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ABSTRACT
The large-scale visual-language pre-trained model, Contrastive
Language-Image Pre-training (CLIP), has signi�cantly improved
image captioning for scenarios without human-annotated image-
caption pairs. Recent advanced CLIP-based image captioning with-
out human annotations follows a text-only training paradigm, i.e.,
reconstructing text from shared embedding space. Nevertheless,
these approaches are limited by the training/inference gap or huge
storage requirements for text embeddings. Given that it is trivial to
obtain images in the real world, we propose CLIP-guided text GAN
(CgT-GAN), which incorporates images into the training process to
enable the model to “see” real visual modality. Particularly, we use
adversarial training to teach CgT-GAN to mimic the phrases of an
external text corpus and CLIP-based reward to provide semantic
guidance. The caption generator is jointly rewarded based on the
caption naturalness to human language calculated from the GAN’s
discriminator and the semantic guidance reward computed by the
CLIP-based reward module. In addition to the cosine similarity as
the semantic guidance reward (i.e., CLIP-cos), we further introduce
a novel semantic guidance reward called CLIP-agg, which aligns
the generated caption with a weighted text embedding by atten-
tively aggregating the entire corpus. Experimental results on three
subtasks (ZS-IC, In-UIC and Cross-UIC) show that CgT-GAN out-
performs state-of-the-art methods signi�cantly across all metrics.
Code is available at https://github.com/Lihr747/CgtGAN.
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1 INTRODUCTION
Recently, CLIP (Contrastive Language-Image Pretraining) [47] has
revolutionized the multi-modal domain by aligning images and text
in a joint embedding space. CLIP has been shown to bene�t numer-
ous multi-modal tasks, such as VQA [52], text-to-image synthesis
[49], and referring image segmentation [63]. In the studied image
captioning, CLIP-based methods are also well explored in scenarios
with paired training data. Prior works, such as those employing
CLIP as a backbone [4, 40], or as a semantic enrichment technique
[28], have shown improved captioning performance. Nevertheless,
these methods require paired training, and the human pairwise
label has a stake in the performance. In this work, we explore the
feasibility of using CLIP for a more challenging task: image cap-
tioning without human-labeled pairs. That is, during training, we
only utilize images and an external text corpus. The goal of the task
is to generate a caption that textually describes a given image by
leveraging unpaired images and sentences.

Current image captioning methods without annotations fall
into two categories: concept-based and CLIP-based. Concept-based
methods use computer vision techniques to discover various visual
conceptual clues within images and then map the words to the
caption. Existing methods [12, 16, 26] extract objects, scenes, and
attributes by using deep models pre-trained on other related tasks
such as object detection [21] and scene graph generation [70], and
advocate rewarding the generated image caption for containing the
detected visual concepts. Their performances often rely heavily on
the quality of visual concept extraction. Also, they are incapable of
capturing complex object interactions by using such text narration
that explicitly refers to visual concept [16].

CLIP-based methods utilize the CLIP model as an oracle visual-
language alignment tool, enabling captioning without human labels.
One line of such methods [55, 58] controls a pre-trained generative
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Figure 1: An illustration of our proposed CgT-GAN. (a) Re-
wards from the CLIP-based reward module (semantic guid-
ance) and from the discriminator (naturalness score) are
combined to guide the generator (captioner). (b) Take out
the generator for new image inference.

language model (LM) to produce image captions in a zero-shot
manner. However, its performance is subpar due to the generative
LM’s poor �t for the captioning task, despite requiring no additional
data. Another line of approaches [17, 27, 42] involves training a
captioner with text-only data and reconstructing text from the CLIP
text embedding. This is feasible since the text embedding shares the
same cosine space with the image embedding, but thesemethods are
often constrained by either training/inference gaps or substantial
storage for textual embeddings (for projecting visual embedding to
textual embedding). The �nal series of methods [69, 75] combine
images and text corpus to compute image-text similarity using
CLIP. The models are then rewarded to enhance caption grammar
or identify highly correlated pseudo image-text pairs.

In real-world applications, the images are usually easy to obtain.
We, therefore, adopt the same settings as PL-UIC [75] and ESPER-
style [69], which involve the simultaneous use of images and an
external corpus during training. Interestingly, even though addi-
tional images are adopted, existing solutions that use both images
and sentences are inferior to text-only methods. This phenomenon
motivated us to explore a more e�ective way of using CLIP to un-
derstand the visual modality and predict accurate captions. In this
paper, as shown in Figure 1, we propose a CLIP-guided text gener-
ative adversarial network (CgT-GAN), integrating CLIP [47] into
the text GAN [68] in a more e�ective manner to continually guide
the image-to-caption generation. Speci�cally, CLIP is not only for
image feature encoding but also for semantic guidance rewarding.
To enhance the text generation capacity of text GAN, we exploit
the transformer-based language model GPT-2 [48] as the generator
to generate conditional synthetic caption and the improved BERT-
RoBERTa [33] as the discriminator to guess between real and fake
sentences. The network is trained in an end-to-end fashion without
making any extra e�ort on entity detection or pseudo labelling,
where the CLIP-based reward is combined with the naturalness
computed by the discriminator to jointly train the generator.

Furthermore, for the reward module, we explore two rewarding
strategies: CLIP-cos and CLIP-agg. CLIP-cos calculates the cosine
similarity of the image-caption pair directly and rewards the gener-
ator accordingly. Inspired by [27], we additionally propose a more
e�ective reward option, CLIP-agg, which attentively aggregates text
embeddings in corpus with CLIP to guide the captioner generation.

Our contribution is three-fold:
(1) Compared to text-only CLIP-based methods, we adopt images

in the training stage, which makes the captioner “see” real visuals
to minimize the training/inference input domain gap and improve
performance.

(2) Di�erent from current CLIP-based RL or adversarial learning
methods, we embed a CLIP-based reward module in a text GAN
framework. Two reward strategies are proposed and analyzed for
e�ective rewarding in an end-to-end fashion.

(3) Our model constantly outperforms the existing methods on
three subtasks without human-labeled pairs: zero-shot, in-domain
unpaired, and cross-domain unpaired image captioning.

2 RELATEDWORK
2.1 Image Captioning
Image captioning (IC) model learns to describe images with manu-
ally annotated image-caption pairs. Harnessing on these labels, IC
training naturally focuses on maximizing the probability of correct
caption. The widely used architecture of IC models is the encoder-
decoder[25, 61], where the encoder captures visual content and
the decoder generates caption. Riding on the structured network,
attention mechanism [59] is also adopted to pay varying attention
to image parts and tokens [2, 8, 38, 43, 66, 67]. Apart from model
designing, advanced learning paradigms, such as reinforcement
learning [50] and adversarial learning[7, 10], are utilized to further
improve the vision-faith and text-realism for captions.

