
RecAD: Towards A Unified Library for Recommender Attack and
Defense

Changsheng Wang∗
wcsa23187@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

Jianbai Ye∗
jianbaiye1999@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

Wenjie Wang†
wenjiewang96@gmail.com

National University of Singapore
Singapore

Chongming Gao
chongming.gao@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

Fuli Feng
fulifeng93@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

Xiangnan He
xiangnanhe@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

ABSTRACT
In recent years, recommender systems have become a ubiquitous
part of our daily lives, while they suffer from a high risk of being
attacked due to the growing commercial and social values. Despite
significant research progress in recommender attack and defense,
there is a lack of a widely-recognized benchmarking standard in
the field, leading to unfair performance comparison and limited
credibility of experiments. To address this, we propose RecAD, a
unified library aiming at establishing an open benchmark for rec-
ommender attack and defense. RecAD takes an initial step to set up
a unified benchmarking pipeline for reproducible research by inte-
grating diverse datasets, standard source codes, hyper-parameter
settings, running logs, attack knowledge, attack budget, and evalu-
ation results. The benchmark is designed to be comprehensive and
sustainable, covering both attack, defense, and evaluation tasks,
enabling more researchers to easily follow and contribute to this
promising field. RecAD will drive more solid and reproducible re-
search on recommender systems attack and defense, reduce the
redundant efforts of researchers, and ultimately increase the credi-
bility and practical value of recommender attack and defense. The
project is released at https://github.com/gusye1234/recad.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender Systems; Shilling Attack and Defense; Benchmark

∗The first two authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’23, September 18–22, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0241-9/23/09. . . $15.00
https://doi.org/10.1145/3604915.3609490

ACM Reference Format:
Changsheng Wang, Jianbai Ye, Wenjie Wang, Chongming Gao, Fuli Feng,
and Xiangnan He. 2023. RecAD: Towards A Unified Library for Recom-
mender Attack and Defense. In Seventeenth ACM Conference on Recom-
mender Systems (RecSys ’23), September 18–22, 2023, Singapore, Singapore.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3604915.3609490

1 INTRODUCTION
In recent decades, recommender systems have become increasingly
important in various areas, including E-commerce recommendation
[20], short video entertainment [15], news headlines [28], and on-
line education [42]. However, the widespread use of recommender
systems has also led to concerns regarding their security. When an
attacker successfully attack a recommender system, users may be
offended by malicious recommendations, and the platform owner
may lose the trust of users in the platform. Additionally, merchants
who rely on recommender platforms may suffer from commercial
losses. Malicious attacks may even cause recommender systems to
engage in unethical or illegal behavior, resulting in adverse effects
on society. Therefore, it is essential to address these security risks
and ensure the integrity of recommender systems to maintain user
trust and prevent any negative consequences.

Recently, industry and academia are trying to develop strategies
for both attacking and defending recommender systems, especially
pay attention to the techniques about shilling attacks and defense
[43]. In shilling attacks, fake users are generated and assigned high
ratings for a target item, while also rating other items to act like nor-
mal users for evading. There are three main kinds of shilling attack
methods: heuristic methods, gradient methods, and neural meth-
ods. Heuristic methods [5, 21, 27] involve artificially or randomly
selecting items based on user preferences, and then intuitively fab-
ricate interaction information. Gradient methods [12, 23] estimate
the gradients of maximizing attack objectives to directly optimize
the interactions of fake users, while Neural methods [25, 26, 38]
optimize the neural networks parameters to predict the optimal
fake user behaviors for maximizing attack objectives.

To combat these attacks, many defense methods [7, 10, 30] are
emerging to enhance the defense ability of existing recommenda-
tion models. Essentially, these defense models aim to distinguish
between fake data generated by the attack model and real user data,

234

https://orcid.org/0009-0007-0957-638X
https://orcid.org/0009-0004-9095-4947
https://orcid.org/0000-0002-5199-1428
https://orcid.org/0000-0002-5187-9196
https://orcid.org/0000-0002-5828-9842
https://orcid.org/0000-0001-8472-7992
https://github.com/gusye1234/recad
https://doi.org/10.1145/3604915.3609490
https://doi.org/10.1145/3604915.3609490
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604915.3609490&domain=pdf&date_stamp=2023-09-14

RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

ensuring that the recommendation model uses as much real data
as possible [44]. Currently, the mainstream defense model can be
divided into three types according to whether the label of fake users
can be obtained [1, 10, 37]. As new attack methods emerge, defense
models are constantly evolving to keep up with these threats. There-
fore, staying up-to-date with the latest attack and defense methods
is essential for maintaining the security of recommender systems.

With the continuous emergence of new attack and defense al-
gorithms in the field of recommender system security, there are
several research challenges that deserve attention. Firstly, while
many articles provide details about their experiments, there is of-
ten a lack of standardization in dataset processing methods, which
can lead to unfair comparison. Secondly, there is a lack of unified
settings for attack experiments. Various works usually leverage
different experimental setting, making it difficult to compare and
evaluate different models. It is critical to establish a standardized
approach for similar attack settings to facilitate the comparison
and evaluation of different models. Additionally, many works lack
public code, which can create repetition and difficulties for sub-
sequent researchers trying to advance the field. To address these
challenges, researchers should strive to provide clear and standard-
ized descriptions of dataset processing methods, unified settings
for attack experiments, and make their code publicly available to
facilitate replication and extension of their work. These efforts can
help promote the development of the recommender attack and de-
fense and contribute to more robust and effective recommender
system security solutions.

To address the aforementioned challenges, we have initiated a
project to develop a unified framework for Recommender Attack
and Defense, named RecAD. RecAD aims to improve the repro-
ducibility of existing models and simplify the development process
for new recommender attack and defense models. Our benchmark-
ing library design is innovative and effective, revealing several
advantages compared to earlier attempts.

• Unified library framework. RecAD is implemented using
Pytorch1, one of the most popular deep learning frameworks.
The library is composed of three core modules, namely the
data module, model module, and evaluation module. The li-
brary supports a vast array of options provided by each mod-
ule, and a straightforward configuration ensures that users
can promptly complete algorithm reproduction and compar-
ison. The seamless interface integration of the three core
modules also enables the minimal adjustment for incorporat-
ing new algorithms, allowing for continuous development
and extension within our framework in the future.

• Comprehensive benchmarkmodels and datasets.RecAD
provides support not only for replacing individualmodels but
also for integrating a wide range of research issues. From
generating fake attack data to defending against existing
data and injecting data into victim models, RecAD covers
the entire spectrum of shilling attack and defense research.
It provides an array of choices for all models and datasets,
guaranteeing an ample assortment of combinations for re-
searchers to utilize. This allows them to execute, compare,

1https://pytorch.org/.

and assess the entire procedure, relying on lucid instruc-
tions and configurations. RecAD is highly adaptable and
scalable, with original dataset copies that can be effortlessly
transformed into a practical form using the provided prepro-
cessing tools or scripts. Additionally, we are continuously
expanding our library with additional datasets and methods
to better serve the needs of the community and researchers.

