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ABSTRACT
We address the efficiency problem of Collaborative Filter-
ing (CF) by hashing users and items as latent vectors in
the form of binary codes, so that user-item affinity can be
efficiently calculated in a Hamming space. However, exist-
ing hashing methods for CF employ binary code learning
procedures that most suffer from the challenging discrete
constraints. Hence, those methods generally adopt a two-
stage learning scheme composed of relaxed optimization via
discarding the discrete constraints, followed by binary quan-
tization. We argue that such a scheme will result in a large
quantization loss, which especially compromises the perfor-
mance of large-scale CF that resorts to longer binary codes.
In this paper, we propose a principled CF hashing frame-
work called Discrete Collaborative Filtering (DCF), which
directly tackles the challenging discrete optimization that
should have been treated adequately in hashing. The formu-
lation of DCF has two advantages: 1) the Hamming similar-
ity induced loss that preserves the intrinsic user-item simi-
larity, and 2) the balanced and uncorrelated code constraints
that yield compact yet informative binary codes. We devise
a computationally efficient algorithm with a rigorous con-
vergence proof of DCF. Through extensive experiments on
several real-world benchmarks, we show that DCF consis-
tently outperforms state-of-the-art CF hashing techniques,
e.g., though using only 8 bits, DCF is even significantly bet-
ter than other methods using 128 bits.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - information filtering;
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Over the past decades, we have witnessed continued ef-
forts in increasing the accuracy and efficiency of Recom-
mender Systems, which have been widely known as one
of the key technologies for the thrift of Web services like
Facebook, Amazon and Flickr. However, their ever-growing
scales make today’s recommendations even more challeng-
ing. Taking a typical Flickr user as an example, a practical
recommender system should quickly prompt to recommend
photos in a billion-scale collection by exploring extremely
sparse user history; and, there are millions of such users1!

Collaborative Filtering (CF), more specifically, latent fac-
tor based CF (e.g., matrix factorization), has been demon-
strated to achieve a successful balance between accuracy and
efficiency in real-world recommender systems [4, 14, 1]. Such
CF methods factorize an m × n user-item rating matrix of
m users and n items into an r-d low-dimensional latent vec-
tor (a.k.a. feature) space. Then the predictions for user-
item ratings can be efficiently estimated by inner products
between the corresponding user and item vectors. In this
way, recommendation by CF naturally falls into a similarity
search problem—top-K item recommendation for a user can
be cast into finding the top-K similar items queried by the
user [28, 3]. When m or n is large, storing user (or item)
vectors of the size O(mr) (or O(nr)) and similarity search
of the complexity O(n) will be a critical efficiency bottle-
neck, which has not been well addressed in recent progress
on recommender efficiency [21].

Fortunately, hashing has been widely shown as a promis-
ing approach to tackle fast similarity search [27]. First,
by encoding real-valued data vectors into compact binary
codes, hashing makes efficient in-memory storage of mas-
sive data feasible. Second, as similarity calculation by in-
ner product in a vector space is replaced by bit operations
in a proper Hamming space, the time complexity of linear
scan is significantly reduced and even constant time search is
made possible by exploiting lookup tables [26, 29]. Recently,
several works have brought the advance of hashing into col-
laborative filtering for better recommendation efficiency [16,
31, 30]. However, those works essentially divide the hashing
into two independent stages: real-valued optimization and
binary quantization. More specifically, due to the discrete
constraints imposed on the corresponding binary code learn-
ing procedure which is generally NP-hard [11], they resort
to simply solving relaxed optimization problems by discard-
ing the discrete constraints and then rounding off [30] or
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rotating [16, 31] the obtained continuous solutions to target
binary codes. We argue that these “two-stage” approaches
oversimplify original discrete optimization, resulting in a
large quantization loss. Here, we refer to “quantization loss”
as the accumulated deviations of the binary bits originat-
ing from thresholding real values to integers; unsurprisingly,
large deviations will violate the original data geometry in
the continuous vector space (e.g., intrinsic user-item rela-
tions). As we can foresee, in real-world large-scale applica-
tions which require longer codes for accuracy, such accumu-
lated errors will inevitably deteriorate the recommendation
performance.

In this paper, we propose a principled approach for effi-
cient collaborative filtering, dubbed Discrete Collaborative
Filtering (DCF), which has not been addressed yet. As il-
lustrated in Figure 1, instead of choosing an erroneous two-
stage approach, we directly tackle the challenging discrete
optimization that should have been treated adequately in
hashing. Our formulation is directly based on the loss func-
tion of traditional CF, where the user/item features are
replaced by binary codes and the user-item inner product
is replaced by Hamming similarity (cf. Eq. (2)). By do-
ing so, the proposed DCF explicitly optimizes the binary
codes that fit the intrinsic user-item similarities and hence
the quantization error is expected to be smaller than those
of two-stage approaches. Besides, we explicitly impose the
balanced and uncorrelated bits on the codes. Though these
two constraints make DCF even more challenging, they are
crucial for achieving compact yet informative codes [29]. To
tackle the discrete optimization of DCF in a computationally
tractable manner, we develop an alternating optimization al-
gorithm which consists of iteratively solving mixed-integer
programming subproblems. In particular, we provide effi-
cient solutions that require fast bit-wise updates and eigen–
decompositions for small matrices, and therefore they can
easily scale up to large-scale recommendations. We evaluate
the proposed DCF on three real-world datasets in various
million-scale applications including movies, books and busi-
ness recommendations.

Our contributions are summarized as follows:

• We propose an efficient CF approach called Discrete Col-
laborative Filtering (DCF). To the best of our knowledge,
DCF is the first principled framework that directly learns
user-item binary codes via discrete optimization.

• We develop an efficient algorithm for solving DCF. The
convergence of our algorithm is rigorously guaranteed.

• Through extensive experiments performed on three real-
world datasets, we show that DCF consistently surpasses
several state-of-the-art CF hashing techniques.

2. RELATED WORK
We first review efficient Collaborative Filtering (CF) al-

gorithms using latent factor models, and then discuss recent
advance in discrete hashing techniques. For comprehensive
reviews of CF and hashing, please refer to [5] and [27], re-
spectively.

