
Adversarial Personalized Ranking for Recommendation∗

Xiangnan He
National University of Singapore

xiangnanhe@gmail.com

Zhankui He
Fudan University

zkhe15@fudan.edu.cn

Xiaoyu Du
Chengdu University of Information Technology

duxy.me@gmail.com

Tat-Seng Chua
National University of Singapore

dcscts@nus.edu.sg

ABSTRACT

Item recommendation is a personalized ranking task. To this end,

many recommender systems optimize models with pairwise rank-

ing objectives, such as the Bayesian Personalized Ranking (BPR).

Using matrix Factorization (MF) — the most widely used model in

recommendation — as a demonstration, we show that optimizing

it with BPR leads to a recommender model that is not robust. In

particular, we find that the resultant model is highly vulnerable to

adversarial perturbations on its model parameters, which implies

the possibly large error in generalization.

To enhance the robustness of a recommender model and thus

improve its generalization performance, we propose a new optimiza-

tion framework, namely Adversarial Personalized Ranking (APR).

In short, our APR enhances the pairwise ranking method BPR by

performing adversarial training. It can be interpreted as playing

a minimax game, where the minimization of the BPR objective

function meanwhile defends an adversary, which adds adversarial

perturbations on model parameters to maximize the BPR objective

function. To illustrate how it works, we implement APR on MF

by adding adversarial perturbations on the embedding vectors of

users and items. Extensive experiments on three public real-world

datasets demonstrate the effectiveness of APR — by optimizing

MF with APR, it outperforms BPR with a relative improvement

of 11.2% on average and achieves state-of-the-art performance for

item recommendation. Our implementation is available at: https:

//github.com/hexiangnan/adversarial_personalized_ranking.

CCS CONCEPTS

• Information systems → Recommender systems; Informa-

tion retrieval; Retrieval models and ranking;

∗This work is done when during the internship of Zhankui He and Xiaoyu Du at
National University of Singapore. NExT research is supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its IRC@SG Funding Initiative.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR’18, July 8–12, 2018, Ann Arbor, MI, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3209981

KEYWORDS

Personalized Ranking, Pairwise Learning, Adversarial Training,

Matrix Factorization, Item Recommendation

ACM Reference Format:

Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial

Personalized Ranking for Recommendation. In SIGIR ’18: 41st International

ACM SIGIR Conference on Research and Development in Information Retrieval,

July 8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209978.3209981

1 INTRODUCTION

Recent advances on adversarial machine learning [30] show that

many state-of-the-art classifiers are actually very fragile and vulner-

able to adversarial examples, which are formed by applying small

but intentional perturbations to input examples from the dataset.

A typical example can be found in Figure 1 of [15], which demon-

strates that by adding small adversarial perturbations to an image

of panda, a well-trained classier misclassified the image as a gibbon

with a high confidence, whereas the effect of perturbations can

hardly be perceived by human. This points to an inherent limita-

tion of training a model on static labeled data only. To address the

limitation and improve model generalization, researchers then de-

veloped adversarial training methods that train a model to correctly

classify the dynamically generated adversarial examples [15, 25].

While the inspiring progress of adversarial machine learning

mainly concentrated on the computer vision domain where the

adversarial examples can be intuitively understood, to date, there

is no study about such adversarial phenomenon in the field of in-

formation retrieval (IR). Although the core task in IR is ranking, we

point out that many learning to rank (L2R) methods are essentially

trained by optimizing a classification function, such as the pairwise

L2R method Bayesian Personalized Ranking (BPR) in recommenda-

tion [28], among others [21]. This means that it is very likely that

the underlying IR models also lack robustness and are vulnerable

to certain kinds of “adversarial examples”. In this work, we aim to

fill the research gap by exploring adversarial learning methods on

item recommendation, an active and fundamental research topic in

IR that concerns personalized ranking.

Nevertheless, directly grafting the way of generating adversarial

examples from the image domain is infeasible, since the inputs of

recommender models are mostly discrete features (i.e., user ID, item

ID, and other categorical variables). Clearly, it is meaningless to

apply noises to discrete features, which may change their semantics.

To address this issue, we consider exploring the robustness of a

recommender model at a deeper level — at the level of its intrinsic

model parameters rather than the extrinsic inputs. Using the matrix

factorization (MF) model [18, 20] trained with BPR as a demon-

stration (we term this instantiation as MF-BPR), we investigate its

robustness to perturbations on embedding parameters. Note that

MF-BPR is a highly competitive approach for item recommendation

and has been used in many papers as the state-of-the-art baseline

up until recently [17]. We found that MF-BPR is not robust and

is vulnerable to adversarial perturbations on the parameters. This

sheds light on the weakness of training with BPR, and motivates

us to develop adversarial learning methods that can result in better

and more robust recommender models.

