
Generate What You Prefer: Reshaping Sequential
Recommendation via Guided Diffusion

Zhengyi Yang‡ Jiancan Wu‡∗ Zhicai Wang‡ Yancheng Yuan§∗ Xiang Wang‡†Xiangnan He‡†
‡University of Science and Technology of China

§The Hong Kong Polytechnic University
{yangzhy,wangzhic}@mail.ustc.edu.cn

{wujcan,xiangwang1223,xiangnanhe}@gmail.com
yancheng.yuan@polyu.edu.hk

Abstract

Sequential recommendation aims to recommend the next item that matches a user’s
interest, based on the sequence of items he/she interacted with before. Scrutinizing
previous studies, we can summarize a common learning-to-classify paradigm —
given a positive item, a recommender model performs negative sampling to add
negative items and learns to classify whether the user prefers them or not, based
on his/her historical item sequence. Although effective, we reveal two inherent
limitations: (1) it may differ from human behavior in that a user could imagine
an oracle item in mind and select potential items matching the oracle; and (2)
the classification is limited in the candidate pool with noisy or easy supervision
from negative samples, which dilutes the preference signals towards the oracle
item. Yet, generating the oracle item from the historical interaction sequence is
mostly unexplored. To bridge the gap, we reshape sequential recommendation as a
learning-to-generate paradigm, which is achieved via a guided diffusion model,
termed DreamRec. Specifically, for a sequence of historical items, it applies
a transformer to create guidance representations. Noising target items explores
the underlying distribution of item space; then, with the guidance of historical
interactions, the denoising process generates an oracle item to recover the positive
item, so as to cast off negative sampling and depict the true preference of the user
directly. We evaluate the effectiveness of DreamRec through extensive experiments
and comparisons with existing methods. Codes and data are open-sourced at
https://github.com/YangZhengyi98/DreamRec.

1 Introduction

Sequential recommendation has long been a fundamental and important topic in many online plat-
forms, such as e-commerce, streaming media, and social networking [1–3]. Its core task is to
recommend the next item that matches a user’s interest, based on the sequence of items he/she
interacted with before. Scrutinizing recent research on sequential recommendation [4–9], we may
discern a common learning-to-classify paradigm: given a sequence of historical items and a target
(truly positive) item, a recommender model first performs negative sampling to append the historical
interactions with some non-interacted (possibly negative) items, and then learns to classify the posi-
tive instance from the sampled negatives. Along with this line, extensive studies are conducted on
evolving the model architecture (e.g., recurrent neural networks [4], convolutional neural networks

∗Jiancan Wu and Yancheng Yuan are corresponding authors.
†Xiang Wang and Xiangnan He are also affiliated with Institute of Artificial Intelligence, Institute of

Dataspace, Hefei Comprehensive National Science Center.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/YangZhengyi98/DreamRec

interaction sequence

next item in sequence

sampled negative items

oralce item

other items

decision boundary

Classification based SeqRec
with negative sampling

Classification based SeqRec
without negative sampling

Generation based SeqRec (DreamRec)
captures data-generation distribution

item embedding space item embedding space item embedding space

data-generation distribution

Figure 1: Comparison between classification-based and generation-based sequential recommenders
(SqeRec). In classification-based SeqRec, the negative sampling technique is typically employed to
learn to classify the positive instance from the sampled negatives (left subfigure); Without negative
sampling, all items may be naively viewed as positive (middle subfigure). In contrast, our proposed
DreamRec leverages observed interactions to capture the underlying data-generation distribution,
enabling it to generate the oracle item beyond the candidate set (right subfigure).

[10, 11] and Transformers [5, 6]) and auxiliary tasks (e.g., causal inference [7, 12], contrastive
learning [8, 13], distributionally robust optimization [9]), to enhance the classification ability and
characterize the user preference better.

Clearly, this learning-to-classify paradigm seeks to predict whether an item in the candidate set (i.e.,
positive and sampled negative items) aligns with the user preference evidenced by the historical item
sequence. Despite its success, we reveal two limitations inherent in this paradigm:

• It may simplify human behavior — a user could imagine an oracle item in mind, and then
compromise to a real item that best matches the oracle. By “imagine”, we mean that the oracle
item is the one that a user would ideally like to interact with next, softly absorbing and representing
his/her preference from previous interactions. By “compromise”, we mean that the oracle item,
conceivably, is not a concrete and discrete instance limited in the candidate set, while the real item
interacted with next exemplifies the oracle. Considering the example in Figure 1, the red triangle
is the oracle item ingratiating with the interaction sequence, while the orange circle is the real
item close to the oracle item and satisfying the user.

• Classification upon the candidate set is a circuitous way to characterize the user preference, to
address the one-class problem posed by the availability of only positive samples [14]. Yet, as the
selected negatives are confined in a small candidate set (e.g., the green items in Figure 1), their
contrasts with the positive sample (e.g., the orange circled item in Figure 1) coarsen the decision
boundary between what a user likes and dislikes, leaving the item space mostly unexplored. Worse
still, simple negative samples may be far away from the positive item, thus failing to contribute
sufficient supervision signals to the model learning; whereas, the overly complex ones might be
falsely negative and inject noises into the model [14–16]. Therefore, such classification signals are
hard to control to depict the oracle item.