2.1 Efficient Collaborative Filtering
One line of research towards efficient CF includes design-

ing scalable online methods such as preference ranking [10],
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Figure 1: Illustration of the key difference between ex-

isting hashing methods for CF (top) and our proposed

DCF (bottom). DCF directly learns binary codes that

preserve the user-item similarity discovered from the

user-item matrix (with missing entries denoted as “?”);

while traditional methods first relax the discrete prob-

lem and then round-off the real-valued results to binary

codes. As can be seen, such a rounding-off quantiza-

tion step causes errors when two points are quite close

but assigned to different bits (e.g., A and B); while two

points are quite far away but assigned to the same bits

(e.g., C and d). However, DCF can preserve the intrin-

sic user-item geometry, so it predicts user-item ratings

(normalized Hamming similarity, cf. Eq. (2)) with a lower

error, e.g., the squared loss of DCF is only half of those

of traditional methods.

matrix factorization [18], and regression [2]. In particular,
our out-of-sample hashing scheme for new users/items (cf.
Section. 4.2) follows a similar spirit of [23, 8], which projects
new samples onto a learned factor space. However, these
works neglect that CF is essentially a similarity search prob-
lem, where even linear time complexity is prohibitive for
large-scale recommendation tasks. Therefore, another line
of research focuses on encoding users and items into binary
codes, e.g., hashing for the purpose of significant efficiency.
As a pioneering work, Das et al. [6] used Locality-Sensitive
Hashing (LSH) [7] to generate hash codes of Google news
users based on an item-sharing similarity. Karatzoglou et
al. [12] learned user-item features with traditional CF and
then randomly projected the features to acquire hash codes.
Similarly, Zhou and Zha [31] rotated their learned features
by running ITQ [9] to generate hash codes. Liu et al. [16] im-
posed the uncorrelated bit constraints on the traditional CF
objective for learning user-item features and then rounded
them to produce hash codes. Zhang et al. [30] argued that
inner product is not a proper similarity, which is nevertheless
the fundamental assumption about hashing, so subsequent
hashing may harm the accuracy of preference predictions.
To this end, they proposed to regularize the user/item fea-
tures to compute their cosine similarities, and then quan-
tized them by respectively thresholding their magnitudes
and phases.

One can easily sum up that the aforementioned hashing
techniques for CF are essentially “two-stage” approaches,
where hash codes for users and items are obtained through
two independent steps: relaxed user-item feature learning
and binary quantization (cf. Figure 1). As we will review
next, such a two-stage relaxation is well-known to suffer from
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Figure 2: Illustration of the effectiveness of the balance

and decorrelation constraints in DCF. The ellipse rep-

resents an intrinsic user-item relation manifold and the

red dots denote four distinct real-valued user/item vec-

tors that should be separated in Hamming space. (a)

Three points are encoded as (−1,−1) and the other one

as (−1,+1), which are not discriminative. However, af-

ter (b) balancing and (c) decorrelation, the codes are

optimized to preserve the user-item relations.

a large quantization loss, which is the main challenge we
tackle in this paper.

2.2 Discrete Hashing
In order to reduce quantization errors caused by the over-

simplifying rounding-off step, discrete hashing—direct bi-
nary code learning by discrete optimization—is becoming
popular recently. The most widely used discrete hashing
technique is perhaps Iterative Quantization (ITQ) [9], which
minimizes the quantization loss by alternatively learning the
binary codes and hash functions. However, it has two draw-
backs. First, ITQ requires the hash functions to use orthog-
onal projections, which is not a generic assumption; sec-
ond, ITQ can also be considered as a two-stage approach
since it first learns relaxed solutions and then treats quan-
tization as an independent post-processing, which does not
necessarily capture the intrinsic data geometry. Thus, ITQ
is suboptimal. Latest improvements on joint optimizations
of quantization losses and intrinsic objective functions can
be found in Discrete Graph Hashing [15] and Supervised
Discrete Hashing [24], which demonstrate significant perfor-
mance gain over the above two-stage hashing methods. Our
work is also an advocate of such a joint discrete optimiza-
tion but focused on CF which is fundamentally different from
the above objectives. To the best of our knowledge, DCF
is a research gap that we fill in this paper; and due to the
generic matrix factorization formulations in CF, we believe
that DCF will have a high potential in plenty of machine
learning and information retrieval tasks other than recom-
mendations [16].

3. PROBLEM FORMULATION

3.1 Preliminaries
We use bold uppercase and lowercase letters as matrices

and vectors, respectively; In particular, we use ai as the i-
th row vector of matrix A, Aij as the entry at the i-th row
and j-th column of A; alternatively, we rewrite Aij as aij to
highlight the j-th entry of vector ai. We denote ‖ ·‖F as the
Frobenius norm of a matrix and tr(·) as the matrix trace.
We denote sgn(·) : R→ {±1} as the round-off function.

We focus on discussing matrix factorization CF models,
which has been successfully applied in many recommender
systems [14]. CF generally maps both users and items to a
joint low-dimensional latent space where the user-item sim-

ilarity (or preference) is estimated by vector inner prod-
uct. Formally, suppose ui ∈ Rr is the i-th user vector
and vj ∈ Rr is the j-th item vector, the rating of user i
for item j is approximated by uT

i vj . Thus, the goal is to
learn user vectors U = [u1, ...,um] ∈ Rr×m and item vec-
tors V = [v1, ...,vm] ∈ Rr×n, where r � min(m,n) is the
feature dimension, and UTV is expected to reconstruct the
observed ratings as well as predict the unobserved ones. The
objective is to minimize the following regularized squared
loss on observed ratings:

argmin
U,V

∑
i,j∈V

(Sij − uT
i vj)

2 + α‖U‖2F + β‖V‖2F , (1)

where Sij is the observed rating, whose index set is V. Since
the number of observed ratings is sparse, we should prop-
erly regularize U and V by α, β > 0 in order to prevent
from overfitting. After we obtain the optimized user and
item vectors, recommendation is then reduced to a simi-
larity search problem. For example, given a “query” user
ui, we recommend items by ranking the predicted ratings
VTui ∈ Rn; when n is large, such similarity search scheme
is apparently an efficiency bottleneck for practical recom-
mender systems [31, 30].

To this end, we are interested in hashing users and items
into binary codes for efficient recommendation since the user-
item similarity search can be efficiently conducted in Ham-
ming space. Denote B = [b1, ...,bm] ∈ {±1}r×m and D =
[d1, ...,dn] ∈ {±1}r×n respectively as r-length user and item
binary codes, the Hamming similarity between bi and dj is
defined as [31]:

sim(i, j) =
1

r

r∑
k=1

I (bik = djk)

=
1

2r

(
r∑

k=1

I(bik = djk) + r −
r∑

k=1

I(bik 6= djk)

)

=
1

2r

(
r +

r∑
k=1

bikdjk

)
=

1

2
+

1

2r
bT
i dj

(2)

where I(·) denotes the indicator function that returns 1 if
the statement is true and 0 otherwise. We can easily verify
that sim(i, j) = 0 if all the bits of bi and dj are different
and sim(i, j) = 1 if bi = dj .

Similar to the problem of conventional CF in Eq. (1), the
above similarity score should reconstruct the observed user-
item ratings. Therefore, the problem of the proposed Dis-
crete Collaborative Filtering (DCF) is formulated as:

argmin
B,D

∑
i,j∈V

(
Sij − bT

i dj

)2

,

s.t. B ∈ {±1}r×m,D ∈ {±1}r×n

B1 = 0,D1 = 0︸ ︷︷ ︸
Balanced Partition

, BBT = mI,DDT = nI︸ ︷︷ ︸
Decorrelation

.

(3)

where we slightly abuse the notation Sij as a scaled score in
[−r, r] as bT

i dj ∈ {−r,−r + 2, ..., r − 2, r}2. Due to the bi-
nary constraints in DCF, the regularization ‖B‖2F +‖D‖2F as
in Eq. (1) is constant and hence is canceled; however, DCF
imposes two additional constraints on the binary codes in
order to maximize the information encoded in short code

2
Suppose the original Sij ∈ [0, 1], then we scale Sij ← 2rSij − r.



length [29]. First, we require that each bit to split the
dataset as balanced as possible. This will maximize the in-
formation entropy of the bit. Second, each bit should be as
independent as possible, i.e., the bits are uncorrelated and
the variance is maximized. This removes the redundancy
among the bits. Figure 2 illustrates how binary code learn-
ing benefits from the two constraints. Note that other latent
models with various objective functions such as ranking [22]
and regression [2] can be applied in this work with simple
algebraic operations.

3.2 Learning Model
It is worth noting that the proposed DCF in Eq. (3) has

two key advantages over related work [31, 30]. First, we
strictly enforce the binary constraint while theirs relax dis-
crete binary codes to continuous real values. Thus, DCF
is expected to minimize the quantization loss during learn-
ing. Second, we require the binary codes to be balanced
and uncorrelated. Therefore, DCF hashes users and items
in a more informative and compact way. However, solv-
ing DCF in Eq. (3) is a challenging task since it is gener-

ally NP-hard that involves O(2(m+n)r) combinatorial search
for the binary codes [11]. Next, we introduce a learning
model that can solve DCF in a computationally tractable
manner. We propose to solve DCF in Eq. (3) by softening
the balance and decorrelation constraints, since strictly im-
posing them may cause the original DCF infeasible. Let
us define two sets: B = {X ∈ Rr×m|X1 = 0,XXT =
mI}, D = {Y ∈ Rr×n|Y1 = 0,YYT = nI} and distances
d(B,B) = minX∈B ‖B−X‖F , d(D,D) = minY∈D ‖D−Y‖F .
Therefore, we can soften the original DCF in Eq. (3) as:

argmin
B,D

∑
i,j∈V

(
Sij − bT

i dj

)2
+ αd2(B,B) + βd2(D,D)

s.t., B ∈ {±1}r×m,D ∈ {±1}r×n

(4)
where α > 0 and β > 0 are tuning parameters. The above
Eq (4) allows a certain discrepancy between the binary codes
(e.g., B) and delegate continuous values (e.g., X), to make
the constraints computationally tractable. Note that if the
constraints in Eq. (3) is feasible, we can enforce the distances
d(B,B) = d(D,D) = 0 in Eq. (4) by imposing very large
tuning parameters.

By noting the decorrelation constraints imposed on B, D,
X and Y, Eq. (4) is equivalent to:

argmin
B,D,X,Y

∑
i,j∈V

(
Sij − bT

i dj

)2 − 2αtr(BTX)− 2βtr(DTY)

s.t.,X1 = 0,XXT = mI,Y1 = 0,YYT = nI,

B ∈ {±1}r×m,D ∈ {±1}r×n,

(5)
which is the proposed learning model for DCF. It is worth
noting that we do not discard the binary constraint B ∈
{±1}r×m,D ∈ {±1}r×n and directly optimize discrete B
and D. Through joint optimization for the binary codes and
the delegate real variables, we can obtain nearly balanced
and uncorrelated hashing codes for users and items. Next,
we will introduce an efficient solution for the mixed-integer
optimization problem in Eq. (5).

4. SOLUTION
We alternatively solving four subproblems for DCF model

in Eq. (5): B, D, X and Y. In particular, we show that

1) B and D can be efficiently updated by parallel discrete
optimization; and 2) X and Y can be efficiently updated by
small-scale Singular Value Decomposition (SVD).

4.1 Alternating Optimization
It is worth highlighting that the following B/D-subproblem

seeks binary latent features that preserves the intrinsic user-
item relations due to the observed loss in Eq. (5); while
X/Y-subproblem attempts to regularize the learned binary
codes should be as balanced and uncorrelated as possible.

