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Abstract

In recommender systems, the collected data used for training is always subject to se-
lection bias, which poses a great challenge for unbiased learning. Previous studies
proposed various debiasing methods based on observed user and item features, but
ignored the effect of hidden confounding. To address this problem, recent works
suggest the use of sensitivity analysis for worst-case control of the unknown true
propensity, but only valid when the true propensity is near to the nominal propensity
within a finite bound. In this paper, we first perform theoretical analysis to reveal
the possible failure of previous approaches, including propensity-based, multi-task
learning, and bi-level optimization methods, in achieving unbiased learning when
hidden confounding is present. Then, we propose a unified multi-task learning
approach to remove hidden confounding, which uses a few unbiased ratings to cali-
brate the learned nominal propensities and nominal error imputations from biased
data. We conduct extensive experiments on three publicly available benchmark
datasets containing a fully exposed large-scale industrial dataset, validating the
effectiveness of the proposed methods in removing hidden confounding.

1 Introduction

Recommender systems (RS) play a key role in information retrieval by filtering out items that may
be of interest to users [16, 24]. In general, the training process of recommendation uses historical
user interaction data. However, a challenge in using interactions to make predictions is selection
bias [3, 32, 40, 57], i.e., users always choose preferred items to interact [5, 51], resulting in a
difference in the distribution between data with and without interactions [14, 45–49, 54, 56, 60],
which poses a great challenge for unbiased evaluation and learning of the prediction models.

Many methods have been proposed to tackle the selection bias problem, such as the error imputation-
based (EIB) [2], inverse propensity scoring (IPS) [33, 41, 42], and doubly robust (DR) methods [7,
11, 27–29, 52]. Based on these, recent works further incorporate multi-task learning to alleviate the
data sparsity issue, such as entire space multi-task model (ESMM) [34], multi-task IPS and multi-task
DR (Multi-IPS and Multi-DR) [59], and entire space counterfactual multi-task models (ESCM2) [44].

However, these studies only consider the selection bias induced by measured confounders, but
ignore the presence of hidden (or unmeasured) confounders, which considerably influences the
application of these advanced methods in real-world recommendation scenarios. Hidden confounders
are ubiquitous and inevitable in RS due to information limitations (e.g., friend useful suggestions) or
privacy restrictions (e.g., user salary) [8, 31, 35, 50]. In this paper, we perform theoretical analysis
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for the existing propensity-based and multi-task learning methods, showing that all of them will lead
to biased evaluation and learning in the presence of hidden confounding.

To remove hidden confounding, previous causal inference literature suggested the use of instrumental
variables [12] or front door adjustment [36]. However, in real-world application scenarios, these
approaches require strong assumptions that are difficult to verify in practice. On the other hand, a
recent recommendation study proposed robust deconfounder (RD) to adopt sensitivity analysis using
a min-max optimization for worst-case control of the unknown true propensity [8]. Nevertheless, they
assume the true propensity is near to the nominal one within a bound, which is decided by the strength
of the unmeasured confounder, posing another challenge in case these assumptions are violated.

In contrast, unbiased datasets are regarded as the gold standard for unbiased evaluations and can be
collected from A/B tests or randomized controlled trials [10, 13, 21, 55]. This provides an alternative
solution to remove hidden confounding [15, 20, 26, 58]. Nevertheless, training recommendation
models directly on unbiased datasets can suffer from severe overfitting due to the limited sample size
restricted by the collection cost of random exposure [4]. Despite few works leverage the unbiased
data to combat selection bias [4, 53] by adopting the bi-level optimization, this paper shows that they
still lead to biased learning, due to the biased hypothesis space of the prediction model.

To tackle the above problems, we propose a unified multi-task learning approach to remove hidden
confounding by leveraging a few unbiased ratings. Interestingly, we show that the unbiased data
can help calibrate the learned nominal propensities and nominal error imputations, which differs
from RD using sensitivity analysis for nominal propensities only [8]. Specifically, the proposed
multi-task learning builds residual networks for learned propensities and imputed errors from biased
data, respectively. Next, a consistency loss of IPS (or DR) estimation on the biased dataset and
empirical average prediction errors on the unbiased dataset are developed to help the training of the
two residual networks, for calibrating the learned nominal propensities and nominal error imputations,
respectively. The prediction model is then trained with the calibrated IPS (or calibrated DR) loss and
unbiased data to achieve unbiased learning in the presence of hidden confounding.

The main contributions of this paper are summarized as follows:
• We theoretically reveal limitations of the existing multi-task learning and bi-level optimiza-

tion methods for achieving the unbiasedness in the presence of hidden confounding.
• We provide a unified multi-task learning approach to remove hidden confounding by com-

bining a few unbiased ratings, in which the learned nominal propensities and nominal error
imputations can be calibrated by the residual networks with the proposed consistency loss.