To resolve these limitations, we reshape sequential recommendation from the perspective of learning-
to-generate instead. The basic idea is to describe the underlying distribution based on the historical
item sequence, directly generate the oracle item that softly represents the user preference, and infer the
real items most matching the oracle, as shown in Figure 1 (right subfigure). Conceptually, generating
the oracle item enables us to go beyond the scope of all concrete and discrete items, and encouraging
its agreement with the positive items allows us to get rid of negative sampling. Towards this end, we
are setting our sights on the diffusion generative model [17–21]. The key idea of diffusion generative
model is to gradually convert the data into noise, and generate samples by the parameterized denoising
process. Yet, generating oracle items in sequential recommendation via diffusion models is mostly
unexplored.

To bridge this gap, we propose a simple yet effective approach DreamRec, which uses the guided
diffusion idea to directly generate the oracle item tailor-made for the user history. Specifically, given

2

a sequence of historical items, the forward process of DreamRec progressively adds noise to the
target item’s representation and nearly leads to a complete noise, while the reverse process gradually
denoises a history-guided noise to generate the oracle item aligned with the historical interactions.
Wherein, we establish the history guidance by applying a transformer on the historical item sequence,
so as to make the oracle item specialize for each sequence. As a result, DreamRec enjoys the merit of
directly modeling the user preference, without relying on classification and negative sampling. On
three benchmark datasets, we evaluate the effectiveness of DreamRec through extensive experiments
and comparisons with existing methods [4, 10, 5, 7, 12, 8].

2 Related Work

Sequential recommendation learns to suggest the next items that the user may be interested in,
based on his/her historical behavior sequence. Most existing studies approach the task under a
learning-to-classify paradigm, where the decision boundary separates the positive instance from the
sampled negatives. To enhance the classification ability of sequential recommenders, existing efforts
can be broadly categorized into two branches. The first branch centers around leveraging complex
model architectures, such as recurrent neural networks [4], convolutional neural networks [10, 11],
Transformer encoders [5, 6, 22], to better characterize user preferences. While the second research
line is centered around the inclusion of diverse auxiliary learning tasks, including causal inference [7],
data augmentation [8], contrastive learning [13], and distributionally robust optimization [9].

Diffusion Models have emerged as a prevailing approach for various generative tasks, including
image synthesis [23, 17], text generation [21], and molecule design [24]. Their popularity stems from
the ability to accurately approximate underlying data generation distribution and offer more stable
training compared to other generative models like GANs [25, 26] and VAEs [27, 28]. Three primary
formulations exist in the literature [29]: denoising diffusion probabilistic models (DDPM) [30],
score-based generative models (SGMs) [31, 19], and stochastic differential equations (SDEs) [20, 32].
DDPM represents the forward and reverse process as two Markov chains, leveraging the Markov
property to factorize the joint distribution into the product of transition kernels. SGMs introduce a
sequence of intensifying Gaussian noise to perturb data, jointly estimating the score function for all
noisy data distributions. Samples are generated by chaining the score functions at decreasing noise
levels with score-based sampling methods such as Monte Carlo and Langevin Dynamics[33, 19].
SDEs perturb data to noise with a stochastic differential equation [20], whose forward processes can
be viewed as the continuous version of DDPM and SGM. Moreover, recent advances [23, 34, 21]
have also enabled control over the generation process for conditional diffusion to generate specific
images and text.

To our knowledge, recent studies [35–37] have explored integrating diffusion models into sequential
recommendation. However, these approaches still adhere to the learning-to-classify paradigm,
inevitably requiring negative sampling during training. For instance, Li et al. [35] and Du et al. [36]
apply softmax cross-entropy loss [38] on the predicted logits of candidates, treating all non-target
items as negative samples. While Wang et al. [37] uses binary cross-entropy loss, taking the next
item as positive and randomly sampling a non-interacted item as the negative counterpart. They also
incorporate contrastive loss for better classification, which requires substantial negative samples.
DiffRec by Wang et al. [39] proposes to apply diffusion on user’s interaction vectors (i.e., multi-hot
vectors) for collaborative recommendation, where “1” indicates a positive interaction and “0” suggests
a potential negative.

In contrast, our proposed DreamRec reshapes sequential recommendation as a learning-to-generate
task. Specifically, DreamRec directly generates the oracle item tailored to user behavior sequence,
transcending limitations of the concrete items in the candidate set and encouraging exploration of the
underlying data distribution without the need of negative sampling.

3 Preliminary

We recap the basic notions of diffusion model, as established by the pioneering DDPM framework [30].
In this paper, we define the lower-case letter in bold as a variable, whose superscript refers to the
diffusion step. We keep other notations the same as DDPM [30].

3

The fundamental objective of a generative model parameterized by θ is to model the underlying
data-generation distribution, denoted by pθ(x

0), where x0 is the target variable. DDPM, a represen-
tative formulation of diffusion model, formulates two Markov chains, leveraging the chain rule of
probabilities and the Markov property to model the underlying distribution.

In the forward (noising) process, DDPM gradually adds Gaussian noise to x0 with a variance schedule
[β1, β2, . . . , βT]:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtx

t−1, βtI). (1)

Let αt = 1− βt, ᾱt =
∏t

s=1 αs , ϵ ∼ N (0, I), we have xt =
√
ᾱtx

0 +
√
1− ᾱtϵ. DDPM jointly

models the target variable x0 alongside a set of latent variables denoted by x1, . . . ,xT as a Markov
chain with Gaussian transitions:

pθ(x
0:T) = p(xT)

T∏
t=1

pθ(x
t−1|xt), pθ(x

t−1|xt) = N (xt−1;µθ(x
t, t),Σθ(x

t, t)), (2)

where the initial state is a Gaussian noise xT ∼ N (0, I). This is called the reverse (denoising)
process of DDPM.