In contrast to traditional IC, image captioning without human an-
notations has recently drawn researchers’ attention, where models
cannot access any labelled image-text pairs. Thus, its key challenge
is how to align vision and language when pairwise annotations are un-
available. Successful attempts [12, 16, 26] mainly follow the pipeline
of teaching the caption generator to speak human language and
reducing the image-text mismatch. The goal of speaking human
language is mostly achieved by utilizing either text reconstruction
[18, 32, 39] or adversarial learning [5, 6, 12, 53]. Their major dif-
ference lies in the domain alignment of vision-language. Before
the era of CLIP, the most representative solution is to identify fea-
tures, e.g., visual concepts, that are common to both image and text.
By harvesting visual objects or entities from images in advance,
these methods can thus generate captions that contain the same
visual concepts. Speci�cally, two kinds of concept-based alignment
strategies are typically used. The �rst one is to learn a concept-
to-sentence translator to ensure the caption being concept-related
to image [5, 12, 18, 20, 39, 71, 74]. The other one performs con-
cept matching in a joint embedding space, where image and text
embeddings will be pulled closer if they share the same concepts,
otherwise, pushed apart [26, 53]. These concept-based approaches
assure the caption of containing visual concepts, nevertheless, they
become ine�ectual in modeling complex object correlations. To
address this issue, research e�orts are also made to explicitly con-
struct scene graphs based on image objects to enrich visual context
[6, 13, 16, 32]. Though providing more contextual information, the
construction of a scene graph always requires complex prepro-
cessing (e.g., object detection and relation formulation) and may
overlook the global understanding of image content as compared
to CLIP, which possesses rich vision-language knowledge.
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2.2 CLIP for Image Captioning
Contrastive Language–Image Pre-training [47] (CLIP) is a large-
scalemulti-modal pre-trainingmodel comprised of two sub-modules:
image encoder and text encoder, which aligns image and text in a
joint embedding space through cosine similarity. CLIP has been ac-
tively exploited in many multimedia tasks[22, 24, 41, 45, 62, 63]. In
the studied image captioning, the most straightforward way of us-
ing CLIP is to adopt the image encoder for more expressive feature
extraction [40, 57, 58, 69, 75], and the text encoder for improving
caption grammar [9] or semantic comprehension [28].

As CLIP is trained on a web-scale image-text dataset by con-
trastively maximizing the visual-semantic similarity, both its image
encoder and text encoder inherently possess the knowledge of
cross-modal alignment. Consequently, some works [17, 27, 42, 55,
58, 69, 75] consider using CLIP to teach/train a generative model
for image captioning without human labelling. These works vary
in the use-pattern of CLIP guidance. Speci�cally, [55, 58] adjusts
the language model by assessing the relatedness of each token to
an image with CLIP at inference time. [17, 27, 42] share a similar
idea of training the captioner to reconstruct text from CLIP visual-
language space. These approaches only utilize text corpus during
training, making them data-e�cient. In detail, [17, 42] address the
modality gap by adding noise to the textual embeddings, while [27]
projects visual embedding into textual space when inference. How-
ever, the former two methods still su�er from the input di�erence
between training and inference, and the latter requires additional
textual embedding storage when projecting embedding from visual
space to textual space. In contrast to these text-only methods, the
proposed CgT-GAN adopts images and an external corpus during
training. This arrangement allows the model to “see” visual modal-
ity during training, which overcomes the mentioned imperfections.
Similar setting to ours, [69] employs a combination of CLIP reward
and text likelihood reward to jointly guide the generator’s learning,
while [75] utilizes CLIP to obtain high-quality pseudo pairwise
labels. Compared to these works, the CLIP-based reward module is
novelly incorporated in a text GAN and provides a visual-semantic
reward to guide the caption generator. Additionally, two rewarding
strategies are proposed and explored in three subtasks.

3 METHODOLGY
In this section, we elaborate on the details of CLIP-guided text
GAN (CgT-GAN). Figure 2(a) depicts the overall framework of CgT-
GAN. CgT-GAN is composed of two modules, a text GAN module
and a CLIP-based reward module. Instead of pure reinforcement
learning or using pseudo labels by previous works [69, 75], CgT-
GAN is learned through the GAN framework, where its generator
is optimized with a simple but e�ective reward.

3.1 Problem Formulation
In this work, we focus on image captioning without using human-
annotated image-caption pairs. Denote I = {I8 }#�

8=1 as a set of im-
ages, where #� indicates the total number of images. In addition,
an external text corpus containing a set of sentences S = {S8 }#(

8=1,
where #( denotes the total number of sentences, is generally em-
ployed to provide rich linguistic knowledge and teach the captioner
to mimic human language naturally. The goal is thus to learn a

mapping function G : I ! C by using I and S, but without any
pairwise labelling. Here, C refers to the generated caption.

3.2 Text GAN Module
Similar to the vanilla GAN [14] and its application variants [34, 73],
the text GAN module in our work is also composed of a genera-
tor ⌧ and a discriminator ⇡ . The training mechanism follows the
adversarial way.

Generator. The generator ⌧ is trained to generate a natural
language caption C for an input image I. For such an image-to-text
generation task, the input image feature representation is ardently
expected to contain rich language-aware information. We thus
adopt the CLIP model, which well masters the vision-language
prior knowledge through training on web-collected image-sentence
data, to extract the visual feature. Speci�cally, given an image I,
we �rstly obtain the feature embedding eI 2 R31 by using the
frozen CLIP image encoder (implemented with ViT-L/14 [11]). Then,
similar to ClipCap [40], a two-layer multi-layer perceptron (MLP)
is employed to output a set of vectors, denoted as visual prompts,
P = [p1,p2, · · · ,p: ] where P 2 R:⇥32 . 31 and 32 refer to the
dimension of feature and prompt embeddings. Formally, we have

eI = CLIP-ImageEncoder(I), (1)

p1,p2, · · · ,p: = MLP(eI) . (2)
Finally, the pre-trained generative language model GPT-2 [48] is uti-
lized to instantiate the caption generator ⌧ . Here, GPT-2 takes the
: visual prompts {p8 }:8=1 as the input tokens and continuously pre-
dicts the next word. Speci�cally, GPT-2 generates the C-th caption
word cC as:

cC = argmax
8

% (w8 |p1,p2, · · · ,p: , c1, c2, · · · , cC�1), (3)

where c1, c2, · · · , cC�1 are pre�x tokens predicted before C-th step,
w8 is the 8-th entry token in GPT-2’s word dictionary and % is
the conditional probability. The sentence decoding stops when the
sequence is as long as enough or meets the end-of-sequence (“EOS”)
token. We set the max length as 20 and the “EOS” token as “.”.