B-subproblem. In this subproblem, we update B with
fixed D, X and Y. Since the objective function in Eq. (5)
is based on summing over independent users, we can update
B by updating bi in parallel according to

argmin
bi∈{±1}r

bT
i (
∑
j∈Vi

djd
T
j )bi−2(

∑
j∈Vi

Sijd
T
j )bi−2αxT

i bi, (6)

where Vi is the observed rating set for user i.
Due to the binary constraints, the above minimization is

generally NP-hard, we propose to use Discrete Coordinate
Descent (DCD) to update binary codes bi bit by bit [24].
Denote bik as the k-th bit of bi and bik̄ as the rest codes
excluding bik, DCD will update bik while fixing bik̄. Thus,
the DCD update rule for user binary codes bi can be derived
as:

bik ← sgn
(
K(b̂ik, bik)

)
, (7)

where b̂ik =
∑

j∈Vi

(
Sij − dT

jk̄bik̄

)
djk + αxik.3, dT

jk̄ is the

rest set of item codes excluding djk, and K(x, y) is a func-
tion that K(x, y) = x if x 6= 0 and K(x, y) = y otherwise,

i.e., when b̂ik = 0, we do not update bik. In this way, bi

is iteratively updated bit by bit in several passes until con-
vergence (e.g., no more flips of bits). Detailed derivation of
Eq. (7) is given in Appendix.

D-subproblem. In this subproblem, we update D with
fixed B, X and Y. Similar to the B-subproblem, we can
update D by updating di in parallel according to

argmin
dj∈{±1}r

dT
j (
∑
i∈Vj

bib
T
i )dj−2(

∑
i∈Vj

Sijb
T
i )dj−2βyT

j dj . (8)

where Vj is the observed rating set for item j. Denote djk
as the k-th bit of dj and djk̄ as the rest codes excluding djk,
the DCD update for djk is given as:

djk ← sgn
(
K(d̂jk, djk)

)
, (9)

where d̂jk =
∑

i∈Vj

(
Sij − bT

ik̄djk̄

)
bik + βyjk.

X-subproblem. When B, D and Y are fixed in Eq. (6),
the X-subproblem is:

argmax
X

tr(BTX), s.t. X1 = 0,XXT = mI (10)

It can be solved with the aid of SVD. Denote B is a row-wise
zero-mean matrix, where Bij = Bij − 1

m

∑
j Bij . By SVD,

3
If linear algebra boosting library is available (e.g., Matlab), the first

term of b̂ik can be rewritten in matrix form: (Disi)k−
(
DiD

T
i

)T

k
b̂i,

where Di is the subset of D selected by rows j ∈ Vi, si is as sij = Sij ,

and b̂i is as b̂ik = 0. Similar form can be obtained for d̂jk in Eq. (9).



we have B = PbΣbQ
T
b , where Pb ∈ Rr×r′ and Qb ∈ Rm×r′

are left and right singular vectors corresponding to the r′

(≤ r) positive singular values in the diagonal matrix Σb.
In practice, we first apply eigendecomposition for the small

r × r matrix B B
T

= [Pb P̂b]

Σ2
b 0

0 0

 [Pb P̂b]
T , where P̂b

are the eigenvectors of the zero eigenvalues. Therefore, by

the definition of SVD, we have Qb = B
T
PbΣ

−1

b . In order to
satisfy the constraint X1 = 0, we further obtain additional

Q̂b ∈ Rm×(r−r′) by Gram-Schmidt orthogonalization based

on [Qb 1], thus, we have Q̂T
b 1 = 0. The fact QT

b 1 = 0 is
detailed in Appendix.

Now we are ready to obtain a closed-form update rule for
the X-subproblem in Eq. (10):

X←
√
m[Pb P̂b][Qb Q̂b]

T . (11)

Y-subproblem. When B, D and X are fixed in Eq. (5),
the Y-subproblem is:

argmax
Y

tr(DTY), s.t. Y1 = 0,YYT = nI (12)

According to the above analysis, we can derive a closed form
update rule for Y as:

Y ←
√
n[Pd P̂d][Qd Q̂d]T , (13)

where Pd and Qd are the left and right singular vectors of

the row-centered matrix D, P̂d are the left singular vectors

corresponding to zero singular values, and Q̂d are the vectors
obtained by Gram-Schimidt process based on [Qd 1] .

4.2 Out-of-Sample Extension
When new users, items and the corresponding ratings

come in, it is impractical to retrain DCF for obtaining hash-
ing codes of these out-of-sample data. Instead, an econom-
ical way is to learn ad-hoc codes for new data online and
then update for the whole data offline when possible [23, 8].

Without loss of generality, we only discuss the case when
a new user comes in. Denote {sj |j ∈ N} as the set of
observed ratings for existing items by the new user, whose
binary codes are b. For a single user, it is too expensive and
unnecessary to impose the global balance and decorrelation
constraints as batch DCF in Eq. (5). Therefore, we only
focus on minimizing the rating prediction loss:

argmin
b∈{±1}r

∑
j∈N

(sj − bTdj)
2 (14)

It is easy to see that Eq. (14) is a special case of B-subproblem
in Eq. (6). Therefore, we can quickly develop the DCD up-
date rule for the k-th bit bk of b as:

bk ← sgn
(
K(b̂k, bk)

)
, (15)

where b̂k =
∑

j∈N

(
sj − dT

jk̄bk̄

)
djk.

Similarly, for a new item, whose ratings are {si|i ∈ N}
made by existing users, the update rule for the k-th bit dk
of the new item codes d is:

dk ← sgn
(
K(d̂k, dk)

)
, (16)

where d̂k =
∑

i∈N
(
si − bT

ik̄dk̄

)
bik.

