝐾 = 1, 5. For ImageNet-FS, the performance
is evaluated under three settings with 𝐾 = 1, 2, and 5 support sam-
ples per category. And we report the accuracy by recognizing the
samples from the 311 testing novel categories. More details of the
settings can be found in [11].
Implementation Details. We use the features extracted from
the pre-trained CNNs for synthesis, then we use these original and
synthesized features to train the classifier 𝚪. The classifier is trained
with loss L in Eq. (14) (𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 1) for 800 epochs. We
use the Adam optimizer [14] with the starting learning rate of 0.001
and the weight decay of 0.0001. The learning rate is divided by 10
every 200 epochs.

4.2 Ablation Studies
In the ablation study, we use Mini-ImageNet to evaluate the effec-
tiveness of different parts of our method. Specifically, we set the 16
validation categories as the novel categories and the 64 base cate-
gories for feature selection and synthesis. All features are extracted
with the available pre-trained backbone (ResNet-12) [5], all textual
features are extracted with the available Word2Vec method [19], All
experiments in this ablation study are conducted in 5-way-𝐾-shot
settings, where 𝐾 = 1 or 𝐾 = 5.

4.2.1 The effectiveness of the selection. (RQ1)
In this ablation, we conduct experiments under the 𝐾 = 1 and

𝐾 = 5 settings for all 𝛽-th related categories to evaluate the ef-
fectiveness of feature selection from different base categories. We
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Figure 3: The accuracies(%) of the visual classifier trained
with both novel features and randomly synthesized features,
where the selected base category for synthesis is the 𝛽-th
related category for the given novel category.

Table 1: The accuracies (%) of the visual classifier trained with
different synthesis features.

Method 𝐾 = 1 𝐾 = 5
Baseline 65.08 ± 0.81% 82.45 ± 0.53%
𝚪𝑣 w/o LD 68.17 ± 0.77% 82.76 ± 0.54%
𝚪𝑣 w/ LD 69.41 ± 0.76% 83.07 ± 0.53%

mix two features according to Eq. 5 but replace the fusion ratio
with a random number in this synthesis procedure. The results are
shown in Figure 3. The ratio 𝛽 ranges from 0 to 64 (whole base
categories = 64), where 𝛽 = 0 denotes that the visual classifier is
trained only with novel features and 𝛽 = 64 means that we select
features from the least related base category. For comparison, we
also plot the performance trained with whole base categories (“All”),
which means that we randomly select features from all base cate-
gories and randomly synthesize them with the given novel features.
The gray area refers to the difference between two curves. We can
find that: (1) randomly mix novel samples with randomly selected
base samples in feature space can slightly improve the performance
of the classifier (compared “All” with 𝛽 = 0), and (2) only a few
categories above the ”All” operation especially the 𝐾 = 5 settings,
and a smaller 𝛽 brings positive effects, a larger 𝛽 brings negative
effects. This further indicates that irrelevant base knowledge has no
effect on enhancing the description of novel categories, and shows
the necessity that the synthesis operation should be constrained by
the category relations. (3) The best performance is achieved with
𝛽 = 1 in both the experimental settings 𝐾 = 1 and 𝐾 = 5, and in the
𝐾 = 1 settings we achieve more than 2% accuracy improvement;
thus we select 𝛽 = 1 for subsequent operations.

4.2.2 The effects of the semantic discriminator. (RQ2)
To validate the effectiveness of the semantic discriminator in our

synthesis procedures, we train two visual classifiers with different
features. In this ablation, the samples used for synthesis are selected
from the 1-st related base category. The results are shown in Table 1,
where 𝚪𝑣 is the visual classifier, “w/o LD” means classifier trained
with both novel features and randomly synthesized features, “w/
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Figure 4: The accuracies(%) of the final classifier with dif-
ferent fusion ratios 𝜆 between the visual classifier and the
semantic-supervised classifier.

Table 2: The accuracies(%) of the classifier trained with dif-
ferent feature fusion strategies.

