

# Fast Matrix Factorization for Online Recommendation with Implicit Feedback

Xiangnan He, Hanwang Zhang, Min-Yen Kan, Tat-Seng Chua

National University of Singapore (NUS) SIGIR 2016, July 20, Pisa, Italy



#### Value of Recommender System (RS)

- Netflix: 60+% of the movies watched are recommended.
- Google News: RS generates 38% more click-through
- Amazon: 35% sales from recommendations



The Three-Body Problem (Chinese Edition) (Chinese) Paperback – January 1, 2008 by Cixin Liu (Author) ★★★★★ • 23 customer reviews Book 1 of 3 in the 三体 - Three Body Series See all formats and editions Paperback \$7.83 10 Used from \$5.00 19 New from \$7.55

#### Customers Who Bought This Item Also Bought



The Three-Body Problem, No. 2: Dark Forest (Chinese Edition) Liu Cixin \*\*\*\*\* Paperback



The Three-Body Problem : The Immortal Death (Book series that set the Liu Cixin Paperback \$9.46 *Irime* 



One Hundred Years of Solitude (Chinese Edition) Gabriel García Márquez \*\*\*\*\*\*

Hardcover \$7.88 *(prime*) 活着

To Live / A Book of Yuhua (Chinese Edition) Yu Hua

Paperback \$7.75 *Irime* 



2000-2015 我最喜愛的四百首粤 語流行曲串燒 400Cantopop Recommended for you





**Architecting Predictive** Algorithms for Machine Learning TechEd Europe 18.718 views

Andrew Ng: Deep Learning, Self-**Taught Learning and** 黄鑫 235,002 views

\$9.42 *<i>Prime* 



#### Statistics come from Xavier Amatriain

2

Two+ Minute Papers - How Does **Deep Learning Work?** 



18.212 views

+ 🏕 …

🖌 533 🌒 1



Deep Learning SIMPLIFIED: The Series Intro - Ep. 1 DeepLearning.TV 31,132 views



# **Collaborative Filtering (CF)**

- Explicit Feedback
  - Rating prediction problem
  - Popularized by the Netflix Challenge
  - Only observed ratings are considered.
  - But, it is sub-optimal (missing-at-random assumption) for Top-K Recom. (Cremonesi and
- Implicit Feedback
  - Ranking/Classification problem
  - Aims at recommending (unconsumed)
    - items to users.
  - Unobserved missing data (0 entries) is important!

#### **Real-valued Rating matrix**

2

4

?

2

users

|        |   | items |   |   |  |
|--------|---|-------|---|---|--|
| and Ke | 1 | 0     | 0 | 1 |  |
| users  | 0 | 1     | 0 | 0 |  |
|        | 1 | 1     | 0 | 0 |  |
|        | 1 | 0     | 0 | 1 |  |

#### items 5 1 2 ? 2 2 2 2 2 5 ? 4 2 2 1 ?

0/1 Interaction matrix





### Outline

#### Introduction

- Technical Background & Motivation
- Popularity-aware Implicit Method
- Experiments (offline setting)
- Experiments (online setting)
- Conclusion



# **Matrix Factorization (MF)**



• MF is a linear latent factor model:



Affinity between user 'u' and item 'i':

$$\hat{y}_{ui} = \langle v_u, v_i \rangle$$





# **Previous Implicit MF Solutions**





### Drawbacks of Existing Methods (whole-data based)





# **Uniform Weighting**



#### - Limits model's fidelity and flexibility

Uniform weighting on missing data assumes that

"all missing entries are equally likely to be a negative assessment."

- The design choice is for the optimization efficiency --- an efficient ALS algorithm (*Hu, ICDM 2008*) can be derived with uniform weighting.
- However, such an assumption is unrealistic.
  - Item popularity is typically non-uniformly distributed.
  - Popular items are more likely to be known by users.



#### **Low Efficiency**



#### - Difficult to support online learning

- An analytical solution known as ridge regression
  - Vector-wise ALS

Scary complexity and unrealistic for practical usage

- Time complexity: O((M+N)K<sup>3</sup> + MNK<sup>2</sup>)
   M: # of items, N: # of users, K: # of latent factors
- With the uniform weighting, Hu can reduce the complexity to O((M+N)K<sup>3</sup> + |R|K<sup>2</sup>)

|R| denotes the number of observed entries.