Discriminator. The discriminator ⇡ is to distinguish between
real and fake (generated) sentences, i.e., S and C. In practice, we
employ another pre-trained natural language understanding model
RoBERTa followed by a two-layer MLP as our discriminator. Sim-
ilar to traditional GAN, the discriminator ⇡ is trained to make a
judgment about how real the generated caption is, providing feed-
back to make the generator⌧ generate more human-like sentences.
Concretely, the caption C and the real sentence S sampled from
the external corpus are separately fed into RoBERTa for obtaining
discriminative representation and then passed to the MLP to calcu-
late their naturalness (a scalar value that measures how close the
sentence is to natural language) [10]. The computational process is
formally described as follows:

5⇡ (S) = MLP(RoBERTa(S)),
5⇡ (C) = MLP(RoBERTa(C)). (4)

After obtaining the naturalness scores 5⇡ (S) and 5⇡ (C), the
generator and discriminator can be optimized alternatively by ad-
versarial training. However, due to the discreteness of generated
caption, the gradient cannot be directly backpropagated from the
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Figure 2: (a) Overall framework of CgT-GAN. CgT-GAN is composed of a text GAN module containing a caption generator⌧
( blue block ) and a discriminator ⇡ ( orange block ) and a CLIP-based reward module ( green block ). Leveraging on the proposed
CgT-GAN, the adversarial loss for real/fake sentence discrimination and a combined reward for both language naturalness
and image-caption alignment are introduced. (b) and (c) depict details of the CLIP-based reward module with CLIP-cos and
CLIP-agg rewarding strategies. The former computes the cosine similarity as semantic guidance, while, the latter encourages
closer distance between the generated text embedding with an aggregation embedding of the corpus.

discriminator to the generator. To tackle this problem, we regard
the GAN learning as a reinforcement learning (RL) and use the
policy gradient to train the network. The model training will be
explained in detail in the section below.

3.3 CLIP-based Reward Module
The text GAN can only make the generated caption more human-
like. The remaining key problem is how to align the captionwith the
image. In other words, the generated caption should semantically
describe the image content. Recall that image-caption pairwise
data is unavailable in our settings. Therefore, we propose a CLIP-
based reward module to achieve image-caption semantic alignment,
which produces a semantic guidance reward to further adjust the
generator⌧ . For the reward module, two rewarding strategies are
proposed: CLIP-cos and CLIP-agg.

CLIP-cos. CLIP-cos simply calculates the CLIP similarity be-
tween the image I and the generated caption C, i.e., the cosine
similarity of their embeddings. Speci�cally, as shown in Figure 2(b),
the generated caption C is fed into the frozen CLIP text encoder,
resulting in a text embedding vector eC as:

eC = CLIP-TextEncoder(C) . (5)

Afterwards, given the CLIP-based image embedding eI and caption
embedding eC , the cosine similarity can be easily calculated by

Acos (I, C) = cos(eI , eC) = eI · eC��eI �� ��eC �� . (6)

We regard the cosine similarity cos(eI , eC) as the CLIP-cos re-
ward Acos used for the text GAN. As CLIP is pre-trained for vision-
language matching by cosine score, the reward can provide robust
semantic guidance.

CLIP-agg. As analyzed in [29], CLIP segregates image and text
embeddings into two narrow, discrete cone-shaped spaces, known
as modality gap. This indicates that the cross-modal alignment of
CLIP-cos may be ine�cient. In contrast, as shown in Figure 2(c), the
aggregation operation of CLIP-agg enables the image embedding
to be alternatively represented by a weighted sum of its associated
text embeddings in the corpus. Subsequently, the CLIP-agg reward
encourages a closer distance between the generated caption embed-
ding and the aggregated textual embedding, facilitating image-text
alignment within the shared CLIP text embedding space. To calcu-
late the reward, we �rst compute the text embeddings {eS8 } of the
external corpus. Then, we obtain an image-aware aggregated tex-
tual embedding eagg through CLIP embeddings attention-weighted
summation (aggregation in Figure 2(c)):

eS8 = CLIP-TextEncoder(S8 ), 8 = 1, 2, · · · ,#( , (7)

eagg =
#(’
8=1

exp
⇣
cos(eS8 , eI)/g

⌘
Õ#(
:=1 exp

�
cos(eS: , eI)/g

� ⇤ eS8 , (8)

where #( is the number of corpus sentences and g is the tem-
perature coe�cient. The CLIP-agg reward Aagg takes both cosine
similarity and !1 penalty between eagg and eC into consideration,
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as they are both in the text domain. It is denoted as follows:

Aagg (I, C) = cos(eC, eagg) � !1 (eC, eagg) . (9)

This ensures that the generated caption is not only semantically
similar to the image context (cos) but also minimizes the di�erence
in text embedding space between the generated text and the aggre-
gation of the corpus sentences (!1). Note that the CLIP encoders
are �xed during training, and the aggregated text embedding eagg

can be calculated o�ine. Therefore, no additional computation for
Eq. (7) and Eq. (8) is incurred during the training process.

We choose CLIP-agg as the default semantic guidance reward-
ing strategy for our CgT-GAN. Both the two strategies and their
combination are compared in the experiment section.

3.4 Model Training
There are two network blocks in CgT-GAN, i.e., the generator ⌧
and discriminator ⇡ , that require training. Prior to adversarial
training, the generator is initialized by training it to reconstruct
sentences from the given corpus using their CLIP embeddings. This
stage is referred to as initialization. Afterwards, the pre-trained
modules GPT-2 and RoBERTa will be �ne-tuned empirically during
the adversarial training stage. The discriminator ⇡ calculates the
naturalness 5⇡ for real/fake sentences, which is optimized through
binary cross-entropy loss minimization, as follows:

min
i

� ES⇠?corpus
h
logf

⇣
5⇡i (S)

⌘i

� EC⇠⌧\

h
log

⇣
1 � f

⇣
5⇡i (C)

⌘⌘i
,

(10)

where S is the real sentence with a corpus distribution ?corpus, C
is the generated caption sampled from⌧ , i denotes the parameters
of ⇡ and f is the sigmoid function.