• Extensive and standard evaluation protocols. RecAD
offers evaluation methods from two perspectives: attack eval-
uation and defense evaluation. Researchers interested in
continuing the offensive direction or those focusing on the
defensive direction can use the corresponding evaluation
methods. Additionally, it provides standard evaluation tech-
niques for assessing the effectiveness of defense models,
encapsulating the entire evaluation process within a singu-
lar module enables RecAD to more readily accommodate
more evaluation techniques, thus enhancing its adaptability
and versatility.

• Openness and high integration of models. Openness
is crucial for promoting transparency, collaboration, and re-
producibility in computer science research. RecAD adopts
a highly integrated approach, simplifying the relationships
between modules as much as possible and making the corre-
sponding parameters publicly available at each module. This
ensures that subsequent researchers who use our framework
to add new models only need to make the corresponding
modules public, allowing other researchers to quickly and
efficiently reproduce the work and ensure the openness of
the field in the future.

• The generalization of attacker’s knowledge. The at-
tacker’s knowledge level directly impacts the effectiveness
of the attack. A high degree of accessible knowledge about
the recommender system allows an attacker to craft adver-
sarial examples that can evade the model’s defenses. RecAD
can elevate white-box attacks to gray-box attacks and cus-
tomize the proportion of data accessible by the attackers
for gray-box attacks [13], promoting the fair comparison
between a wide range of attackers.

2 RELATEDWORK
2.1 Overview of Shilling Attack and Defense
In the past two decades, researchers have conducted experiments
to demonstrate the feasibility of attacking real-world recommender
systems, such as YouTube, Google Search, Amazon, and Yelp. These
experiments have shown that it is possible to manipulate recom-
mendation systems in practice, resulting in an increasing focus
on this field from both the academic community and industry. To
promote its development, researchers have typically focused on
either shilling attacks or defense mechanisms. With the advance-
ments in deep learning, the field has seen a notable increase in the
effectiveness of these methods.

2.2 Shilling attack
The objective of an shilling attack is to interfere with the recom-
mendation strategy of the victim recommender system through a
series of measures [9, 31, 32]. The ultimate goal is to enhance the

235

https://pytorch.org/

RecAD: Towards A Unified Library for Recommender Attack and Defense RecSys ’23, September 18–22, 2023, Singapore, Singapore

exposure of a specific target item among all users after the recom-
mender model is trained. To achieve this objective, attackers often
inject fake users into the historical interactive data, or training ma-
trix, of the recommender system. However, if these fake users are
not adequately protected, they will be sent into the recommender
system model during the training process, thus disrupting the rec-
ommendation strategy of the system. As a result, the key challenge
of an shilling attack is to construct the interaction behaviors of the
fake users. The interaction behaviors of the constructed users can
generally be classified into three categories:

• Heuristic attacks. Heuristic attacks involve selecting items
to create fake profiles based on subjective inference and ex-
isting knowledge. The goal is to strengthen the connection
between fake users and other real users while evading de-
fense methods and achieving exposure enhancement of the
final target item [5, 27]. Currently, existing methods include
the Random Attack [21], Average Attack [22], Bandwagon
Attack, and Segment Attack [6]. The Random Attack is a
low-knowledge method that selects filler items randomly,
while the Average Attack selects filler items randomly and
requires more knowledge. In the case of an Average Attack,
the target item needs to be given the highest rating to im-
plement a push attack. Segment Attack selects items of the
same category as the target item and maximizes their rating,
with the goal of creating a stronger correlation with the cor-
responding target user among real users so that it can attack
more effectively.

• Gradient attacks. Gradient attacks involve relaxing the
discrete space to a continuous space to ensure that the objec-
tive function can be optimized by the gradient to achieve the
optimal attack effect. For instance, Li et al. [12, 23] developed
poisoning attacks optimized for matrix factorization-based
recommender systems, while Yang et al. [45] developed poi-
soning attacks optimized for co-visitation rule-based rec-
ommender systems. Additionally, there are gradient attack
methods based on Next-item [49], and graph [14]. However,
all Gradient Attacks require known types of recommender
systems to carry out specific optimization, which does not
have good generalization. Moreover, in order to achieve bi-
level optimization [19], directly adjusting interactions ac-
cording to gradients involved transforming the discrete in-
teractions into continuous optimization. During the process
of re-discretization, information loss occurred, leading to
sub-optimal results and the lack of robustness in the model.

• Neural attacks. Neural Attacks, primarily inspired by deep
learning [19], generate realistic profiles that have a signif-
icant impact on recommender systems by optimizing the
parameters of neural networks to maximize the objective
function. WGAN [2] draws onWasserstein’s distance, which
has shown better empirical performance than the original
GAN [17]. It can emulate real user behavior with fake user
behavior to achieve the effect of fake user behavior. AIA [38]
reviewed the bi-level optimization problems of the surrogate
model and proposed time-efficient and resource-efficient so-
lutions. AUSH [25] and Legup [26] solve the randomness
caused by noise generation in common models, making the

generated template artificially based on known knowledge,
resulting in a more undetectable configuration file. When the
attacker’s knowledge is limited to a black box, researchers
use RL attack [11, 36, 52] to complete the attack, with the
attacker adjusting changes based on feedback given by the
spy user in the victim model. The methods of Neural Attacks
all show better performance on real datasets than Gradient
and Heuristic attacks.

In addition to the challenges associated with constructing effec-
tive shilling attacks, another emerging issue is the knowledge of
the attacker [5]. In today’s world, data security and privacy are
increasingly important to both users and companies. This makes it
increasingly challenging for attackers to obtain the necessary user
data to construct effective attack models. As a result, researchers
have begun to consider the attacker’s knowledge as a key constraint
for the attack model. The attacker’s knowledge can be classified
into three categories: white box, grey box, and black box. In a white
box attack, the attacker has complete knowledge of the target rec-
ommender model, which includes all the data of the victim model
used for training and the network structure and parameters of the
victim model. In a grey box attack, the attacker can only access
part of the training set of the target model and has no knowledge
of the victim model. In a black box attack, only some spy users are
allowed as attack feedback.