At the core of the generation task is to optimize the underlying data generating distribution pθ(x
0),

which is performed by optimizing the variational bound of negative log-likelihood. In DDPM, this
equals minimizing the KL divergence between q(x0:T) and pθ(x

0:T):

E
[
− log pθ(x

0)
]
≤DKL (q (x0,x1, · · · ,xT) ∥pθ (x0,x1, · · · ,xT)) (3)

=Eq(x0,x1,···,xT)

[
− log p (xT)−

T∑
t=1

log
pθ (xt−1 | xt)

q (xt | xt−1)

]
+ C1 (4)

=

T∑
t=1

DKL

(
q(xt−1|xt,x0)||pθ(xt−1|xt)

)︸ ︷︷ ︸
:=Lt−1

+C2 (5)

where C1 and C2 are constants that are independent of the model parameter θ. Using Bayes’ theorem,
the posterior distribution q(xt−1|xt,x0) could be solved in closed form:

q(xt−1|xt,x0) = N (xt−1; µ̃t(x
t,x0), β̃tI), (6)

where

µ̃t(x
t,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt)

1− ᾱt
xt and β̃t =

1− ᾱt−1

1− ᾱt
βt. (7)

Further reparameterize µθ(x
t, t) as:

µθ(x
t, t) =

1
√
αt

(
xt − 1− αt√

1− ᾱt
ϵθ(x

t, t)

)
, (8)

The t-th term of training objective in Equation (5) is simplified to:

Lt−1 = Ex0,ϵ

[
β2
t

2β̃tαt(1− ᾱt)
||ϵ0 − ϵθ(

√
ᾱtx

0 +
√
1− ᾱtϵ, t)||2

]
+ C. (9)

Following DDPM [30], Σθ(x
t, t) is set to β̃tI to match the variance of Equation (2) and Equation

(6). The model architecture of ϵθ depends on specific tasks, such as U-Net for image generation [30]
and Transformer for text generation [21].

4 Method

In this section, we elaborate on the proposed generation-based sequential recommendation with
guided Diffusion. We first reformulate sequential recommendation as an oracle item generation task.
Afterward, we introduce how to directly generate the oracle item embeddings inspired by DDPM [30].
Finally, we discuss how to control the personalized generation with classifier-free guidance.

4

4.1 Sequential Recommendation as Oracle Item Generation

Let I be the set of discrete items in the dataset. Denote v1:n−1 = [v1, v2, . . . , vn−1] as the historical
interaction sequence where vi ∈ I, and vn is the next consumed item in the sequence. Let D =

{[v1:n−1, vn]m}|D|
m=1 denote all samples in training data, and Dt = {[v1:n−1]m}|Dt|

m=1 denote test
sequences. Typically, each item v ∈ I is first mapped into an embedding vector e. The interaction
sequence can then be represented as e1:n−1 = [e1, e2, . . . , en−1]. The fundamental task of sequential
recommendation is to recommend the potential next item that best matches the user’s preference.

We introduce DreamRec, which restructures sequential recommendation as a learning-to-generate
task. Instinctively, users tend to create an idealized “oracle” item in their minds and seek out a
concrete item that matches this mental archetype. We assume that oracle items exist in the same
underlying distribution from which observed items are generated. In DreamRec, we model the
underlying distribution as pθ(e0n|e1:n−1) (i.e., pθ(en|e1:n−1)) , since the generation of next item e0n
is highly related to historical interactions e1:n−1 in sequential recommendation. If pθ(e0n|e1:n−1)
can be precisely learned, we can generate the oracle item given an interaction sequence through
pθ(·|e1:n−1). In DreamRec, we learn pθ(e

0
n|e1:n−1) with guided diffusion model.

4.2 Oracle Item Generation with Guided Diffusion

𝒆𝒏
𝑻 𝒆𝒏

𝒕 𝒆𝒏
𝒕−𝟏 𝒆𝒏

𝟎
𝒒(𝒆𝒏

𝒕 |𝒆𝒏
𝒕−𝟏)

T-enc MLP

𝒆𝒏
𝒕

𝒄𝒏−𝟏

𝒕

𝒆𝒏
𝒕−𝟏𝒆𝟏:𝒏−𝟏

Gaussian
noise

Target
item

Reverse process (denoising)

Forward process (noising)

𝒑𝜽(𝒆𝒏
𝒕−𝟏|𝒆𝒏

𝒕 , 𝒄𝒏−𝟏)

Figure 2: Illustration of DreamRec. DreamRec
first encodes historical interactions e1:n−1 to be
cn−1 with a Transformer encoder. Then DreamRec
guides the reverse process of diffusion with cn−1

to achieve personalized denoising.

After framing sequential recommendation as an
oracle item generation task, we proceed to in-
troduce the learning and generating phases of
DreamRec.