We regard the generator training as an RL problem. In particular,
our generator ⌧ can be viewed as a policy, which predicts the next
word (“action”) based on the current visual prompts and tokens
(“state”). Therefore, the policy gradient can be approximated by
using the REINFORCE algorithm [56] as follows:

r � (\ ) = ECB⇠⌧\ (C|I) (' (I, CB ) � ' (I, Ĉ) )r log⌧\ (CB | I),

⌧\ (CB | I) =
=÷
C=1

⌧\ (CB
C | I, CB

1:C�1 ),
(11)

where CB is the caption sampled from the generator with each token
being selected using the estimated probability⌧\ , Ĉ is the predicted
caption (i.e., each token is selected with the highest probability)
under the inference algorithm, and '(·) is the reward function. The
above gradient computation follows the self-critical sequence train-
ing (SCST) method [50], which normalizes the reward utilizing the
output of the generator’s own test-time inference algorithm. SCST
can achieve high performance on image captioning involving the
test-mode inference (the baseline '(I, Ĉ)) into the training pro-
motes the training/test time consistency. In the context of vanilla
text GANs, the reward function ' can be de�ned as the naturalness
score 5⇡ (C) assigned by the discriminator ⇡ to the generated cap-
tion, as shown in Eq. (4). However, in our scenario, the objective
of training the generator ⌧ is two-fold: to produce captions that
are both highly natural (i.e., resembling human language) and se-
mantically consistent with the corresponding image. The overall
reward function '(I, C) is thus composed of two components: the

naturalness score 5⇡ (C), as computed by the discriminator ⇡ , and
the semantic guidance reward A⇤ calculated by the reward module:

'(I, C) = 5⇡ (C) + A⇤ (I, C). (12)

A⇤ can be Acos (Eq. (6)) and Aagg (Eq. (9)). Unless speci�ed otherwise,
we adopt Aagg as A⇤.

4 EXPERIMENTS
In this section, we �rst introduce the datasets, evaluation metrics
and tasks, and then make a thorough examination to answer the
following four research questions:

• RQ1: How does CgT-GAN perform compared with current
state-of-the-art methods?

• RQ2: How does the performance of CgT-GAN vary with dif-
ferent reward combinations, and which rewarding strategy
yields the best results?

• RQ3: Can competitive performance be achieved by simpler
CLIP usage or generative training on web-scale noisy pairs?

• RQ4: How does CgT-GAN perform with CLIP of di�erent
scales?

4.1 Experimental Setup
Dataset.Weuse two di�erent image caption datasets, i.e., MSCOCO
Caption Dataset [31] and Flickr30k [46]. MSCOCO contains 123,287
images with each image being annotated with �ve descriptions.
Flickr30k has 31,783 images collected from Flickr website and also
attaches �ve sentences to each image. We adopt the commonly used
data split [38]. For external corpus, the used ShutterStock(SS)[12],
Google Conceptual Captions(CC3M)[51], Flickr30k and MSCOCO
training datasets contain 2.3M, 3.3M, 145k, and 557k sentences,
respectively. Note that SS and CC3M are collected from the web,
and Flickr30k and MSCOCO corpus are created by human labellers.

Evaluation. Five commonly used evaluation metrics, including
BLEU-4 [44], ROUGE [30], METEOR [3], CIDEr [60] and SPICE [1]
are adopted for measuring the performance of methods from vari-
ous perspectives. CLIP-based metrics like CLIP-S and refCLIP-S[19]
are not considered, because these scores share some similarities
with our reward, thus unable to re�ect real performance.

Tasks. Following DeCap[27], we conduct experiments on three
distinct tasks. (1) Zero-shot image captioning (ZS-IC)1 (2) In-domain
unpaired image captioning (In-UIC). (3) Cross-domain unpaired
image captioning (Cross-UIC). In ZS-IC, we use sentence corpora
crawled from the web, while in In-UIC and Cross-UIC, we use de-
scriptions from an image caption training dataset as the corpus.
Cross-UIC requires that the images and the sentence corpus come
from di�erent datasets, whereas In-UIC means the images and the
corpora belong to the same dataset but without pairwise informa-
tion. Formally, the image captioning task is expressed in the form of
X images$ Y captions, indicating that the images are sourced from
the X dataset, while the captions are sourced from the Y dataset dur-
ing the training phase. Concretely, we construct two ZS-IC tasks:
MSCOCO images $ SS captions and MSCOCO images $ CC3M
captions, two Cross-UIC tasks: Flickr30k images$ MSCOCO cap-
tions and MSCOCO images $ Flickr30k captions and two In-UIC

1The zero-short task is de�ned by DeCap[27], which chooses webly-collected corpora
for use. In our experiment, we additionally access images in the training set.
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Table 1: Performance comparison on the test split of the
MSCOCO datasets under zero-shot captioning setting (with
SS and CC3M corpus). Items in grey are CLIP-based methods.

Method B.-4 M. R. C. S.

MSCOCO images$ SS captions
UIC-GAN [12] 5.6 12.4 28.7 28.6 8.1

R2M [18] 6.4 13.0 31.3 29.0 9.1
IGGAN [6] 6.5 13.1 30.5 28.8 8.2
TSGAN [71] 6.9 13.0 32.3 28.9 8.3

[12] + Honda et al. [20] 7.1 14.1 35.2 35.7 9.2
PL-UIC [75] 10.0 16.2 35.8 45.8 11.6
DeCap [27] 8.9 17.5 — 50.6 13.1

CgT-GAN (ours) 11.1 19.0 37.2 58.6 14.5
MSCOCO images$ CC3M captions

SME-Emb [26] 6.5 12.9 35.1 22.7 —
R2M [18] 8.3 14.0 35.0 29.3 9.6

Honda et al. [20] 7.6 13.5 37.3 31.8 8.4
DeCap [27] 8.8 16.0 — 42.1 10.9

CgT-GAN (ours) 10.9 16.9 35.2 49.8 12.5

tasks: MSCOCO images $ MSCOCO captions and Flickr30k images
$ Flickr30k captions. It is important to note that the images in the
validation and test sets are unseen during training. Details of model
optimization can be found in the supplementary material.

4.2 Comparison with the State-of-the-Art
Methods (RQ1)

We compare CgT-GAN with various state-of-the-art (SOTA) meth-
ods, which can be categorized into two groups: concept-based meth-
ods and CLIP-based methods. The former detects objects to bridge
the gap between visual and textual information. The latter aligns
visuals and language with the help of CLIP. We designated a gray
background in the table to distinguish CLIP-based methods, which
include text-only methods such as DeCap [27], CapDec [42], and
CLOSE [17], as well as methods that employ unpaired images and
texts, such as PL-UIC [75] and ESPER [69]. The comparisons of re-
sults are conducted separately on the aforementioned three settings:
zero-shot image captioning (ZS-IC), in-domain unpaired image
captioning (In-UIC), and cross-domain unpaired image captioning
(Cross-UIC), following the same protocols.

Results on the ZS-IC task. Table 1 presents the performance
comparison of two zero-shot image captioning tasks. Our CgT-GAN
consistently achieves the best results among all the competingmeth-
ods on two ZS-IC tasks in terms of BLEU-4, METEOR, CIDEr and
SPICE, outperforming other GAN methods (e.g., TSGAN) and the
advanced CLIP-based method (e.g., PL-UIC and DeCap). For in-
stance, on the MSCOCO$SS task, CgT-GAN obtains 19.0/58.6/14.5
METEOR/CIDEr/SPICE scores, which are 34.8%/64.1%/57.6% better
than the ensemble of Honda et al.+UIC-GAN and 8.6%/15.8%/10.7%
better than DeCap, respectively. These results demonstrate the im-
pressive capacity of CgT-GAN in generating lifelike image captions.

CLIP o�ers richer and more diverse visual-language knowledge
than competing methods such as UIC-GAN, R2M, and SME-Emb,
which only use category-limited visual concepts. Compared to
CLIP-based methods, our training paradigm is more e�cient than

Table 2: Performance comparison on the test split of the
MSCOCO and Flickr30k datasets under the cross-domain
unpaired setting. Items in grey are CLIP-based methods.

Method B.-4 M. R. C. S.

Flickr30k images $MSCOCO captions
SME-Emb [26] 7.9 13.0 32.8 9.9 —

UIC-GAN [12] from [5] 8.3 13.3 33.4 14.2 —
R2M [18] 11.7 13.7 35.9 18.1 8.3
SCS [5] 13.0 14.1 37.8 18.1 —

DeCap [27] 16.3 17.9 — 35.7 11.1
CapDec [42] 17.3 18.6 42.7 35.7 —

CgT-GAN (ours) 17.3 19.6 43.9 47.5 12.9
MSCOCO images$ Flickr30k captions

CapDec[42] 9.2 16.3 36.7 27.3 —
DeCap[27] 12.1 18.0 — 44.4 10.9

CgT-GAN (ours) 15.2 19.4 40.9 58.7 13.4

PL-UIC with CLIP-�ltered pseudo labels. Additionally, we observed
that utilizing unlabelled image data during training signi�cantly
improves CgT-GAN’s performance compared to text-only meth-
ods like DeCap. We also notice that CgT-GAN performs slightly
worse than Honda et al. on ROUGE with the CC3M corpus. This
is mainly because Honda et al. additionally utilizes pre-detected
visual concepts, which are the key focus of ROUGE. In contrast,
CgT-GAN is learned end-to-end without making any extra e�ort on
entity detection. Furthermore, CgT-GAN trained with the SS corpus
achieved higher scores than with the CC3M corpus because the SS
corpus crawled using MSCOCO eighty keywords can provide more
supportive sentences for generator guidance.

Results on the Cross-UIC task. Note that images and the
corpus are from the di�erent datasets on the Cross-UIC setting.
Table 2 shows the performance of the models on the image-corpora
cross-domain settings of Flickr30k and MSCOCO. CgT-GAN out-
performs other models on Cross-UIC task, demonstrating a similar
performance trend to that on the ZS-IC task. Interestingly, with the
same MSCOCO images, the use of Flickr30k corpus from human
labellers only brings 0.2% CIDEr relative improvement (58.6 !
58.7) compared to the SS corpus. This suggests that web-collected
corpora may work as well as human descriptions for our model.

Results on the In-UIC task. The In-UIC setting involves train-
ing images and corpus from the same dataset to test the upper
bound of performance without supervision. Our experiments are
conducted on Flickr30k and MSCOCO, as presented in Table 3. To
the best of our knowledge, our proposed CgT-GAN is the �rst to
surpass a CIDEr score of 100 on the MSCOCO task with a vanilla
CLIP backbone. CgT-GAN outperforms other reinforcement learn-
ing methods based on CLIP, such as ESPER-Style [69], and CLIP
text-only training methods, like CLOSE [17], which further demon-
strates the advantages of our reinforcement strategy and the bene-
�ts of incorporating images in the training process. It is also certain
that our CgT-GAN performs better than a group of traditional visual
concept-based methods, like SCS and Graph-Align. Surprisingly,
we found that our results on the MSCOCO dataset under the In-
UIC setting (CIDEr score of 108.1) are close to those of a similar
generator, ClipCap[40], trained using image-caption pairs (CIDEr
score of 113.1).



CgT-GAN: CLIP-guided Text GAN for Image Captioning MM ’23, October 29–November 3, 2023, O�awa, ON, Canada.

Table 3: Performance comparison on the test split of the
MSCOCO and Flickr30k datasets under the in-domain un-
paired setting. Items in grey are CLIP-based methods.

Method B.-4 M. R. C. S.

MSCOCO images$MSCOCO captions
Pivoting[15] 5.4 13.2 — 17.7 —
SSR[54] 11.1 14.2 — 28.2 —

Coarse-SRE[32] 16.5 14.3 33.4 37.2 10.6
Fine-SRE[32] 19.7 17.4 41.9 49.7 13.3
UIC-GAN[12] 18.6 17.9 43.1 54.9 11.1

R2M [18] from [53] 16.0 17.3 39.7 48.4 11.2
TSGAN[71] 18.9 18.2 43.3 55.2 11.3
SME-Emb[26] 19.3 20.2 45.0 61.8 12.9
MemGAN[53] 20.0 19.9 45.1 63.6 12.9
IGGAN[6] 21.9 21.1 46.5 64.0 14.5

Graph-Align[16] 21.5 20.9 47.2 69.5 15.0
SCS[5] 22.8 21.4 47.7 74.7 15.1

[16] + Fine-SRE[32] 21.8 22.1 48.4 75.7 16.1
PL-UIC [75] 25.0 22.6 49.4 77.9 15.2

ESPER-Style [69] 21.9 21.9 — 78.2 —
DeCap [27] 24.7 25.0 — 91.2 18.7
CapDec [42] 26.4 25.1 51.8 91.8 —
CLOSE [17] 28.6 25.2 — 95.4 18.1

CgT-GAN (ours) 30.3 26.9 54.5 108.1 20.5
Flickr30k images$ Flickr30k captions
UIC-GAN [12] from [5] 10.8 14.2 33.4 15.4 —

SCS [5] 14.3 15.6 38.5 20.5 —
CapDec [42] 17.7 20.0 43.9 39.1 —
DeCap [27] 21.2 21.8 — 56.7 15.2

CgT-GAN (ours) 24.1 22.6 48.2 64.9 16.1

Table 4: Performance changes with di�erent rewards on
MSCOCO test split under the ZS-IC (with CC3M captions)
and the In-UIC (with MSCOCO captions) settings.

Init. 5⇡ A⇤
MSCOCO$ CC3M MSCOCO $MSCOCO

B.-4 M. R. C. S. B.-4 M. R. C. S.

! 2.7 11.1 25.6 12.6 5.6 6.5 14.3 33.0 24.8 7.9
! ! 4.9 10.3 28.5 13.6 4.8 22.1 22.4 47.6 75.6 15.4
! ! 4.8 17.6 33.3 28.2 12.8 11.3 22.4 41.3 46.4 16.5

! ! 9.8 16.6 34.6 47.1 12.3 30.4 26.3 54.1 105.8 20.0
! ! ! 10.9 16.9 35.2 49.8 12.5 30.3 26.9 54.5 108.1 20.5

4.3 Ablation Study (RQ2)
The reward function '(� ,⇠) is the key of CgT-GAN, consisting
of two components: the naturalness score 5⇡ and the semantic
guidance reward A⇤ (Eq. (12)). In this subsection, we perform an
ablation study to explore the in�uence of various combinations of
rewards and rewarding strategies. The experiments are conducted
on two distinct tasks: MSCOCO images with noisy descriptions
(CC3M) and images descriptions in the same domain (MSCOCO).

Naturalness reward and semantic guidance reward. As
shown in Table 4, the use of a single reward, either the naturalness
5⇡ or the semantic guidance reward A⇤ results in less satisfactory

Table 5: Performance changeswith di�erent rewarding strate-
gies on MSCOCO test split under the ZS-IC (with CC3M cap-
tions) and the In-UIC (with MSCOCO captions) settings.

Strategy MSCOCO$ CC3M MSCOCO $MSCOCO

B.-4 M. R. C. S. B.-4 M. R. C. S.

CLIP-cos 7.9 16.3 33.1 39.7 11.4 22.9 24.7 49.3 88.9 18.9
CLIP-agg 10.9 16.9 35.2 49.8 12.5 30.3 26.9 54.5 108.1 20.5

Reward-mix 10.5 17.0 34.8 49.0 12.7 28.7 26.4 53.1 103.8 20.3

performance. However, their combination signi�cantly enhances
the performance, validating our intention to jointly strengthen
language naturalness and visual-language alignment. This �nding
con�rms that both rewards achieve their intended goals and comple-
ment each other for image captioning. Moreover, the initialization
stage produces a fairly good generator, enhancing adversarial train-
ing (Init. + 5⇡ + A⇤) compared to that without init (5⇡ + A⇤).

Rewarding Strategy. In our main experiments, we selected the
CLIP-agg strategy as the default option. We also tested another
strategy, CLIP-cos, as described in Section 3.3. Additionally, we av-
eraged the two rewards with equal weight to create a new strategy,
Reward-mix. The results presented in Table 5 show that the CLIP-
agg strategy outperforms the other two strategies. Furthermore,
we notice slower convergence and inferior performance when ap-
plying CLIP-cos, because of the modality gap[29] between visual
and language modalities, which reduces the e�ciency of CLIP-cos
reward. While the CLIP-agg guides the generator with a textual em-
bedding, eliminating the modality gap. Another interesting �nding
is that the Reward-mix strategy achieves competitive performance
to CLIP-agg, even better SPICE.We speculate CLIP-cos may provide
reliable guidance when the corpus is noisy or out-of-domain. For
further experiments, please refer to the appendix.

4.4 Comparasion with Simpler CLIP Utilization
and Web-scale Generative Training (RQ3)

As CLIP is a powerful image-text alignment model, there are simpler
methods that adopt CLIP to tackle the unpaired image captioning
task. We consider two CLIP baselines: (1) CLIP-retrieval, where
the predicted caption for each image in the test set is the corpus
sentence with the highest CLIP similarity; (2) CLIP-pseudo, where
pseudo labels are generated for each image in the training set using
CLIP-retrieval on the text corpus and training is conducted using
these pseudo labels. Besides, generative models pre-trained on web-
collected noisy image-text pairs also seem to meet the "without
human labelling" requirement. Thus, we select (3) SimVLM [64]
as a comparison, a transformer-based visual language model (VLM)
generatively trained on billions of web-collected image-caption
pairs[23]. Since SimVLM infers in a zero-shot manner, we compare
it with CgT-GAN on ZS-IC setting.

We compare CgT-GAN with the above baselines in Table 6. CgT-
GAN obtains much better performance than simpler CLIP-based
methods: CLIP-retrieval and CLIP-pseudo. Moreover, CgT-GAN
outperforms the SimVLM trained on 1.8B web-collected image-
caption pairs. The comparison shows our e�ective usage of CLIP
and unpaired data.
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Figure 3: Prompt explanations and corresponding predicted captions on MSCOCO test split. (CC3M) and (MSCOCO) denote
training with CC3M and MSCOCO captions, respectively. Red fonts show that visual prompts perceive the main image content.

Table 6: Performance comparison with generative pre-
training methods and simpler CLIP-based methods using
MSCOCO dataset (test set) under the ZS-IC (with CC3M cap-
tions) and the In-UIC (with MSCOCO captions) settings.

Method MSCOCO$ CC3M MSCOCO$ MSCOCO

B.-4 M. R. C. S. B.-4 M. R. C. S.

CLIP-retrieval 5.5 13.8 27.7 31.0 10.0 13.1 20.8 40.7 58.0 15.2
CLIP-pseudo 9.7 15.4 35.4 38.9 10.2 19.7 22.5 47.2 74.1 16.3
SimVLM[64] 11.2 14.7 — 32.2 8.5 — — — — —
CgT-GAN 10.9 16.9 35.2 49.8 12.5 30.3 26.9 54.5 108.1 20.5

Table 7: Performance changes with variant scale backbones
using MSCOCO dataset (test set) under In-UIC setting.