In addition to shilling attacks, there are other types of attacks,
such as attacks that involve modifying the real user interaction
history [48] or attacks based on federated learning recommender
models [33, 34, 46, 55]. The former is not very effective due to
the adoption of multiple privacy protection mechanisms by real
recommender platforms, such as email and mobile phone hardware
binding. Therefore, this method is easily detected and defended
by the platform and is insufficient for a large-scale attack. On the
other hand, the latter is still in the theoretical research stage and
the models proposed are too basic, at the same time this kind of
method has not yet been implemented by companies. This means
that the criteria for the above two methods still need to be explored
by more researchers.

2.3 Defense
A defense model can be viewed as a checkpoint responsible for
detecting possible fake users in the data before it is sent to the
recommender model. The defense model eliminates fake users to
ensure that the recommendation results are not interfered with
by attackers to the greatest extent possible. Some defense models
attempt to find the law of data distribution from all the data or ob-
tain the probability of the corresponding label through probability
methods to predict and classify. Currently, the defense direction
can be classified into three categories:

• Supervised defense models, which need to be pre-labeled
with true and false data. The goal of the model is to learn the
relationship between the input and output variables, so that
it can make predictions on new data. The learning process
involves minimizing the difference between the predicted
output and the true output for each example in the training
data. In other words, the model is trained to approximate

236

RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

the mapping from inputs to outputs. In the direction of rec-
ommender defense, Supervised work emerges in the initial
exploration of this field, such as CoDetector [10], DegreeSAD
[24], BayesDetector [44].

• Semi-supervised defense models, as explored in [7, 42],
aim to use a minimal amount of false data while still main-
taining the purpose and accuracy of the supervised method.
This is because attackers typically use a small amount of
data to launch attacks, leading to an inherent imbalance
between true and false training samples, highlighting the
crucial importance of maintaining the supervised aspect of
the method.

• Unsupervised defense models, which have been inten-
sively investigated in recent years, including traditional ma-
chine learning models such as probabilistic models [1], sta-
tistical anomaly detection [4], PCA [30], SVM [54], and K-
means [8]. More recently, network models have been used
for detection, such as Graph Embedding [51], Sequential
GANs [35], Recurrent Neural Network [16], and Dual-input
CNN [47].

In addition to the model-based prediction introduced above to
realize the defense of the recommender platform, some scholars
also have trained the recommender model by using adversarial data
training [18, 29, 37, 41] so that the recommender model can have
better generalization in the face of fake data.

2.4 Benchmarking for Recommender Attack
and Defense

Despite the recent growth in the field of RS security, different
studies have employed different data sets, evaluation methods, and
knowledge constraints, resulting in significant fairness issues when
comparing different models. This has had a negative impact on
the steady development of the field. Although some works have
attempted to address these issues in the past, there is still a need for
a comprehensive and unified library to solve the current dilemma.

For instance, in AUSH [25], the author provided a code that inte-
grated multiple attack models, but the workflow was inefficient and
required a significant amount of time for subsequent researchers to
study the code structure. Additionally, the code was not friendly for
adding new models under the same framework and focused more
on the study of attack models. Moreover, the code only provided
a limited data set and did not include the data processing method,
making it difficult to test the model on a working public data set. In
SDLib2, some defense models and attack models were provided, but
the attack model was outdated and did not complete the entire pro-
cess from attack generation to defense detection and injection into
the recommender model. Furthermore, the code language used in
this work was obsolete. Our framework overcomes the limitations
of previous methods by abstracting each component into relatively
independent modules, ensuring the unity and extensibility of the
model. This allows for better maintenance and development of the
framework in the future.

2https://github.com/Coder-Yu/SDLib.
2https://grouplens.org/datasets/movielens/1m/.
3https://www.yelp.com/dataset.

Manipulate White Box

Victim Model

Defense Model

Attacker

Batch Gray Box

Train DefenseAttack Evaluation

Data Model Workflow

Execution

Configuration Default FallbackCommand Lines Keywords

Black BoxLoad

Figure 1: The overall framework of RecAD.

Table 1: Collected data in our library.

Dataset #Users #Items #Interations #Density
MovieLens-1m* 5,950 3,702 567,533 0.257%
Yelp* 54,632 34,474 1,334,942 0.070%
Amazon-Game* 3,179 5,600 38, 596 0.216%
Book-Crossing 105,284 340,557 1,149,780 0.003%
Last.FM 1,892 17,632 92,834 0.278%
Epinions 116,260 41,269 188,478 0.004%
Gowalla 107,092 1,280,969 6,442,892 0.005%
*means the dataset is used in the experiments and only kept high-frequency users
and items (at least 10 interactions).

3 THE LIBRARY-RECAD
The overall framework of RecAD is illustrated in Figure 1. At the
bottom, our library maintains a flat structure for the default hyper-
parameters globally, and the core components are built upon it with
automated parameter loading (see Section 4). Our library abstracts
the core modules at three levels: data, model, and workflow. In
the following, we briefly present the designs of these three core
modules.

3.1 Data Module
The data module serves as the fundamental part of the entire li-
brary, as it provides essential runtime information such as batches
and indicators of scale. It takes charge of dataset loading, batch
generation, and fake data manipulation.

3.1.1 Dataset Loading. To create an actively-contributed bench-
mark, it is important to make the addition of new datasets as easy
as possible. Therefore, we have designed the data module to keep
the required dataset formats simple and flexible. At present, our
library only requires the human-readable CSV format with specific
column names to load datasets into explicit or implicit interactions.
This design decision allows users to easily add their own datasets
to the library without having to modify the codebase. Our library
already supports multiple datasets (as shown in Table 1), and we
also provide auxiliary functions to convert datasets from other
well-known recommender frameworks, such as RecBole [53]. This

237

https://github.com/Coder-Yu/SDLib
https://grouplens.org/datasets/movielens/1m/
https://www.yelp.com/dataset

RecAD: Towards A Unified Library for Recommender Attack and Defense RecSys ’23, September 18–22, 2023, Singapore, Singapore

generate_filter

generate_batch

generate_fake

generate_filter

generate_batch

generate_fake

generate_batch
partial_sample

generate_filter

generate_batch

generate_fake

generate_batch

parameters

Victim Model

Data
Module

Attacker
Model

Defense
Model

White Box Gray Box Black Box

Victim Model

Data
Module

Attacker
Model

Defense
Model

only feedback

Victim Model

Data
Module

Attacker
Model

Defense
Model

Figure 2: Component workflow under different attack knowledge.

General model:

MF
LightGCN
NCF
...

Heuristic Method:

Random
Average
Segment
Bandwagon

Gradient Method:

PGA

Neural Method:

AIA
AUSH
LegUp

Supervised:

DegreeSAD
CoDetector
BayesDetector

SemiSupervised:

SemiSAD

Unsupervised:

PCASelect
FAP

Victim model

WGAN
RAPU
DADA

 Defense modelAttacker model

Figure 3: The models that are supported by RecAD.

provides further flexibility for users to utilize the datasets that they
are familiar with.