As the main contribution of this work, we propose a novel Ad-

versarial Personalized Ranking (APR) method to learn recommender

models. With BPR as the building block, we introduce an additional

objective function in APR to quantify the loss of a model under

perturbations on its parameters. The formulation of APR can be

seen as playing a minimax game, where the perturbations are opti-

mized towards maximizing the BPR loss, and the model is trained to

minimize both the BPR loss and the additional loss with adversarial

perturbations. With a differentiable recommender model, the whole

framework of APR can be optimized with the standard stochastic

gradient descent. To demonstrate how it works, we derive the APR

solver for MF and term the method as Adversarial Matrix Factor-

ization (AMF). We conduct extensive experiments on three public

datasets constructed from Yelp, Pinterest and Gowalla that repre-

sent various item recommendation scenarios. Both quantitative

and qualitative analysis justify the effectiveness and rationality of

adversarial training for personalized ranking. Specifically, our AMF

outperforms MF-BPR with a significant improvement of 11% on

average in NDCG and hit ratio. It also outperforms the recently

proposed neural recommender models [17, 35] and IRGAN [31], and

achieves state-of-the-art performance for item recommendation.

2 PRELIMINARIES

First the matrix factorization model for recommendation is de-

scribed. Next the pairwise learning method Bayesian Personalized

Ranking is shortly recapitulated. The novel contribution of this sec-

tion is to empirically demonstrate that the MF model optimized by

BPR (a.k.a.MF-BPR) is not robust and is vulnerable to adversarial

perturbations on its parameters.

2.1 Matrix Factorization

MF has been recognized as the basic yet most effective model in

recommendation since several years [2, 20, 40]. Being a germ of

representation learning, MF represents each user and item as an

embedding vector. The core idea of MF is to estimate a user’s pref-

erence on an item as the inner product between their embedding

vectors. Formally, let u denote a user and i denote an item, then

the predictive model of MF is formulated as: ŷui (Θ) = pTu qi , where

pu ∈ RK and qi ∈ RK denote the embedding vector for user u
and item i , respectively, and K is the size of embedding vector also

called as embedding size. Θ denotes the model parameters of MF,

which is consisted of all user embedding and item embedding vec-

tors, i.e., Θ = {{pu }u ∈U , {qi }i ∈I }, whereU and I denote the set

of all users and items, respectively. We use P and Q to denote the

embedding matrix P = {pu }u ∈U ,Q = {qi }i ∈I for short.

2.2 Bayesian Personalized Ranking

BPR is a pairwise L2R method and has been widely used to optimize

recommender models towards personalized ranking [28]. Targeting

at learning from implicit feedback, it assumes that observed inter-

actions should be ranked higher than the unobserved ones. To this

end, BPR maximizes the margin between an observed interaction

and its unobserved counterparts. This is fundamentally different

from pointwise methods [2, 17] that optimize each model prediction

towards a predefined groundtruth. Formally, the objective function

(to be minimized) of BPR is

LBPR (D|Θ) =
∑

(u,i, j)∈D
− lnσ (ŷui (Θ) − ŷuj (Θ)) + λΘ | |Θ| |2, (1)

where σ (·) is the sigmoid function, λΘ are model specific regular-

ization parameters to prevent overfitting, and D denotes the set

of pairwise training instances D := {(u, i, j) |i ∈ I+u ∧ j ∈ I \ I+u },
where I+u denotes the set of items that u has interacted with before,

and I denotes the whole item set. Since the number of training

instances in BPR is very huge, the optimization of BPR is usually

done by performing stochastic gradient descent (SGD). After ob-

taining parameters, we can get the personalized ranked list for a

user u based on the value of ŷui (Θ) over all items.

Owing to its rationality and ease of optimization, BPR has been

used in a wide variety of scenarios [6, 7, 37–39, 41] and plays a im-

portant role in optimizing recommender models. It is worth noting

that the behavior of BPR can be interpreted as a classifier — given

a triplet (u, i, j), it determines whether (u, i) should have a higher

score than (u, j). Under this interpretation, a positive instance of
(u, i, j) means that ŷui should be larger than ŷuj as much as possible

to get the correct label of +1; and vice versa, a negative instance

can be seen as having a label of 0.

2.3 MF-BPR is Vulnerable to Adversarial Noises

Inspired by the findings of adversarial examples in image classifica-

tion [15, 25, 30], we are particularly interested in exploring whether

the similar phenomenon exists for BPR, since it can also be seen as a

classification method with triplet (u, i, j) as the input. Distinct from
the image domain where adding small noises to an input image

shall not change its visual content, the input to BPR is discrete ID

features and changing an ID feature will change the semantics of

the input. For example, if we change an input (u, i, j) to (u ′, i, j)
by corrupting the user ID, the semantics of the triplet becomes

totally different and the label may change. As such, existing meth-

ods that generate adversarial examples for an image classifier are

inappropriate for BPR.

Since it is irrational to add noises in the input layer, we instead

consider exploring the robustness of BPR at a deeper level — the

parameters of the underlying recommender model. It is natural to

assume that a robust model should be rather insensitive to small

perturbations on its parameters; that is, only when large pertur-

bations are enforced, the model behavior should be changed dra-

matically. To benchmark the perturbations needed, we use random

perturbations as the baseline. If we can find a way to perturb the

models parameters more effectively than random perturbations,

i.e., resulting in a much worse recommendation performance, it

0

0.02

0.04

0.06

0.08

0.1

0 0.4 0.8 1.2 1.6 2

N
DC

G
 (t

es
tin

g)

ε

Pinterest

Adversarial Noise
Random Noise

(a) Testing NDCG vs. ