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ABSTRACT
Large Language Models (LLMs) have demonstrated remarkable per-
formance across diverse domains, thereby prompting researchers to
explore their potential for use in recommendation systems. Initial at-
tempts have leveraged the exceptional capabilities of LLMs, such as
rich knowledge and strong generalization through In-context Learn-
ing, which involves phrasing the recommendation task as prompts.
Nevertheless, the performance of LLMs in recommendation tasks
remains suboptimal due to a substantial disparity between the train-
ing tasks for LLMs and recommendation tasks, as well as inadequate
recommendation data during pre-training. To bridge the gap, we
consider building a Large Recommendation Language Model by
tunning LLMs with recommendation data. To this end, we propose
an efficient and effective Tuning framework for Aligning LLMs with
Recommendations, namely TALLRec. We have demonstrated that
the proposed TALLRec framework can significantly enhance the rec-
ommendation capabilities of LLMs in the movie and book domains,
even with a limited dataset of fewer than 100 samples. Additionally,
the proposed framework is highly efficient and can be executed on
a single RTX 3090 with LLaMA-7B. Furthermore, the fine-tuned
LLM exhibits robust cross-domain generalization. Our code and
data are available at https://github.com/SAI990323/TALLRec.
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1 INTRODUCTION
Large Language Models (LLMs) have exhibited remarkable profi-
ciency in generating text that closely resembles human language
and in performing a wide range of tasks [69], including Natural Lan-
guage Processing [4, 32, 54], Robotics [10, 43, 56], and Information
Retrieval [1, 24, 25, 48]. Prior research has also demonstrated the
knowledge-rich and compositional generalization capabilities of
LLMs [36, 41, 53]. Only given appropriate instructions, these mod-
els are able to learn how to solve unseen tasks and inspire their own
knowledge to achieve a high level of performance [33]. The afore-
mentioned capabilities of LLM present promising opportunities
to address the current challenges requiring strong generalization
and rich knowledge in the recommendation field. In this light, it
is valuable to explore the integration of LLMs into recommender
systems, which has received limited attention in prior research.

In recent initial attempts [13, 47], achieving the target relies on
In-context Learning [3], which is typically implemented through the
official OpenAI API [2]. They regard the LLM as a toolformer [42]
of traditional recommendation models (such as MF [27] and Light-
GCN [16]), i.e., the LLM is used for re-ranking the candidate items
filtered by these models. However, these approaches only reach a
comparable performance with traditional models [13, 47]. Worse
still, using only In-context Learning may fail to make recommen-
dations. As shown in Figure 1, we find that ChatGPT either refuses
to answer or always gives positive predictions (likes). Therefore, it
is critical to further explore an appropriate way for more effective
leverage of LLMs in the recommendation.

We postulate that the failure of using only In-context Learn-
ing is because of two reasons: 1) LLMs may not align well with
the recommendation task due to the huge gap between language
processing tasks for training LLMs and recommendation. Besides,
the recommendation-oriented corpus is very limited during the

1007

https://github.com/SAI990323/TALLRec
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604915.3608857&domain=pdf&date_stamp=2023-09-14


RecSys ’23, September 18–22, 2023, Singapore, Singapore Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

100%

Instruction
LLM e.g. 
ChatGPT

R
at

io

100%

0%

53% 47%

Ground Truth

0%

ChatGPT

Fail

LLM Fails !

R
e

c

A
U

C

0.5

0.75

Alpaca

0.46

Davinci
002 (GPT3)

0.49

ChatGPT
0.5

Davinci
003 (GPT3)

0.53

LLMs on Movie Rec 

A
U

C

0.5

0.75

Alpaca

0.53

Davinci
002 (GPT3)

0.46

ChatGPT
0.5

Davinci
003 (GPT3)

0.46

LLMs on Book Rec 

Historical Sequence

Like Dislike

Item Recommend

Rec Task Sample

…

Difficult to 
determine 
whether they 
will like …
(refuse to 
answer)

R
efu

se
Figure 1: Illustration of LLMs for the recommendations. Given users’ interaction history, LLMs predict whether a user will like
a new item through In-context Learning. However, the representative LLMs, e.g., ChatGPT, either refuse to answer or always
give positive predictions (likes) on Movie and Book recommendation tasks. If we ignore the refused answers and calculate AUC
on the remaining samples, we find that LLMs perform similarly with random guessing (AUC=0.5). Refer to Section 3 for more
experimental details.
training phase of LLMs. 2) The effect of LLMs is restricted by the
underlying recommendation models, which may fail to include
target items in their candidate lists due to their limited capacity.
Therefore, we consider building a Large Recommendation Language
Model (LRLM) to bridge the gap between LLMs and the recommen-
dation task and better stimulate the recommendation capabilities
of LLMs in addition to In-context Learning.

Toward this goal, we focus on tuning LLMs with the recommen-
dation task. Considering that instruction tuning is core to letting
the LLM learn to solve different tasks and have strong generaliza-
tion ability [22, 23, 37], we propose a lightweight tuning framework
to adapt LLMs for recommendations, named TALLRec. Elaborately,
TALLRec structures the recommendation data as instructions and
tunes the LLM via an additional instruction tuning process. More-
over, given that LLM training necessitates a substantial amount
of computing resources, TALLRec employs a lightweight tuning
approach to efficiently adapt the LLMs to the recommendation task.

Specifically, we apply the TALLRec framework on the LLaMA-
7B model [46] with a LoRA [21] architecture, which ensures the
framework can be deployed on an Nvidia RTX 3090 (24GB) GPU.
Furthermore, to investigate the minimal computational resources
required, we do experiments in a few-shot setting, utilizing only
a limited number of tuning examples. We conduct detailed exper-
iments in knowledge-rich recommendation scenarios of movies
and books, where the tuned LLaMA-7B model outperforms tra-
ditional recommendation models and In-context Learning with
GPT3.5, a much stronger LLM than LLaMA-7B. The results validate
the efficiency and robustness of our framework: 1) our TALLRec
framework can quickly inspire the recommendation capability of
LLMs in the few-shot setting. and 2) LLMs trained via the TALL-
Rec framework have a strong generalization ability across different
domains (e.g., movie → book).

In total, our contributions are summarized as follows:

• We study a new problem in recommendation — aligning
the LLMs with the recommendation, where we reveal the

limitations of In-context Learning-based approaches and
underscore the significance of instruction tuning.

• We introduce a new TALLRec framework to build Large Rec-
ommendation Language Models, which enables the effective
and efficient tuning of LLMs for recommendation with low
GPU costs and few tuning samples.

• We conduct extensive experiments, validating the effective-
ness and efficiency of the proposed framework, and uncov-
ering its exceptional robustness with seamless navigation
across different domains.

2 TALLREC
In this section, we first introduce the preliminary knowledge for
tuning LLMs and our task formulation, and then present the pro-
posed TALLRec framework.

2.1 Preliminary

Table 1: A tuning sample for a translation task.

Instruction Input
Task Instruction: Translate from English to Chinese.
Task Input: Who am I ?

Instruction Output
Task Output:
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training phase of LLMs. 2) The effect of LLMs is restricted by the
underlying recommendation models, which may fail to include
target items in their candidate lists due to their limited capacity.
Therefore, we consider building a Large Recommendation Language
Model (LRLM) to bridge the gap between LLMs and the recommen-
dation task and better stimulate the recommendation capabilities
of LLMs in addition to In-context Learning.

Toward this goal, we focus on tuning LLMs with the recommen-
dation task. Considering that instruction tuning is core to letting
the LLM learn to solve different tasks and have strong generaliza-
tion ability [22, 23, 37], we propose a lightweight tuning framework
to adapt LLMs for recommendations, named TALLRec. Elaborately,
TALLRec structures the recommendation data as instructions and
tunes the LLM via an additional instruction tuning process. More-
over, given that LLM training necessitates a substantial amount
of computing resources, TALLRec employs a lightweight tuning
approach to efficiently adapt the LLMs to the recommendation task.

Specifically, we apply the TALLRec framework on the LLaMA-
7B model [46] with a LoRA [21] architecture, which ensures the
framework can be deployed on an Nvidia RTX 3090 (24GB) GPU.
Furthermore, to investigate the minimal computational resources
required, we do experiments in a few-shot setting, utilizing only
a limited number of tuning examples. We conduct detailed exper-
iments in knowledge-rich recommendation scenarios of movies
and books, where the tuned LLaMA-7B model outperforms tra-
ditional recommendation models and In-context Learning with
GPT3.5, a much stronger LLM than LLaMA-7B. The results validate
the efficiency and robustness of our framework: 1) our TALLRec
framework can quickly inspire the recommendation capability of
LLMs in the few-shot setting. and 2) LLMs trained via the TALL-
Rec framework have a strong generalization ability across different
domains (e.g., movie → book).

In total, our contributions are summarized as follows:

• We study a new problem in recommendation — aligning
the LLMs with the recommendation, where we reveal the

limitations of In-context Learning-based approaches and
underscore the significance of instruction tuning.

• We introduce a new TALLRec framework to build Large Rec-
ommendation Language Models, which enables the effective
and efficient tuning of LLMs for recommendation with low
GPU costs and few tuning samples.

• We conduct extensive experiments, validating the effective-
ness and efficiency of the proposed framework, and uncov-
ering its exceptional robustness with seamless navigation
across different domains.

2 TALLREC
In this section, we first introduce the preliminary knowledge for
tuning LLMs and our task formulation, and then present the pro-
posed TALLRec framework.

2.1 Preliminary

Table 1: A tuning sample for a translation task.

Instruction Input
Task Instruction: Translate from English to Chinese.
Task Input: Who am I ?

Instruction Output
Task Output: 我是谁?

• Instruction Tuning is a crucial technique to train LLMs with
human-annotated instructions and responses [36]. Generally, in-
struction tuning has four steps (see the example in Table 1). Specifi-
cally, Step 1: Define a task and articulate a “Task Instruction” using
natural language, which usually encompasses a clear definition of
the task, as well as specific solutions to address it. Step 2: Formulate
and construct the input and output of the task in natural language,
denoted as “Task Input” and “Task Output”. Step 3: Integrate the
“Task Instruction” and “Task Input” together to form the “Instruction

• Instruction Tuning is a crucial technique to train LLMs with
human-annotated instructions and responses [36]. Generally, in-
struction tuning has four steps (see the example in Table 1). Specifi-
cally, Step 1: Define a task and articulate a “Task Instruction” using
natural language, which usually encompasses a clear definition of
the task, as well as specific solutions to address it. Step 2: Formulate
and construct the input and output of the task in natural language,
denoted as “Task Input” and “Task Output”. Step 3: Integrate the
“Task Instruction” and “Task Input” together to form the “Instruction
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Table 2: A tuning sample for rec-tuning.

Instruction Input

Task Instruction:
Given the user’s historical interactions, please de-
termine whether the user will enjoy the target new
movie by answering "Yes" or "No".

Task Input:
User’s liked items: GodFather.
User’s disliked items: Star Wars.
Target new movie: Iron Man

Instruction Output
Task Output: No.

Input”, and take the “Task Output” as the corresponding “Instruc-
tion Output”, for each tuning sample. Step 4: Instruction tuning
on LLMs based on the formatted pairs of “Instruction Input” and
“Instruction Output”.

• Rec-tuning Task Formulation.We aim to utilize LLM, denoted
as M, to construct an LRLM, which can predict whether a new
item will be enjoyed by a user. To achieve this objective, we do rec-
ommendation tuning (rec-tuning) on LLMs with recommendation
data. As shown in Table 2, we format recommendation data into
a pattern of instruction tuning. We begin by composing a “Task
Instruction” that directs the model to determine whether the user
will like the target item based on their historical interactions, and
to respond with a binary answer of “Yes” or “No”. To format the
“Task Input”, we categorize the user’s historically interacted items
into two groups based on ratings: the user’s liked items and dis-
liked items, where items are sequentially ranked by interaction
time and represented by textual descriptions (e.g., title and brief
introduction). Besides, “Task Input” also includes a target new item
that the user has never seen. Lastly, we merge “Task Instruction”
and “Task Input” to create a “Instruction Input”, and then set the
expected “Instruction Output” as ‘Yes” or “No” for rec-tuning.

2.2 TALLRec Framework
In this subsection, we introduce the TALLRec framework, which
aims to facilitate the effective and efficient alignment of LLMs with
recommendation tasks, particularly in low GPU memory consump-
tion settings. Specifically, we first present two TALLRec tuning
stages with lightweight implementation, followed by the backbone
selection. As shown in Figure 2, TALLRec comprises two tuning
stages: alpaca tuning and rec-tuning. The former stage is the com-
mon training process of LLM that enhances LLM’s generalization
ability, while the latter stage emulates the pattern of instruction
tuning and tunes LLMs for the recommendation task.

• TALLRec Tuning Stages. For alpaca tuning, we employ the
self-instruct data made available by Alpaca [45] to train the LLM.
Specifically, we utilize the conditional language modeling objective
during the alpaca tuning, as exemplified in the Alpaca repository1.
Formally,

max
Φ

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log (𝑃Φ (𝑦𝑡 |𝑥, 𝑦<𝑡 ) ) , (1)

where 𝑥 and 𝑦 represent the “Instruction Input” and “Instruction
Output” in the self-instruct data, respectively, 𝑦𝑡 is the 𝑡-th token
1https://github.com/tloen/alpaca-lora.

of the 𝑦, 𝑦<𝑡 represents the tokens before 𝑦𝑡 , Φ is the original
parameters of M, and Z is the training set. For rec-tuning, we can
leverage the rec-tuning sample as described in Table 2 to tune the
LLM, similar to alpaca tuning.

• Lightweight Tuning. However, directly tuning the LLM is com-
putationally intensive and time-consuming. As such, we propose to
adopt a lightweight tuning strategy to execute both alpaca tuning
and rec-tuning. The central premise of lightweight tuning is that
contemporary language models may possess an excessive number
of parameters, and their information is concentrated on a low in-
trinsic dimension [21]. Consequently, we can achieve comparable
performance to that of the entire model by tuning only a small sub-
set of parameters [20, 28, 31]. Specifically, we employ LoRA [21],
which involves freezing the pre-trained model parameters and in-
troducing trainable rank decomposition matrices into each layer
of the Transformer architecture to facilitate lightweight tuning.
Therefore, by optimizing rank decomposition matrices, we can effi-
ciently incorporate supplementary information while maintaining
the original parameters in a frozen state. In total, the final learning
objective can be computed as:

max
Θ

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log (𝑃Φ+Θ (𝑦𝑡 |𝑥, 𝑦<𝑡 ) ) , (2)

where Θ is the LoRA parameters and we only update LoRA param-
eters during the training process. Through LoRA, we can complete
training with only one-thousandth of the original LLM parameters
to complete the training process [21]. ·

•Backbone Selection. At present, there are large amounts of LLMs
released, such as GPT series, PaLM, CHinchilla, and LLaMA [3, 4, 18,
46]. Among these, a considerable number of LLMs (such as PaLM
and Chinchilla) do not provide access to their model parameters or
APIs, rendering them challenging to utilize for research or other
applications. Additionally, data security concerns are significant
issues in the recommendation field. Consequently, the utilization of
third-party APIs (such as ChatGPT and text-davinci-003) to leverage
LLMs necessitates further discussion. To replicate the issues that
require consideration in real-world recommendation scenarios, we
intend to simulate the practical utilization of a public LLM and
update its parameters for recommendation purposes. After careful
consideration, we have opted to conduct experiments using LLMs-
LLaMA, which is presently the best-performing open-source LLM,
and whose training data is also publicly available [46].

3 EXPERIMENTS
In this section, we conduct experiments to answer the following
research questions:

- RQ1: How does TALLRec perform compared with current LLM-
based and traditional recommendation models?

- RQ2: How do the different components in TALLRec affect its
effectiveness?

- RQ3: How does TALLRec perform under cross-domain recom-
mendation?

• Dataset. We conduct experiments on two datasets. The statistics
and more details can be found in our released data.
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Figure 2: Illustration of the TALLRec framework constructed by alpaca tuning and rec-tuning two stages. During rec-tuning,
we use the rec-tuning samples with instruction input and output constructed from recommendation data. Notably, we employ
lightweight tuning technology to enhance the efficiency of our TALLRec framework.

- Movie. This is a processed dataset from MovieLens100K [12]
, which comprises user ratings on movies and comprehensive
textual descriptions of movies such as “title” and “director”. Be-
cause we conduct experiments in a few-shot training setting that
requires limited tuning samples, we process the original dataset
by sampling the most recent 10,000 interactions and split them
into training, validation, and testing sets with a ratio of 8:1:1. To
construct a rec-tuning sample, 10 interactions prior to the target
item are retained as historical interactions. Following [16, 66],
we only treat the interactions with ratings > 3 as “likes”, and
those with ratings ≤ 3 as “dislike”.

- Book. This is a book recommendation dataset processed from
BookCrossing [71]. The BookCrossing dataset has user ratings (1-
10) and textual descriptions of books, such as the information of
‘Book-Author’ and ‘Book-Title’. For each user, we randomly select
an item interacted by this user as the prediction target, and sam-
ple 10 interacted items as historical interactions2. Subsequently,
we partition constructed rec-tuning samples into training, vali-
dation, and testing sets with the same ratio of 8:1:1. Additionally,
we binarize the ratings according to a threshold of 5.

• Few-shot Training Setting.We adopt a few-shot training set-
ting, where only a limited number of samples are randomly selected
from the training set for model training. It is referred to as ‘𝐾-shot’
training setting, where 𝐾 represents the number of training sam-
ples used. By setting an extremely small value for K, such as 64, we
could test whether a method can rapidly acquire recommendation
capability from LLMs with severely limited training data.
• Baseline.We compare TALLRec against both LLM-based and tra-
ditional recommendation methods. 1) Existing LLM-based meth-
ods adopt In-context Learning to directly generate recommenda-
tions [13, 47]. For a fair comparison, we align these methods with
TALLRec by using the same instructions. Specifically, we perform
In-context Lerning on different LLMs: 1) Alpaca-LoRA, 2) Text-
Davinvi-002, 3) Text-Daviniv-003, and 4) ChatGPT. Alpaca-LoRA is a
model for reproducing Alpaca results of the LLaMA model by using
LoRA and alpaca tuning. The latter three are GPT series models
from OpenAI.

2) Traditional methods. Since our approach utilizes histori-
cal interactions to predict the subsequent interaction, similar to
the sequential recommendation, we consider the following sequen-
tial models: (i) GRU4Rec [17] is an RNN-based sequential rec-
ommender, which utilizes GRU to encode historical interactions.

2BookCrossing lacks interaction timestamps, thus we can only construct historical
interaction by random sampling.

(ii) Caser [44] utilizes CNN to encode historical interaction se-
quences. (iii) SASRec [26] is a classic transformer-based sequen-
tial recommender. (iv) DROS [60] is a state-of-the-art sequential
recommender model, which harnesses distributionally robust op-
timization for robust recommendations. We use the version im-
plemented by GRU4Rec, provided by the authors.3 The sequential
models above rely on item ID features without considering textual
descriptions of items. However, in our setting, we assume item
text descriptions are available for LLM tuning. To ensure fair com-
parisons, we further consider comparing the following variants of
GRU4Rec and DROS: (v) GRU-BERT is a variant of GRU4Rec that
incorporates a pre-trained BERT [7] to encode text descriptions.
Specifically, BERT encodes text descriptions and outputs a CLS
embedding, which is then concatenated with the original ID embed-
dings of GRU4Rec as the item representations. (vi) DROS-BERT
is integrated with BERT, similar to GRU-BERT.
• Evaluation Metric. Since TALLRec aims to predict user prefer-
ence over a given target item, i.e., a binary classification problem,
we adopt a popular evaluation metric used in recommendation:
Area Under the Receiver Operating Characteristic (AUC).

• Implementation Details. To ensure uniform sequence lengths,
we use the user’s last interacted item to pad the historical interaction
sequences with lengths < the threshold, 10. For all methods, we
optimize parameters using Adam with MSE loss and a learning rate
of 1e-3. We search the weight decay of all methods in {1e-3, 1e-4, 1e-
5, 1e-6, 1e-7}. Following [60], regarding specific hyperparameters of
baselines, we adhered to their original settings. For GRU-BERT and
DROS-BERT, we utilize BERT released by Hugging Face4, while
setting the number of GRU layers to 4 and the hidden size to 1024 for
aligning with BERT’s embedding size. Lastly, we run all methods
five times with different random seeds and report the averaged
results.

3.1 Performance Comparison (RQ1)
We aim to investigate the recommendation performance of various
methods under the few-shot training setting, which enables us to
evaluate how LLMs can be quickly adjusted for recommendation
with limited rec-tuning samples. The evaluation results against
traditional methods are presented in Table 3, while the comparison
against LLM-based methods is depicted in Figure 3 (a).

3https://github.com/YangZhengyi98/DROS.
4https://huggingface.co/bert-base-uncased.
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Table 3: Performance comparison between conventional sequential recommendation baselines and TALLRec under different
few-shot training settings. The reported result is the AUC multiplied by 100, with boldface indicating the highest score. ‡:
significantly better than all baselines with t-test 𝑝<0.01.

Few-shot GRU4Rec Caser SASRec DROS GRU-BERT DROS-BERT TALLRec

movie
16 49.07 49.68 50.43 50.76 50.85 50.21 67.24‡
64 49.87 51.06 50.48 51.54 51.65 51.71 67.48‡
256 52.89 54.20 52.25 54.07 53.44 53.94 71.98‡

book
16 48.95 49.84 49.48 49.28 50.07 50.07 56.36
64 49.64 49.72 50.06 49.13 49.64 48.98 60.39‡
256 49.86 49.57 50.20 49.13 49.79 50.20 64.38‡

Figure 3: Figure (a) shows the performance comparison between LLM-based baselines (zero-shot setting) and ours TALLRec,
where the TALLRec is trained on only 64 rec-tuning samples (i.e., in the 64-shot training setting). Figure (b) demonstrates the
performance tendency of TALLRec’s variants and conventional sequential recommendation methods w.r.t. the number of
training samples used, ranging from 1 to 256. TALLRec has three variants: “AT” for alpaca tuning only, “RT” for rec-tuning
only, and “TALLRec” for the full version.

From the figure and table, we draw the following observations:
1) Our method significantly outperforms both traditional and LLM-
based methods, verifying the superiority of tuning LLM via our
TALLRec framework. TALLRec successfully unlocks the knowl-
edge and generalization capabilities of LLMs for recommenda-
tions. 2) LLM-based methods perform similarly to random guessing
(AUC≈0.5). However, the LLMs trained via TALLRec achieves sig-
nificant improvements. These results demonstrate a considerable
gap between recommendation and language tasks, showing the
importance of using recommendation data for rec-tuning on LLMs.
3) Traditional recommender methods consistently yield inferior
performance under our few-shot training settings, implying that
traditional methods are incapable of quickly learning the recom-
mendation capability with limited training samples. 4) GRU-BERT
and DROS-BERT do not show significant improvement over their
backend models, GRU4Rec and DROS. This indicates that purely
adding textual descriptions cannot enhance the traditional recom-
mender models in the few-shot training setting.

3.2 Ablation Study (RQ2)
To demonstrate the effectiveness of alpaca tuning and rec-tuning
in TALLRec, we conduct ablation studies with varying 𝐾 under the
𝐾-shot training setting. Specifically, we compare the performance
of TALLRec with that of two variants, “AT” and “RT”, where “AT”
only conducts the alpaca tuning, while “RT” solely implements
rec-tuning. By varying 𝐾 , we further investigate the impact of the
number of training samples.

We summarize the results in Figure 3 (b), from which we have
the following observations: 1) The performance of “AT” signifi-
cantly declines compared to that of “RT” and TALLRec, indicating
the essential effect of rec-tuning, which effectively inspires the
LLM’s recommendation capability 2) With limited rec-tuning sam-
ples (≤ 128), TALLRec generally outperforms “RT”, confirming
that alpaca tuning can enhance the LLM’s generalization ability
on new tasks, especially when the training data in the new tasks
are insufficient. As the quantity of rec-tuning samples grows, the
results of TALLRec and “RT” become closer. This makes sense, as
the significance of generalization abilities derived from other tasks
diminishes when there is an ample amount of training data for
the new tasks. 3) With the increase of rec-tuning sample number,
TALLRec consistently performs better than the baselines. It is at-
tributed to rec-tuning, which can utilize limited samples to inspire
the LLM’s recommendation capability.