4.2.1 Learning Phase of DreamRec

Directly following DDPM shown in Section 3
is insufficient to achieve the goal of oracle item
generation in sequential recommendation, since
the modeled denoising process in Equation (2)
is unguided and the generated items are not per-
sonalized for specific users. To resolve this is-
sue, we propose to guide the denoising process
with the corresponding historical interaction se-
quences. Specifically, we first encode the in-
teraction sequence e1:n−1 = [e1, e2, . . . , en−1]
with a transformer encoder:

cn−1 = T-enc(e1:n−1). (10)

Conditioning denoising process with cn−1, we
have:

pθ(e
t−1
n |etn, cn−1) = N (et−1

n ;µθ(e
t
n, cn−1, t),Σθ(e

t
n, cn−1, t)), (11)

where the architecture of µθ(e
t
n, cn−1, t) is MLP in DiffRec, as shown in Figure 2.

Similar to Equation (1), the forward process is also a Markov chain of Gaussian transitions:
q(etn|et−1

n) = N (etn;
√
1− βte

t−1
n , βtI) with a variance schedule [β1, β2, . . . , βT]. The forward

and reverse process of DreamRec are also illustrated in Figure 2.

Thereafter, DreamRec improves Lt−1 of Equation (5) and acquires the learning objective:

Lt−1 = DKL(q(e
t−1
n |etn, e0n−1)||pθ(et−1

n |etn, cn−1)). (12)

We adopt another reparameterization that predicts target sample e0n instead of the added noise ϵ3:

µθ(e
t
n, cn−1, t) =

√
ᾱt−1fθ(e

t
n, cn−1, t) +

√
αt(1− ᾱt−1)√

1− ᾱt
ϵ, (13)

3Equation (8) predicts ϵ, and they are equivalent due to et
n =

√
ᾱte

0
n +

√
1− ᾱtϵ. Refer to Appendix A

for more details

5

Algorithm 1 Training phase of DreamRec
1: repeat
2: e0

n, e1:n−1 ∼ D ▷ Sample and embed a data from training set.
3: cn−1 = T-enc(e1:n−1) ▷ Encode interaction sequence.
4: With probability pu: cn−1 = Φ ▷ Perform unconditional training with probability pu.
5: t ∼ Uniform({1, . . . , T}) ▷ Sample diffusion step.
6: ϵ ∼ N (0, I) ▷ Sample Gaussian noise.
7: et

n =
√
ᾱte

0
n +

√
1− ᾱtϵ ▷ Corrupt the traget item with Gaussian noise.

8: θ = θ − µ∇θ

∥∥e0
n − fθ(e

t
n, cn−1, t)

∥∥2
▷ Take gradient descent step, µ is the step size.

9: until converged

Algorithm 2 Generating phase of DreamRec

1: e1:n−1 ∼ Dt ▷ Sample and embed a data from testing set.
2: eT

n ∼ N (0, I) ▷ Sample Gaussian noise.
3: cn−1 = T-enc(e1:n−1) ▷ Encode interaction sequence.
4: for t = T, . . . , 1 do ▷ Denoise for T steps.
5: z ∼ N (0, I) if t > 1, else z = 0 ▷ Sample denoising variance.
6: f̃θ(e

t
n, cn−1, t) = (1 + w) fθ(e

t
n, cn−1, t)− w fθ(e

t
n,Φ, t) ▷ Control the strength of guidance.

7: et−1
n =

√
ᾱt−1βt

1−ᾱt
f̃θ(e

t
n, cn−1, t) +

√
αt(1−ᾱt−1)

1−ᾱt
et
n +

√
β̃tz ▷ Denoise for one step.

8: end for
9: return e0

n

and Equation (12) converts to another version:

Lt−1 = Ee0
n,ϵ

[
ᾱt−1

2β̃t

||e0n − fθ(
√
ᾱte

0
n +

√
1− ᾱtϵ, cn−1, t)||2

]
+ C. (14)

Furthermore, guided diffusion generally requires a conditional diffusion model and an unconditional
one [23], which can be jointly trained by a classifier-free guidance scheme [34]. Specifically, in the
training process, we randomly replace guidance signal cn−1 by a dummy token Φ with probability
pu to achieve the training of unconditional diffusion model.

Note that in Equation (14), e0n denotes the observed target item in interaction sequences, and etn
denotes the same item with the addition of t-step Gaussian noise. Therefore, the training procedure of
DreamRec does not require negative sampling, and focuses on recovering the target item in interaction
sequences instead. Algorithm 1 shows the details of the training phase of DreamRec.

4.2.2 Generation Phase of DreamRec

In the generation phase of DreamRec, we are provided with users’ historical interactions, and desire
to generate personalized oracle items for different users. In order to control the strength of guidance
signal cn−1 in the generation phase, we would revise fθ(e

t
n, cn−1, t) to be:

f̃θ(e
t
n, cn−1, t) = (1 + w) fθ(e

t
n, cn−1, t)− w fθ(e

t
n,Φ, t), (15)

where w is a hyperparameter: a higher value of w can in principle strengthen personalized guidance,
but it may hurt the generalization of diffusion and result in poor quality of generated oracle items.

Given Equation (7), it is straightforward to denoise for one step by:

et−1
n =

√
ᾱt−1βt

1− ᾱt
f̃θ(e

t
n, cn−1, t) +

√
αt(1− ᾱt−1)

1− ᾱt
etn +

√
β̃tz, z ∼ N (0, I). (16)

In the inference stage, given a user with historical interactions encoded as cn−1, to generate the
corresponding oracle item e0n, we can denoise for T times from a Gaussian sample eTn ∼ N (0, I)
according to Equation (16). The generation phase of DreamRec is demonstrated in Algorithm 2.

