
Unleashing the Power of Graph Data Augmentation
on Covariate Distribution Shift

Yongduo Sui1†, Qitian Wu2, Jiancan Wu1, Qing Cui3, Longfei Li3, Jun Zhou3*,
Xiang Wang1*, Xiangnan He1*

1University of Science and Technology of China,
2Shanghai Jiao Tong University, 3Ant Group

syd2019@mail.ustc.edu.cn, echo740@sjtu.edu.cn,
{wujcan,xiangwang1223,xiangnanhe}@gmail.com,

{cuiqing.cq,longyao.llf,jun.zhoujun}@antgroup.com

Abstract

The issue of distribution shifts is emerging as a critical concern in graph represen-
tation learning. From the perspective of invariant learning and stable learning, a
recently well-established paradigm for out-of-distribution generalization, stable
features of the graph are assumed to causally determine labels, while environmental
features tend to be unstable and can lead to the two primary types of distribution
shifts. The correlation shift is often caused by the spurious correlation between
environmental features and labels that differs between the training and test data; the
covariate shift often stems from the presence of new environmental features in test
data. However, most strategies, such as invariant learning or graph augmentation,
typically struggle with limited training environments or perturbed stable features,
thus exposing limitations in handling the problem of covariate shift. To address
this challenge, we propose a simple-yet-effective data augmentation strategy, Ad-
versarial Invariant Augmentation (AIA), to handle the covariate shift on graphs.
Specifically, given the training data, AIA aims to extrapolate and generate new
environments, while concurrently preserving the original stable features during the
augmentation process. Such a design equips the graph classification model with
an enhanced capability to identify stable features in new environments, thereby
effectively tackling the covariate shift in data. Extensive experiments with in-depth
empirical analysis demonstrate the superiority of our approach. The implementa-
tion codes are publicly available at https://github.com/yongduosui/AIA.

1 Introduction

While recent advances have made solid progress in learning effective representations for graph-
structured data, most of the existing approaches operate under the assumption that training and
test graphs are independently drawn from an identical distribution [1, 2]. However, this as-
sumption often falls short in real-world scenarios due to the out-of-distribution (OOD) data
that potentially exists during the testing phase [3], which results in distribution shifts between
training and test graphs. As a result, there is increasing research interest in OOD generaliza-
tion on graphs or learning with distribution shifts on graphs [4]. Some of the typical recent
works attempt to build effective methods for handling general distribution shifts on graphs, from
(causal) invariant learning [5, 3], model architecture designs [6], and data augmentation [7].

†This work was done during author’s internship at Ant Group.
*Corresponding authors. Xiang Wang and Xiangnan He are also affiliated with Institute of Artificial

Intelligence, Institute of Dataspace, Hefei Comprehensive National Science Center.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yongduosui/AIA

…

…

…

…

𝑃train

𝑃test

𝑃drop

𝑃ours

Training

graphs

Test

graphs

DropEdge

graphs

AIA

graphs

Environmental features

(ladder & tree)
stable feature (house)

Figure 1: Ptrain and Ptest denote the train-
ing and test distributions. Pdrop and Pours

represent the distributions of augmented
data via DropEdge and AIA.

With more specific views, other attempts focus on
designing generalizable models for tackling distribu-
tion shifts in particular domains with certain data for-
mats, e.g., molecular graphs [8], recommender sys-
tems [9, 10], and anomaly detection [11].

However, the majority of existing studies primarily fo-
cus on the correlation shift, one type of distribution
shift concerning OOD generalization [12, 13], leav-
ing another equally important type of distribution shift,
i.e., the covariate shift, largely under-explored in graph
representation learning. From the perspective of invari-
ant learning and stable learning [14, 15, 16], covariate
shift is in stark contrast to correlation shift w.r.t. stable
and environmental features of graph data. Specifically,
according to the commonly-used graph generation hy-
pothesis in prior studies [17, 18, 5, 8], there often exist
stable features, which are informative features of the
entire graphs and can reflect the predictive patterns in
data. Based on this, the relationship between stable
features and labels is assumed to be invariant across environments. The remaining features could be
unstable and varying across different environments, which mainly causes the following two distribu-
tion shifts: (1) correlation shift indicates that environments and labels establish inconsistent statistical
correlations in training and test data, under the assumption that test environments are covered in the
training data; whereas, (2) covariate shift characterizes that the environmental features in test data are
unseen in training data [2, 12].

Considering a toy example in Figure 1, the environmental features ladder and tree are different
in training and test data, which forms the covariate shift. Taking molecular property predictions
as another example, functional groups (e.g., nitrogen dioxide (NO2)) are stable to determine the
predictive property of molecules [5, 8]. Whereas, scaffolds (e.g., carbon rings) are usually patterns
irrelevant to the molecule properties, which can be seen as environmental features [2, 19]. In practice,
we often need to use molecules collected in the past to train models, expecting that the models can
predict the properties of molecules with new scaffolds in the future [20, 2, 19].

Considering the differences between correlation and covariate shifts, we take a close look into
the existing efforts on graph generalization. They mainly fall into the following research lines,
each of which has inherent limitations to solving the covariate shift. i) Invariant Graph Learning
[17, 18, 5, 21] recently becomes a prevalent paradigm for OOD generalization. The basic idea is to
capture stable features by minimizing the empirical risks in different environments. Unfortunately,
it implicitly makes a prior assumption that test environments are available during training. This
assumption is unrealistic owing to the obstacle of training data covering all possible test environments.
Learning in limited environments can alleviate the spurious correlations that are hidden in the training
data, but fail to extrapolate the test data with unseen environments. ii) Graph Data Augmentation
[22, 23] perturbs graph features to enrich the distribution seen during training for better generalization.
It can be roughly divided into node-level [24], edge-level [25], and graph-level [26, 7] with random
[27] or adversarial strategies [28]. However, blindly augmenting the graphs can presumably destroys
the stable features, and makes the augmented distributions out of control. For example, in Figure 1,
the random strategy of DropEdge [25] will inevitably perturb the stable features (highlighted by red
circles). As such, it may not sufficiently address the covariate shift and could potentially affect the
generalization ability. Hence, we naturally ask a question: “Compared to the training data, can we
generate new data that satisfy two conditions: 1) having new environments; 2) keeping the original
stable features unchanged?”

Towards this end, we introduce two intuitive principles for graph augmentation: environmental fea-
ture discrepancy and stable feature consistency. The discrepancy principle promotes the exploration
of new environments beyond the scope of training data, while the consistency principle seeks to
maintain the integrity of stable features during augmentation. In order to achieve these principles, we
devise a simple yet effective graph augmentation strategy: Adversarial Invariant Augmentation (AIA).
Specifically, we employ an adversarial augmenter, a network that augments graphs by adversarially
generating masks on them, thereby facilitating OOD exploration to enhance environmental discrep-

2

ancy. To foster stable feature consistency, we use another network, i.e., stable feature generator, which
constructs masks that encapsulate stable features. We then delicately merge these masks and apply
them to the graph data. As depicted in Figure 1, AIA primarily augments environmental features
while leaving the stable elements unchanged. Our approach equips the graph classifier model with an
enhanced ability to identify stable features in new environments and effectively mitigate the covariate
shift issue. We also conduct extensive experiments and in-depth analyses. The experimental results
highlight the limitations of several previous methods and underscore the superiority of our method in
addressing the covariate shift issue, providing empirical support for our claims.

2 Preliminaries

We define the uppercase letters (e.g., G) as random variables. The lower-case letters (e.g., g) are
samples of variables, and the blackboard bold typefaces (e.g., G) denote the sample spaces. Let g =
(A,X) ∈ G denote a graph, where A and X are its adjacency matrix and node features, respectively.
It is assigned with a label y ∈ Y with a fixed labeling rule G→ Y. Let D = {(gi, yi)} denote a dataset
that is divided into a training set Dtr = {(g

e
i , y

e
i)}e∈Etr and a test set Dte = {(g

e
i , y

e
i)}e∈Ete . Etr and

Ete are the index sets of training and test environments, respectively.

2.1 Definitions and Problem Formations

In this work, we focus on the graph classification scenario, which aims to train models with Dtr

and infer the labels in Dte, such as molecular property prediction. From the viewpoints of invariant
learning and stable learning, the inner mechanism of the labeling rule G → Y is usually assumed
to depend on the stable features [17, 18, 5, 8, 21], which are informative substructures of the entire
graph. The relationship between the stable features and labels is assumed to be invariant across
different environments, which makes OOD generalization possible [12]. Environmental features in
graph data are assumed to have no causal-effect on labels. For instance, the chemical properties
of molecules are mainly determined by specific functional groups, which can be regarded as stable
features [17, 5, 19, 8]. Conversely, their scaffold structures, often irrelevant to their properties, can be
seen as environmental features [20, 8].

Due to the instability of environmental features and the limitations in the data collection process,
the training and test distributions are often inconsistent in real-world scenarios, i.e., Ptr(G,Y) ≠
Pte(G,Y), which leads to two main types of distribution shifts [2, 12]: (1) Correlation shift (aka.
spurious correlation or concept shift [2]) refers to Ptr(G∣Y) ≠ Pte(G∣Y), Ptr(G) = Pte(G). It
indicates that there exist spurious statistical correlations in the training data, while these correlations
might not hold in the test data. (2) Covariate shift denotes Ptr(G∣Y) = Pte(G∣Y), Ptr(G) ≠ Pte(G),
which means that there exist new features, e.g., environmental features, in the test data. It may be
ascribed to either insufficient quantity or diversity of data in the training set, as well as the unknown
characteristics of the test environments. We provide formal definitions and examples of these two
distribution shifts in Appendix A. Here, inspired by the prior study [12], we offer a formal definition
to measure the graph covariate shift.

Definition 2.1 (Graph Covariate Shift) Let Ptr and Pte denote the probability functions of the
training and test distributions. We measure the covariate shift between distributions Ptr and Pte as

GCS(Ptr, Pte) =
1

2
∫S
∣Ptr(g) − Pte(g)∣dg, (1)

where S = {g ∈ G ∣ Ptr(g) ⋅Pte(g) = 0}, which covers the features (e.g., environmental features) that
do not overlap between the two distributions.

GCS(⋅, ⋅) is always bounded in [0,1]. The issue of graph covariate shift is very common in practice.
For example, we often need to train models on past molecular graphs, and hope that the model can
predict the chemical properties of future molecules with new features, e.g., new scaffolds [20]. In
addressing the graph OOD issue, a majority of the strategies [17, 5, 18, 29, 21] grounded in invariant
graph learning aim to pinpoint stable or invariant features. This is mainly accomplished by minimizing
empirical risks across an array of training environments. Nonetheless, these methodologies frequently
operate under the assumption of a shared input space across training and test data. This assumption,
however, often fails on covariate shift. It presents substantial challenges for these models when it

3

comes to accurately identifying stable features within new testing environments. Consequently, while
these methods typically exhibit satisfactory performance in managing correlation shifts, they often
underperform in the face of covariate shifts. In this work, we focus on the covariate shift issue in
graph classification, and we also give a formal definition of this problem as follows.

Problem 2.2 (Graph Classification under Covariate Shift) Given the training and test sets with
environment sets Etr and Ete, they follow distributions Ptr and Pte, and satisfy: GCS(Ptr, Pte) > ϵ,
where ϵ ∈ (0,1) represents the degree of covariate shift. We aim to use the data collected from
training environments Etr, and learn a powerful graph classifier f∗ ∶ G→ Y that performs well in all
possible test environments Ete:

f∗ = argmin
f

sup
e∈Ete

Ee
[ℓ(f(g), y)], (2)

where Ee
[ℓ(f(g), y)] is the empirical risk on the environment e, and ℓ(⋅, ⋅) is the loss function.

3 Methodology

To solve Problem 2.2, our idea is to generate new graphs through data augmentation. In this section,
we first propose two principles for graph augmentation. Guided by these principles, we design a
novel graph augmentation method, AIA, which can effectively address the covariate shift issue.

3.1 Two Principles for Graph Augmentation

We can observe that covariate shift is mainly caused by the scarcity of training environments. Hence,
we first propose the discrepancy principle for graph augmentation.

Principle 3.1 (Environmental Feature Discrepancy) Given a graph set {g} with distribution func-
tion P , let T (⋅) denote an augmentation function that augments graphs {T (g)} to distribution P̃ .
Then T (⋅) should meet GCS(P, P̃)→ 1.

From the perspective of data distribution, it requires that P̃ should keep away from the original distri-
bution P . From the perspective of data instances, it emphasizes the discrepancy in the environments
between the generated graphs and the original graphs. Since it does not give constraints on stable
features, we here propose the second principle for graph augmentation.

Principle 3.2 (Stable Feature Consistency) Given a set of graphs {g} with a corresponding stable
feature set {gsta = (Asta,Xsta)}. Let T (⋅) denote an augmentation function that augments graphs
{T (g)} with a corresponding stable feature set {g̃sta = (Ãsta, X̃sta)}. Then T (⋅) should meet
E[∥Asta − Ãsta∥

2
F]→ 0 and E[∥Xsta − X̃sta∥

2
F]→ 0, where ∥ ⋅ ∥F is the Frobenius norm.

It necessitates that the stable features of the generated graphs should maintain consistency with those
of the original graphs. This principle ensures the preservation of these stable features within the origi-
nal training data, thereby safeguarding sufficient information pertaining to the labels. Consequently,
this principle enhances the potential for generalization.

3.2 Out-of-distribution Exploration

Given a GNN model f(⋅) with parameters θ, we decompose f = Φ ○ h, where h(⋅) ∶ G → Rd is a
graph encoder to yield d-dimensional representations, and Φ(⋅) ∶ Rd

→ Y is a classifier. To comply
with Principle 3.1, we need to do OOD exploration. Inspired by distributionally robust optimization
[30, 31], we consider the following optimization objective:

min
θ
{ sup

P̃

{EP̃ [ℓ(f(g), y)] ∶D(P̃ , P) ≤ ρ}} , (3)

where P and P̃ are the original and explored data distributions, respectively. D(⋅, ⋅) is a distance met-
ric between two probability distributions. The solution to Equation (3) guarantees the generalization
within a robust radius ρ of the distribution P . To better measure the distance between distributions,

4

Adversarial

Augmenter

Stable Feature

Generator

Input Graph

Augmented Graphs

Training time

···

Stable Features

Environmental Features

GNN

Classifier

···

···

···

Figure 2: The overview of Adversarial Invariant Augmentation (AIA) Framework.

as suggested by [32], we adopt the Wasserstein distance [33, 34] as the distance metric. The distance
metric function can be defined as D(P̃ , P) = infµ∈Γ(P̃ ,P)Eµ[c(g̃, g)], where Γ(P̃ , P) is the set of
all couplings of P̃ and P ; c(⋅, ⋅) is the cost function. Studies [35, 34] also suggest that the distances in
representation space typically correspond to semantic distances. Hence, we define the cost function
in the representation space and give the transportation cost as c(g̃, g) = ∥h(g̃) − h(g)∥22. It denotes
the “cost” of augmenting the graph g to g̃. We can observe that it is difficult to set a proper ρ. Instead,
we consider the Lagrangian relaxation for a fixed penalty coefficient γ. Inspired by [32], we can
reformulate Equation (3) as follows:

min
θ
{ sup

P̃

{EP̃ [ℓ(f(g), y)] − γD(P̃ , P)} = EP [ϕ(f(g), y)]} , (4)

where ϕ(f(g), y) ∶= supg̃∈G{ℓ(f(g̃), y) − γc(g̃, g)}. And we define ϕ(f(g), y) as the robust surro-
gate loss. If we conduct gradient descent on the robust surrogate loss, we will have:

∇θϕ(f(g), y) = ∇θℓ(f(g̃
∗
), y), where g̃∗ = argmax

g̃∈G
{ℓ(f(g̃), y) − γc(g̃, g)}. (5)

g̃∗ is an augmented view of the original data g. Hence, to achieve OOD exploration, we need to
perform graph data augmentation via Equation (5) on the original data g.

3.3 Implementations of AIA

Equation (5) endows the ability of OOD exploration to data augmentation, which makes the aug-
mented data meet the discrepancy principle. To achieve the consistency principle, we also need
to capture stable features. Hence, we design a graph augmentation strategy: Adversarial Invariant
Augmentation (AIA). The overview of the proposed framework is depicted in Figure 2, which
mainly consists of two components: adversarial augmenter and stable feature generator. Adversarial
augmenter achieves OOD exploration through adversarial data augmentation; meanwhile, the stable
feature generator keeps stable feature consistency by identifying stable features from data. Below we
elaborate on the implementation details.

Adversarial Augmenter & Stable Feature Generator. We design two networks, adversarial aug-
menter Tθ1(⋅) and stable feature generator Tθ2(⋅), which generate masks for nodes and edges of
graphs. They have the same structure and are parameterized by θ1 and θ2, respectively. Given an
input graph g = (A,X) with n nodes, mask generation network first obtains the node representa-
tions via a GNN encoder h̃(⋅). To judge the importance of nodes and edges, it adopts two MLP
networks MLP1(⋅) and MLP2(⋅) to generate the soft node mask matrix Mx

∈ Rn×1 and edge mask
matrix Ma

∈ Rn×n for graph data, respectively. In summary, the mask generation network can be
decomposed as:

Z = h̃(g), Mx
i = σ(MLP1(hi)), Ma

ij = σ(MLP2([zi,zj])), (6)

where Z ∈ Rn×d is node representation matrix, whose i-th row zi = Z[i, ∶] denotes the representation
of node i, and σ(⋅) is the sigmoid function that maps the mask values Mx

i and Ma
ij to [0,1].

5

Adversarial Invariant Augmentation. To estimate g̃∗ in Equation (5), we define the following
adversarial learning objective:

max
θ1
{Ladv = EPtr[ℓ(f(Tθ1(g)), y) − γc(Tθ1(g), g)]} . (7)

Then we can augments the graph by Tθ1(g) = (A⊙Ma
adv,X⊙Mx

adv), where ⊙ is the broadcasted
element-wise product. Although adversarially augmented graphs guarantee environmental discrep-
ancy, it might destroys the stable parts. Therefore, we utilize the stable feature generator Tθ2(⋅)

to capture stable features and combine them with different environmental features. Following the
sufficiency and invariance conditions [17, 3, 18, 5, 8, 29], we define the stable feature learning
objective as:

min
θ,θ2
{Lsta = EPtr[ℓ(f(Tθ2(g)), y) + ℓ(f(g̃), y)]} , (8)

where g̃ = (A ⊙ M̃a,X ⊙ M̃x
) is the augmented graph. It adopts the mask combination strategy:

M̃a
= (1a

−Ma
sta) ⊙Ma

adv +M
a
sta and M̃x

= (1x
−Mx

sta) ⊙Mx
adv +M

x
sta, where Ma

sta and
Mx

sta are generated by Tθ2(⋅), 1
a and 1x are all-one matrices, and if there is no edge between

node i and node j, then we set 1a
ij to 0. Now we explain this combination strategy. Taking M̃x as

an example, since Mx
sta denotes the captured stable regions via Tθ2(⋅), 1

x
−Mx

sta represents the
complementary parts, which are environmental regions. Mx

adv represents the adversarial perturbation,
so (1x

−Mx
sta) ⊙Mx

adv is equivalent to applying the adversarial perturbation on environmental
features, meanwhile, sheltering the stable features. Finally, +Msta signifies that the augmented
data should preserve the original stable features. Consequently, it satisfies both principles. Upon
analysis of Equation (8), the first term implies that the stable features are sufficient for making right
predictions. The second term promotes right and invariant predictions under generated environments
utilizing stable features.

Regularization. For Equation (7), the adversarial optimization tends to remove more nodes and edges,
so we should also constrain the perturbations. Although Equation (8) satisfies the sufficiency and
invariance conditions, it is necessary to impose constraints on the ratio of the stable features to prevent
trivial solutions. Hence, we first define the regularization function r(M, k, λ) = (∑ij Mij/k − λ) +
(∑ij I[Mij > 0]/k − λ), where k is the total number of elements to be constrained, I ∈ {0,1}
is an indicator function. The first term penalizes the average ratio close to λ, while the second
term encourages an uneven distribution. Given a graph with n nodes and m edges, we define the
regularization term for adversarial augmentation and stable feature learning as:

Lreg1 = EPtr[r(M
x
adv, n, λa) + r(M

a
adv,m,λa)], (9)

Lreg2 = EPtr[r(M
x
sta, n, λs) + r(M

a
sta,m,λs)], (10)

where λs ∈ (0,1) is the ratio of stable features, we usually set λa = 1 for adversarial learning, which
can alleviate excessive perturbations. The algorithm is provided in Appendix D.1.

4 Theoretical Discussions

In this section, we engage in theoretical discussions to elucidate our learning objective and its
connections with the covariate shift. We first explore the relationship between our optimization
objective and the discrepancy principle. Recalling the optimization objective of Equation 3, we aspire
to identify a distribution P̃ that can manifest within a Wasserstein ball [36], which is centered on
distribution P , with distance ρ serving as the radius. Under appropriate conditions, we find that our
learning optimization objective can establish a close connection with OOD exploration.

Proposition 4.1 Consider a probability distribution P defined over a measurable space (Ω,F),
where Ω denotes the sample space and F is a σ-algebra on Ω. We construct two Wasserstein balls
with P at their center and radii ρ1 and ρ2 respectively. Utilizing Equation 3, we generate two distinct
distributions, P̃1 and P̃2, within the space (Ω,F). If (i) P is an isotropic distribution; (ii) ∃x1,x2 ∈ Ω

such that P (x) = P̃1(x−x1) = P̃2(x−x2); (iii) ρ1 < ρ2, then we have GCS(P, P̃1) ≤ GCS(P, P̃2).

This suggests that by appropriately increasing the robustness radius in AIA, we can effectively
amplify the covariate shift between the training and generated distributions. This in turn underscores
the reliability of our discrepancy principle, to a certain degree. Comprehensive proofs and detailed
discussions supporting these conclusions can be found in Appendix B.

6

Table 1: Performance on synthetic and real-world datasets. Numbers in bold indicate the best
performance, while the underlined numbers indicate the second best performance.

Type Method Motif CMNIST Molbbbp Molhiv

base size color scaffold size scaffold size

General
Generalization

ERM 68.66±4.25 51.74±2.88 28.60±1.87 68.10±1.68 78.29±3.76 69.58±2.51 59.94±2.37

IRM 70.65±4.17 51.41±3.78 27.83±2.13 67.22±1.15 77.56±2.48 67.97±1.84 59.00±2.92

GroupDRO 68.24±8.92 51.95±5.86 29.07±3.14 66.47±2.39 79.27±2.43 70.64±2.57 58.98±2.16

VREx 71.47±6.69 52.67±5.54 28.48±2.87 68.74±1.03 78.76±2.37 70.77±2.84 58.53±2.88

Graph
Generalization

DIR 62.07±8.75 52.27±4.56 33.20±6.17 66.86±2.25 76.40±4.43 68.07±2.29 58.08±2.31

CAL 65.63±4.29 51.18±5.60 27.99±3.24 68.06±2.60 79.50±4.81 67.37±3.61 57.95±2.24

GSAT 62.80±11.41 53.20±8.35 28.17±1.26 66.78±1.45 75.63±3.83 68.66±1.35 58.06±1.98

OOD-GNN 61.10±7.87 52.61±4.67 26.49±2.94 66.72±1.23 79.48±4.19 70.46±1.97 60.60±3.77

StableGNN 57.07±14.10 46.93±8.85 28.38±3.49 66.74±1.30 77.47±4.69 68.44±1.33 56.71±2.79

CIGA 66.43±11.31 49.14±8.34 32.22±2.67 64.92±2.09 65.98±3.31 69.40±2.39 59.55±2.56

DisC 51.08±3.08 50.39±1.15 24.99±1.78 67.12±2.11 56.59±10.09 68.07±1.75 58.76±0.91

Graph
Augmentation

DropEdge 45.08±4.46 45.63±4.61 22.65±2.90 66.49±1.55 78.32±3.44 70.78±1.38 58.53±1.26

GREA 56.74±9.23 54.13±10.02 29.02±3.26 69.72±1.66 77.34±3.52 67.79±2.56 60.71±2.20

FLAG 61.12±5.39 51.66±4.14 32.30±2.69 67.69±2.36 79.26±2.26 68.45±2.30 60.59±2.95

M-Mixup 70.08±3.82 51.48±4.91 26.47±3.45 68.75±0.34 78.92±2.43 68.88±2.63 59.03±3.11

G-Mixup 59.66±7.03 52.81±6.73 31.85±5.82 67.44±1.62 78.55±4.16 70.01±2.52 59.34±2.43

AIA (ours) 73.64±5.15 55.85±7.98 36.37±4.44 70.79±1.53 81.03±5.15 71.15±1.81 61.64±3.37

5 Experiments

In this section, we conduct extensive experiments to answer the following Research Questions:

• RQ1: Compared to existing efforts, how does AIA perform under covariate shift?
• RQ2: Can the proposed AIA achieve the principles of environmental feature discrepancy and

stable feature consistency, thereby alleviating the graph covariate shift?
• RQ3: How do the different components and hyperparameters of AIA affect the performance?

5.1 Experimental Settings

Datasets. We use graph OOD datasets [2] and OGB datasets [20], which include Motif, CMNIST,
Molbbbp, and Molhiv. Following [2], we adopt the base, color, size, and scaffold data splitting
to create various covariate shifts. The details of the datasets, metrics, implementations, and other
settings are provided in Appendix D.2 and D.4. More experiments are provided in Appendix E.

Baselines. We adopt 16 baselines, which can be divided into the following three specific categories:

• General Generalization Algorithms: ERM, IRM [14], GroupDRO [31], VREx [37].
• Graph Generalization Algorithms: DIR [17], CAL [5], GSAT [38], OOD-GNN [39], StableGNN

[40], CIGA [41], DisC [21].
• Graph Augmentation: DropEdge [25], GREA [18], FLAG [24], M-Mixup [26], G-Mixup [7].

5.2 Main Results (RQ1)

We first make comparisons with various baselines in Table 1, and have the following observations:

Most generalization and augmentation methods fail under covariate shift. VREx achieves a 2.81%
improvement on Motif (base). For two shifts of Molhiv, data augmentation methods GREA and
DropEdge obtain 1.20% and 0.77% improvements. The invariant learning methods, i.e., DIR and
CAL also obtain 4.60% and 1.53% improvements on CMNIST and Molbbbp (size). Unfortunately,
none of the methods consistently outperform ERM. For example, GREA and DropEdge perform
poorly on Motif (base), ↓11.92% and ↓23.58%. DIR and CAL also fail on Molhiv. These show that
both invariant learning and data augmentation methods have their own weaknesses, which lead to
unstable performance when facing complex and diverse covariate shifts from different datasets.

AIA consistently outperforms most baseline methods. Compared with ERM, AIA can obtain signifi-
cant improvements. For two types of covariate shifts on Motif, AIA surpasses ERM by 4.98% and
4.11%, respectively. In contrast to the large performance variances on different datasets achieved by

7

Original graphs

…

…

Augmented graphs

Figure 3: Visualizations of the augmented graphs via AIA.

Table 2: Covariate shift comparisons with different augmentation strategies.

Method Motif (base) Motif (size) CMNIST (color) Molbbbp (scaffold)

Aug-Train Aug-Test Aug-Train Aug-Test Aug-Train Aug-Test Aug-Train Aug-Test

Original 0 0.557±0.141 0 0.522±0.421 0 0.490±0.226 0 0.419±0.079

DropEdge 0.772±0.213 0.515±0.033 0.851±0.138 0.161±0.271 0.627±0.186 0.539±0.260 0.758±0.192 0.737±0.211

FLAG 0.001±0.001 0.533±0.016 0.002±0.018 0.507±0.121 0.003±0.002 0.442±0.062 0.001±0.001 0.413±0.088

G-Mixup 0.690±0.186 0.472±0.043 0.816±0.154 0.299±0.343 0.408±0.228 0.351±0.318 0.551±0.258 0.545±0.231

AIA (ours) 0.369±0.169 0.462±0.063 0.649±0.143 0.098±0.070 0.516±0.106 0.307±0.108 0.422±0.049 0.393±0.028

baselines, AIA consistently obtains the leading performance across the board. For CMNIST, AIA
achieves a performance improvement of 3.17% compared to the best baseline DIR. For Motif, the
performance is improved by 2.17% and 1.72% compared to VREx and GREA. These results illustrate
that AIA can overcome the shortcomings of invariant learning and data augmentation. Armed with
the principles of environmental feature diversity and stable feature invariance, AIA achieves stable
and consistent improvements on different datasets with various covariate shifts. In addition, although
we focus on covariate shift in this work, we also carefully check the performance of AIA under
correlation shift, and the results are presented in Appendix E.