Method 𝐾 = 1 𝐾 = 5
Baseline 65.08 ± 0.81% 82.45 ± 0.53%
𝚪 w/ T 73.04 ± 0.77% 82.85 ± 0.54%
𝚪 w/ W 73.84 ± 0.75% 83.28 ± 0.53%

LD” means classifier trained with both novel features and synthe-
sized features by Eq. 5. For convenient comparison, we keep the
“Baseline”, which means the visual classifier trained with only novel
features. Compared to the “Baseline”, we can see that the selection
and synthesis strategies make a significant improvement for the
classifier. For example, it achieves 4.3% accuracy improvement in
𝐾 = 1 settings. Meanwhile, we can also see that content selection
in related features further improves the performance of the classi-
fier. Specifically, compared to random fusion, the method with our
semantic-based discriminator achieves 1.2% accuracy improvement
in the 𝐾 = 1 settings, which is significant.

4.2.3 The influences of the semantic supervision. (RQ3)
In this ablation, we conduct experiments with different fusion

ratios in Eq. 15 to evaluate the influences of semantic supervision.
In these experiments, we set the fusion ratio range from 0.0 to
1.0, where 𝜆 = 0.0 means that the final prediction is only deter-
mined by the semantic-supervised classifier, and 𝜆 = 1.0 implies
that the final prediction is only influenced by the visual classifier.
The total results are shown in Figure 4. We can see that: (1) seman-
tic supervision makes a significant improvement for the classifier
and achieves a performance improvement of more than 2% over
the visual classifier. (2) Fusing the semantic-supervised classifier
with the visual classifier further improves the performance of the
classifier. The fused classifier achieves more than 4% performance
improvements in the 𝐾 = 1 settings. In detail, we can find that the
classifier achieves the best performance with 𝜆 = 0.5 and 𝜆 = 0.8
for 𝐾 = 1 and 𝐾 = 5 experimental settings. Thus, we set 𝜆 = 0.5 for
the 𝐾 = 1 setting and 𝜆 = 0.8 for the 𝐾 = 5 setting, respectively.

4.2.4 The influences of different feature fusion strategies. (RQ4)

Table 3: The accuracies (%) by differentmethods on the testing
categories from Mini-ImageNet [35].

Method with ResNet-12 Mini-ImageNet
𝐾 = 1 𝐾 = 5

PN [31] 60.37 ± 0.83% 78.02 ± 0.57%
AM3 [49] 65.30 ± 0.49% 78.10 ± 0.36%
MetaOptNet [17] 62.64 ± 0.61% 78.63 ± 0.46%
DMF [50] 67.76 ± 0.46% 82.71 ± 0.31%
MixtFSL [1] 63.98 ± 0.79% 82.04 ± 0.49%
RENet [13] 67.60 ± 0.44% 82.58 ± 0.30%
DeepBDC [48] 67.34 ± 0.43% 84.46 ± 0.28%
Meta-Baseline [5] 63.17 ± 0.23% 79.26 ± 0.17%
Meta-Baseline + Ours 71.27 ± 0.66% 82.87 ± 0.54%
DeepEMD [56] 65.91 ± 0.82% 82.41 ± 0.56%
DeepEMD + Ours 71.26 ± 0.70% 83.50 ± 0.54%
FRN [46] 66.45 ± 0.19% 82.83 ± 0.13%
FRN + Ours 72.66 ± 0.73% 84.46 ± 0.50%
BML [59] 67.04 ± 0.63% 83.63 ± 0.29%
BML + Ours 74.53 ± 0.68% 85.78 ± 0.49%
FEAT [53] 66.78 ± 0.20% 82.05 ± 0.14%
FEAT + Ours 72.64 ± 0.70% 84.73 ± 0.50%
Method with WRN28-10
PPA [27] 59.60 ± 0.41% 73.74 ± 0.19%
LEO [29] 61.76 ± 0.08% 77.59 ± 0.12%
wDAE-GNN [8] 61.07 ± 0.15% 76.75 ± 0.11%
IFSL [54] 64.12 ± 0.44% 80.97 ± 0.31%
FEAT [53] 65.10 ± 0.20% 81.11 ± 0.14%
FEAT + Ours 71.92 ± 0.71% 84.01 ± 0.51%
LRDC [52] 68.57 ± 0.55% 82.88 ± 0.42%
LRDC + Ours 75.85 ± 0.69% 87.37 ± 0.48%

In this ablation, we evaluate the influences of different feature fu-
sion strategies (Eq.5 and Eq.7). The experimental results are shown
in Table 2, where “Baseline” means the visual classifier trained with
only novel features, “𝚪” denotes the final classifier with the optimal
fusion ratio between two classifiers, “ w/W” means the features
synthesized by Eq.5, and “ w/ T ” means that the features synthe-
sized by Eq.7. Specifically, we can see that both strategies achieve
competitive results in 𝐾 = 1 and 𝐾 = 5 settings, which proves the
effectiveness of our hypothesis. Meanwhile, we can see that the
accuracy of the classifier trained with the weighting strategy is
slightly better than that of the thresholding. Thus, we choose the
weighting strategy for feature fusion for the best performance.

4.3 Comparison with other methods (RQ5)
We compare the performance of our method with the state-of-the-
art methods under three few-shot classification settings, followings
are detailed descriptions of the experimental results.
Traditional few-shot classification. For Mini-ImageNet, the re-
sults are shown in Table 3. The compared methods include PN
[31], AM3 [49], MetaOptNet [17], DMF [50], MixtFSL [1], RENet
[13], DeepBDC [48], PPA [27], LEO [29], wDAE-GNN [8], IFSL
[54], and we apply our method on six popular methods, which are
Meta-Baseline [5], DeepEMD [56], FRN [46], BML [59], FEAT [53],
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Table 4: The accuracies (%) by differentmethods on the testing
categories from CIFAR-FS [2].

Method CIFAR-FS
𝐾 = 1 𝐾 = 5

ConstellationNet [51] 75.40 ± 0.20% 86.80 ± 0.20%
Meta Navigator [57] 74.63 ± 0.91% 86.45 ± 0.59%
NCA [16] 72.49 ± 0.12% 85.15 ± 0.09%
RENet [13] 74.51 ± 0.46% 86.60 ± 0.32%
TPMN [47] 75.50 ± 0.90% 87.20 ± 0.60%
DeepEMD [56] 74.58 ± 0.29% 86.92 ± 0.41%
DeepEMD + Ours 79.66 ± 0.69% 89.14 ± 0.51%
BML [59] 73.45 ± 0.47% 88.04 ± 0.33%
BML + Ours 74.50 ± 0.84% 88.76 ± 0.53%

Table 5: The accuracies (%) by differentmethods on the testing
categories from CUB [36].

Method CUB
𝐾 = 1 𝐾 = 5

PN [31] 72.99 ± 0.88% 86.64 ± 0.51%
CovNet [45] 80.76 ± 0.42% 92.05 ± 0.20%
ADM [21] 79.31 ± 0.43% 90.69 ± 0.21%
AFHN [20] 70.53 ± 1.01% 83.95 ± 0.63%
RENet [13] 74.51 ± 0.46% 86.60 ± 0.32%
LRDC [52] 79.56 ± 0.87% 90.67 ± 0.35%
LRDC + Ours 83.86 ± 0.70% 93.37 ± 0.34%
FRN [46] 83.55 ± 0.19% 92.92 ± 0.10%
FRN + Ours 87.64 ± 0.64% 94.24 ± 0.38%

LRDC [52]. From Table 3, we can see that our method significantly
outperforms other methods, regardless of the methods and the pre-
trained backbones. For the 𝐾 = 1 setting, we achieve a performance
improvement of more than 5% for all the methods applied, and the
most improvement is more than 8% with Meta-Baseline. For ResNet-
12, we achieve 74.5% accuracy with 7% improvement on BML, and
for WRN28-10, we achieve 75.8% accuracy with 7% improvement
on LRDC. For the 𝐾 = 5 setting, we improve all applied methods
with more than 1% improvement. For ResNet-12, we achieve 85.7%
accuracy with 2% improvement on BML, for WRN28-10, we gain
87.3% accuracy with 4% improvement on LRDC. Both the improve-
ments and performances are significant in few-shot learning, which
further proves the effectiveness of our method.