3.1.2 Batch Generation. Our library prioritizes seamless integra-
tion between datasets, models, and workflows, which presents chal-
lenges for batch generation. To address this, we design a flexible and
generic interface (generate_batch). The interface allows the caller to
provide runtime configuration parameters (e.g., pairwise sampling;
binarizing the ratings) and dispatches itself to the corresponding
behavior. This design reduces the workloads on developers who
are attempting to adapt their data and allows them to focus on
providing as much runtime information as possible.

3.1.3 Fake Data Manipulation. In our library, we recognize the
importance of addressing the manipulation of fake data during
runtime. Specifically, we must account for both the injection of fake
data from attacker models and the filtering of fake data by defense
models. We address this challenge with unified interfaces named
inject_data and filter_data, respectively. These interfaces are called
by the attacker and defense models to manipulate the dataset.

3.2 Model Module
The model implementation is the most versatile part of the library,
and we offer maximum flexibility to accommodate different ap-
proaches. To account for the similarities and differences between

models, we introduce a general base model and its successors: the
victim, attacker, and defense models. Figure 3 presents the models
that have been implemented.

3.2.1 Base Model. We don’t provide framework-level abstractions
for model optimization. Instead, the models are responsible for
their own single-epoch training and evaluation, which can be im-
plemented through a set of auxiliary functions provided by the
library. This design choice is aimed at reducing the complexity
of the framework and enabling the integration of a wide range
of models, without requiring modification of the framework-level
abstractions for each individual model. To facilitate this, we use
unified interfaces (train_step, test_step) that enable the callers to
initiate the training or evaluation process of the models.

3.2.2 Victim Model. Victim models are recommender models, and
the library provides a unified interface for training and testing them.
This makes it easy to integrate any victim model into the library
without the need for modification of the core framework.

3.2.3 Attacker Model. In our library, the training of the attacker
model shares the same interface with victim models (i.e. train_step).
After training, the attacker model generates the fake data through
a unified interface (generate_fake) and then forwards the contami-
nated data to the next module. Since the full set of the dataset is
not necessarily exposed (e.g. Gray box attacking in Figure 2), gener-
ate_fake should explicitly receive the target dataset as a parameter.

3.2.4 Defense Model. The defense model is trained on the attacked
data through the same training interface. The objective of the model
is to output a filtered dataset with fake data removed. Our library
summarizes a unified interface generate_filter to wrap the imple-
mentation details of each defense model.

3.3 Workflow Module
This module is the corresponding abstraction of different attack
knowledge (Figure 2). Theworkflowmodule holds the instantiations
of the data module and model module, controlling the exposure of
data and the interaction of modules. It also contains the boilerplate
code for the training loop and evaluation callbacks (e.g., early stop;
report after training).

3.3.1 Data Exposure. The data exposure level for different models
varies depending on the attack knowledge settings and the running
stages (as shown in Figure 2). For instance, the attacker model may

238

RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

1 data = dataset.from_config("implicit", "yelp")
2 victim_model = model.from_config("victim", "lightgcn")
3 attack_model = model.from_config("attacker", "aush")
4
5 config = {
6 "victim_data": data,
7 "victim": victim_model,
8 "attacker": attack_model,
9 }
10 workflow = workflow.from_config("no_defense", **config)
11 workflow.execute()

Figure 4: A code snippet of module instantiations of RecAD.

be exposed separately to full, partial, or zero training data. Similarly,
the victim model may be trained on clean data initially and later
re-trained on the contaminated data during the attack process. The
workflow module in our library is responsible for constructing the
appropriate data flow according to the attack knowledge and en-
suring that no accidental data leakage occurs. This way, our library
provides a flexible and secure environment for implementing and
testing various attack and defense models under different settings.

3.3.2 Module Interaction. The interactions between modules vary
between attacks. In a white-box attack, the model has direct ac-
cess to all the training data, whereas, in a black-box attack, the
model receives feedback from the victim without any access to
the training data. For workflows [26, 38] where no defense model
is involved, the fake data generated by the attacker model flows
directly into the victim’s training without filtering. The workflow
module arranges the dependencies of modules and prevents any
inappropriate interactions between them.

3.3.3 Training & Evaluation. In order to better control the data
exposure and module interaction, we give the workflow module
the responsibility for launching the training and evaluation of the
contained models. The workflow module contains the boilerplate
codes for wrapping the training loop outside the models’ train_step.
Also, we design a hooking mechanism to provide flexibility for
models to set up their evaluation callbacks. This allows models
to define their own evaluation metrics to evaluate the model’s
performance at different stages of the training process.

4 USAGE GUIDELINE OF THE LIBRARY
In the following two parts, we first show the typical usage to in-
stantiate the existing modules of our library, then detail the steps
to extend our library with a new implementation.

4.1 Module Instantiations
Attacking a recommender system often involves using multiple
datasets and machine learning models, which makes the training
and testing process more complex than for regular recommender
systems. Our library simplifies this process by exposing the nec-
essary modules to users and providing a unified interface called
from_config for instantiating them (Figure 4). Two kinds of pa-
rameters may be needed from from_config: hyper-parameters and
runtime parameters.

4.1.1 Hyper-parameters. Our library employs the hashing table to
store all default hyper-parameters of modules together and offer

Victim
Model

Data
Module

Attacker
Model

Defense
Model

instantiate

execute

Workflow Module

result

user configuration

runtime

Figure 5: An illustration of lazy instantiation.

global access across programs. While instantiating, our library
automatically loads default parameters on-fly from the hashing
table and updates them from the keyword arguments passed by the
user. The decoupling of default hyper-parameters and the actual
module implementation facilitates a quick overview of configurable
parameters for the user.

4.1.2 Runtime Parameters. Runtime parameters are the parameters
that won’t be settled before the runtime. For example, the model
module in Figure 4 normally needs the numbers of the user and
item to create the embeddings when instantiating. Due to the data
injection or data filtering from the attacker model, the actual num-
bers of the user and item are not known before the runtime. But
the dependency between the model and data module is clear, and
it is burdensome to ask the user to manually pass in the required
instances in the program. Hence, we implement lazy instantiation
(Figure 5) to make runtime parameters transparent at the user level.
The module won’t actually instantiate at the time the user call
from_config if the needed runtime parameters are not passed. In-
stead, the workflowwill sort out the dependencies betweenmodules
and automatically fill in the required runtime parameters to com-
plete the instantiation. This decouples the instantiation of modules
from the availability of runtime parameters, making the library
more flexible and adaptable to different scenarios.