5.3 In-depth Analyses (RQ2)

In this section, we conduct qualitative and quantitative experiments to support our two principles.
Firstly, we utilize GCS(⋅, ⋅) as the measurement to quantify the degree of covariate shift. The
detailed estimation procedure is provided in Appendix C. We select four different domains, i.e., base,
size, color and scaffold, to create covariate shifts. The experimental results are shown in Table 2.
We calculated covariate shifts between the augmentation distribution Paug with the training Ptr or
test distribution Pte. “Aug-Train” and “Aug-Test” represent GCS(Paug, Ptr) and GCS(Paug, Pte),
respectively. From the results in Table 2, we make these observations.

Discrepancy Principle. The term “Original” denotes the training distribution prior to augmentation.
It’s observed that substantial covariate shifts exist between the training and test distributions, ranging
from 0.419 to 0.557. The DropEdge technique notably expands Aug-Train, with a range of 0.627
to 0.851, while concurrently increasing Aug-Test, as evidenced by CMNIST (0.490 to 0.539) and
Molbbbp (0.419 to 0.737). However, a distribution that deviates excessively from the test distribution
may not effectively address the issue of covariate shift. FLAG, which perturbs only the node
features, yields minor values in both Aug-Train and Aug-Test. G-Mixup notably augments Aug-
Train by generating OOD samples, but doesn’t necessarily limit Aug-Test. Finally, AIA extends the
disparity with the training distribution by augmenting environmental features, signifying that AIA can
adeptly implement the principle of environmental feature discrepancy. Simultaneously, the imposed
consistency constraint on stable features restricts the generated distribution from straying too far from
the test distribution, as observed in Motif-base (0.557 to 0.462), Motif-size (0.522 to 0.098), and
CMNIST (0.490 to 0.307).

Table 3: Augmentation Diversity.
Method Full Graph Env. Feature Sta. Feature

DropEdge 0.999±0.065 0.933±0.029 0.971±0.067

AIA (ours) 0.561±0.223 0.508±0.136 0.259±0.106

Augmentation Diversity. We further delve into
the diversity of data augmentation. The concept
of augmentation diversity stems from the intu-
ition that augmentations with greater degrees
of freedom yield better performance [42]. Ac-
cordingly, we propose conditional entropy to

8

Motif Molbbbp Molhiv
55

60

65

70

75

Pe
fo

rm
an

ce

ERM
AIA
w/o Adv
w/o Sta
RDIA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Stable feature ratio

55

60

65

70

75

0.01 0.1 0.2 0.5 1.0 1.5 2.0 3.0 5.0
Adversarial penalty

55

60

65

70

75

Motif (base) Molbbbp (scaffold) Molhiv (size)

Figure 4: (Left): Different components in AIA. (Middle): Different ratios λs of stable features.
(Right): Different penalties γ. Dashed lines denote the ERM.

measure the diversity of generated data: H(G̃∣G) = −EG[∑g̃ p(g̃∣G)log(p(g̃∣G))], where G̃ and G
represent the generated graph and original graph, respectively. To substantiate our ability to manage
perturbed environmental features while preserving stable features, we examine diversity at the feature
level, i.e., stable and environmental features. We employ the Motif dataset for validation due to
its inclusion of ground-truth labels for stable and environmental features. The results in Table 3
reveal that our approach can guarantee the diversity of environmental features while constraining the
variation of stable features.

To substantiate two principles of AIA, we present a selection of augmented graphs in Figure 3. These
graphs are randomly sampled during the training phase. In the original Motif, the stable feature, is
represented by the green portion and its type determines the label, while the yellow portion signifies
the base-graph, or the environmental feature. Figure 3 (Right) exhibits the augmented samples
generated during training. Nodes depicted in darker colors and edges with broader lines indicate
higher soft-mask values. These results lead us to several noteworthy observations.

Visualization Analyses. AIA primarily perturbs the environmental features, while leaving the stable
components undisturbed. In the Motif dataset, the base-graph represents a ladder and the motif-
graph signifies a house. Following augmentation, the nodes and edges of the ladder graph undergo
perturbations. However, the house component remains consistently stable throughout the training
process. It shows that AIA successfully adheres to the proposed two principles, thus providing
empirical support for our claims. Furthermore, under covariate shift, we also depict the stable
features identified by AIA in comparison to other baseline methods (refer to Appendix E.4). It further
underscores the limitations of alternative methods and highlights the superior performance of AIA.

5.4 Ablation Study (RQ3)

Adversarial Augmentation & Stable Feature Learning. As illustrated in Figure 4 (Left), “w/o Adv”
and “w/o Sta” denote AIA without adversarial augmentation and without stable feature learning,
respectively. RDIA is a variant that replaces adversarial augmentation in AIA with random augmenta-
tion (i.e., , random masks). The performance degrades when either component is used independently,
compared to their combined application in AIA. The removal of adversarial perturbations results in a
loss of the invariance condition inherent in stable feature learning [17, 29], leading to suboptimal
outcomes. Conversely, the sole use of adversarial augmentation disrupts the stable features, thereby
diminishing the performance. RDIA surpasses ERM, yet falls short of AIA, indicating that although
randomness can foster discrepancy, it is less effective than the adversarial strategy.

Sensitivity Analysis. We conduct experiments to explore the sensitivities of ratio λs and penalty
coefficient γ. The results are displayed in Figure 4 (Middle) and (Right). λs with 0.3∼0.8 performs
well on Motif and Molbbbp, while Molhiv is better in 0.1∼0.3. It indicates that λs is a dataset-sensitive
hyper-parameter that needs careful tuning. For γ, the appropriate values range from 0.1∼1.5.

6 Related Work

Graph Data Augmentation [22, 23, 43] enlarges the training distribution by perturbing features
in graphs. Recent studies [44, 13] observe that it often outperforms other generalization efforts
[14, 31]. DropEdge [25] randomly removes edges, while FLAG [24] augments node features with an
adversarial strategy. M-Mixup [26] interpolates graphs in semantic space. However, studies [14, 45]

9

point out that stable features are the key to OOD generalization. These augmentation efforts are prone
to perturb the stable features, which easily lose control of the augmented data distribution.

Invariant Graph Learning has been widely adopted by recent works as a paradigm for handling
distribution shifts on graphs. The pioneering works [3, 17] leverage the causal invariance principle to
model the invariant predictive patterns in data for the OOD generalization purpose. With the similar
spirit, GREA [18] and CAL [5] aim to learn stable features by considering different environments.
Some other works also utilize invariant learning to develop generalizable models and algorithms for
improving the generalization w.r.t. molecular graphs [8] and recommender systems [9].

Out-of-Distribution Learning on Graphs has aroused wide research interest in the graph learning
community. One line of research is centered around the goal of improving the OOD generalization
capabilities of models when encountered with test data from new unseen distributions [46, 3, 47, 39,
40, 17, 38, 48, 5]. Another line of research, differently, aims to identify the OOD data in the testing
set and improve the reliablity of models against OOD data for which the model should reject for
prediction [49, 50, 51]. The latter task is called Out-of-Distribution Detection in the literature and
serves as another under-explored area that has different technical aspect from the present work. Due
to space constraints, we put more discussions of other related studies in Appendix G.

7 Conclusion

In this study, we address the pervasive yet largely unexplored issue of covariate shift in graph
learning. We introduce a novel graph augmentation method, AIA, grounded in two principles:
environmental feature discrepancy and stable feature consistency. The discrepancy principle enables
the model to explore new environments, thereby facilitating better generalization to potentially unseen
environments. Meanwhile, the consistency principle maintains the integrity of stable features. We
conduct extensive comparisons with various baseline models and perform thorough analyses.

8 Limitations and Broader Impacts

This paper presents a graph augmentation method, AIA, designed to bolster the academic community’s
application of data augmentation methodologies. We do not foresee any immediate, direct, or adverse
societal implications resulting from our study’s findings. We also present additional discussions
regarding AIA’s limitations and potential future work in Appendix H.

Acknowledgments and Disclosure of Funding

This research is supported by the National Natural Science Foundation of China (9227010114,
U19A2079, 62302321) and the University Synergy Innovation Program of Anhui Province (GXXT-
2022-040). This work is also sponsored by Ant Group through CCF-Ant Research Fund and CCF-
AFSG Research Fund.

References
[1] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui.

Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

[2] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution
benchmark. arXiv preprint arXiv:2206.08452, 2022.

[3] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. In ICLR, 2022.

[4] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. arXiv preprint arXiv:2202.07987, 2022.

[5] Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal
attention for interpretable and generalizable graph classification. In KDD, 2022.

10

[6] Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging GNNs and MLPs. In ICLR, 2023.

[7] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. In ICML, pages 8230–8248, 2022.

[8] Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
invariance for out-of-distribution molecular representations. In NeurIPS, 2022.