For CIFAR-FS, we use the ResNet-12 as the feature extractor, and
the classification accuracies are shown in Table 4. The compared
methods include ConstellationNet[51], Meta Nevigator [57], NCA
[16], RENet [13], TPMN [47], andwe apply ourmethod toDeepEMD
[56] and BML [59]. Our method outperforms the applied methods,
and it gains 5% improvement with DeepEMD for the 𝐾 = 1 setting,
2% improvement with DeepEMD for the 𝐾 = 5 setting. For 𝐾 = 1,
we achieve 79.6% accuracy with 5% improvement, and for 𝐾 = 5,
we achieve 89.1% accuracy with 2% improvement on DeepEMD.
Fine-grained few-shot classification.We evaluate our method
with the fine-grained CUB dataset, and the results are shown in
Table 5. We compare our method with PN [31], CovNet [45], ADM
[21], AFHN [20], RENet [13], and we apply our method on LRDC

Table 6: Top-5 accuracies (%) by different methods on the
testing categories from ImageNet-FS [11].

Method ResNet-10 ResNet-50
𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 1 𝐾 = 2 𝐾 = 5

PN [31] 39.3 54.4 66.3 49.5 59.9 70.1
LR-H [11] 40.7 50.8 62.0 53.5 63.5 72.7
SGM-H [11] 44.3 56.0 69.7 52.8 64.4 77.3
IDeMe [6] 51.0 60.9 70.4 60.1 69.6 77.4
KTN [26] 54.7 61.7 70.4 61.9 68.7 76.4
MDKT [41] 55.2 63.2 70.8 62.6 70.1 77.6
Ours 58.1 63.4 69.4 66.0 71.5 76.8

[52] and FRN [46]. From Table 5, we can see that our method out-
performs all applied methods with 4% improvement for 𝐾 = 1 and
1% improvement for 𝐾 = 5. For 𝐾 = 1, we achieve 87.6% accuracy
with 4% improvement on FRN, and for 𝐾 = 5, we achieve 94.2%
accuracy with 1% improvement on FRN.
Large-scale few-shot classification. We evaluate our method
with the large-scale few-shot classification dataset ImageNet-FS,
and we conduct experiments under three settings with ResNet-10
and ResNet-50 backbone, the performance is illustrated in Table 6.
The compared methods include PN [31], SGM [11], IDeMe-Net [6],
KTN [26], MDKT [41]. Ourmethod outperforms others under𝐾 = 1,
2 settings. And we achieve a significant improvement in the 𝐾 = 1
settings, with 3% improvement for both ResNet-10 and ResNet-50.
Note that the competitive methods employ complex architectures,
for example, [6, 11] use generative models to synthesize more train-
ing features, and [26, 41] incorporate graph models such as GNN,
GCN et al. to explore semantic relations. But the architecture of our
method is simple and we only synthesize 1 training sample for the
given novel sample in each training step.

5 CONCLUSION
In this paper, we discuss the role of semantic knowledge in few-shot
learning by introducing the Semantic-based Selection, Synthesis,
and Supervision (4S) method. This innovative approach aligns syn-
thesis and supervision within a unified framework, addressing
the challenges posed by few-shot learning. The 4S method boasts
several distinct features: (1) Our semantic-based selection and syn-
thesis strategy not only expands the data space for novel categories
but also capitalizes on the full potential of the base data. (2) Our
semantic-based supervision strategy effectively constructs adaptive
and flexible boundaries for novel categories. (3) To substantiate the
effectiveness of our method, we conduct extensive experiments on
four different FSL datasets. The results showcase the remarkable
success of our approach, particularly in the context of 1-shot tasks.

We noticed that our method has certain fluctuations in different
ablation studies. In the future, we will introduce more accurate
feature representation, semantic representation, or robust models
in our method to help the classifier obtain more stable gains.
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