Algorithm 1: Discrete Collaborative Filtering

Input : {Sij |i, j ∈ V}: observed user-item ratings,
r: code length,
α and β: trade-off parameter

Output: B ∈ {±1}r×m: user codes,
D ∈ {±1}r×n: item codes

1 Initialization: B, D, X ∈ Rr×m and Y ∈ Rr×n by Eq. (18)
2 repeat

// B-subproblem, parallel outer for loop
3 for i=1 to m do
4 repeat
5 for k=1 to r do

6 b̂ik ←
∑

j∈Vi

(
Sij − dT

jk̄
bik̄

)
djk + αxik;

7 bik ← sgn
(
K(b̂ik, bik)

)
;

8 end
9 until converge;

10 end
// D-subproblem, parallel outer for loop

11 for j=1 to n do
12 repeat
13 for k=1 to r do

14 d̂jk ←
∑

i∈Vj

(
Sij − bT

ik̄
djk̄

)
bik + βyjk;

15 djk ← sgn
(
K(d̂jk, djk)

)
;

16 end

17 until converge;
18 end

// X-subproblem

19

(
[PbP̂b],Qb

)
← SVD(B), Q̂b ← GramSchmidt ([Qb1]);

20 X←
√
m[Pb P̂b][Qb Q̂b]T ;

// Y-subproblem

21

(
[PdP̂d],Qd

)
← SVD(D), Q̂d ← GramSchmidt ([Qd1]);

22 Y ←
√
n[Pd P̂d][Qd Q̂d]T ;

23 until converge;
24 return B, D

5. ALGORITHMIC ANALYSIS
We summarize the solution for DCF in Algorithm 1. We

will discuss the convergence, complexity and initialization
issues in this section.

5.1 Convergence
The convergence of the proposed DCF algorithm is guar-

anteed by the following theorem.

Theorem 1 (Convergence of Algorithm 1). The se-

quence {B(t),D(t),X(t),Y(t)} generated by Algorithm 1 mono-
tonically decreases the objective function L of Eq. (5); the

objective function sequence {L
(
B(t),D(t),X(t),Y(t)

)
} con-

verges; the sequence {B(t),D(t),X(t),Y(t)} converges.

In nutshell, we need to prove two key facts. First, we show
that the updating steps in Step 7, 15, 20 and 22 monoton-
ically decreases the objective function in Eq. (5), which is
proved to be bounded below. Then, we use the fact that
L(B,D) has finite values to show that {B(t),D(t)} con-
verges. See Appendix for detailed proof.

5.2 Initialization
Since DCF deals with mixed-integer non-convex optimiza-

tion, initialization is crucial for better convergence and lo-
cal optimum. Here, we suggest an efficient initialization
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Figure 3: Convergence curve of the overall objective

function value (left) and the squared loss value (right)

using DCF with/without initializations on Yelp (α = β =

0.001). We can see that the proposed initialization strat-

egy helps to achieve faster convergence and lower objec-

tive/loss values.

heuristic, which essentially relaxed the binary constraints
in Eq. (5) as:

argmin
U,V,X,Y

∑
i,j∈V

(
Sij − uT

i vj

)2
+ α‖U‖2F + β‖V‖2F

− 2αtr(UTX)− 2βtr(VTY)

s.t.,X1 = 0,XXT = mI,Y1 = 0,YYT = nI.

(17)

In fact, we can consider the above initialization as traditional
CF in Eq. (1) with balance and decorrelation constraints
imposed on real-valued U and V. A possible explanation for
why Eq. (17) may offer better initialization is illustrated in
Figure 2, where the two constraints can restrict real-valued
results within a subspace with small quantization error.

To solve Eq. (17), we can further initialize real-valued U
and V randomly and find feasible initializations for X and
Y by solving X/Y-subproblems in Section 4. Then, the
optimization can be done alternatively by solving U and V
by traditional CF in Eq. (1), and solving X and Y by X/Y-
subproblem. Suppose the solutions are (U∗,V∗,X∗,Y∗),
we can initialize Algorithm 1 as:

B← sgn(U∗),D← sgn(V∗),X← X∗,Y ← Y∗. (18)

It is easy to see that the initializations above are feasible to
Eq. (5). The effectiveness of the proposed initialization is
illustrated in Figure 3.

5.3 Complexity
For space complexity, Algorithm 1 requires O(|V|) for

storing {Sij} and O(r · max(m,n)) for B, D, X and Y.
As r is usually less than 256 bits, we can easily store the
above variables at large-scale in memory.

We first analyze the time complexity for each of the sub-
problems. For B-subproblem, it takes O(r2|Vi|Ts) for com-
pleting the inner loop of updating bi, where Ts is the number
of iterations needed for convergence (Step 4 to 8). Further,
suppose we have p computing threads, then the overall com-
plexity for B-subproblem is O(r2Ts|V|/p). Similarly, the
overall complexity for D-subproblem is also O(r2Ts|V|/p).
In practice, Ts is usually 2∼5. For X-subproblem, it re-
quires O(r2m) to perform the SVD and Gram-Schimdt or-
thogonalization in Step 19, and O(r2m) matrix multipli-
cation in Step 20. Similarly, it takes O(r2n) for solving
Y-subproblem. Suppose the entire algorithm requires T it-
erations for convergence, the overall time complexity for Al-

gorithm 1 is O
(
Tr2

(
Ts|V| 1p +m+ n

))
, where we observe

that T is usually 10∼20. In summary, training DCF is effi-

cient since it scales linearly with the size of the data, e.g.,
|V| and m+ n.

6. EXPERIMENTS
As the proposed DCF fundamentally tackles the problem

of quantization loss caused by traditional hashing methods
of CF, the goal of our experiments is to answer the following
three research questions:

RQ1 How does DCF perform as compared to other state-of-
the-art hashing methods?

RQ2 Does DCF generalize well to new users? If yes, how
much training overhead is needed?

RQ3 How do the discrete, balanced and uncorrelated con-
straints contribute to the overall effectiveness of DCF?

Table 1: Statistics of datasets in evaluation.
Dataset Rating# User# Item# Density

Yelp 696,865 25,677 25,815 0.11%

Amazon 5,057,936 146,469 189,474 0.02%

Netflix 100,480,507 480,189 17,770 1.18%

6.1 Datasets
We used three publicly available datasets from various

real-world online websites:
Yelp: This is the latest Yelp Challenge dataset4. It origi-
nally includes 366,715 users, 60,785 items (e.g., restaurants
and shopping malls), and 1,569,264 ratings.
Amazon: This is a collection of user ratings on Amazon
products of Book category [19], which originally contains
2,588,991 users, 929,264 items and 12,886,488 ratings.
Netflix: This is the classic movie rating dataset used in
the Netflix challenge5. We use the full dataset that contains
480,189 users, 17,770 items and 100,480,507 ratings.