[9] Chenxiao Yang, Qitian Wu, Qingsong Wen, Zhiqiang Zhou, Liang Sun, and Junchi Yan. Towards
out-of-distribution sequential event prediction: A causal treatment. In NeurIPS, 2022.

[10] An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, and Tat-Seng Chua. Invariant
collaborative filtering to popularity distribution shift. In WWW, pages 1240–1251, 2023.

[11] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Alleviating structural distribution shift in graph anomaly detection. In WSDM, pages 357–365,
2023.

[12] Nanyang Ye, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing Hong, Fengwei Zhou, Zhenguo Li,
and Jun Zhu. Ood-bench: Quantifying and understanding two dimensions of out-of-distribution
generalization. In CVPR, pages 7947–7958, 2022.

[13] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre Alvise-Rebuffi, Ira Ktena, Taylan Cemgil,
et al. A fine-grained analysis on distribution shift. In ICLR, 2022.

[14] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[15] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In ICML,
pages 1448–1458, 2020.

[16] Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In CVPR, pages 5372–5382, 2021.

[17] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022.

[18] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In KDD, pages 1069–1078, 2022.

[19] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[21] Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, and Jian Tang. Debiasing graph neural
networks via learning disentangled causal substructure. In NeurIPS, 2022.

[22] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph
learning: A survey. arXiv preprint arXiv:2202.08235, 2022.

[23] Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation for
graph machine learning: A survey. arXiv preprint arXiv:2202.08871, 2022.

[24] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In CVPR,
pages 60–69, 2022.

[25] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

11

[26] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In WWW, pages 3663–3674, 2021.

[27] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In NeurIPS, 2020.

[28] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In NeurIPS, pages 15920–15933, 2021.

[29] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. In NeurIPS, 2022.

[30] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

[31] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In ICLR, 2020.

[32] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In ICLR, 2018.

[33] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In ICML, pages 214–223, 2017.

[34] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. NeurIPS, 31,
2018.

[35] Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics
based on deep networks. NIPS, 2016.

[36] Jaeho Lee and Maxim Raginsky. Minimax statistical learning with wasserstein distances.
NeurIPS, 31, 2018.

[37] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In ICML, pages 5815–5826, 2021.

[38] Siqi Miao, Miaoyuan Liu, and Pan Li. Interpretable and generalizable graph learning via
stochastic attention mechanism. In ICML, pages 15524–15543, 2022.

[39] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution general-
ized graph neural network. IEEE TKDE, 2022.

[40] Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural
networks on out-of-distribution graphs. arXiv preprint arXiv:2111.10657, 2021.

[41] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang
Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-
distribution generalization on graphs. In NeurIPS, 2022.

[42] Raphael Gontijo-Lopes, Sylvia Smullin, Ekin Dogus Cubuk, and Ethan Dyer. Tradeoffs in data
augmentation: An empirical study. In ICLR, 2021.

[43] Jaemin Yoo, Sooyeon Shim, and U Kang. Model-agnostic augmentation for accurate graph
classification. In WWW, pages 1281–1291, 2022.

[44] Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf,
Furong Huang, and Tom Goldstein. A closer look at distribution shifts and out-of-distribution
generalization on graphs. In NeurIPSW, 2021.

[45] Chaochao Lu, Yuhuai Wu, José Miguel Hernández-Lobato, and Bernhard Schölkopf. Invariant
causal representation learning for out-of-distribution generalization. In ICLR, 2021.

12

[46] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. NeurIPS, 34:27965–27977, 2021.

[47] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In ICLR, 2023.

[48] Junchi Yu, Jian Liang, and Ran He. Mind the label shift of augmentation-based graph ood
generalization. In CVPR, 2023.

[49] Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
learning and out-of-distribution detection on graphs. In NeurIPS, 2022.

[50] Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution
detection for graph neural networks. In ICLR, 2023.

[51] Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. A data-centric
framework to endow graph neural networks with out-of-distribution detection ability. In KDD,
2023.

[52] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(5), 2007.

[53] Zheyan Shen, Peng Cui, Kun Kuang, Bo Li, and Peixuan Chen. Causally regularized learning
with agnostic data selection bias. In ACM MM, pages 411–419, 2018.

[54] Renzhe Xu, Xingxuan Zhang, Zheyan Shen, Tong Zhang, and Peng Cui. A theoretical analysis
on independence-driven importance weighting for covariate-shift generalization. In ICML,
pages 24803–24829. PMLR, 2022.

[55] Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting
for deep learning under distribution shift. NeurIPS, 33:11996–12007, 2020.

[56] Yue He, Xinwei Shen, Renzhe Xu, Tong Zhang, Yong Jiang, Wenchao Zou, and Peng Cui.
Covariate-shift generalization via random sample weighting. AAAI, 2023.

[57] Emanuel Parzen. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

[58] Kurt Binder, Dieter Heermann, Lyle Roelofs, A John Mallinckrodt, and Susan McKay. Monte
carlo simulation in statistical physics. Computers in Physics, 7(2):156–157, 1993.

[59] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In CVPR, pages 5115–5124, 2017.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[61] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[62] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In ICML, pages 1725–1735. PMLR, 2020.

[63] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph
neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

[64] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICMLW,
2020.

[65] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Heterogeneous risk minimization.
In ICML, pages 6804–6814. PMLR, 2021.

13

[66] Masanori Koyama and Shoichiro Yamaguchi. When is invariance useful in an out-of-distribution
generalization problem? arXiv preprint arXiv:2008.01883, 2020.

[67] Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk
minimization games. In ICML, pages 145–155. PMLR, 2020.

[68] Haohan Wang, Zeyi Huang, Xindi Wu, and Eric Xing. Toward learning robust and invariant
representations with alignment regularization and data augmentation. In KDD, pages 1846–1856,
2022.

[69] Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk
minimization capture invariance? In International Conference on Artificial Intelligence and
Statistics, pages 4069–4077. PMLR, 2021.

[70] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models
for causal transfer learning. The Journal of Machine Learning Research, 19(1):1309–1342,
2018.

[71] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[72] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generaliza-
tion. IEEE TKDE, 2022.

[73] Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge:
Transductive few-shot out-of-graph link prediction. NeurIPS, 33:546–560, 2020.

[74] Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching.
In ICML, pages 7313–7324. PMLR, 2021.

[75] Massimiliano Mancini, Zeynep Akata, Elisa Ricci, and Barbara Caputo. Towards recognizing
unseen categories in unseen domains. In ECCV, pages 466–483. Springer, 2020.

[76] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via
invariant feature representation. In ICML, pages 10–18. PMLR, 2013.

[77] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via
theory-grounded spectral regularization. In ICLR, 2023.

[78] Davide Buffelli, Pietro Lio, and Fabio Vandin. Sizeshiftreg: a regularization method for
improving size-generalization in graph neural networks. In NeurIPS, 2022.

[79] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In ICML, pages 11975–11986.
PMLR, 2021.

[80] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. In NeurIPS, 2022.

[81] Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng Chua. Coopera-
tive explanations of graph neural networks. In WSDM, pages 616–624, 2023.

[82] Junfeng Fang, Wei Liu, An Zhang, Xiang Wang, Xiangnan He, Kun Wang, and Tat-Seng Chua.
On regularization for explaining graph neural networks: An information theory perspective.
2022.

[83] Yongduo Sui, Xiang Wang, Tianlong Chen, Meng Wang, Xiangnan He, and Tat-Seng Chua.
Inductive lottery ticket learning for graph neural networks. Journal of Computer Science and
Technology, 2023.

[84] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In ICML, pages 1695–1706. PMLR, 2021.

14

[85] Yanfang Wang, Yongduo Sui, Xiang Wang, Zhenguang Liu, and Xiangnan He. Exploring lottery
ticket hypothesis in media recommender systems. International Journal of Intelligent Systems,
37(5):3006–3024, 2022.

[86] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Addressing heterophily in graph anomaly detection: A perspective of graph spectrum. In WWW,
pages 1528–1538, 2023.

[87] Yuan Gao, Xiang Wang, Xiangnan He, Huamin Feng, and Yong-Dong Zhang. Rumor detection
with self-supervised learning on texts and social graph. Frontiers Comput. Sci., 17(4):174611,
2023.

[88] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A
survey on deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714,
2022.

15

A Correlation Shift and Covariate Shift

Following graph data generation process [17, 8, 3, 29], we can observe that environmental features
easily change outside the training distribution, owing to their unstable nature. Hence, distribution
shifts are mainly caused by the environmental features [12, 13, 2]. Specifically, we define the joint
distribution of training and test data as Ptr(G,Y) and Pte(G,Y), respectively. Since their joint
distribution can be rewritten as Ptr(G,Y) = Ptr(Y ∣G)Ptr(G) and Pte(G,Y) = Pte(Y ∣G)Pte(G),
we can find that there exist two main reasons that lead to the distribution shift Ptr(G,Y) ≠ Pte(G,Y).
We give intuitive examples in Figure 5 and formal definitions of these two distribution shifts.

• Correlation shift Ptr(Y ∣G) ≠ Pte(Y ∣G), Ptr(G) = Pte(G). If the statistical correlation of
environmental features and labels is inconsistent in training and test data, a well-fitted model in
training data may fail in test data, which is also known as spurious correlation [14], correlation
shift [12] or concept shift [2]. Formally, correlation shift describes the conditional distribution
Ptr(Y ∣G) ≠ Pte(Y ∣G).