4.2 Module Extension
In our library, we provide the base class for all the core modules:
BaseData, BaseModel, and BaseWorkflow. We require the extended
module must be the corresponding base class’s subclass so that the
necessary abstract interfaces can be called properly.

4.2.1 GeneralModule. Two abstractmethodsmust be implemented
for all the modules:

• from_config: users pass arguments to this method to instan-
tiate a new module. Our library has already implemented
the argument sanity checking and overwriting the default
hyper-parameters in the father class. A new module should
assign the default hyper-parameters in this method.

239

RecAD: Towards A Unified Library for Recommender Attack and Defense RecSys ’23, September 18–22, 2023, Singapore, Singapore

Table 2: Overall attack performance on three recommendation datasets.

ML-1M Yelp Amazon

Attack Method Attack Knowledge HR@10 HR@20 HR@50 HR@100 HR@10 HR@20 HR@50 HR@100 HR@10 HR@20 HR@50 HR@100

No Attacker None 0.0050 0.0109 0.0297 0.0656 0.0114 0.0190 0.0375 0.0630 0.0000 0.0000 0.0003 0.0016

RandomAttacker White Box 0.0050 0.0082 0.0228 0.0457 0.0078 0.0112 0.0214 0.0362 0.0000 0.0000 0.0000 0.0000

SegmentAttack White Box 0.0069 0.0123 0.0288 0.0630 0.0057 0.0083 0.0153 0.0258 0.0397 0.0520 0.0675 0.0832

BandwagonAttack White Box 0.0059 0.0119 0.0267 0.0592 0.0066 0.0114 0.0257 0.0431 0.0050 0.0205 0.0523 0.0854

AverageAttack White Box 0.0016 0.0044 0.0167 0.0400 0.0053 0.0090 0.0169 0.0284 0.0085 0.0170 0.0463 0.0914

WGAN White Box 0.0023 0.0060 0.0149 0.0340 0.0143 0.0177 0.0254 0.0344 0.1646 0.1788 0.2043 0.2226

AIA Gray Box 20% data 0.0078 0.0180 0.0459 0.1007 0.0187 0.0273 0.0465 0.0686 0.0441 0.0873 0.4278 0.4839

AUSH Gray Box 20% data 0.0071 0.0151 0.0434 0.0945 0.0135 0.0217 0.0393 0.0617 0.0583 0.1170 0.4392 0.4805

Legup Gray Box 20% data 0.0094 0.0130 0.0283 0.0471 0.0068 0.0099 0.0162 0.0242 0.1847 0.2015 0.2286 0.2566

• info_describe: modules interact through this method. The
method should return a hash table with the named variable
that this module can expose publicly.

4.2.2 Core Modules. The core modules have specialized interfaces
that need to be implemented in addition. We have discussed most
of the below interfaces in Section 3.

• Data Module: The most important interface for this module
is generate_batch. The interface should take the caller’s key-
word arguments as the input, and return the correct batches
of the dataset for later training or testing.

• Model Module: Right now, three kinds of models are con-
sidered: victim model, attacker model, and defense model.
They are all required to be implemented with two interfaces:
train_step and test_step to perform one-epoch training or
testing. Besides, for the attacker model and defense model,
generate_fake and generate_filter need to be implemented,
respectively.

• Workflow Module: An interface named execute should be
implemented for users to explicitly launch the whole work-
flow. Inside the interface, the implementor should correctly
instantiate and arrange the modules.

5 EXPERIMENTS
This section showcases the application of RecAD by implementing
various representative attackers and detection models. Through a
comparison of the outcomes produced by these models, valuable
insights can be derived.

5.1 Comparison of Attackers
We illustrate the performance of all attackers in three recommen-
dation datasets in Table 2. The goal of all attackers is to make the
target items get higher rankings, i.e., larger HR@k.

The two gray box methods, AIA and AUSH, exhibit the best
performances across all metrics and datasets, which attests to the
efficacy of neural network-based approaches. In contrast, the per-
formance of Legup is less consistent. For instance, Legup displays
optimal performance with respect to HR@10 in Amazon, whereas

it experiences a decrease in rank, falling to the middle-lower range,
with respect to HR@20, HR@50, and HR@100. Additionally, in
Yelp, Legup performs inadequately across all metrics, and its weak
robustness is further illustrated in Figure 6. The Legup model has
been observed to exhibit unstable performance, which can be at-
tributed to its training methodology that involves the simultaneous
use of three distinct models. This approach has resulted in the
same training instability issues that are commonly associated with
GANs. Specifically, the use of multiple models in training can lead
to a lack of consistency in the learned representations across the
different models. This, in turn, can create conflicts in the optimiza-
tion process and cause the model’s performance to become highly
dependent on the initialization and training procedures.

The heuristic method RandomAttacker exhibits the poorest per-
formance across all metrics and datasets, even when compared to a
situation in which no attacker is utilized. In other words, Rando-
mAttacker not only fails to enhance the ranking of target items but
also results in a lowered ranking for those items. Due to the highly
randomized nature of heuristic attacks, the resulting attack target
can be skewed by the random effects, resulting in a greater impact
of inserting fake users on vulnerable users.

In addition, other methods, including SegmentAttack, Bandwag-
onAttack, AverageAttack, and WGAN, also occasionally result in a
poorer ranking for the targeted items. Consequently, there remains
substantial room for the development of effective attacker methods
in recommender systems. Currently, the existing methods of attack
are characterized by significant limitations, such as their capacity
to target only specific structures of recommendation algorithms or
their limited ability to transfer attacks to models in other domains.

5.2 Comparison of Defenders
We choose three supervised methods (DegreeSAD, CoDetector, and
BayesDetector), one semi-supervised method (SemiSAD), and two
unsupervised methods (PCASelectUser and FAP) to act as defenders,
tasked with protecting the victim model from five attacker models.
The goal of these experiments is to evaluate several defensemethods
using our framework process.

240

RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

HR@20
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

HR@10
LegupAUSH

AIAWGANBandwagonSegmentAverageRandom Before Detect
After Detect

0.015 0.020 0.025 0.030 0.035 0.040 0.045

HR@50
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

HR@100

Figure 6: Performances of attackers before and after detection by PCASelectUser in the ML-1M dataset.

Table 3: Defense performance against five representative shilling attackers.