6

4.2.3 Retrieval of Recommendation List

After generating the oracle item, the subsequent step involves obtaining the recommendation list
tailored to the specific user. To achieve this, we select the K-nearest items to the oracle item in
the candidate set with the measurement of inner product to obtain the recommendation list. It
is worth highlighting that the selection of K-nearest items is only conducted for the retrieval of
recommendation list, and is not involved in the training phase.

5 Experiments

In this section, we conduct experiments to demonstrate that: 1) DreamRec provides a powerful
learning-to-generate framework for sequential recommendation; 2) DreamRec can better explore
the item space without negative sampling; and 3) Guiding the diffusion process with historical
interactions is important for personalized oracle item generation in DreamRec.

5.1 Experimental Settings

Datasets. We use three datasets from real-world sequential recommendation scenarios: YooChoose,
KuaiRec, and Zhihu (the statistics of datasets are illustrated in Appendix B):

• YooChoose dataset comes from RecSys Challenge 2015 4. We preserve the purchase sequences
for a moderate size of data. We only retain items with at least 5 interactions to avoid cold-start
issue. Additionally, we exclude sequences that are shorter than 3 interactions in length.

• KuaiRec [40] dataset is collected from the recommendation logs of a video-sharing mobile app.
We also remove items that are interacted with less than 5 times and sequences shorter than 3.

• Zhihu [41] dataset is collected from a socialized knowledge-sharing community. Users are
presented with a recommended Q&A list and they can read their preferred ones. We remove items
that are read less than 5 times and sequences that are shorter than 3 in length.

For all datasets, we first sort all sequences in chronological order, and then split the data into training,
validation and testing data at the ratio of 8:1:1.

Baselines. We compare DreamRec against several competitive models, including GRU4Rec [4],
Caser [10], SASRec [5], S-IPS [7], AdaRanker [12], CL4SRec [8] and DiffRec [39]. GRU4Rec,
Caser, and SASRec adopt recurrent neural networks, convolutional neural networks, and Transformer
encoders respectively to capture sequential patterns of user behaviors. S-IPS and AdaRanker leverage
causal inference and neural process to address the issues of selection bias and temporal dynamics
in sequential recommendation. CL4SRec designs three data augmentation methods and applies
contrastive learning techniques to enhance the classification ability of sequential recommender.
DiffRec proposes to incorporate the diffusion model in collaborative filtering, but it applies diffusion
on user’s interaction vectors — multi-hot vectors whose element of “1” indicates a positive interaction
while “0” suggests a potential negative.

Training Protocol. We implement all models with Python 3.7 and PyTorch 1.12.1 in Nvidia GeForce
RTX 3090. We preserve the last 10 interactions as historical sequence. For sequences with less than
10 interactions, we would pad them to 10 with a padding token. We leverage AdamW as the optimizer.
The embedding dimension of items is fixed as 64 across all models. The learning rate is tuned in the
range of [0.01, 0.001, 0.0001]. Despite that DreamRec does not require L2 regularization, we tune
the weight of L2 regularization for all baselines in the range of [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]. For all
baselines, we conduct negative sampling from the uniform distribution at the ratio of 1: 1, which is
not conducted in DreamRec. For our DreamRec, we fix the unconditional training probability pu as
0.1 suggested by [34]. We search the total diffusion step T in the range of [50, 100, 200, 500, 1000,
2000], and the personalized guidance strength w in the range of [0, 2, 4, 6, 8, 10].

Evaluation Protocol. We follow the widely used top-K protocol to evaluate the performance
of sequential recommendation and adopt two widely used metrics: hit ratio (HR) and normalized
discounted cumulative gain (NDCG) [4, 5]. Classification-based sequential recommenders usually
leverage the classification logits on candidate items to select top-K items. For DreamRec, we first

4https://recsys.acm.org/recsys15/challenge/

7

https://recsys.acm.org/recsys15/challenge/

Table 1: Comparison with baselines. The boldface denotes the best performance while the underline
indicates the second best. The experiments are conducted 5 times and the average and standard
deviation are reported.

YooChoose KuaiRec Zhihu
HR@20(%) NDCG@20(%) HR@20(%) NDCG@20(%) HR@20(%) NDCG@20(%)

GRU4Rec 3.89±0.11 1.62±0.02 3.32±0.11 1.23±0.08 1.78±0.12 0.67±0.03
Caser 4.06±0.12 1.88±0.09 2.88±0.19 1.07±0.07 1.57±0.05 0.59±0.01

SASRec 3.68±0.08 1.63±002 3.92±0.18 1.53±0.11 1.62±0.01 0.60±0.03
IPS 3.81±0.05 1.73±0.03 3.73±0.03 1.40±0.05 1.66±0.04 0.64±0.02

AdaRanker 3.74±0.06 1.67±0.04 4.14±0.09 1.89±0.05 1.70±0.04 0.61±0.02
CL4SRec 4.45±0.04 1.86±0.02 4.25±0.10 2.01±0.09 2.03±0.06 0.74±0.03
DiffRec 4.33±0.02 1.84±0.01 3.74±0.08 1.77±0.05 1.82±0.03 0.65±0.09

DreamRec 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

(a) SASRec (no negative sampling). (b) SASRec. (c) DreamRec.