• Covariate shift Ptr(G) ≠ Pte(G), Ptr(Y ∣G) = Pte(Y ∣G). If there exist environmental features
in the test distribution that the model has not seen during training, it will also result in a large
performance drop. This unseen distribution shift is well known as covariate shift [2] or diversity
shift [12]. It means that the environmental features in test data are unseen in training data, which
leads to Ptr(G) ≠ Pte(G). In Definition 2.1, we also quantitatively measure the covariate shift
between Ptr(G) and Pte(G).

It is worth noting that within the computer vision domain, the general covariate shift is frequently
synonymous with sample selection bias [52, 53, 54, 55, 56]. Various factors contribute to covariate
shift, such as heterogeneous category distribution or domain-specific variances. In the context of our
investigation into graph-based models, we adhere to the assumptions outlined in previous literature
[2, 12], which mainly ignore the influence of label shifts. And we posit that covariate shifts are
principally attributed to the environmental features. The exploration of more comprehensive scenarios
involving covariate shifts will be undertaken in our future work.

…

Training data

Test data

Correlation Shift: 𝑃𝑡𝑟(𝑌|𝐺) ≠ 𝑃𝑡𝑒(𝑌|𝐺)

𝑒1 𝑒2 𝑒1 𝑒2

𝑒1 𝑒2 𝑒1 𝑒2

Training data

Test data

Covariate Shift: 𝑃𝑡𝑟(𝐺) ≠ 𝑃𝑡𝑒(𝐺)

𝑒1 𝑒2 𝑒1 𝑒2

𝑒1 𝑒2 𝑒1 𝑒2

Environmental feature

Stable feature

𝑌1: House 𝑌2: Cycle

𝑒1: Tree 𝑒2: Ladder

Data Generation Mechanism

…

… …

…

… …

…

Figure 5: Intuitive examples of correlation shift and covariate shift

B Proofs

In this section, we provide the detailed proofs to our proposition. We start with the definition of the
1-Wasserstein distance, DW (P,P

′
), between two distributions P and P ′:

DW (P,P
′
) = inf

π∈Γ(P,P ′)∫Rd×Rd
∣∣x − y∣∣ ⋅ dπ(x,y),

where Γ(P,P ′) represents the set of all joint distributions π(x,y) that have P and P ′ as their
respective marginals. Under our conditions, due to P ′(x −x′) = P (x), we can precisely determine
the manner in which the mass from P was transferred to create P ′. This process involves moving
each point x under P to x + x′ under P ′. Therefore, the infimum is attained by the coupling that
deterministically transitions each point x to x+x′. Consequently, the Wasserstein distance simplifies
to:

DW (P,P
′
) = ∫

Rd
∣∣x − (x +x′)∣∣ ⋅ dP (x) = ∫

Rd
∣∣x′∣∣ ⋅ dP (x) = ∣∣x′∣∣.

16

This result establishes that the Wasserstein distance between the distributions P and P ′ is equivalent
to the magnitude of x′. Therefore, we obtain:

DW (P, P̃1) = ∫
Ω
∣∣x − (x +x1)∣∣ ⋅ dP̃1(x) = ∫

Ω
∣∣x1∣∣ ⋅ dP1(x) = ∣∣x1∣∣.

Similarly, DW (P, P̃2) = ∣∣x2∣∣. Consequently, if DW (P, P̃1) < DW (P, P̃2), we can deduce that
∣∣x1∣∣ < ∣∣x2∣∣.

Next, we examine the GCS measure. The covariate shift between P and P̃1 is given by:

GCS(P, P̃1) =
1

2
∫S1

∣P (x) − P (x +x1)∣ ⋅ dx.

Similarly, we have:

GCS(P, P̃2) =
1

2
∫S2

∣P (x) − P (x +x2)∣ ⋅ dx,

where S1 and S2 denote the non-overlapping regions between P and P̃1, and between P and P̃2,
respectively. Now we define another P̃ ′1 that satisfies P̃ ′1(x) = P (x + ∣∣x1∣∣ ⋅

x2

∣∣x2∣∣) and let S ′1 denote

the non-overlapping regions between P and P̃ ′1. Given the isotropy of P̃1, the integral over S1 is
equal to the integral over S ′1. Therefore, we can proceed to deduce:

GCS(P, P̃1) =
1

2
∫S1

∣P (x) − P (x +x1)∣ ⋅ dx

=

1

2
∫S′1
∣P (x) − P (x +x1)∣ ⋅ dx

= GCS(P, P̃ ′1)

Let S ′2 = {x + (∣∣x2∣∣ − ∣∣x1∣∣) ⋅
x2

∣∣x2∣∣ ∣ x ∈ S
′
1}, we can easily know that ∣S ′1∣ = ∣S

′
2∣ and S ′2 ⊆ S2. Thus

we have:

GCS(P, P̃2) −GCS(P, P̃1) =
1

2
∫S2

∣P (x) − P (x +x1)∣ ⋅ dg −
1

2
∫S1

∣P (x) − P (x +x1)∣ ⋅ dx

=

1

2
∫S2

∣P (x) − P (x +x2)∣ ⋅ dx −
1

2
∫S′1
∣P (x) − P (x +x1)∣ ⋅ dx

=

1

2
∫S2

∣P (x) − P (x +x2)∣ ⋅ dx −
1

2
∫S′2
∣P (x) − P (x +x2)∣ ⋅ dx

=

1

2
∫S2\S′2

∣P (x) − P (x +x2)∣ ⋅ dx ≥ 0.

The integral over S2 could not be less than the integral over S1, leading to GCS(P, P̃1) ≤

GCS(P, P̃2). Hence, we complete the proof.

C Estimation of Graph Covariate Shift

In this section, we elaborate on the implementation details of estimating the graph covariate shift.
Without loss of generality, we start with the example of estimating the graph covariate shift between
the training and test distributions. Given the training set and test set Dtr and Dte, they follow proba-
bility distribution functions Ptr and Pte. The process of estimating GCS(Ptr, Pte) is summarized in
the following two steps:

• Firstly, it is intractable to directly estimate the distribution in graph space G. Inspired by [12], we
can obtain the graph features and estimate the distribution in feature space F. Specifically, given a
sample, we train a binary GNN classifier f to distinguish which distribution it comes from, where
f(⋅) = Φ ○ h, h(⋅) ∶ G → F is a graph encoder, and Φ(⋅) ∶ F → {0,1} is a binary classifier. Then
we can adopt the pre-trained GNN encoder h to extract graph features.

• Secondly, we prepare the features and estimate the distribution of the data via Kernel Density
Estimation (KDE) [57]. Finally, we adopt the Monte Carlo Integration under importance sampling
[58] to approximate the integrals in Definition 2.1.

17

We summarize these implementations in Algorithm 1. In lines 4 and 5, to avoid the label shift [12],
we adopt sample reweighting to ensure the balance of each class.

Algorithm 1: Estimation of Graph Covariate shift
Require: Training dataset Dtr and test dataset Dte; Batch size N ; Loss function

ℓ; GNN f = Φ ○ h; Importance sampling size M ; Threshold ϵ.
Ensure: Estimated covariate shift GCS(Ptr, Pte).

1: Initialize parameters of f
2: # Train a graph classifier
3: while not converge do
4: Sample a batch Btr ← {(gi, yi)}Ni=1 ⊂ Dtr and relabel all yi ← 0
5: Sample a batch Bte ← {(gi, yi)}Ni=1 ⊂ Dte and relabel all yi ← 1
6: B ← Btr ∪ Bte

7: for each (gi, yi) ∈ B do
8: Compute loss ℓ(f(gi), yi) and back-propagate gradients
9: end for

10: Update the parameters of f via gradient descent and reset the gradients
11: end while
12: # Prepare the features for the estimation
13: Extract training and test feature sets Ftr and Fte via encoder h
14: F ← Ftr ∪Fte

15: Scale F to zero mean and unit variance
16: ω̂ ← fit by KDE the distribution of F
17: Split F to recover the original partition F ′tr,F

′
te

18: P̂tr, P̂te ← fit by KDE the distributions of F ′tr,F
′
te

19: # Estimate the covariate shift
20: Initialize GCS(Ptr, Pte)← 0
21: for t← {1, ...,M} do
22: z ← sample from ω̂

23: if P̂tr(z) < ϵ or P̂te(z) < ϵ then
24: GCS(Ptr, Pte)← GCS(Ptr, Pte) + ∣P̂tr(z) − P̂te(z)∣/ω̂(z)
25: end if
26: end for
27: GCS(Ptr, Pte)← GCS(Ptr, Pte)/2M

Algorithm 2: Adversarial Invariant Augmentation
Require: Training set Dtr; Adversarial augmenter Tθ1(⋅); Stable feature generator Tθ2(⋅);

GNN classifier f(⋅) with parameters θ; Learning rates α,β; Batch size N ; Stable
feature ratio λs; Penalty γ.

1: Randomly initilize θ, θ1, θ2
2: while not converge do
3: Sample a batch Btr ← {(gi, yi)}Ni=1 ⊂ Dtr

4: for each (gi, yi) ∈ Btr do
5: Ma

adv,M
x
adv ← Tθ1(gi) // adversarial perturbations

6: Ma
sta,M

x
sta ← Tθ2(gi) // regions of stable features

7: M̃a
← (1 −Ma

sta)⊙Ma
adv +M

a
sta // augment edges

8: M̃x
← (1 −Mx

sta)⊙Mx
adv +M

x
sta // augment nodes

9: g̃i ← (Ai ⊙ M̃a,Xi ⊙ M̃x
) // augmented graph

10: end for
11: Compute Ladv −Lreg1

via Equation (7) and (9)
12: Compute Lsta +Lreg2

via Equation (8) and (10)
13: Update parameters of adversarial augmenter via gradient ascent:

θ1 ← θ1 + α∇θ1(Ladv −Lreg1
)

14: Update parameters of GNN and stable feature generator via gradient descent:
θ ← θ − β∇θ(Lsta +Lreg2

); θ2 ← θ2 − β∇θ2(Lsta +Lreg2
)

15: end while

18

Table 4: Statistics of graph classification datasets.