• We conduct extensive experiments on three publicly available benchmark datasets, including
a large-scale industrial dataset, to validate the effectiveness of the proposed methods.

2 Problem Setup

We formulate the selection bias in RS using post-click conversion rate (pCVR) prediction task for
illustration purpose, which can be naturally generalized to other recommendation tasks with explicit
feedback, e.g., rating prediction. Suppose that the entire space has m users and n items, let D be
the set of all user-item pairs. Denote R ∈ {0, 1}m×n as the true post-click conversion label matrix
of user-item pairs, where each entry ru,i indicates whether a conversion occurs after user u clicks
on item i. Let xu,i be the feature of user-item pair (u, i), and R̂ ∈ Rm×n be the prediction matrix
for pCVR, where r̂u,i = f(xu,i, θCVR) ∈ [0, 1] is the predicted pCVR obtained by a model f with
parameter θCVR. In RS, users always select the preferred items to click on, leading to a significant
difference in the distribution between clicked and unclicked events thus causing selection bias.

If R is fully observed, then a pCVR model f(xu,i; θCVR) can be trained by minimizing the ideal loss

Lideal(θCVR) =
1

|D|
∑

(u,i)∈D

δu,i,

where δu,i ≜ δ(ru,i, r̂u,i) and δ(·, ·) is a pre-specified loss, e.g., the cross-entropy loss, δ(ru,i, r̂u,i) =
−ru,i log r̂u,i− (1− ru,i) log (1− r̂u,i). However, the post-click conversion feedback of a user-item
pair (u, i) can be observed only when user u clicks on item i, making the ideal loss not computable.
Let ou,i be the indicator of user u clicking on item i, and B = {(u, i) | (u, i) ∈ D, ou,i = 1} be
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the set of clicked events, where B means that the clicked events is a biased sample of the entire
space D. In this paper, we further consider the presence of hidden confounding. Without loss of
generality, we assume that all confounders consist of a measured part xu,i and a hidden (unmeasured)
part hu,i, where the latter arises from issues such as information limitations (e.g., friend suggestions)
and privacy restrictions (e.g., user salary), which cannot be observed explicitly and used for training.

3 Previous Methods Lead to Biased Learning under Hidden Confounding

3.1 Multi-Task Learning

The pCVR prediction task is closely related to click-through rate (CTR) and post-view click-through
& conversion rate (CTCVR) prediction tasks, as the formula CTCVR = CTR ∗ pCVR holds, where
the CTR is pu,i ≜ P(ou,i = 1|xu,i), also known as propensity score in the causal inference literature,
represents the probability of a user u clicking on an item i. The CTCVR is P(ru,i = 1, ou,i = 1|xu,i),
means the probability that item i is clicked and converted by user u.

Let p̂u,i ≜ p̂u,i(xu,i, θCTR) be CTR prediction model with parameter θCTR. The ESMM method [34]
learns pCVR by joint-training CTR and CTCVR losses

LCTR(θCTR) =
1

|D|
∑

(u,i)∈D

δ (ou,i, p̂u,i) , LCTCVR(θCTR, θCVR) =
1

|D|
∑

(u,i)∈D

δ (ou,iru,i, p̂u,ir̂u,i) .

However, the ESMM loss LCTR(θCTR) + LCTCVR(θCTR, θCVR) is a biased estimator of the ideal
loss [59]. To achieve unbiased learning, the MTL-IPS and MTL-DR methods [59] use the losses

LIPS(θCTR, θCVR) =
1

|D|
∑

(u,i)∈D

ou,iδu,i
p̂u,i

, LDR(θCTR, θCVR, θIMP) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̂u,i

]
,

where δ̂u,i ≜ δ̂u,i(xu,i, θIMP) is the imputation model that predicts δu,i using xu,i, i.e., it estimates
gu,i ≜ E[δu,i|xu,i]. Without hidden confounders, LIPS is an unbiased estimator of the ideal loss
when the learned propensities are accurate, i.e., p̂u,i = pu,i [41, 42], and LDR is unbiased if either
p̂u,i = pu,i or δ̂u,i = gu,i [39, 52]. However, both IPS and DR are biased under hidden confounders.

Lemma 1 (Theorem 3.1 in [8]). In the presence of hidden confounders hu,i, both LIPS and LDR are
biased estimators of the ideal loss, even if p̂u,i = pu,i and δ̂u,i = gu,i.

The above result also holds in the follow-up DR studies [23, 25, 43], and can be naturally extended
to conclude that the MTL-IPS and MTL-DR [59] are biased under hidden confounding. Recently,
ESCM2-IPS and ESCM2-DR showed state-of-the-art performance in pCVR prediction by incorporat-
ing the ESMM loss LCTCVR as the global risk of CTCVR, and MTL-IPS and MTL-DR losses LB

CVR
as counterfactual risk of pCVR [44]. Formally, the ESCM2 loss is

LESCM2 = LCTR + λ1LIMP + λ2LB
CVR + λ3LCTCVR,

where λt for t = 1, 2, 3 are hyper-parameters, LB
CVR is either LIPS or LDR. The imputation loss is

LIMP(θCTR, θCVR, θIMP) =
1

|B|
∑

(u,i)∈B

(δu,i − δ̂u,i)
2

p̂u,i
.