AIA Legup WGAN RandomAttacker SegmentAttacker

Gray Box 20% data Gray Box 20% data Gray Box 20% data White Box White Box

Detect Method Data LablePrecisionRecall F1-scorePrecisionRecall F1-scorePrecisionRecall F1-scorePrecisionRecall F1-scorePrecisionRecall F1-score

DegreeSAD True Data 0.782 0.845 0.812 0.782 0.841 0.810 0.782 0.840 0.810 0.780 0.843 0.810 0.781 0.840 0.810

Fake Data 0.720 0.630 0.672 0.717 0.632 0.672 0.716 0.632 0.671 0.718 0.627 0.669 0.715 0.631 0.670

CoDetector True Data 0.898 0.861 0.879 0.887 0.885 0.886 0.897 0.873 0.885 0.908 0.877 0.892 0.904 0.880 0.892

Fake Data 0.796 0.846 0.820 0.840 0.843 0.841 0.811 0.844 0.827 0.809 0.854 0.831 0.823 0.857 0.840

BayesDetector True Data 0.943 0.946 0.945 0.945 0.945 0.945 0.936 0.943 0.940 0.944 0.936 0.940 0.938 0.943 0.940

Fake Data 0.915 0.910 0.912 0.914 0.913 0.913 0.909 0.899 0.904 0.896 0.908 0.902 0.909 0.902 0.905

SemiSAD True Data 0.895 1.000 0.945 0.911 1.000 0.954 0.921 1.000 0.959 0.903 1.000 0.949 0.892 1.000 0.943

Fake Data 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PCASelectUser True Data 0.953 0.985 0.969 0.954 0.986 0.970 0.954 0.986 0.970 0.952 0.983 0.967 0.952 0.983 0.967

Fake Data 0.100 0.034 0.050 0.170 0.057 0.086 0.170 0.057 0.086 0.000 0.000 0.000 0.000 0.000 0.000

FAP True Data 0.963 0.992 0.977 0.970 1.000 0.985 0.970 1.000 0.985 0.872 0.296 0.442 0.953 0.658 0.728

Fake Data 0.526 0.184 0.272 1.000 0.325 0.491 1.000 0.343 0.511 0.920 0.647 0.967 0.968 0.969 0.961

We present three evaluation metrics for the predicted label re-
sults, namely F1-score, Recall, and Precision. To evaluate the per-
formance of our model, we split our data into two categories: True
Data and Fake Data. True Data refers to the original real data used
to train the recommender system, while Fake Data represents the
fake data generated by attackers. We have provided three evalua-
tion metrics for each category instead of treating them as a whole,
as we believe that an effective detector should be able to not only
successfully predict fake data but also avoid misclassifying real
data. Hence, we hope that the values for the three metrics corre-
sponding to both types of data are as high as possible, indicating
that the detector models have better defensive performances from
two dimensions.

Based on the data presented in Table 3, it can be observed that
although the three supervised methods may not exhibit the high-
est performance, they demonstrate consistent performance against
various attacks. Conversely, the semi-supervised method is not
effective in defending against attacks due to the requirement of
more data for training and evaluation, which is restricted by the

attack budget in our approach. Consequently, the semi-supervised
method misclassifies both real and fake data. Among the unsuper-
vised methods, FAP shows promising results for certain attacks
and outperforms other defense methods, but still displays certain
limitations in some metrics.

5.3 Robustness of Attackers Encountering
Detection

For illustration, we visualize the performance comparison before
and after detection by PCASelectUser. Due to space limitations, we
only present the results in the ML-1M dataset.

From Figure 6, we can observe that the performance of all attack
methods will vary after detection. In heuristic methods, Bandwagon
exhibits a notable difference in performance before and after de-
tection. After detection, there is a marked decrease in all four HR
metrics. The potential reason is that Bandwagon selects the popular
items as users’ fakes preferences, where this pattern is relatively
easier to identify, making the generated data easier to be detected.

241

RecAD: Towards A Unified Library for Recommender Attack and Defense RecSys ’23, September 18–22, 2023, Singapore, Singapore

0.0552
0.0589 0.0594

0.0633

0.0745

0.0086 0.0073
0.0112

0.0152

0.0304

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5% 20% 50% 80% 100%

HR@20

AIA Legup

0.0234
0.0256

0.0261
0.0317

0.04

0.0052 0.0039
0.0071

0.0071

0.0158

0

0.006

0.012

0.018

0.024

0.03

0.036

0.042

0.048

5% 20% 50% 80% 100%

HR@10

AIA Legup

Figure 7: Attack performance of AIA and Legup with differ-
ent proportions of data.

In the neural methods, Legup demonstrates a similar phenome-
non with a more significant performance difference before and
after detection. In the HR@10 metric, Legup outperforms all other
attacker methods before the detection, however, it has the worst
performance after the detection. On HR@20, HR@50, and HR@100,
it remains to be the worst one after detection. One possible rea-
son for this is that Legup’s optimization objective is more complex
and it includes a greater number of modules compared to other
attacker methods. Both the two attackers show poor robustness
before and after detection, while other methods exhibited relatively
high robustness after detection.

Counterintuitively, the results of AverageAttack and WGAN
demonstrate an inverse effect: the targeted items rank higher after
detection, i.e., the detection process helps the attackers achieve
their purposes. There are two potential explanations. The first
possibility is that this method generates users that are virtually
indistinguishable from real ones, rendering detection modules the-
oretically unable to identify them. The second explanation is that
the mechanism by which the method generates fake users was not
taken into account by the detection module, allowing it to evade
detection by this detection method.

5.4 Comparison of Defense Evaluation.
In light of the results presented in Figure 6 and Table 3, we have
observed that relying solely on either injection-based or label pre-
diction evaluation for assessing the performance of defense models
may not be adequate. For instance, in the case of theWGANmethod,
the injection-based evaluation indicates that the exposure rate of
the target item is even higher after defense than the direct attack,
while the label prediction evaluation suggests that the current de-
fense approach is more effective in true and false prediction. Thus,
we urge future researchers in this field to use both evaluation meth-
ods to ensure the practical effectiveness of defense models. Our
framework supports both evaluation processes, eliminating the
need for researchers to repeat work.

5.5 Effect of knowledge of the attackers.
To investigate the impact of the scale of models’ knowledge, i.e.,
the quantity of training data for attacker models, on the results, we
visualize the performance of two neural models (AIA and Legup)
as the amount of training data varies. The results are shown in

Figure 7. From the results, we observe that the performance of both
models increases as the amount of data increases, albeit with a
slight fluctuation for AIA at x50%. This inspires us to provide the
attack model with more knowledge. However, as we venture into
the exploration of novel attack algorithms, we must also take into
consideration the importance of placing constraints on the known
knowledge of these algorithms. This is particularly crucial, as it
creates a trade-off between the scale of a model’s knowledge and
the effectiveness of the attack. Striking the right balance between
these two factors is key to maximizing the potential impact of new
attack algorithms while minimizing their potential negative conse-
quences. This trade-off raises the critical question of how we can
best manage the scale of models’ knowledge while still maintaining
the efficacy of the attack. This requires a comprehensive under-
standing of the intricate interplay between the scale of knowledge
and the effectiveness of the attack, and a willingness to explore
new frontiers of research and development in order to push the
boundaries of what is currently possible.