Method Backbone B.-4 M. R. C. S.

ESPER[69] ViT-B/32 21.9 21.9 — 78.2 —
CLOSE[17] ViT-B/32 — — — 91.1 —
DeCap[27] ViT-B/32 24.7 25.0 — 91.2 18.7
CgT-GAN ViT-B/32 27.4 25.1 52.0 96.9 18.9
CapDec[42] R50⇥4 26.4 25.1 51.8 91.8 —
CLOSE[17] R50⇥4 — — — 92.0 —
CgT-GAN R50⇥4 27.2 25.5 52.3 99.9 19.1
CLOSE[17] ViT-L/14 28.6 25.2 — 95.4 18.1
CgT-GAN ViT-L/14 30.3 26.9 54.5 108.1 20.5

4.5 CgT-GAN with Variant Backbones (RQ4)
Current advanced CLIP-based state-of-the-arts employ CLIP en-
coders with varying scales, making it challenging to conduct a fair
performance comparison. To ensure a fairer comparison, we con-
duct additional experiments to evaluate CgT-GAN with varying
CLIP backbones. Table 7 summarizes the performance of CgT-GAN
and CLIP-based baseline methods with di�erent CLIP backbones.
The results show that CgT-GAN performs better when CLIP back-
bone scales up. Moreover, our proposed CgT-GAN outperforms
CLIP-based SOTAs with the same backbone.

4.6 Visual Prompts Explanation
Visual prompts {p8 }:8=1 are computed from the image embedding
and suit for the GPT-2 sentence generation model. In other words,
visual prompts are expected to work as semantic tokens to make
GPT-2 generate visual-semantic consistent captions. Here, we try
to understand how close the visual prompts are to the real word
embeddings. For this, we compute the cosine similarity (similar
to ClipCap [40]) of a visual prompt and a real word embedding
(from GPT-2 dictionary) and select the closest word for observation.
Results are shown in �gure 3. It can be found that visual prompts
surprisingly align the main image content with concept words, like
“clouds”, “�owers”, “surf” and “laptop”. Additional case studies are
provided in the appendix.

5 CONCLUSION
In this paper, we have presented the CLIP-guided text GAN (CgT-
GAN), which utilizes the CLIP to guide image-to-caption generation.
CLIP in this paper is not only used for image encoding but also
for semantic guidance. CgT-GAN allows the generator to “see” real
images during training but does not require any human-annotated
image-caption pairs. In CgT-GAN, we examine two types of CLIP-
based semantic guidance rewards to enhance caption generating,
including the cosine similarity reward CLIP-cos and the newly
proposed text embedding aggregation reward CLIP-agg. The CLIP-
based reward is �nally combined with the GAN’s reward to guide
the generator learning in a simple and e�ective manner. Through
extensive experiments, CgT-GAN outperforms all competing meth-
ods in three subtasks. We also showcase that the visual prompts can
correspond to the salient features in the image, thereby revealing
how the generator works. We want to mention here that the pro-
posed learning fashion may also be incorporated into other GAN
networks, which will be our future work.
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APPENDIX
A IMPLEMENTATION DETAILS
We select GPT-2 model [48] provided by huggingface2 as the gen-
erator. The number of visual prompts is : = 10. The MLP of the
generator has 2 layers, where the channel numbers of the hidden
layer and the output layer are 3840 and 7680, respectively. The 7680
dimension output is reshaped to 10 ⇥ 768 as visual prompt vec-
tors. For the discriminator, we employ RoBERTa-base with a pooler
layer3 as our RoBERTa[33] model. The MLP of the discriminator
also has 2 layers, where the layer sizes are 384 and 1, respectively.
All MLPs in our implementation take C0=⌘ as the activate func-
tion. We optimize our CgT-GAN by AdamW[37] with n = 10�8,
V = (0.9, 0.999) and weight decay = 0.05 on weights. The learning
rate of the generator and the discriminator is set to 10�5. We set
150 warmup steps for the generator while the discriminator has
no warmup steps. The batch-size is set to 128 for MSCOCO image
dataset and 32 for Flickr30k image dataset. The mean of the policy
gradient is estimated by sampling 5 times from the generator. For
both sampling and inference, the beam size of the generator is set
to 1. In practice, we train our CgT-GAN with the reward from the
discriminator only for the early 150 steps, i.e., only using 5⇡ (⇠)
for training. Then we linearly increase the ratio of A⇤ (� ,⇠) until it
reaches the ratio of 5⇡ (⇠) in the following 2350 steps.

For the generator initialization stage, the batch-size is set to 16
for Flickr30k captions and 32 for other text corpora. The training
con�guration is set as: learning rate 2 ⇥ 10�5, AdamW optimizer
with the same con�gs with GAN training, and 5000 steps warm-up
to stabilize the training.

The current implementation focuses on image captioning. We
want to mention here that the CLIP (or other cross-modal alignment
models)-guided GAN framework could be extended to various gen-
erative multimodal applications [22, 35, 36, 45, 57, 72], particularly
when dealing with situations where paired data is unavailable. That
will be the future work. The CgT-GAN is trained on 2⇥A40 GPUs,
while the initialization is runing on a single A40 GPU. We use the
o�cial COCO evaluation tools4 to calculate all metrics.

B MORE EXPERIMENTAL ANALYSIS
B.1 CLIP-agg Components and Temperature.
Since we set CLIP-agg as the default strategy, we further analyzed
each component and temperature in�uence in the CLIP-agg reward.
The CLIP-agg reward is composed of two components, cosine sim-
ilarity and !1 penalty, as expressed in Eq. (9). Cosine similarity
encourages paired embeddings to have similar semantics, consis-
tent with the CLIP training objective. On the other hand, !1 distance
penalty brings caption and aggregative embeddings closer to each
other in Euclidean space. Our analysis, presented in Table 8, shows
that the combination performs best and the two components are
complementary. The performance also varies with temperature
g , as shown in Figure 4. The temperature balances the diversity
and accuracy of the supporting embeddings. A larger g considers

2https://huggingface.co/docs/transformers/v4.21.1/en/model_doc/gpt2#transformers.
GPT2LMHeadModel
3https://huggingface.co/docs/transformers/model_doc/roberta#transformers.
RobertaModel
4https://github.com/tylin/coco-caption

Table 8: Performance changes with di�erent CLIP-agg com-
ponents on MSCOCO test split under the In-UIC setting.

cosine similarity !1 penalty B.-4 M. R. C. S.