Due to the severe sparsity of Yelp and Amazon original
datasets, we follow the convention in evaluating CF algo-
rithms [22] by removing users and items that have less than
10 ratings6. When a user rates an item multiple times, we
merge them into one rating by averaging the duplicate rat-
ing scores. Table 1 summarizes the filtered, experimental
datasets. For each user, we randomly sampled 50% ratings
as training and the rest 50% as testing. We repeated for 5
random splits and reported the averaged results.

6.2 Setups

6.2.1 Evaluation Metrics
As practical recommender systems usually generate a ranked

list of items for user, we diverge from the error-based mea-
sure (e.g., RMSE [13]), which is a suboptimal to recom-
mendation task [3]. Instead, we treat it as a ranking prob-
lem, evaluating the ranking performance on test ratings with
NDCG (Normalized Discounted Cumulative Gain), which is
a widely used measure for evaluating recommendation algo-
rithms [28, 3], owing to its comprehensive consideration of
both ranking precisions and the positions of ratings.

4
http://www.yelp.com/dataset challenge

5
http://www.netflixprize.com

6Note the similar filtering was conducted to Netflix dataset
[13], so we use the Netflix dataset as-it-is.

http://www.yelp.com/dataset_challenge
http://www.netflixprize.com


6.2.2 Search Protocols
We adopted two search protocols which are widely used

in search with binary codes. We used code length within
{8, 16, 32, 64, 128, 256}.
Hamming Ranking: Items are ranked according to their
Hamming distance (or similarity) from the query user. Al-
though the search complexity of Hamming ranking is still
linear, it is very fast in practice since the Hamming distance
(or similarity) calculation can be done by fast bit operations
and the sorting is constant time due to integer distance.
Hashtable Lookup: A lookup table is constructed using
the item codes and all the items in the buckets that fall
within a small Hamming radius (e.g., 2) of the query user
are returned. Therefore, search is performed in constant
time. However, a single table would be insufficient when
the code length is larger than 32 since it would require over
O(232) space to store the table in memory. We adopted
Multi-Index Hashing (MIH) table [20], which builds one ta-
ble for each code subsegment. Items are aggregated by all
the tables and then conducted Hamming ranking for the
items. By doing this, the search time is significantly re-
duced to sublinear—linear scan a short returned list. We
empirically set the substring length as {1, 1, 2, 2, 4, 4} for bit
size {8, 16, 32, 64, 128, 256} as suggested in [30].

It is worth mentioning that the above two search protocols
focus on different characteristics of hashing codes. Hamming
ranking provides a better measurement of the learned Ham-
ming space, i.e., the accuracy upper bound that the codes
can achieve since it linearly scans the whole data. Hashtable
lookup, on the other hand, emphasizes the practical speed of
large-scale search. However, a common issue in this protocol
is that it may not return sufficient items for recommenda-
tion, as a query lookup may miss due to the sparse Hamming
space. In our experiments, if a query user returns no items,
we treated as a failed query with an NDCG of zero.

6.2.3 Compared Methods
We benchmark the performance using the traditional real-

valued CF method, comparing with several state-of-the-art
hashing-based CF methods:
MF: This is the classic Matrix Factorization based CF al-
gorithm [14], which learns user and item latent vectors in
Euclidean space. We used MF as a baseline to show the
performance gap between real values and binary codes. We
adopt the ALS algorithm suggested by [32]. Note that it is
beyond the scope of this paper to further investigate other
popular variants of MF [13, 17].
BCCF: This is a two-stage Binary Code learning method
for Collaborative Filtering [31]. At the relaxation stage, it
imposes a balanced code regularization instead of the `2-
norm regularization of MF; at quantization stage, it applies
orthogonal rotation to user and item features, which is es-
sentially an ITQ method [9].
PPH: This is a two-stage Preference Preserving Hashing [30].
At the relaxation stage, different from MF, it encourages
the latent feature norm to reach the maximum ratings and
hence smaller discrepancy between inner product (prefer-
ence preserving) and cosine similarity (hashing friendly) is
expected. At quantization stage, PPH quantizes each fea-
ture vector into (r−2)-bit phase codes and 2-bit magnitude
codes. Therefore, in order to keep the code length consis-
tent to other methods, we only learned (r − 2)-dim latent
features at relaxation stage.

CH: Collaborative Hashing [16] is also a two-stage approach,
where the relaxation stage is based on full-matrix factoriza-
tion, i.e., unobserved ratings are considered as zeros. Since
the original CH is formulated for visual features, we imple-
mented CH for collaborative filtering as: arg minU,V ‖S −
UTV‖2F , s.t., UUT = mI,VVT = nI, where S is the
scaled rating matrix where Sij = 0 if (i, j) is not observed,
i.e., i, j /∈ V. By several algebraic transformations, the
above problem can be cast into alternating solving SVDs for
US and VST , which is analogous to our X/Y-subproblem.
Then, the binary quantization is simply sgn(U) and sgn(V).

We also compared the following two settings of DCF to
investigate its effectiveness:
MFB: This is the MF results with round-off binary quanti-
zation. We used this as a baseline to show how quantization
loss degrades performance.
DCFinit: This is the Initialization problem of DCF in
Eq. (17), whose binary codes are given in Eq. (18). By com-
paring with MFB, we can investigate whether the balance
and decorrelation constraints are useful for binary quanti-
zation. Moreover, DCFinit can be considered as a relaxed
two-stage version of DCF. Compared with DCF, we can see
whether discrete optimization is effective.

All the hyper-parameters (e.g., α and β) of DCF and the
above methods were tuned within {1e−4, 1e−3, ..., 1e2} by
5-fold cross validation on the training split. We used MAT-
LAB with mex C for algorithm implementations and we run
them on a cluster of 9 machines, each of which has 6-core
2.4GHz CPU and 48GB RAM.