- However, the complexity is too high for large dataset:
  - K can be thousands for sufficient model expressiveness
     e.g. YouTube RS, which has over billions of users and videos.





#### **Importance of Online Learning for RS**

• Scenario of Recommender System:



- New data continuously streams in:
  - New users;
  - Old users have new interactions;
- It is extremely useful to provide *instant personalization* for new users, and *refresh recommendation* for old users, but retraining the full model is expensive

=> Online Incremental Learning





#### **Key Features**

#### **Our proposal**

- Non-uniform weighting on Missing data
- An efficient learning algorithm (K times faster than Hu's ALS, the same magnitude with BPR-SGD learner)
- Seamlessly support online learning.



### **#1. Item-Oriented Weighting on Missing Data**



Old Design: 
$$L(\Theta) = \sum_{(u,i)\in\mathcal{R}} (y_{ui} - \hat{y}_{ui})^2 + w_0 \sum_{(u,i)\notin\mathcal{R}} (0 - \hat{y}_{ui})^2$$
  
Our Proposal: 
$$L(\Theta) = \sum_{(u,i)\in\mathcal{R}} (y_{ui} - \hat{y}_{ui})^2 + \sum_u \sum_{i\notin\mathcal{R}_u} \frac{c_i(0 - \hat{y}_{ui})^2}{(0 - \hat{y}_{ui})^2}$$

The confidence that item *i* missed by users is a true negative assessment

Popularity-aware. Wei
Intuition: a popular iter

to frequency-aware, thus a missing on it is more proegative sampling in word2vec.





# **#2. Optimization (Coordinate Descent)**

- Existing algorithms do not work:
  - SGD: needs to scan all training instance O(MN).
  - ALS: requires a uniform weight on missing data.
- We develop a Coordinate Descent learner to optimize the whole-data based MF:
  - Element-wise Alternating Least Squares Learner (eALS)
  - Optimize one latent factor with others fixed (greedy exact optimization)

| Property                 | eALS (ours)   | ALS (traditional)      |
|--------------------------|---------------|------------------------|
| <b>Optimization Unit</b> | Latent factor | Latent vector          |
| Matrix Inversion         | No            | Yes (ridge regression) |
| Time Complexity          | O(MNK)        | $O((M+N)K^3 + MNK^2)$  |





# **#2.1 Efficient eALS Learner**

- An efficient learner by using memoization.
- Key idea: memoizing the computation for missing data part:

$$L(\Theta) = \sum_{(u,i)\in\mathcal{R}} (y_{ui} - \hat{y}_{ui})^2 + \sum_{u} \sum_{i\notin\mathcal{R}_u} c_i (0 - \hat{y}_{ui})^2$$

Bottleneck: Missing data part

Reformulating the loss function:

$$L(\Theta) = \sum_{(u,i)\in\mathcal{R}} [(y_{ui} - \hat{y}_{ui})^2 - c_i \hat{y}_{ui}^2] + \sum_u \sum_i c_i \hat{y}_{ui}^2$$

Sum over all user-item pairs, can be seen as a prior over all interactions! This term can be computed efficiently in  $O(|R| + MK^2)$ , rather than O(MNK). Algorithm details see our paper.





# **#2.2 Time Complexity**



Linear to data size!





# **#3. Online Incremental Learning**



Black: old training data Blue: new incoming data Given a new (*u*, *i*) interaction, how to refresh model parameters without retraining the full model?

Our solution: only perform updates for v<sub>u</sub> and v<sub>i</sub> - We think the new interaction should change the **local features** for *u* and *i* significantly, while the global picture remains largely unchanged.