! 30.2 26.6 53.9 107.3 20.3
! 29.4 26.8 53.7 105.8 20.5

! ! 30.3 26.9 54.5 108.1 20.5

broader text embeddings, while a smaller g gives more attention
to closer embeddings in the aggregation. Therefore, when using a
web-crawled corpus, the CLIP-agg strategy prefers a higher g to
increase the accuracy of the aggregated embedding.
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Figure 4: Performance changes with di�erent CLIP-agg tem-
peratures on MSCOCO test split using CC3M (red lines) and
MSCOCO captions (green lines).

Table 9: Performance changes on MSCOCO test split with
di�erent corpora (CC3M and MSR-VTT) and di�erent re-
warding strategies.

Strategy MSCOCO$ CC3M MSCOCO $MSR-VTT

B.-4 M. R. C. S. B.-4 M. R. C. S.

CLIP-cos 7.9 16.3 33.1 39.7 11.4 8.1 17.4 36.3 38.2 11.5
CLIP-agg 10.9 16.9 35.2 49.8 12.5 10.7 16.9 38.6 44.4 11.7

Reward-mix 10.5 17.0 34.8 49.0 12.7 11.3 17.2 39.0 47.2 11.8

B.2 Robustness to Corpus Domain Variation
During our CgT-GAN training stage, the generator is instructed to
mimic the sentences in the corpus. However, there might be a large
gap between the image distribution and the corpus distribution
in a speci�c task, which has the potential to impair performance.
As a result, it is important to evaluate the robustness of CgT-GAN
in the face of corpus domain variations. We conducted additional
experiments using the MSCOCO images $ MSR-VTT [65] cap-
tions setting to simulate such situations. MSR-VTT [65] is a video
captioning dataset that primarily focuses on describing actions and
events within the videos. Therefore, it has a signi�cantly di�er-
ent caption distribution compared to the MSCOCO image dataset,
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GroundTruth A large brown bear laying on top of a 
giant rock.

A group of people walking on a street by 
some cars.

DeCap(CC3M) a bear, a common animal, is resting in 
the medium photo

Japanese city : street photography of 
person on the streets

CgT-GAN
(CC3M)

A grizzly bear sleeps on a rock in a 
natural park.

Young girl and man walking on the 
street.

CgT-GAN
(MSCOCO)

A brown bear laying on top of a large 
rock.

A girl walking down a street past a man.

GroundTruth The man is giving the young girl a ride on 
his motorcycle.

A crying woman looking at herself in a 
mirror.

DeCap
(MSCOCO)

A man and a woman riding a motorcycle 
together.

A woman looking into a mirror with her 
teeth.

CgT-GAN
(CC3M)

The father is riding a motorcycle with his 
daughter.

Sad woman looking at herself in a mirror.

CgT-GAN
(MSCOCO)

A man and a little girl sitting on a 
motorcycle.

A woman is holding her reflection in a 
mirror.

Figure 5: Caption examples on MSCOCO test split of CgT-GAN. CgT-GAN (CC3M) and CgT-GAN (MSCOCO) denote training
with CC3M and MSCOCO captions, respectively. Boldface fonts in the �rst two cases show the comparison between DeCap and
our CgT-GAN with CC3M corpus. Those in the last two show comparison between CgT-GAN and Decap with MSCOCO corpus.

Table 10: Parameter count comparison with other methods.
CIDEr scores are obtained under MSCOCO In-UIC setting.

Method Encoder Version Encoder Params. Generator Params. CIDEr

ESPER [69] ViT-B/32 88M 156M 78.2
CgT-GAN ViT-B/32 88M 156M 96.9
CapDec[42] R50⇥4 87M 182M 91.8
CgT-GAN R50⇥4 87M 156M 99.9
CLOSE[17] ViT-L/14 304M 225M 95.4
CgT-GAN ViT-L/14 304M 157M 108.1

GroundTruth Three beds all sitting in a row up 
against a brick wall.

Prediction A bedroom with two beds sitting next 
to each other.

A woman has headphones on and is 
holding two cell phones.

A woman sitting and holding a cell 
phone in her hands.

Figure 6: Failure cases on MSCOCO test split of CgT-GAN
using In-UIC setting.

which mainly consists of static visual content. Results presented
in Table 9 show that CgT-GAN achieves comparable results with
two diverse corpora (video captioning dataset MSR-VTT and image
captioning dataset CC3M), indicating the robustness of our method
in adapting to multiple corpora, even in the presence of distribution
gaps. Notably, Reward-mix achieves the highest performance in the
MSCOCO images $ MSR-VTT captions setting, suggesting that
the combination of CLIP-cos and CLIP-agg exhibits high robustness
to the distribution gap.

B.3 Parameter Count Comparison
We calculate the parameters of CgT-GAN essential components in
the inference stage, i.e., the image encoder (CLIP-ImageEncoder) and
the generator (MLP + GPT2). The comparison of these parameters
is presented in Table 10. From the results, it can be observed that
our CgT-GAN has either fewer or equivalent model parameters
compared to other methods, yet it achieves signi�cantly better
performance (CIDEr).

B.4 Case Study
We show four typical examples in Figure 5 to qualitatively compare
the caption results. As can be seen, our CgT-GAN outperforms
DeCap in terms of mimicking human language, especially when
trained with CC3M. In the �rst two examples, CgT-GAN (CC3M)
successfully describes the image content and produces more �u-
ent captions than DeCap (CC3M), which indicates that adversar-
ial learning leads to better performance than text-only methods
on noisy corpora. Moreover, we discover CgT-GAN is observant
to identify details and spatial relations, as shown in the last two
cases, where CgT-GAN recognizes the “little girl” and comprehends
that the “woman” in the mirror is a re�ection. By comparing CgT-
GAN (MSCOCO) and CgT-GAN (CC3M), we observe that CgT-GAN
(CC3M) is more contextually imaginative, like “natural park” (the
�rst case), “daughter” (the third case) and “sad” (the last case) due
to the diverse training text. We also present the typical failure cases
in Figure 6, which provide insights into the potential limitation
of our proposed CgT-GAN. Through the analysis of the generated
captions under the In-UIC setting, it can be found that CgT-GAN
encounters challenges in accurately counting objects in some cases.
One possible reason is that CLIP-based visual embedding primarily
focuses on high-level semantics.