However, since both LCTCVR and LB
CVR are biased under hidden confounding, ESCM2 is also biased.

3.2 Debiasing with a Few Unbiased Ratings

Instead of only using the biased dataset B, many methods are proposed to improve the debiasing
performance by combining a small unbiased dataset U and a large biased dataset B, such as bi-
level optimization approaches, including learning to debias (LTD) [53] and AutoDebias [4], causal
embedding method (CausE) [1], knowledge distillation framework for counterfactual recommendation
via uniform data (KDCRec) [30, 32], and causal balancing methods [26].
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Specifically, learning to debias (LTD) [53] and AutoDebias [4] adopt bi-level optimization [17, 37]
to learn a CTR model p̂u,i(xu,i, θCTR) such that the pCVR prediction model r̂u,i = f(xu,i, θCVR)
performs well on the small unbiased dataset U . Formally, the bi-level optimization in LTD is

θ∗CTR = argmin
θCTR

LU
CVR(θ

∗
CVR(θCTR)),

s.t. θ∗CVR(θCTR) = argmin
θCVR

LB
CVR(θCTR , θCVR),

where the upper loss is as an average of prediction errors on the unbiased dataset

LU
CVR(θ

∗
CVR(θCTR)) =

1

|U|
∑

(u,i)∈U

δ (ru,i, r̂u,i(θ
∗
CVR(θCTR))) ,

and AutoDebias further develop a solution for universal debiasing. However, despite the use of
unbiased ratings, we show that they still lead to biased estimates under hidden confounding.
Proposition 1. In the presence of hidden confounders, both LTD and AutoDebias are biased.

Proof. Let HCTR = {p̂u,i(xu,i, θCTR) : θCTR ∈ ΘCTR} be the hypothesis space of propensity model.
Then θ∗CTR defined above is the parameter in ΘCTR such that the pCVR prediction model performs
optimally on U . The bi-level optimization takes LB

CVR to estimate the ideal loss using a selected
propensity p̂u,i(xu,i, θ

∗
CTR) ∈ HCTR, however, LB

CVR could be a biased estimator of the ideal loss for
all p̂u,i ∈ HCTR (due to p̂u,i could deviates from the true one by an arbitrary distance, as formally
stated in Theorem 2), therefore both LTD and AutoDebias using bi-level optimization are biased.

Proposition 1 formally reveals the limitations of directly adopting bi-level optimization for addressing
hidden confounding. Both LTD and AutoDebias essentially use unbiased data for model selection
among all possible IPS or DR losses, but in fact, without correcting the IPS or DR estimators
themselves for predicting the ideal loss, those IPS or DR-based methods will not be able to tackle
unobserved confounding, because of the intrinsic biasedness of the estimators to the ideal loss.

An alternative class of methods that use unbiased data for tuning is the causal embedding method
(CausE) [1] and KDCRec [30, 32]. Specifically, they both consider building a connection between a
model trained with biased data and another model trained with unbiased data. CausE [1] designs an
alignment term as the pairwise difference between the parameters of the two models, which is then
included in the object function to be minimized. KDCRec [30, 32] proposes a general knowledge
distillation framework for counterfactual recommendation via uniform data, including label-based,
feature-based, sample-based, and model structure-based distillations. The above methods empirically
shown impressive performance by distilling the shared information on both biased and unbiased data.
However, theoretical guarantees under hidden confounding are lacking, and it would be interesting to
investigate the conditions under which these methods can achieve unbiased learning.

3.3 Mitigating Hidden Confounding with Sensitivity Analysis

To tackle the problem of hidden confounding, robust deconfounder (RD) [8] proposes to adopt
sensitivity analysis from the causal inference literature [6, 38] to minimize the worst-case prediction
loss. Formally, the unknown true propensity p̄u,i ≜ P(ou,i = 1|xu,i, hu,i) is assumed to near the
nominal propensity pu,i = P(ou,i = 1|xu,i) within a bound that

1

Γ
≤ (1− pu,i) p̄u,i

pu,i (1− p̄u,i)
≤ Γ =⇒ 1 + (1/pu,i − 1) /Γ ≜ au,i ≤ wu,i ≤ bu,i ≜ 1 + (1/pu,i − 1) Γ,

where hyper-parameter Γ corresponds to the strength of unmeasured confounding, wu,i = 1/p̄u,i
is the inverse of the true propensity, and au,i and bu,i are the lower and upper bounds of wu,i,
respectively. Let W = [â1,1, b̂1,1] × · · · × [âm,n, b̂m,n] be the possible inverse propensities on all
user-item pairs, where âu,i and b̂u,i are the estimates of au,i and bu,i, respectively, then RD-IPS
method trains the prediction model by minimizing the worst-case IPS loss

LRD-IPS(θCTR, θCVR) = max
W∈W

1

|D|
∑

(u,i)∈D

ou,iδu,iwu,i,

and the RD-DR method can be developed by a similar argument controlling the worst-case DR loss.
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To summarize, the RD methods first obtains the bounds of true propensities around the nominal
propensities, then minimize the upper bound of the IPS (or DR) loss to control the worst-case caused
by unmeasured confounders. However, on the one hand, it is not clear how to set Γ correctly since
both the true propensities and the strength of hidden confounding are unknown. On the other hand,
the effectiveness of sensitivity analysis for controlling the hidden confounding requires that the true
propensity is around the nominal propensity for all user-item pairs, but such (strong) assumptions
cannot be verified from the data and raises another concern in case the assumptions are violated.

4 Debiasing Residual Networks under Hidden Confounding

4.1 Methodology Overview

Different from the previous methods that use sensitivity analysis to control the worst-case IPS or DR
loss caused by hidden confounding, we propose a unified multi-task learning approach with residual
networks as in Figure 1, with the motivation of using a small unbiased data to calibrate the learned
propensities and imputed errors in IPS or DR loss for training the unbiased prediction model.

Following causal inference literature [18, 19], we define the true propensity and true imputation as
p̄u,i ≜ P(ou,i = 1|xu,i, hu,i), ḡu,i ≜ E(δu,i|xu,i, hu,i), both of them are functions of (xu,i, hu,i),
with p̃u,i and δ̃u,i as their estimates. To distinguish, we call pu,i = P(ou,i = 1|xu,i) and gu,i =

E[δu,i|xu,i] the nominal propensity and nominal imputation, with p̂u,i and δ̂u,i as their estimates.

Next, we show the necessity of calibrations on both p̂u,i and δ̂u,i estimated from the baised data B.

Theorem 2 (Necessity of Calibration). Suppose the partial derivative of p̄u,i and ḡu,i with respect to
hidden confounders hu,i are not always equal to 0, and p̂u,i and δ̂u,i are consistent estimators of pu,i
and gu,i, then there exists η > 0, such that

lim
|D|→∞

P(|p̂u,i − p̄u,i| > η) > 0, lim
|D|→∞

P(|δ̂u,i − ḡu,i| > η) > 0.

Proof. Given the partial derivative of p̄u,i with respect to hidden confounders hu,i is not always equal
to 0, that is, hu,i has a non-zero effect on ou,i, so we have p̄u,i ̸= pu,i according to their definitions.
Thus, for some ϵ > 0, there exist positive constants δϵ, N1(ϵ) > 0, such that for all |D| > N1(ϵ),

P(|p̄u,i − pu,i| > ϵ) > δϵ > 0.

Since p̂u,i is a consistent estimator of pu,i, there exists some N2(ϵ) > 0, such that for all |D| > N2(ϵ),

P(|p̂u,i − pu,i| ≥ ϵ/2) <
δϵ
4
.

Thus, if |D| > max{N1(ϵ), N2(ϵ)}, we have

P(|p̄u,i − pu,i| > ϵ, |p̂u,i − pu,i| < ϵ/2)

= P(|p̄u,i − pu,i| > ϵ)− P(|p̄u,i − pu,i| > ϵ, |p̂u,i − pu,i| ≥
ϵ

2
)

> δϵ − δϵ/4 = 3δϵ/4.

Let η = ϵ/2 and note that {|p̄u,i − pu,i| > ϵ, |p̂u,i − pu,i| < ϵ/2} ⊂ {|p̂u,i − p̄u,i| > η}, we have

P(|p̂u,i − p̄u,i| > η) ≥ P(|p̄u,i − pu,i| > ϵ, |p̂u,i − pu,i| < ϵ/2) > 3δϵ/4 > 0,

which leads to lim|D|→∞ P(|p̂u,i − p̄u,i| > η) > 0. Similarly, it can be shown that
lim|D|→∞ P(|δ̂u,i − ḡu,i| > η) > 0.

Theorem 2 shows that in the presence of hidden confounding, the estimated nominal propensities and
nominal imputed errors deviate from the true one, even with the infinite sample size. To address this
problem, as shown in Figure 1, we propose a novel consistency loss that utilizes unbiased data to
calibrate the learned nominal propensities and imputed errors from the biased data.

5



(a) Res-IPS (b) Res-DR

Figure 1: Proposed debiasing residual networks for removing hidden confounding.

Specifically, we define the calibrated propensity model p̃ = p̃(θCTR, ϕCTR) and the calibrated
imputation model δ̃ = δ̃(θIMP, ϕIMP) as follows

p̃u,i = σ
(
σ−1(p̂u,i(θCTR)) + σ−1(∆pu,i(ϕCTR))

)
,

δ̃u,i = σ
(
σ−1(δ̂u,i(θIMP)) + σ−1(∆δu,i(ϕIMP))

)
,

where σ is the sigmoid function, and the transformations are designed for numerical stability, e.g., to
control range from 0 to 1. Compared with p̂u,i and δ̂u,i adopted in the previous multi-task learning
approaches [34, 44, 59], the residual terms ∆pu,i and ∆δu,i are further added to p̃u,i and δ̃u,i to
capture the effect of hidden confounding. The loss function of the proposed approach is defined as

LRes = LCTR(p̂) + α · LIMP(δ̂)︸ ︷︷ ︸
Initialization using biased data

+β ·
(
LB

CVR(p̃, δ̃) + LB
CTCVR(p̃) + LU

CVR

)
︸ ︷︷ ︸

Prediction model training with calibrated losses

+γ · LB&U
CVR (p̂, p̃, δ̂, δ̃)︸ ︷︷ ︸

Calibration on p̂ and δ̂

,

where α, β and γ are hyper-parameters for trade-off. The following states for each loss.

4.2 Nominal Propensities and Imputations Initialization

Similar to the previous IPS and DR methods [39, 41, 42, 52], as well as the multi-task learning
approaches [34, 44, 59], we use the losses LCTR and LIMP in Section 3.1 for training the estimated
nominal propensities p̂u,i and nominal imputed errors δ̂u,i from the biased dataset. However, since
p̂u,i and δ̂u,i can only capture the effect of measured confounding, we do not directly use them for
training the prediction model under hidden confounding. Instead, we train the prediction model using
the calibrated propensities and imputed errors as illustrated in Section 4.3.

4.3 Debiased Prediction Model Training

Training on Biased Data. To train an unbiased prediction model, the losses need to be unbiased with
respect to the ideal loss, thus the direct use of nominal p̂u,i and δ̂u,i under hidden confounding would
lead to biased predictions. In contrast to previous studies, we propose to use both the initialized p̂u,i
and δ̂u,i in Section 4.2, and the corresponding residual terms ∆pu,i and ∆δu,i (see Section 4.4 for
more details) using IPS (or DR, CTCVR loss) to achieve unbiased prediction model learning.

Specifically, using the calibrated propensity model, the proposed residual-IPS (Res-IPS) loss is

LB
IPS(θCVR | p̂u,i(θCTR),∆pu,i(ϕCTR)) =

1

|D|
∑

(u,i)∈D

ou,i · δu,i
p̃u,i

.
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Similarly, using both the calibrated propensity model and the calibrated imputation model, the
proposed residual-DR (Res-DR) loss is

LB
DR(θCVR | p̂u,i(θCTR),∆pu,i(ϕCTR), δ̂u,i(θIMP),∆δu,i(ϕIMP)) =

1

|D|
∑

(u,i)∈D

[
δ̃u,i +

ou,i(δu,i − δ̃u,i)

p̃u,i

]
.

Although CTCVR loss is not unbiased to the ideal loss [59], as previous studies have shown, using
both IPS (or DR) loss and CTCVR loss empirically can lead to better debiasing performance by
mitigating the data sparsity issue [44]. Similarly, using the calibrated propensity model, the proposed
calibrated CTCVR loss is

LCTCVR(θCVR | p̂u,i(θCTR),∆pu,i(ϕCTR)) =
1

|D|
∑

(u,i)∈D

δ (ou,iru,i, p̃u,ir̂u,i) .

Empirically, one can choose from the three calibrated losses for training a debiased prediction model.

Training on Unbiased Data. Since the unbiased data do not encounter any confounding problems, it
provides a golden standard to evaluate and train the pCVR prediction model. The unbiased loss is

LU
CVR(θCVR) =

1

|U|
∑

(u,i)∈U

δ (ru,i, r̂u,i (θCVR)) .

Different from the previous studies [4, 53], in which LU
CVR is used to select the optimal propensity

or imputation models, our approach is not necessary for training the prediction model using the
unbiased loss (since one can use the aforementioned calibrated losses). In addition, the direct use of
the unbiased loss can lead to severe overfitting, which once again demonstrates the importance of
calibrating the propensity and imputation models in the IPS or DR loss.

4.4 Residual Networks Training

Collected through a carefully designed experiment, the unbiased data can be regarded as a repre-
sentative sample of the entire space [53]. Thus, we always have LU

CVR ≈ Lideal(θCVR), regardless of
hidden confounding in biased data, which motivates us to propose a consistency loss

LB&U
CVR (θCTR, ϕCTR, θCVR, θIMP, ϕIMP) = δ(LB

CVR,LU
CVR),

which measures the discrepancy between LB
CVR and LU

CVR, which equivalently provides us with an
optimization direction for removing hidden confounding.
Proposition 3. If LB&U

CVR = 0, then LB
CVR is an unbiased estimator of the ideal loss, regardless of

whether hidden confounders exist or not.

Essentially, the consistency loss uses unbiased data to calibrate the debiasing loss LB
CVR based on the

biased data, thereby guaranteeing the debiasing ability of the proposed methods in the presence of
hidden confounding. As discussed in Sections 4.1–4.3, we utilize the two residual terms ∆pu,i and
∆δu,i to capture the effect of hidden confounding, which are trained by mimimizing LB&U

CVR .

5 Real-World Experiments

Dataset and Pre-processing. Following the previous studies [4, 42, 52], we use three real-world
datasets: COAT2, YAHOO! R33, and KUAIREC4 [9], for evaluating the debiasing performance of
the proposed methods, where KUAIREC is a public large-scale industrial dataset. COAT contains
6,960 biased ratings from 290 users to 300 items, where each user picks 24 items to rate based on
their personal preferences. Meanwhile, it also contains 4,640 unbiased ratings, where each user is
asked to rate 16 randomly selected items. YAHOO! R3 contains 311,704 biased ratings and 54,000
unbiased ratings, where the unbiased ratings are from the first 5,400 users for 10 random selected
items. We binarize ratings less than four to 0 and other ratings to 1 for the above two five-scale

2https://www.cs.cornell.edu/~schnabts/mnar/
3http://webscope.sandbox.yahoo.com/
4https://github.com/chongminggao/KuaiRec
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Table 1: Performance in terms of AUC, NDCG@K, and Recall@K on the unbiased dataset of COAT,
YAHOO! R3 and KUAIREC. The best two results are bolded, and the best baseline is underlined.

COAT YAHOO! R3 KUAIREC

Method AUC N@5 R@5 AUC N@5 R@5 AUC N@50 R@50

MF [22] (Bias) 0.747 0.500 0.546 0.721 0.553 0.716 0.820 0.561 0.816
MF [22] (Uniform) 0.580 0.363 0.386 0.574 0.455 0.611 0.664 0.491 0.816
MF [22] (Combine) 0.751 0.504 0.546 0.724 0.558 0.717 0.822 0.566 0.812
CausE [1] 0.763 0.512 0.575 0.730 0.555 0.736 0.819 0.581 0.856
ESMM [34] 0.745 0.506 0.525 0.708 0.545 0.693 0.823 0.563 0.852
KD-Label [30] 0.760 0.509 0.562 0.726 0.583 0.752 0.815 0.570 0.858
AutoDebias [4] 0.762 0.540 0.580 0.735 0.632 0.785 0.818 0.584 0.866
KD-Feature [30] 0.766 0.522 0.584 0.717 0.557 0.736 0.809 0.588 0.873

IPS [42] 0.761 0.513 0.566 0.722 0.555 0.733 0.826 0.574 0.849
Multi-IPS [59] 0.758 0.514 0.531 0.719 0.546 0.710 0.810 0.554 0.875
ESCM2-IPS [44] 0.757 0.514 0.558 0.729 0.559 0.714 0.815 0.577 0.860
RD-IPS [8] 0.764 0.514 0.566 0.730 0.571 0.735 0.832 0.585 0.873
BRD-IPS [8] 0.763 0.511 0.564 0.735 0.582 0.743 0.834 0.588 0.877
Res-IPS (ours) 0.777 0.575 0.601 0.759 0.639 0.785 0.849 0.601 0.885

DR [52] 0.766 0.525 0.552 0.725 0.553 0.727 0.824 0.567 0.838
Multi-DR [59] 0.759 0.527 0.565 0.719 0.553 0.712 0.829 0.562 0.859
ESCM2-DR [44] 0.760 0.553 0.568 0.715 0.566 0.722 0.827 0.569 0.830
RD-DR [8] 0.768 0.539 0.571 0.732 0.569 0.738 0.833 0.585 0.884
BRD-DR [8] 0.770 0.546 0.577 0.735 0.576 0.737 0.831 0.585 0.883
Res-DR (ours) 0.793 0.588 0.607 0.750 0.654 0.803 0.854 0.595 0.860

Table 2: Effects of varying unbiased data ratio on KUAIREC in terms of AUC and NDCG@50. The
best two results are bolded, and the best baseline is underlined.

AUC ↑ NDCG@50 ↑
Unbiased data ratio 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

CausE 0.818 0.818 0.819 0.819 0.819 0.579 0.580 0.584 0.586 0.587
KD-Label 0.815 0.815 0.815 0.816 0.816 0.582 0.584 0.588 0.588 0.589
AutoDebias 0.810 0.815 0.818 0.826 0.832 0.569 0.580 0.587 0.589 0.590
Res-IPS (ours) 0.845 0.848 0.850 0.850 0.852 0.595 0.596 0.602 0.602 0.603
Res-DR (ours) 0.850 0.851 0.854 0.855 0.855 0.592 0.593 0.597 0.605 0.606

datasets. KUAIREC is a fully exposed dataset containing 4,676,570 video watching ratio records
from 1,411 users for 3,327 videos. The records less than two are binarized to 0 and other records to 1.

Baselines. In our experiment, we take the widely-used Matrix Factorization (MF) [22] as the base
model. We compare our methods with the debiasing methods: IPS [41, 42], DR [39, 52], RD-IPS [8],
RD-DR [8], and multi-task learning approaches: ESMM [34], Multi-IPS [59], Multi-DR [59],
ESCM2-IPS [44] and ESCM2-DR [44]. We also compared the methods using both biased data and
unbiased data: CausE [1], KD-Label [30], KD-Feature [30] and AutoDebias [4].

Experimental Protocols and Details. We adopt three widely-used evaluation metrics: AUC,
Recall@K (R@K), and NDCG@K (N@K) for debiasing performance evaluation. We set K = 5 for
COAT and YAHOO! R3, and K = 50 for KUAIREC. All the experiments are implemented on Pytorch
with Adam as the optimizer. We tune learning rate in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05},
weight decay in {0, 1e − 6, . . . , 1e − 1, 1}. For our methods, we tune α in {0.1, 0.5, 1}, β in
{0.1, 0.5, 1, 5, 10}, and γ in {0.001, 0.005, 0.01, 0.05, 0.1}. In addition, we randomly split 5% of
unbiased data from the test set to train models for all methods that require unbiased data5.

Performance Comparison. Table 1 shows the real-world debiasing performance for varying meth-
ods on three datasets. First, most debiasing methods outperform the base model, i.e., MF (bias),
demonstrating the necessity for debiasing in the presence of selection bias. Second, methods using
both biased and unbiased data outperform the methods using only one of them, which indicates that
there exists some non-overlap information that can benefit for debiasing between both biased and

5For all experiments, we use Tesla T4 GPU as the computational resource.
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Table 3: Ablation study on residual networks in Res-DR method, with AUC, NDCG@K and
Recall@K as evaluation metrics. The best result is bolded and the second is underlined.

Training loss COAT YAHOO! R3 KUAIREC

Method ∆δ ∆p AUC R@5 N@5 AUC N@5 R@5 AUC N@50 R@50

ESCM2-DR × × 0.760 0.553 0.568 0.715 0.566 0.722 0.827 0.569 0.830
Res-DR w/o ∆p∆δ × × 0.763 0.544 0.568 0.716 0.560 0.715 0.831 0.570 0.836
Res-DR w/o ∆p ✓ × 0.783 0.561 0.573 0.734 0.630 0.781 0.833 0.570 0.849
Res-DR w/o ∆δ × ✓ 0.768 0.555 0.581 0.721 0.645 0.791 0.841 0.579 0.836
Res-DR ✓ ✓ 0.793 0.588 0.607 0.750 0.654 0.803 0.854 0.595 0.860

Table 4: Ablation study on loss components in Res-IPS and Res-DR methods, with AUC, NDCG@K
and Recall@K as evaluation metrics. The best result is bolded and the second is underlined.

Training loss COAT YAHOO! R3 KUAIREC

Method LU
CVR LB&U

CVR AUC N@5 R@5 AUC N@5 R@5 AUC N@50 R@50

ESCM2-IPS × × 0.757 0.514 0.558 0.729 0.559 0.714 0.815 0.577 0.860
Res-IPS-None × × 0.755 0.522 0.546 0.722 0.552 0.707 0.825 0.580 0.853
Res-IPS-U ✓ × 0.770 0.562 0.570 0.718 0.587 0.741 0.833 0.583 0.849
Res-IPS-B&U × ✓ 0.784 0.573 0.592 0.756 0.635 0.778 0.845 0.592 0.880
Res-IPS ✓ ✓ 0.777 0.575 0.601 0.759 0.639 0.785 0.849 0.601 0.885

ESCM2-DR × × 0.760 0.553 0.568 0.715 0.566 0.722 0.827 0.569 0.830
Res-DR-None × × 0.765 0.544 0.550 0.714 0.575 0.735 0.824 0.562 0.823
Res-DR-U ✓ × 0.770 0.565 0.577 0.722 0.604 0.756 0.836 0.562 0.842
Res-DR-B&U × ✓ 0.790 0.574 0.601 0.744 0.640 0.782 0.848 0.586 0.848
Res-DR ✓ ✓ 0.793 0.588 0.607 0.750 0.654 0.803 0.854 0.595 0.860

unbiased data, and highlights the importance of leveraging both kinds of data. Meanwhile, the direct
use of multi-task learning approaches to IPS and DR estimators cannot benefit the debiasing perfor-
mance under hidden confounding. The proposed Res-IPS and Res-DR methods stably outperform
previous methods on all three datasets, which provides empirical evidence of the existence of hidden
confounding in the real-world recommendations, as well as the effectiveness of our methods for
removing hidden confounding. Table 2 shows the results of AUC and NDCG@50 on KUAIREC with
varying unbiased data ratios. The performance of all methods improves with increasing unbiased
data ratio, and our method stably outperforms the baseline methods by a large margin.