Pros:

+ Localized complexity:  $O(K^2 + (|R_u| + |R_i|)K)$ 





### Outline

- Introduction
- Technical Background & Motivation
- Popularity-aware Implicit Method
- Experiments (offline setting)
- Experiments (online setting)
- Conclusion





#### **Dataset & Baselines**

- Two public datasets (filtered at threshold 10):
  - Yelp Challenge (Dec 2015, ~1.6 Million reviews)
  - Amazon Movies (SNAP.Stanford)

| Dataset | Interaction# | ltem# | User#  | Sparsity |
|---------|--------------|-------|--------|----------|
| Yelp    | 731,671      | 25.8K | 25.7K  | 99.89%   |
| Amazon  | 5,020,705    | 75.3K | 117.2K | 99.94%   |

- Baselines:
  - ALS (Hu et al, ICDM'08)
  - RCD (*Devooght et al, KDD'15*)

Randomized Coordinate Descent, state-of-the-art implicit MF solution.

- BPR (Rendle et al, UAI'09)

SGD learner, Pair-wise ranking with sampled missing data.





# **Offline Protocol (Static data)**

- Leave-one-out evaluation (Rendle et al, UAI'09)
  - Hold out the latest interaction for each user as test (ground-truth).
- Although it is widely used in literatures, it is an artificial split that does not reflect the real scenario.
  - Leak of collaborative information!
  - New users problem is averted.
- Top-K Recommendation (K=100):
  - Rank all items for a user (very time consuming, longer than training!)
  - Measure: Hit Ratio and NDCG.
  - Parameters: #factors = 128 (others are also fairly tuned, see the paper)





### **Compare whole-data based MF**



#### Analysis:

 eALS > ALS: popularity-aware weighting on missing data is useful.
 ALS > RCD: alternating optimization is more effective than gradient descent for linear MF model.





#### **Compare with Sampled-based BPR**





# **Efficiency Comparison**

#### Training time per iteration (Java, single-thread)

|         | Yelp (0.73M) |       | Amazon (5M) |        |
|---------|--------------|-------|-------------|--------|
| Factor# | eALS         | ALS   | eALS        | ALS    |
| 32      | 1 s          | 10 s  | 9 s         | 74 s   |
| 64      | 4 s          | 46 s  | 23 s        | 4.8 m  |
| 128     | 13 s         | 221 s | 72 s        | 21 m   |
| 256     | 1 m          | 23 m  | 4 m         | 2 h    |
| 512     | 2 m          | 2.5 h | 12 m        | 11.6 h |

Analytically: eALS: O((M+N)K<sup>2</sup> + |R|K) ALS: O((M+N)K<sup>3</sup> + |R|K<sup>2</sup>) We used a fast matrix inversion algorithm: O(K<sup>2.376</sup>)

eALS has the similar running time with RCD (KDD'15), which only supports uniform weighting on missing data.





#### **Online Protocol (dynamic data stream)**

- Sort all interactions by time
  - Global split at 90%, testing on the latest 10%.



- In the testing phase:
  - Given a *test interaction* (i.e., *u-i* pair), the model recommends a Top-K list to evaluate the performance.
  - Then, the *test interaction* is fed into the model for an incremental update.
- New users problem is obvious:
  - 57% (Amazon) and 14% (Yelp) test interactions are from new users!





### **Number of Online Iterations**

#### Impact of online iterations on eALS:



One iteration is enough for eALS to converge!

While BPR (SGD) needs 5-10 iterations.





#### **Compare dynamic MF methods**

Performance evolution w.r.t. number of test interactions:





# Conclusion

- Matrix Factorization for Implicit Feedback
  - Model the full missing data leads to better prediction recall.
  - Weight the missing data non-uniformly is more effective.
  - Develop an efficient algorithm that supports online incremental learning.
- Explore a new way to evaluate recommendation in a more realistic, better manner.
  - Simulate the dynamic data stream.
- Our efficient eALS technique is a generic solution, which can solve MF with any weighting scheme of missing data.
  - Item-oriented (this work) is just a special case.





#### **Future Work**

- Online Recommendation:
  - Balance Short-term (online data) and Long-term preference (offline data).
- Our technique is promising for other applications, e.g., in representation learning of words:
  - GloVe models observed entries only.
  - Word2vec samples negative entries.
  - Recently, Google develops Swivel that accounts for the full missing data, leading to better embedding but very high time complexity.







#### Codes available: <a href="https://github.com/hexiangnan/sigir16-eals">https://github.com/hexiangnan/sigir16-eals</a>