Dataset Motif CMNIST Molbbbp Molhiv

Covariate shift base size color scaffold size scaffold size

Train
Graph# 18000 18000 42000 1631 1633 24682 26169

Avg. node# 17.07 16.93 75.00 22.49 27.02 26.25 27.87
Avg. edge# 48.89 43.57 1392.76 48.43 58.71 56.68 60.20

Val
Graph# 3000 3000 7000 204 203 4113 2773

Avg. node# 15.82 39.22 75.00 33.20 12.06 24.95 15.55
Avg. edge# 33.00 107.03 1393.73 71.84 24.27 54.53 32.77

Test
Graph# 3000 3000 7000 204 203 4108 3961

Avg. node# 14.97 87.18 75.00 27.51 12.26 19.76 12.09
Avg. edge# 31.54 239.65 1393.60 59.75 24.87 40.58 24.87

Class# 3 3 10 2 2 2 2

Table 5: Hyper-parameter details of AIA.

Dataset Motif CMNIST Molbbbp Molhiv

Covariate shift base size color scaffold size scaffold size

Backbone (layer-hidden) 4-300 4-300 4-300 4-64 4-32 4-128 4-128
Augmenter (layer-hidden) 2-300 2-300 2-300 2-64 2-32 2-128 2-128
Generator (layer-hidden) 2-300 2-300 2-300 2-64 2-32 2-128 2-128

Optimizer Adam Adam Adam Adam Adam Adam Adam
Learning rate α 1e-3 1e-3 1e-3 1e-3 5e-3 1e-3 1e-2
Learning rate β 5e-3 5e-3 5e-3 1e-3 5e-3 1e-2 1e-2
Stable feature ratio λs 0.5 0.5 0.5 0.5 0.5 0.1 0.1
Adversarial penalty γ 0.2 0.2 0.2 0.5 0.5 0.5 0.5

D Implementation Details

D.1 Algorithm

We summarize the detailed implementations of AIA in Algorithm 2. We alternately optimize the
adversarial augmenter and stable feature generator with the backbone model, in lines 13 and 14. We
adopt the learned stable features for predictions in the inference stage.

D.2 Datasets

In this paper, we conduct experiments on graph OOD datasets [2] and OGB datasets [20], which
include Motif, CMNIST, Molbbbp and Molhiv. We follow [2] to create various covariate shifts,
according to base, color, size and scaffold splitting. Base, color, size and scaffold are features of
the graph data and do not determine the labels of the data, so they can be regarded as environmental
features. The statistics of the datasets are summarized in Table 4. Below we give a brief introduction
to each dataset.

• Motif: It is a synthetic dataset from Spurious-Motif [17, 5]. As shown in original graphs in Figure
5, each graph is composed of a base-graph (wheel, tree, ladder, star, path) and a motif (house, cycle,
crane). The label is only determined by the type of motif. We create covariate shift according
to the base-graph type and the graph size (i.e., node number). For base covariate shift, we adopt
graphs with wheel, tree, ladder base-graphs for training, star for validation and path for testing.
For size covariate shift, we use small-size of graphs for training, while the validation and the test
sets include the middle- and the large-size graphs, respectively.

• CMNIST: Color MNIST dataset contains graphs transformed from MNIST via superpixel tech-
niques [59]. We define color as the environmental features to create the covariate shift. Specifically,
we color digits with 7 different colors, where five of them are adopted for training while the re-
maining two are used for validation and testing.

• Molbbbp & Molhiv: These are molecular datasets collected from MoleculeNet [19]. We define
the scaffold and graph size (i.e., node number) as the environmental features to create two types of
covariate shifts. For scaffold shift, we follow [2] and use scaffold split to create training, validation

19

Table 6: Performance over diverse backbones.

Backbone Method Motif Molbbbp

base size scaffold size

GCN

EEM 67.41±4.47 50.76±2.92 66.44±1.91 77.79±4.04

M-Mixup 68.83±4.04 51.50±4.95 67.09±0.57 78.42±2.71

FLAG 59.87±5.61 50.99±4.18 66.03±2.59 78.76±2.54

AIA (ours) 72.39±5.37 54.87±5.02 69.13±1.76 80.53±4.43

GCNII

EEM 67.84±4.74 51.74±3.15 67.64±1.84 77.96±4.02

M-Mixup 67.53±4.31 52.31±5.18 66.64±0.50 76.67±2.69

FLAG 58.67±5.88 50.18±4.41 66.72±2.52 78.55±2.52

AIA (ours) 72.70±4.14 53.23±6.25 67.93±1.69 79.72±3.37

GAT

EEM 66.53±4.42 51.16±3.22 66.51±1.77 77.41±3.81

M-Mixup 69.25±3.99 51.37±5.25 66.95±0.43 77.21±2.48

FLAG 59.53±5.56 51.32±4.48 67.36±2.45 77.87±2.31

AIA (ours) 71.95±3.39 54.38±6.32 69.21±1.62 78.49±3.20

and test sets. For size shift, we adopt the large-size of graphs for training and the smaller ones for
validation and testing.

D.3 Metrics

We adopt classification accuracy as the metric for Motif and CMNIST. As suggested by [20], we
use ROC-AUC for Molhiv and Molbbbp datasets. In addition, we use GCS(P,Q) to measure the
covariate shift between distributions P and Q. For all experimental results, we perform 10 random
runs and report the mean and standard derivations. For augmentation diversity, we use conditional
entropy to measure the diversity of generated data. We normalize it to [0,1] for better comparison.
Specifically, for a given graph data, we compute the conditional entropy by collecting augmented
data generated during the training process. We conduct experiments by collecting 1000 graph data,
and report the mean and standard deviation.

D.4 Training Settings

We use the NVIDIA GeForce RTX 3090 (24GB GPU) to conduct all our experiments. To make a
fair comparison, we adopt GIN [60] as the default architecture to conduct all experiments. We tune
the hyper-parameters in the following ranges: α and β ∈ {0.01,0.005,0.001}; λ2 ∈ {0.1, ...,0.9};
γ ∈ {0.01,0.1,0.2,0.5,1.0,1.5,2.0,3.0,5.0}. The hyper-parameters are summarized in Table 5.

D.5 Baseline Settings

For a more comprehensive comparison, we selected 16 baselines. In this section, we give a detailed
introduction to the settings of these methods.

• For ERM, IRM [14], GroupDRO [31], VREx [37], and M-Mixup [26], we report the results from
the study [2] by default and reproduce the missing results on Molbbbp.

• For DIR [17], CAL [5], GSAT [38], DropEdge [25], GREA [18], FLAG [24], G-Mixup [7], CIGA
[41] and DisC [21], they provide source codes for the implementations. We adopt default settings
from their source codes and detailed hyper-parameters from their original papers.

• For OOD-GNN [39] and StableGNN [40], their source codes are not publicly available. We
reproduce them based on the codes of StableNet [16].

• For RDIA in Section 5.4, it is a variant that replaces the adversarial augmentation in AIA with
random augmentation. In our implementation, we use all-one matrices to create the initial node
and edges masks. Then we randomly set 20% of nonzero elements to zero in these masks. Finally,
we apply these masks to the graphs for random data augmentation. The process of stable feature
learning is consistent with AIA.

E More Experimental Results

E.1 Results on Correlation Shift

20

Original graphs AIA (Ours)GREA DropEdgeCAL

Figure 6: Visualizations of captured stable features.

Table 7: Performance on correlation shift.
Method Motif CMNIST Molhiv

ERM 81.44±2.54 42.87±1.37 63.26±1.25

IRM 80.71±2.81 42.80±1.62 59.90±1.17

VREx 81.56±2.14 43.31±1.03 60.23±1.60

DIR 73.25±6.37 38.78±1.45 66.78±1.50

CAL 81.94±1.20 41.82±0.85 62.36±1.42

OOD-GNN 80.22±2.28 39.03±1.24 57.49±1.08

DropEdge 78.97±3.41 38.43±1.94 54.92±1.73

FLAG 80.91±1.04 43.41±1.38 66.44±2.32

M-Mixup 77.63±1.12 40.96±1.21 64.87±1.36

AIA (ours) 82.51±2.81 49.73±1.70 68.11±1.82

Although this work focuses on the OOD issue
of covariate shift, for completeness, we also
evaluate the performance of AIA under correla-
tion shift. Following [2], we choose three graph
OOD datasets (i.e., Motif, CMNIST, Molhiv)
with three different graph features (i.e., base,
color, size) to create correlation shifts. For base-
lines, we choose three generalization algorithms
(i.e., ERM, IRM [14], VREx [37]), three graph
generalization methods (i.e., DIR [17], CAL [5],
OOD-GNN [39]) and three data augmentation
methods (i.e., DropEdge [25], FLAG [24], M-
Mixup [26]). The experimental results are shown in Table 7. We can observe that AIA can also
effectively alleviate the correlation shift. These results demonstrate that AIA learns better stable
features by encouraging environmental discrepancy, which can effectively break spurious correlations
that are hidden in the training data.

E.2 Results on Diverse Backbones

We select three different GNN backbone models (GCN [61], GCNII [62] and GAT [63]) for exper-
iments. From the results in Table 6, our observations and conclusions remain the same with the
diverse backbones.