6.3 Result Analysis

6.3.1 Comparison with State-of-The-Arts (RQ1)
Figure 6 shows the performances (NDCG@K) of DCF and

the three state-of-the-art hashing methods in terms of Ham-
ming ranking and table lookup. We can have the following
key observations:
1). The proposed DCF considerably outperforms all the
state-of-the-art methods. For example, as shown in Table 2,
in most cases, DCF can even achieve significantly better
performance by using only 8 bits as compared to the most
competitive CH using 128 bits. This suggests that DCF can
reduce a huge amount of memory and time cost as com-
pared to the state-of-the-art methods. One possible reason
why CH outperforms BCCF and PPH is that it incorporates
the uncorrelated codes constraints during joint optimization,
which is beneficial for the subsequent quantization. DCF, on
the other hand, minimizing the quantization loss directly by
joint discrete optimization with balanced and uncorrelated
code constraints, resulting in better performance than CH.
2). When using lookup tables, the performances of all the
methods are not as stable as those by using ranking, specif-
ically, at larger K positions on smaller datasets like Yelp
and Amazon. This is due to that zero item is returned when
lookup misses—Hamming ranking treats the entire items as
candidates, while lookup table only indexes a small frac-
tion of items as candidate. This is why NDCG at smaller
K positions does not significantly decrease as compared to
Hamming ranking. Therefore, as we can observe that DCF
considerably outperforms other methods, we can infer that
the codes generated by DCF have less lookup misses.
3). As the bit size increases, the performance gap between
DCF and other methods becomes larger, especially when
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on 50% simulated “new” users (RQ 2).
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Figure 5: Recommendation performance (NDCG@10)

of CF and DCF variants (RQ 3).

using lookup. This demonstrates that the two-stage ap-
proaches (BCCF, PPH and CH) increasingly suffer from
quantization loss as code length increases.

6.3.2 Generalization to New Users (RQ2)
In this study, we performed the strong generalization test.

Following [25], we trained all models on 50% of randomly
sampled users with full history; the remaining 50% of users
are the new users for testing. In the testing phase, we fed
50% ratings of the test users into the model for an out-of-
sample update (cf. Section 4.2), obtaining the hashing codes
for test users. The performance was then evaluated against
the remaining 50% ratings for the test users. In this way,
we simulated the online learning scenario, where a full re-
training is prohibitive and the model needs to be instantly
refreshed to better serve new users.

Figure 4 shows the performance of the generalization test.
We can see that DCF consistently outperforms other meth-
ods. The key reason is that the out-of-sample hashing by
DCF preserves the original binary separations of the Ham-
ming space by directly performing discrete optimization. On
the other hand, since BCCF, PPH and CH are all two-stage
approaches, the latent vectors of new users are first approx-
imated with fixed item vectors. As a result, the subsequent
quantization loss will be more severe. We can also see that
the performances drop of DCF caused by less training data
is acceptable, e.g., only 7% NDCG@10 drop as compared to
the results obtained by original data.

Table 2: Performance (NDCG@10) of various methods

(#bit) using two search protocols on three datasets. *

denotes the statistical significance for p < 0.05.

Protocol Hamming Ranking Table Lookup

Dataset Yelp Amazon Netflix Yelp Amazon Netflix

BCCF(128) 0.623 0.827 0.633 0.268 0.300 0.262

PPH(128) 0.643 0.841 0.587 0.626 0.799 0.566

CH(128) 0.655 0.922∗ 0.693 0.647 0.815 0.680

DCF(8) 0.684∗ 0.890 0.730∗ 0.674∗ 0.825∗ 0.710∗

To show the training overhead, we show the time cost for
hashing new users of the largest dataset Netflix in Table 3.
First, we see CH requires the least hashing time, followed
by our DCF method. The efficiency of CH is owing to its
simple design — which adopts the conventional SVD and

only needs to apply a matrix multiplication operation for
hashing new users. Although the proposed DCF is about
tens of times slower than CH, we believe this overhead is
acceptable since DCF considerably generalizes better than
CH. Comparing with BCCF and PPH, our DCF is about
20 times faster. The reason is that both BCCF and PPH
need to iteratively solve least square problems, which involve
the expensive matrix inverse. In addition, BCCF requires
two matrix multiplications after least square, i.e., PCA pro-
jection and ITQ rotation, and hence needs more time. In
contrast, our DCF only requires Tr matrix multiplications
in total, where T is 2∼5 and r is the code length.

Table 3: Time cost (s) of various methods hashing

240,094 new users of Netflix using a single 6-core CPU.

Method/#Bits 8 16 32 64 128 256

BCCF 51.3 64.5 78.0 1.21e2 4.81e2 2.69e3

PPH 51.2 64.3 77.5 1.21e2 4.81e2 2.69e3

CH 2.12e−1 4.11e−1 8.37e−1 1.66 3.34 6.71

DCF 2.25 3.16 5.18 9.52 29.6 93.4

6.3.3 Impact of Discrete, Balanced and Uncorrelated
Constraints (RQ3)

As shown in Figure 5, it is not surprising that real-valued
user/item features—MF outperforms other user/item binary
codes. However, if we simply quantize MF features to MFB
binary codes, significant performance drop can be observed,
especially as the bit size increases. As analyzed above, this
is due to the quantization loss caused by the two-stage ap-
proaches. Interestingly, by adding the balanced and uncorre-
lated constraints, DCFinit generally outperforms MFB. An
intuitive explanation is illustrated in Figure 2 that the two
constraints can shift and rotate the real-valued features to a
new user-item manifold that is beneficial for the binary split
of the original vector space into Hamming space, and thus
less quantization loss is expected. Moreover, we can see that
DCF significantly outperforms DCFinit. This demonstrates
the superiority of the proposed joint discrete optimization
over the two-stage approaches.

7. CONCLUSIONS
In this paper, a novel hashing approach dubbed Discrete

Collaborative Filtering (DCF) was proposed to enable effi-
cient collaborative filtering. In sharp contrast to existing col-
laborative filtering hashing methods which are generally in a
two-stage fashion, DCF directly learns binary codes for users
and items according to the Hamming similarity induced rat-
ing loss. Through extensive experiments carried out on three
benchmarks, we demonstrated that the main disadvantage of
those two-stage hashing methods is the severe quantization
loss caused by the inconsistency between input real-valued
features and subsequent binary quantization. Beyond con-
ventional two-stage methods that are not entirely optimized
for hashing, our proposed DCF completes discrete optimiza-
tion inherent to hashing and therefore achieves considerable
performance gain over state-of-the-art collaborative filtering
hashing techniques.