Figure 3: Visualization of the learned item embeddings on Zhihu dataset using T-SNE. A point
represents an item. Without negative sampling, the item embeddings of SASRec are crowded in
limited discrete zones. With negative sampling, the item embeddings of SASRec concentrate on
only part of the item space. DreamRec explores most of the item space without requiring negative
sampling.

generate the oracle item with Algorithm 2, and then we find the K-nearest items in the candidate
set for top-K recommendation with the measurement of inner product. Note that the selection of
K-nearest items is only conducted at the evaluation phase, and is not involved in the training phase.

5.2 Main Results

In this section, we compare DreamRec against baseline models in terms of top-K recommenda-
tion performance. Table 1 shows the experimental results. Overall, DreamRec substantially and
consistently outperforms compared models, which demonstrates the superiority of our proposed
learn-to-generation paradigm in sequential recommendation.

Note that all baselines follow classification-based scheme: GRU4Rec, Caser and SASRec are
backbone models; IPS and AdaRanker enhance classification ability by solving data biasing issues;
and CL4SRec further equips classification objectives with contrastive learning techniques. We do
witness in Table 1 that these auxiliary tasks improve the performance of backbone models. In terms
of DreamRec, it reshapes sequential recommendation purely as an oracle item generation task without
those auxiliary tasks, and it has already achieved better performance in our experiments. We believe
designing auxiliary tasks can also boost the generation of oracle items in sequential recommendation,
yet we leave this as future work since it is beyond the scope of this paper.

5.3 Visualization

In this section, we visualize the learned item embeddings using T-SNE [42] to demonstrate that
DreamRec can well explore the underlying distribution of item space without negative sampling.

Specifically, we first train three recommenders on Zhihu dataset (results on other datasets included
in Appendix C): 1) SASRec without negative sampling; 2) SASRec with negative sampling; and
3) DreamRec that does not require negative sampling. Then we use T-SNE to visualize the learned

8

0 2 4 6 8 10

w
0.043

0.044

0.045

0.046

0.047

0.048

0.049

HR
@

20

(a) YooChoose.

0 2 4 6 8 10

w

0.054

0.053

0.052

0.051

0.050

0.049

0.048

H
R
@
2
0

(b) KuaiRec.

0 2 4 6 8 10

w
0.0200

0.0205

0.0210

0.0215

0.0220

0.0225

0.0230

0.0235

0.0240

0.0245

HR
@

20

(c) Zhihu.

Figure 4: Ablation study of classifier-free guidance

item embeddings under the default setting of scikit-learn 5. Figure 3 demonstrates the visualization
results, where each item is represented as a point. From Figure 3 we can observe that: 1) Negative
sampling is necessary for classification-based sequential recommenders: if no negative sampling
is conducted, plenty of items may be crowded pathologically in limited discrete zones of the item
space, making them indistinguishable; 2) Negative sampling makes classification easier since items
are better shattered, but they are biased to concentrate more on part of the zone of item space; and 3)
By reshaping sequential recommendation as a learning-to-generate framework, DreamRec explores
most of the zones of item space without requiring negative sampling. These observations provide
strong empirical support for our claims made in Section 1.

5.4 Controlling the Personalized Guidance of DreamRec

As introduced in Section 4.2.2, achieving personalized oracle item generation requires guidance
from the corresponding interaction sequence. To achieve controllable guidance in DreamRec, we
adopt the classifier-free guidance technique. However, we should carefully adjust the value of w
in Equation (15), as a higher value may hurt the generalization of diffusion and lead to generating
lower-quality oracle items. To shed light on this issue, we conduct experiments on the three datasets
by adjusting the value of w. As shown in Figure 4, we observed that increasing the value of w initially,
leads to better recommendation accuracy. This supports our intuition that stronger guidance leads to
better personalization. However, as we continue to increase the value of w, we observe a decline in
performance. This is in line with our analysis that concentrating too much on the guidance signal
may hurt the generation quality of oracle items.

6 Conclusion and Limitations

We propose DreamRec, reshaping sequential recommendation as a learning-to-generate task, instead
of a learning-to-classify task as almost all previous methods do. DreamRec is based on the analysis
of user behaviors that, after several interactions with the recommendation system, users tend to
fantasize about an oracle item they would “ideally” consume. The oracle item does not have to be
the next item in the dataset, and even should not be limited to the pre-defined candidate set. By
modeling the underlying item-generation distribution with diffusion model, DreamRec promises to
generate unobserved oracle items. Moreover, targeting to model the data-generation process directly,
DreamRec makes it possible to discard negative samples in sequential recommendation, which can
hardly be achieved by previous classification-based models. Experiments show that DreamRec brings
consistent improvements to sequential recommendation, implying its superiority in modeling user
behaviors.

Meanwhile, DreamRec also has a few limitations: 1) the sampling process is quite slow with the
iteration of total diffusion steps; and 2) the training process is more time-consuming. We believe
these can be resolved in further research with more advanced generation models such as consistency
model [43]. Moreover, as an initial attempt of reshaping sequential recommendation as an item
generation task, DreamRec provides many research opportunities such as designing auxiliary tasks
(e.g., contrastive learning or data augmentation) to enhance oracle item generation. Another research
line could be designing other encoders for guidance representation, or other model architectures for
the denoising process of DreamRec.