E.3 Results on More Real-world Datasets

To demonstrate the effectiveness of the proposed AIA, we also conduct experiments on commonly
used TU datasets [64], which include MUTAG, NCI1, PROTEINS, COLLAB, IMDB-B, IMDB-
M. For training settings, we follow CAL [5] and adopt GIN [60] as our backbone model. The
experimental results are shown in Table 8. For the results, we can observe that our method can
achieve the best performance over different datasets.

E.4 More Visualizations

To demonstrate the superiority of our method, we also visualize the captured stable features by AIA
and compare them with other baselines. The results are displayed in Figure 6. From the results, we
can easily observe that our method can find stable parts more accurately than other baseline methods.

F Complexity Analyses

Firstly, we define the average numbers of nodes and edges per graph in the dataset to be n and m,
respectively. Let N denote the batch size, l, la and lc denote the numbers of layers in the GNN
backbone, adversarial augmenter and stable feature generator, respectively. d, da and dc are the

21

Table 8: Performance comparisons on TU datasets.

Method MUTAG NCI1 PROTEINS COLLAB IMDB-B IMDB-M

ERM 89.42±7.40 82.71±1.52 76.21±3.83 82.08±1.51 73.40±3.78 51.53±2.97

CAL 89.91±8.34 83.89±1.93 76.92±3.31 82.68±1.25 74.13±5.21 52.60±2.36

DropEdge 86.11±9.41 82.35±3.77 74.40±3.10 80.59±2.14 72.34±5.83 51.06±3.04

FLAG 89.45±7.20 82.67±2.12 76.89±3.66 82.48±1.79 73.37±4.94 52.16±2.70

M-Mixup 89.83±7.67 83.89±2.38 76.76±3.40 82.90±1.43 74.07±4.76 52.89±2.84

AIA (ours) 90.34±7.75 84.12±2.64 77.92±3.72 82.98±1.76 74.23±5.10 53.02±2.76

Table 9: Running time, model size and performance improvement.

Dataset
ERM CAL DIR AIA (ours)

Running
Time

Model
Size

Running
Time

Model
Size

Performance
Improvement

Running
Time

Model
Size

Performance
Improvement

Running
Time

Model
Size

Performance
Improvement

Motif 00h 51m 19s 1.515M 01h 37m 15s 2.213M ↓ 2.98% 01h 50m 27s 2.158M ↓ 5.03% 01h 49m 08s 2.366M ↑ 7.55%
CMNIST 01h 56m 32s 1.517M 02h 28m 49s 2.244M ↓ 2.13% 02h 34m 35s 2.161M ↑ 16.08% 02h 45m 30s 2.373M ↑ 27.17%
Molbbbp 00h 11m 58s 1.515M 00h 18m 22s 2.213M ↑ 0.81% 00h 20m 11s 2.158M ↓ 2.12% 00h 19m 37s 2.366M ↑ 3.72%
Molhiv 00h 27m 19s 1.515M 00h 46m 14s 2.213M ↓ 3.23% 00h 58m 40s 2.158M ↓ 2.59% 00h 55m 46s 2.366M ↑ 2.54%

dimensions of hidden layers in the GNN backbone, adversarial augmenter and stable feature generator,
respectively.

Time Complexity. The time complexity of the adversarial learning objective is O(N(lamda +
2lmd)). For the stable feature learning objective, the time complexity is O(N(lcmdc + 2lmd)). For
the regularization terms, the time complexity is O(2N(n +m)). For simplicity, we assume la = lc
and da = dc. Hence, the time complexity of a forward propagation isO(2N(lamda+2lmd+n+m)).

Model Size. In addition to the GNN backbone model, we also introduce two small networks for
adversarial augmentation and stable feature learning. In our implementations, the parameters of AIA
are around twice as large as those of the original GNN model. The running time and model size are
shown in Table 9.

G More Related Studies

OOD Generalization [1, 65, 66] has been widely explored. Inspired by invariant learning and causal
theory, a series of general algorithms [67, 68, 69, 66, 70] have recently been proposed to solve the
OOD problem. Recent studies [12, 2, 13] point out that OOD falls into two specific categories:
correlation shift (aka. concept shift) and covariate shift (aka. diversity shift). Correlation shift
denotes that the environmental features and labels establish a statistical correlation that is inconsistent
in training and test data. Thus, the models prefer to learn spurious correlations and rely on shortcut
features [71] for predictions, resulting in a large performance drop. In contrast, covariate shift
indicates that there exist unseen environmental features in test data. The limited training environment
makes this issue intractable. Tasks pertaining to domain generalization [72] often exhibit the covariate
shift issue, such as model inference under previously unseen test domains. Consequently, there have
been numerous recent efforts [73, 74, 75, 76] to address such challenges. In recent years, OOD
generalization on graphs is drawing widespread attention [4]. Given the intricate nature of graph
data types and associated tasks [77], issues related to distribution shifts can emerge in various
contexts, such as node classification [46, 3, 47], graph classification [39, 40, 17, 38, 48, 5, 18, 78, 79],
or dynamic graph data [80], among others. Emerging research has increasingly focused on the
identification of stable features or subgraphs within graph data. These substructures are posited
to maintain causal relationships with target labels, thereby enhancing the model’s capacity for
generalization [5, 18], explainability [81, 17, 38, 82], and computational efficiency [83, 84, 85].
Concurrently, efforts are being made to extend these principles to diverse applications, such as
molecular graphs [8], recommender systems [9, 10], and anomaly detection [11, 86, 87].

Comprehensive Comparisons with EERM [3]. Although EERM shares similar goals with us,
generating several environments through augmentation, there exist many technical and contribution
differences. Firstly, EERM ignores the distinction between correlation shift and covariate shift
problems, while we distinguish these two shifts in detail and design a framework specifically for
covariate shift. Secondly, EERM does not model stable and environmental features, which results in
the inability to explicitly distinguish them. In contrast, we explicitly model the environmental and
stable features. Hence, we can effectively identify stable and environmental features and explicitly

22

Table 10: Comparisons with EERM.
EERM Our AIA

Scope Is it specifically designed
for covariate shift? ✗ ✓

Separability Can environmental/stable
features be separated? ✗ ✓

Environmental
Feature

Discrepancy

Can environmental features
be identified explicitly? ✗ ✓

How to model
environmental features? - Mask model Tθ1(⋅)

Metric for
environmental Discrepancy - GCS(P̃ , P)

Generation principle for
environmental features “Blindly” maximize Ve[R(e)] Maximize GCS(P̃ , P)

Stable Feature
Consistency

Can stable features
be identified explicitly? ✗ ✓

How to model
stable features? - Mask model Tθ2(⋅)

Learning principles for
stable features minθVe[R(e)] Sufficiency/Independence

Generalization
Theoretical basis IRM DRO

Generalization scope K environments
Robust radius ρ
D(P̃ , P) ≤ ρ

separate them from data. Thirdly, we also design a metric, GCS(P̃ , P), which can effectively measure
the discrepancy of the environmental features for our augmented data. And we directly encourage
the environmental discrepancy of the augmented samples by maximizing GCS(P̃ , P). However,
EERM does not provide any evaluation metric for environmental discrepancy. To encourage the
discrepancy, they “blindly” maximize the variance of the empirical risk in K environments. Finally,
for generalization scope, EERM is based on the IRM [14] by minimizing the empirical risk in K
environments. In contrast, inspired by DRO [31], we can guarantee the generalization within the
robust radius ρ. We summarize the above detailed discussions in Table 10.

H Limitation & Future Work

Although AIA outperforms numerous baselines and can achieve outstanding performance under
various covariate shifts, we also prudently introspect the following limitations of our method. And
we leave the improvements of these limitations as our future work.

• AIA performs OOD exploration through an adversarial data augmentation strategy to achieve
environmental discrepancy. However, it only perturbs the existing graph data in a given training
set, such as perturbing original graph node features or graph structures. Hence, it is possible that
there still exist some overlaps between the augmented distribution and training distribution, so
discrepancy principle cannot be thoroughly achieved. In future work, we will attempt to design
more advanced data augmentation methods, such as graph generation-based strategies [88], to
generate more unseen and novel graph data, for pursuing the discrepancy principle.

• For model training, we adopt adversarial training and stable feature learning to alternately optimize
the adversarial augmenter, stable feature generator and backbone GNN. This training strategy may
make the training process unstable, so the performance of AIA may experience a large variance.
In addition, these two networks also involve additional parameters. Optimizing these parameters
separately will also increase the time complexity, as shown in Appendix F. Hence, in future work,
we will explore how to utilize more advanced optimization methods and lightweight models to
achieve the principles of environmental feature discrepancy and stable feature consistency.

23

	Introduction
	Preliminaries
	Definitions and Problem Formations

	Methodology
	Two Principles for Graph Augmentation
	Out-of-distribution Exploration
	Implementations of AIA

	Theoretical Discussions
	Experiments
	Experimental Settings
	Main Results (RQ1)
	In-depth Analyses (RQ2)
	Ablation Study (RQ3)

	Related Work
	Conclusion
	Limitations and Broader Impacts
	Correlation Shift and Covariate Shift
	Proofs
	Estimation of Graph Covariate Shift
	Implementation Details
	Algorithm
	Datasets
	Metrics
	Training Settings
	Baseline Settings

	More Experimental Results
	Results on Correlation Shift
	Results on Diverse Backbones
	Results on More Real-world Datasets
	More Visualizations

	Complexity Analyses
	More Related Studies
	Limitation & Future Work