6 CONCLUSION AND FUTUREWORK
Recommender systems have gained significant attention in recent
years. However, the effectiveness and security of these systems
have also become major concerns, as attackers may attempt to ma-
nipulate the recommendations for their own benefit. To promote
research in this important field, we introduce RecAD, a new rec-
ommender library that provides a variety of benchmark datasets,
evaluation settings, attackers, and defense models. By using RecAD,
researchers can simulate a range of real-world scenarios and eval-
uate the robustness of different recommender systems against a
variety of potential attacks.

In addition to advancing attacks and defenses on traditional
models, we also acknowledge the transformative impact of large
language models in the field of recommender systems [3, 40, 50].
Despite their powerful generative capabilities, these models are
also susceptible to various attacks [39]. Therefore, our future re-
search will also focus on the development of attack and defense
mechanisms specifically tailored to large language model-based
recommendations. In order to address this aim, We call upon re-
searchers to collaborate and establish recommender system attack
and defense methods that better align with the evolving needs of
the field, enhancing the security and robustness of these models.

REFERENCES
[1] Mehmet Aktukmak, Yasin Yilmaz, and Ismail Uysal. 2019. Quick and accurate

attack detection in recommender systems through user attributes. In Proceedings
of the 13th ACM Conference on Recommender Systems. ACM, 348–352.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Gener-
ative Adversarial Networks. In Proceedings of the 34th International Conference
on Machine Learning, Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR,
214–223.

[3] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He.
2023. TALLRec: An Effective and Efficient Tuning Framework to Align Large
Language Model with Recommendation.

[4] Runa Bhaumik, ChadWilliams, BamshadMobasher, and Robin Burke. 2006. Secur-
ing collaborative filtering against malicious attacks through anomaly detection.
In Proceedings of the 4th workshop on intelligent techniques for web personalization
(ITWP’06), Boston. AAAI, 10.

[5] Robin Burke, Bamshad Mobasher, and Runa Bhaumik. 2005. Limited knowledge
shilling attacks in collaborative filtering systems. In Proceedings of 3rd interna-
tional workshop on intelligent techniques for web personalization (ITWP), 19th
international joint conference on artificial intelligence (IJCAI). IJCAI, 17–24.

242

RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

[6] R. Burke, B. Mobasher, R. Bhaumik, and C. Williams. 2005. Segment-based
injection attacks against collaborative filtering recommender systems. In Fifth
IEEE International Conference on Data Mining (ICDM’05). IEEE, 4 pp.–.

[7] Jie Cao, Zhiang Wu, Bo Mao, and Yanchun Zhang. 2013. Shilling attack detection
utilizing semi-supervised learning method for collaborative recommender system.
World Wide Web 16 (2013), 729–748.

[8] Anahita Davoudi and Mainak Chatterjee. 2017. Detection of profile injection
attacks in social recommender systems using outlier analysis. In 2017 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 2714–2719.

[9] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. 2019. Assessing
the impact of a user-item collaborative attack on class of users. arXiv preprint
arXiv:1908.07968 (2019).

[10] Tong Dou, Junliang Yu, Qingyu Xiong, Min Gao, Yuqi Song, and Qianqi Fang.
2018. Collaborative shilling detection bridging factorization and user embedding.
In Collaborative Computing: Networking, Applications and Worksharing. Springer,
459–469.

[11] Wenqi Fan, Tyler Derr, Xiangyu Zhao, Yao Ma, Hui Liu, Jianping Wang, Jiliang
Tang, and Qing Li. 2021. Attacking black-box recommendations via copying
cross-domain user profiles. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 1583–1594.

[12] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. 2020. Influence function
based data poisoning attacks to top-n recommender systems. In Proceedings of
The Web Conference. ACM, 3019–3025.

[13] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
Attacks to Graph-Based Recommender Systems. In Proceedings of the 34th Annual
Computer Security Applications Conference. Association for ComputingMachinery,
New York, NY, USA, 381–392.

[14] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
attacks to graph-based recommender systems. In Proceedings of the 34th annual
computer security applications conference. ACM, 381–392.

[15] Chongming Gao, Wenqiang Lei, Jiawei Chen, Shiqi Wang, Xiangnan He, Shijun
Li, Biao Li, Yuan Zhang, and Peng Jiang. 2022. Cirs: Bursting filter bubbles by
counterfactual interactive recommender system. arXiv preprint arXiv:2204.01266
(2022).

[16] Jianling Gao, Lingtao Qi, Haiping Huang, and Chao Sha. 2020. Shilling attack
detection scheme in collaborative filtering recommendation system based on
recurrent neural network. In Advances in Information and Communication: Pro-
ceedings of the 2020 Future of Information and Communication Conference (FICC),
Volume 1. Springer, 634–644.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[18] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In The 41st International ACM SIGIR
conference on research & development in information retrieval. ACM, 355–364.

[19] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu.
2021. Data poisoning attacks to deep learning based recommender systems. arXiv
preprint arXiv:2101.02644 (2021).

[20] Zan Huang, Daniel Zeng, and Hsinchun Chen. 2007. A Comparison of
Collaborative-Filtering Recommendation Algorithms for E-commerce. IEEE
Intelligent Systems 22 (2007), 68–78.

[21] Parneet Kaur and Shivani Goel. 2016. Shilling attack models in recommender
system. In ICICT, Vol. 2. IEEE, 1–5.

[22] Shyong K Lam and John Riedl. 2004. Shilling recommender systems for fun
and profit. In Proceedings of the 13th international conference on World Wide Web.
ACM, 393–402.

[23] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poi-
soning attacks on factorization-based collaborative filtering. Advances in neural
information processing systems 29 (2016).

[24] Wentao Li, Min Gao, Hua Li, Jun Zeng, Qingyu Xiong, and Sachio Hirokawa. 2016.
Shilling attack detection in recommender systems via selecting patterns analysis.
IEICE TRANSACTIONS on Information and Systems 99, 10 (2016), 2600–2611.

[25] Chen Lin, Si Chen, Hui Li, Yanghua Xiao, Lianyun Li, and Qian Yang. 2020.
Attacking recommender systems with augmented user profiles. In Proceedings of
the 29th ACM international conference on information & knowledge management.
ACM, 855–864.

[26] Chen Lin, Si Chen, Meifang Zeng, Sheng Zhang, Min Gao, and Hui Li. 2022.
Shilling Black-Box Recommender Systems by Learning to Generate Fake User
Profiles. IEEE Transactions on Neural Networks and Learning Systems (2022), 1–15.