5https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

9

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

7 Broader Impact

The proposed DreamRec can significantly improve the performance of sequential recommendation.
Therefore, it can be applied to real-world platforms to provide more satisfying recommendation
results. One concern of generating oracle items is the potential for privacy disclosure. Despite that we
encode the oracle item with vector representations, one may decode the representation and snoop on
users’ preference explicitly. Therefore, we kindly advise researchers to be cautious about the usage
of generated oracle items.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (9227010114,
U21B2026, 62302321), the University Synergy Innovation Program of Anhui Province (GXXT-2022-
040), and the Hong Kong Polytechnic University under grant (P0045485).

References
[1] Pedro Dalla Vecchia Chaves, Bruno L. Pereira, and Rodrygo L. T. Santos. Efficient online

learning to rank for sequential music recommendation. In WWW, pages 2442–2450, 2022.

[2] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In RecSys, pages 191–198, 2016.

[3] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi
Jin, Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In KDD,
pages 1059–1068, 2018.

[4] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

[5] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In ICDM,
pages 197–206, 2018.

[6] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In
CIKM, pages 1441–1450, 2019.

[7] Zhenlei Wang, Shiqi Shen, Zhipeng Wang, Bo Chen, Xu Chen, and Ji-Rong Wen. Unbiased
sequential recommendation with latent confounders. In WWW, pages 2195–2204, 2022.

[8] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and
Bin Cui. Contrastive learning for sequential recommendation. In ICDE, pages 1259–1273,
2022.

[9] Zhengyi Yang, Xiangnan He, Jizhi Zhang, Jiancan Wu, Xin Xin, Jiawei Chen, and Xiang Wang.
A generic learning framework for sequential recommendation with distribution shifts. In SIGIR,
pages 331–340, 2023.

[10] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In WSDM, pages 565–573, 2018.

[11] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He.
A simple convolutional generative network for next item recommendation. In WSDM, pages
582–590, 2019.

[12] Xinyan Fan, Jianxun Lian, Wayne Xin Zhao, Zheng Liu, Chaozhuo Li, and Xing Xie. Ada-
ranker: A data distribution adaptive ranking paradigm for sequential recommendation. In SIGIR,
pages 1599–1610, 2022.

[13] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. Contrastive learning for representation
degeneration problem in sequential recommendation. In K. Selcuk Candan, Huan Liu, Leman
Akoglu, Xin Luna Dong, and Jiliang Tang, editors, WSDM, pages 813–823, 2022.

10

[14] Steffen Rendle. Item recommendation from implicit feedback. In Francesco Ricci, Lior Rokach,
and Bracha Shapira, editors, Recommender Systems Handbook, pages 143–171. Springer US,
2022.

[15] An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, and Tat seng Chua. Invariant
collaborative filtering to popularity distribution shift. In WWW, 2023.

[16] An Zhang, Wenchang Ma, Xiang Wang, and Tat-Seng Chua. Incorporating bias-aware margins
into contrastive loss for collaborative filtering. In NeurIPS, 2022.

[17] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pages 10674–10685, 2022.

[18] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. CoRR,
abs/2208.12242, 2022.

[19] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In NeurIPS, pages 11895–11907, 2019.

[20] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[21] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto. Diffusion-
lm improves controllable text generation. In NeurIPS, 2022.

[22] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong Wen. Lighter
and better: Low-rank decomposed self-attention networks for next-item recommendation. In
SIGIR, pages 1733–1737, 2021.

[23] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis.
In NeurIPS, pages 8780–8794, 2021.

[24] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In ICLR, 2022.

[25] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, pages
2672–2680, 2014.

[26] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In ICML, pages 214–223, 2017.

[27] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[28] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep hierarchy
of latent variables for generative modeling. In NeurIPS, pages 6548–6558, 2019.

[29] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Ming-Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of
methods and applications. CoRR, abs/2209.00796, 2022.

[30] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
NeurIPS, 2020.

[31] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
In NeurIPS, 2020.

[32] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. CoRR, abs/2105.14080, 2021.

[33] Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Ioannis Mitliagkas, and Remi Tachet des
Combes. Adversarial score matching and improved sampling for image generation. In ICLR.
OpenReview.net, 2021.

11

[34] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598,
2022.

[35] Zihao Li, Aixin Sun, and Chenliang Li. Diffurec: A diffusion model for sequential recommen-
dation. CoRR, abs/2304.00686, 2023.

[36] Hanwen Du, Huanhuan Yuan, Zhen Huang, Pengpeng Zhao, and Xiaofang Zhou. Sequential
recommendation with diffusion models. CoRR, abs/2304.04541, 2023.

[37] Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S. Yu. Conditional denoising diffusion for
sequential recommendation. CoRR, abs/2304.11433, 2023.

[38] Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, Tianyu Qiu, and Xi-
angnan He. On the effectiveness of sampled softmax loss for item recommendation. CoRR,
abs/2201.02327, 2022.

[39] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua. Diffusion
recommender model. In SIGIR, 2023.

[40] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He,
Jiaxin Mao, and Tat-Seng Chua. Kuairec: A fully-observed dataset and insights for evaluating
recommender systems. In CIKM, 2022.

[41] Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun Liu, and
Shaoping Ma. A large-scale rich context query and recommendation dataset in online knowledge-
sharing. CoRR, abs/2106.06467, 2021.

[42] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[43] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. CoRR,
abs/2303.01469, 2023.