To the best of our knowledge, DCF is the first principled
learning-to-hash framework for accelerating CF, so we be-
lieve that it has a great potential to advance real-world rec-
ommendation systems since DCF can effectively compress
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Figure 6: Item recommendation performance (NDCG@K) of all the CF hashing methods of various code lengths. For

each dataset, the top row is the performance by Hamming ranking and the bottom row is by table lookup (RQ 1). As

MF is continuous, we used cosine ranking and table lookup is not applied.

gigantic users/items to compact binary codes. As moving
forward, we are going to apply DCF to various CF applica-
tions [25] as well as more generic feature-based factorization
approaches [21].
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APPENDIX
Derivation of Eq. (7). Without loss of generality, suppose bi =
[bT

ik̄
bik]T and dj = [dT

jk̄
djk]T , the quadratic term in Eq. (6)

w.r.t bik can be rewritten as:

bT
i (
∑

j∈Vi
djd

T
j )bi =

∑
j∈Vi

(dT
j bi)

2 =

2bik
∑

j∈Vi

(
dT
jk̄

bik̄djk

)
+
∑
j∈Vi

(
(dT

jk̄
bik̄)2 + (djkbik)2

)
︸ ︷︷ ︸

constant

, (19)

and the rest two linear terms w.r.t. bik can be rewritten as:

2(
∑

j∈Vi
Sijd

T
j )bi − 2αxT

i bi =

−2bik
∑

j∈Vi
Sijdjk − 2αxikbik − 2

∑
j∈Vi

Sijd
T
jk̄

bik̄ − 2αxT
ik̄

bik̄︸ ︷︷ ︸
constant

.

(20)
Therefore, we can derive a set of bit-wise minimizations:

argmin
bik∈{±1}

− b̂ikbik, (21)

where b̂ik =
∑

j∈Vi

(
Sij − dT

jk̄
bik̄

)
djk + αxik. It is easy to see

that the optimized bik should be the sign of b̂ik. Therefore, the
update rule for bik can be given in Eq. (7). Tthe update rule for
djk in Eq. (9) can be derived in a similar way.

Proof of Theorem 1. We prove the three parts of Theorem 1
one by one.
Part 1. It is easy to see that {B(t),D(t)} generated by the DCD
Step 7 and Step 15 monotonically decreases the objective func-
tions of B-subproblem and D-subproblem in Eq. (6) and Eq. (8),

respectively. Without loss of generality, we show that {X(t)}
generated by Step 20 monotonically decreases the objective func-
tion of X-subproblem in Eq. (10). In particular, denote X′ as
the updated X at each step, we show that X′ maximizes the
X-subproblem.

We first show that X′ is feasible, i.e., X′ ∈ B. Note that

B = BJ, where J = I − 1
m

11T . Since B
T

and Qb has the

same row space, we have QT
b 1 = 0 due to B1 = 0. As we con-

struct Q̂b such that 1T Q̂b = 0, we have 1T [QbQ̂b] = 1, which
implies X′1 = 0. Moreover, it is easy to show that XXT =

m[PbP̂b][QbQ̂b]T [QbQ̂b][PbP̂b]T = mI. Therefore, X′ is feasi-

ble. As SVD BJ = [Pb P̂b]

Σb 0

0 0

 [Qb Q̂b]T , we have tr(X′B
T

) =

√
m
∑r

k=1 σk, where σk is diagonal eigenvalues of Σb. ∀X ∈ B,

by using von Neumann’s trace inequality, we have tr(XB
T

) ≤√
m
∑r

k=1 σk. Due to X1 = 0, we have XJ = X. So, X′ is a max-

imizer. Thus far, we have tr(XBT ) = tr(XB
T

) ≤ tr(X′B
T

) =
tr(X′BT ).
Part 2. We show that the loss function L(B,D,X,Y) in Eq. (5)
is lower bounded. By Cauchy-Schwartz inequality tr(BT X) ≤
‖B‖F ‖X‖F , we have

L(B,D,X,Y) ≥ 0− 2α‖B‖F ‖X‖F − 2β‖D‖F ‖Y‖F
≥ −2α

√
mr
√
mr − 2β

√
nr
√
nr = −2αmr − 2βnr.

(22)

Thus, together with the monotonic decrease proved in Part 1, we
can conclude that {L(B(t),D(t),X(t),Y(t))} converges.
Part 3. It is easy to see that L(X,Y,B,D) is Lipschitz contin-

uous w.r.t. X and Y, thus, {X(t),Y(t)} converges. Therefore, it

is sufficient to prove {B(t),D(t)} converges.
Without loss of generality, we drop the subscript i and only

show that ∃T such that ∀k, t > T , b
(t+1)
k = b

(t)
k . Suppose there

is a k′ such that b
(t+1)
k′ 6= b

(t)
k′ , due to the update rule in Eq. (7),

b̂k′ 6= 0, which implies a strict decrease for the objective function
L(b). Since b is binary valued, L(b) has finite values. If such
k′ exists, it will lead to infinite values, which contradicts the
fact. Therefore, we conclude that {B(t)} converges. Moreover,

since L(B,D) has finite values, there exists B(t+1) such that

D(t+1) = D(t). Therefore, {B(t),D(t)} converges and so does

{B(t),D(t),X(t),Y(t)} .


	Introduction
	Related Work
	Efficient Collaborative Filtering
	Discrete Hashing

	Problem Formulation
	Preliminaries
	Learning Model

	Solution
	Alternating Optimization
	Out-of-Sample Extension

	Algorithmic Analysis
	Convergence
	Initialization
	Complexity

	Experiments
	Datasets
	Setups
	Evaluation Metrics
	Search Protocols
	Compared Methods

	Result Analysis
	Comparison with State-of-The-Arts (RQ1)
	Generalization to New Users (RQ2)
	Impact of Discrete, Balanced and Uncorrelated Constraints (RQ3)


	Conclusions
	References