[27] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80.

[28] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized News
Recommendation Based on Click Behavior. In Proceedings of the 15th International
Conference on Intelligent User Interfaces. ACM, 31–40.

[29] Yang Liu, Xianzhuo Xia, Liang Chen, Xiangnan He, Carl Yang, and Zibin Zheng.
2020. Certifiable robustness to discrete adversarial perturbations for factorization
machines. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 419–428.

[30] Bhaskar Mehta and Wolfgang Nejdl. 2009. Unsupervised strategies for shilling
detection and robust collaborative filtering. User Modeling and User-Adapted
Interaction 19 (2009), 65–97.

[31] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. 2007.
Toward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. ACM Transactions on Internet Technology (TOIT) 7, 4 (2007),
23–es.

[32] Michael P O’Mahony, Neil J Hurley, and Guénolé CM Silvestre. 2005. Recom-
mender systems: Attack types and strategies. In Association for the Advancement
of Artificial Intelligence (AAAI). AAAI, 334–339.

[33] Dazhong Rong, Qinming He, and Jianhai Chen. 2022. Poisoning Deep Learning
based Recommender Model in Federated Learning Scenarios. arXiv preprint
arXiv:2204.13594 (2022).

[34] Dazhong Rong, Shuai Ye, Ruoyan Zhao, Hon Ning Yuen, Jianhai Chen, and
Qinming He. 2022. Fedrecattack: Model poisoning attack to federated recommen-
dation. In 2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2643–2655.

[35] Behzad Shahrasbi, Venugopal Mani, Apoorv Reddy Arrabothu, Deepthi Sharma,
Kannan Achan, and Sushant Kumar. 2020. On Detecting Data Pollution Attacks
On Recommender Systems Using Sequential GANs. CoRR abs/2012.02509 (2020).

[36] Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and
Jun Gao. 2020. Poisonrec: an adaptive data poisoning framework for attacking
black-box recommender systems. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 157–168.

[37] Jinhui Tang, Xiaoyu Du, Xiangnan He, Fajie Yuan, Qi Tian, and Tat-Seng Chua.
2019. Adversarial training towards robust multimedia recommender system.
IEEE Transactions on Knowledge and Data Engineering 32, 5 (2019), 855–867.

[38] Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting adversarially learned
injection attacks against recommender systems. In Proceedings of the 14th ACM
Conference on Recommender Systems. ACM, 318–327.

[39] Jiongxiao Wang, Zichen Liu, Keun Hee Park, Muhao Chen, and Chaowei Xiao.
2023. Adversarial Demonstration Attacks on Large Language Models.

[40] Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, and Tat-Seng Chua. 2023. Gen-
erative Recommendation: Towards Next-generation Recommender Paradigm.

[41] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, Enhong Chen, and Senchao
Yuan. 2021. Fight fire with fire: towards robust recommender systems via ad-
versarial poisoning training. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 1074–
1083.

[42] Zhiang Wu, Jie Cao, Bo Mao, and Youquan Wang. 2011. Semi-SAD: applying
semi-supervised learning to shilling attack detection. In Proceedings of the fifth
ACM conference on Recommender systems. ACM, 289–292.

[43] XingyuXing,WeiMeng, DanDoozan, Alex C. Snoeren, Nick Feamster, andWenke
Lee. 2013. Take This Personally: Pollution Attacks on Personalized Services. In
22nd USENIX Security Symposium (USENIX Security 13). USENIX Association,
671–686.

[44] Fan Yang, Min Gao, Junliang Yu, Yuqi Song, and Xinyi Wang. 2018. Detection
of shilling attack based on bayesian model and user embedding. In 2018 IEEE
30th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE,
639–646.

[45] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems. In Network and Distributed System
Security Symposium.

[46] Jingwei Yi, Fangzhao Wu, Bin Zhu, Yang Yu, Chao Zhang, Guangzhong Sun, and
Xing Xie. 2022. UA-FedRec: Untargeted Attack on Federated News Recommen-
dation. CoRR abs/2202.06701 (2022).

[47] Hongtao Yu, Haihong Zheng, Yishu Xu, Ru Ma, Dingli Gao, and Fuzhi Zhang.
2021. Detecting group shilling attacks in recommender systems based on maxi-
mum dense subtensor mining. In 2021 IEEE International Conference on Artificial
Intelligence and Computer Applications. IEEE, 644–648.

[48] William Zeller and Edward W Felten. 2008. Cross-site request forgeries: Exploita-
tion and prevention. The New York Times (2008), 1–13.

[49] Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. 2020. Practical data
poisoning attack against next-item recommendation. In Proceedings of The Web
Conference. ACM, 2458–2464.

[50] Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan
He. 2023. Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation.

[51] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Lizhen Cui, and Xiangliang
Zhang. 2021. Graph Embedding for Recommendation against Attribute Inference
Attacks. In Proceedings of the Web Conference 2021. ACM, 3002–3014.

[52] Xudong Zhang, Zan Wang, Jingke Zhao, and Lanjun Wang. 2022. Targeted
Data Poisoning Attack on News Recommendation System. arXiv preprint
arXiv:2203.03560 (2022).

[53] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu
Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yingqian Min, Zhichao
Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang,
and Ji-RongWen. 2021. RecBole: Towards a Unified, Comprehensive and Efficient

243

RecAD: Towards A Unified Library for Recommender Attack and Defense RecSys ’23, September 18–22, 2023, Singapore, Singapore

Framework for Recommendation Algorithms. In CIKM. ACM, 4653–4664.
[54] Wei Zhou, Junhao Wen, Qingyu Xiong, Min Gao, and Jun Zeng. 2016. SVM-TIA

a shilling attack detection method based on SVM and target item analysis in

recommender systems. Neurocomputing 210 (2016), 197–205.
[55] Xingchen Zhou, Ming Xu, Yiming Wu, and Ning Zheng. 2021. Deep model

poisoning attack on federated learning. Future Internet 13, 3 (2021), 73.

244

	Abstract
	1 Introduction
	2 Related Work
	2.1 Overview of Shilling Attack and Defense
	2.2 Shilling attack
	2.3 Defense
	2.4 Benchmarking for Recommender Attack and Defense

	3 The Library-RecAD
	3.1 Data Module
	3.2 Model Module
	3.3 Workflow Module

	4 USAGE GUIDELINE OF THE LIBRARY
	4.1 Module Instantiations
	4.2 Module Extension

	5 Experiments
	5.1 Comparison of Attackers
	5.2 Comparison of Defenders
	5.3 Robustness of Attackers Encountering Detection
	5.4 Comparison of Defense Evaluation.
	5.5 Effect of knowledge of the attackers.

	6 Conclusion and future work
	References