3.3 Cross-domain Generalization Analyses
(RQ3)

To further investigate the generalization ability of TALLRec, we con-
duct experiments on cross-domain recommendations. Specifically,
we tune TALLRec with different rec-tuning samples, including 1)
“TALLRec (Book)”, only using the samples from the Book dataset; 2)
“TALLRec (Movie)”, solely using samples from the Movie dataset;
and 3) “TALLRec (Both)”, tuned with both the Book and Movie
samples. We vary 𝐾 in {16, 64, 258} under the few-shot training
setting, and evaluate the models on the testing sets of Book and
Movie, respectively. The results are summarized in Figure 4, from
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Figure 4: Cross-domain generalization performance of LRLMs trained via TALLRec using Book data (TALLRec (Book)), Movie
data (TALLRec (Movie)), and both (TALLRec (Both)). The left figure shows the testing results on the Movie dataset with varying
numbers of rec-tuning samples, while the right figure shows the testing results on the Book dataset.
which we can find: 1) TALLRec demonstrates remarkable cross-
domain generalization ability. For instance, after tuning only on
movie samples, “TALLRec (Movie)” exhibits good performance on
Book data, comparable to “TALLRec (Book)”. This is impressive and
suggests that TALLRec has cross-domain generalization ability in-
stead of only fitting a single domain like traditional recommenders.
2) “TALLRec (Both)” surpasses “TALLRec (Movie)” and “TALLRec
(Book)” on two testing sets when the number of rec-tuning samples
exceeds 64. This finding indicates that TALLRec can seamlessly
integrate data from different domains to enhance its generalization
performance. In future work, it is promising to pre-train TALL-
Rec with large-scale recommendation data from heterogeneous
domains.

4 RELATEDWORK
• LMs for Recommendation. There have been several attempts
to integrate language models (LMs) with recommendation systems.
Despite the incorporation of LMs [14, 29], some attempts persist in
utilizing traditional user/item IDs to represent users/items. Thereby,
they disregard the semantic understanding capabilities of LMs, such
as reviews, which other work has incorporated the language infor-
mation as part of the users/items embedding [19]. In addition, other
methods either utilize an undisclosed model that already possesses
preliminary recommendation capabilities [6]. or employ small mod-
els to train on large-scale downstream task data [68]. Moreover,
the aforementioned models are also limited to small models, while
this paper is orthogonal about how to adapt large language mod-
els to recommendation tasks. In recommendation systems, there
is currently little research on applying LLMs in recommendation
scenarios. Those works utilize the interaction ability of GPT3.5
series models and apply In-context Learning [13, 47]. In detail,
Chat-Rec [13] endeavors to harness the interaction capabilities of
ChatGPT and link the ChatGPT with traditional recommendation
models (e.g. MF [27], LightGCN [16]) to formulate a conversational
recommendation system. NIR [47] shares a similar concept with
Chat-Rec, which employs conventional recommendation models
to generate candidate items, which are subjected to a three-stage
multi-step prompting process for re-ranking.

• Sequential Recommendation. Our setup is close to the sequen-
tial recommendation, which aims to infer the user’s next interaction
based on users’ historical interaction sequences [11, 50]. In the early
time, the Markov chain plays an important role in sequential recom-
mendation [15, 34, 40, 49]. Recently, deep learning-based methods

have become mainstream. Extensive work using different kinds of
neural network structures, like RNN [5, 9, 17], CNN [44, 59, 62],
and attention [26, 58, 65], to model the user interaction sequences.
However, limited by only using IDs to represent users and items,
such work cannot fastly adapt and generalize to new scenarios.
Thus, some works focus on the generalization ability of sequential
recommendation models by pre-training [35, 61], data augmenta-
tion [38, 39, 51, 57], debiasing [8, 52, 67, 70], and robust optimiza-
tion [55, 60]. However, they ignore the strong generalization ability
of existing LLMs, leading to inadequate exploration.

5 CONCLUSION
With the advancement of LLMs, people are gradually recognizing
their potential in recommendation systems [30, 63, 64]. In this work,
we explored the feasibility of using LLMs for the recommendation.
Our initial findings reveal that even the existing best LLMmodels do
not performwell in recommendation tasks. To address this issue, we
proposed a TALLRec framework that can efficiently align LLM with
recommendation tasks through two tuning stages: alpaca tuning
and rec-tuning. Our experimental results demonstrate that the
LLMs trained using our TALLRec framework outperform traditional
models and exhibit strong cross-domain generalization abilities.
Moving forward, we plan to explore more efficient methods to
activate the recommendation ability of larger models and tune
LLMs to handle multiple recommendation tasks simultaneously.
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