12

A Proving the Equivalent of Equation (9) and (14)

Recall that in Equation (3) - (5), we have formulated the generation task in DDPM as optimizing the
variational bound of negative log-likelihood, where the t-th term is as follows:

Lt−1 = DKL

(
q(xt−1|xt,x0)||pθ(xt−1|xt)

)
. (17)

Since q(xt−1|xt,x0) and pθ(x
t−1|xt) are both Gaussian distributions, we can apply the Rao-

Blackwellized Theorem [30] to compute Equation (17), resulting in:

Lt−1 = Eq

[
1

2β̃t

||µ̃t(x
t,x0)− µθ(x

t, t)||2
]
+ C, (18)

where:

µ̃t(x
t,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt. (19)

Note that xt =
√
ᾱtx

0 +
√
1− ᾱtϵ, we have:

µ̃t(x
t,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

=

√
ᾱt−1βt

1− ᾱt

xt −
√
1− ᾱtϵ√
ᾱt

+

√
αt(1− ᾱt−1)

1− ᾱt
xt

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ

)
.

(20)

In DDPM, µθ is reparametrized as:

µθ(x
t, t) =

1
√
αt

(
xt − 1− αt√

1− ᾱt
ϵθ(x

t, t)

)
. (21)

Substituting Equation (20) and (21) back to Equation (18), we can obtain the simplified version of
Lt−1 as expressed in Equation (9):

Lt−1 = Ex0,ϵ

[
β2
t

2β̃tαt(1− ᾱt)
||ϵ− ϵθ(

√
ᾱtx

0 +
√
1− ᾱtϵ, t)||2

]
+ C. (22)

We can adopt an alternative reparametrization of µθ similar to Equation (13):

µθ(x
t, t) =

√
ᾱt−1fθ(x

t, t) +

√
αt(1− ᾱt−1)√

1− ᾱt
ϵ. (23)

Then we can derive:
µ̃t(x

t,x0)− µθ(x
t, t)

=
1

√
αt

(
xt − 1− αt√

1− ᾱt
ϵ

)
−
√
ᾱt−1fθ(x

t, t)−
√
αt(1− ᾱt−1)√

1− ᾱt
ϵ

=
1

√
αt

(√
ᾱtx

0 +
√
1− ᾱtϵ−

1− αt√
1− ᾱt

ϵ

)
−

√
ᾱt−1fθ(x

t, t)−
√
αt(1− ᾱt−1)√

1− ᾱt
ϵ

=
√
ᾱt−1x

0 +

√
αt(1− ᾱt−1)√

1− ᾱt
ϵ−

√
ᾱt−1fθ(x

t, t)−
√
αt(1− ᾱt−1)√

1− ᾱt
ϵ

=
√
ᾱt−1(x

0 − fθ(x
t, t)).

(24)

Therefore Equation (18) can be simplified to another version:

Lt−1 = Ex0,ϵ

[
ᾱt−1

2β̃t

||x0 − fθ(
√
ᾱtx

0 +
√
1− ᾱtϵ, t)||2

]
+ C (25)

So far we have proven that Equation (22) (predicting noise) and (25) (predicting target) are two
equivalent versions of training objective for diffusion in theory. In practice, DDPM shows that
Equation (22) performs well in image generation, while study [21] shows Equation (25) in more
suitable in text generation. In sequential recommendation, we adopt Equation (25) (or equivalently,
Equation (14)) to acquire our objective in DreamRec for oracle item generation.

13

B Detailed Experimental Settings

B.1 Statistics of Datasets

The statistics of the adopted datasets are summarized in Table 2.

Table 2: Statistics of datasets.
Dataset YooChoose KuaiRec Zhihu

#sequences 128,468 92,090 11,714
#items 9,514 7,261 4,838

#interactions 539,436 737,163 77,712

(a) SASRec (no negative sampling). (b) SASRec. (c) DreamRec.

Figure 5: Visualization of the learned item embeddings on YooChoose dataset using T-SNE. Dream-
Rec explores most of the item space without requiring negative sampling.

(a) SASRec (no negative sampling). (b) SASRec. (c) DreamRec.

Figure 6: Visualization of the learned item embeddings on KuaiRec dataset using T-SNE. Diff4Rec
explores more of the item space without requiring negative sampling.

C More Ablation Studies

C.1 Visualization on YooChoose and KuaiRec Datasets.

We further visualize the learned item embedding visualization on YooChoose and KuaiRec datasets
in Figure 5 and Figure 6. Similar to Zhihu dataset (Figure 3), SASRec without negative sampling
may fail to distinguish different items, since plenty of items gather in limited zones of the item space.
Consequently, negative sampling is necessary for classification-based sequential recommenders. In
contrast, DreamRec directly models the data-generation distribution and can better explore item space
without the requirement of negative sampling.

14

	Introduction
	Related Work
	Preliminary
	Method
	Sequential Recommendation as Oracle Item Generation
	Oracle Item Generation with Guided Diffusion
	Learning Phase of DreamRec
	Generation Phase of DreamRec
	Retrieval of Recommendation List

	Experiments
	Experimental Settings
	Main Results
	Visualization
	Controlling the Personalized Guidance of DreamRec

	Conclusion and Limitations
	Broader Impact
	Proving the Equivalent of Equation (9) and (14)
	Detailed Experimental Settings
	Statistics of Datasets

	More Ablation Studies
	Visualization on YooChoose and KuaiRec Datasets.