Ablation Studies. The two losses LU
CVR and LB&U

CVR as well as the two residual terms ∆δ and ∆p are
crucial in the proposed multi-task learning approach. We further conduct ablation studies with respect
to the residual networks and the training loss components, respectively. From Table 3, Res-DR using
either the propensity residual network or the imputation residual network can stably outperform
ESCM2-DR, and Res-DR achieves the best performance when two residual networks are adopted
together. When both propensity and imputation residual networks are removed, although Res-DR
includes LU

CVR and LB&U
CVR losses, it has similar performance to ESCM2-DR, which further indicates

that the performance improvement of Res-DR can be attributed to the effectiveness of the residual
networks. From Table 4, both Res-IPS and Res-DR methods without LU

CVR loss or without LB&U
CVR

loss outperform ESCM2-IPS and ESCM2-DR. Similarly, our methods achieve the best performance
when both two losses are preserved. Note that the model with LB&U

CVR loss performs better than the
model with LU

CVR loss, which is attributed to LB&U
CVR corrects for biased learned propensities and

biased imputed errors under the presence of hidden confounding. In addition, unbiased data does
not significantly improve the debiasing performance when it is directly used to train the prediction
model through LU

CVR, due to the overfitting problem caused by the limited unbiased data size, which
is consistent to the poor performance of MF (uniform) in Table 1. Meanwhile, minimizing LU

CVR does
not provide any residual information for biased learned propensities and biased imputed errors.

In-Depth Analysis. The proposed methods contain the prediction model, imputation model, propen-
sity model, and residual models, thus it is meaningful to investigate the effect of different optimization
algorithms among these models on the debiasing performance. Specifically, we implement the fol-
lowing learning approaches on the Res-DR: (1) Joint Learning (JL) [52], which joint optimizes the
prediction model and the imputation model. (2) Double Learning (DL) [11], which adds a parameter
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(a) R@5 on YAHOO! R3 (b) R@50 on KUAIREC (c) N@5 on YAHOO! R3 (d) N@50 on KUAIREC

Figure 2: Joint learning (JL), double learning (DL), and multi-task learning (MTL) on Res-DR.

(a) AUC on YAHOO! R3 (b) AUC on KUAIREC (c) N@5 on YAHOO! R3 (d) N@50 on KUAIREC

Figure 3: Effects of varying weights γ of the consistency loss LB&U
CVR on Res-IPS and Res-DR.

sharing mechanism between the prediction model and the imputation model based on JL. (3) Multi-
Task Learning (MTL) adopted in our methods. Figure 2 shows the experiment results. Remarkably,
MTL significantly outperforms JL and DL, whereas in Table 1 DR and MTL-based ESCM2-DR
perform similarly. This is because DR only has three training models (namely the prediction model,
imputation model, and propensity model), whereas the proposed Res-DR has two additional residual
models. As the number of models increases, JL can no longer bridge the models efficiently, which
leads to a slow convergence and limited performance. Instead, DL increases the connection between
models via timely parameter sharing. Finally, MTL trade-offs the different tasks in Res-DR to train
all the models, leading to the optimal debiasing performance.

Sensitivity Analysis. We perform the sensitivity analysis of γ on Res-IPS and Res-DR, as shown
in Figure 3. Our methods achieve the optimal performance when γ is moderate (0.005-0.01). This
is because when γ is too large, it hurts the performance of other tasks (e.g., CVR model training),
and when γ is too small, it makes the consistency loss be paid with less attention, so that the hidden
confounding cannot be effectively removed. Res-IPS and Res-DR stably outperform ESCM2-IPS
and ESCM2-DR under varying γ. This further illustrates the effectiveness the consistency loss.

6 Conclusion

This paper investigates the use of a few unbiased ratings to calibrate the learned propensities and
imputed errors for removing hidden confounding. First, we theoretically reveal the biasedness of
previous debiasing methods in the presence of hidden confounding. Next, we propose a multi-task
debiasing residual networks learning approach for training the debiased prediction model. By building
residual networks and calibrating the biased learned propensities and biased imputed errors, the
prediction model is trained on both the calibrated IPS or DR losses and the unbiased dataset to ensure
the unbiasedness. Extensive experiments on two benchmark datasets and a large-scale industrial
dataset validate the effectiveness of our proposal. A limitation of this work is the use of slightly more
model parameters due to the need to address hidden confounding with residual networks.
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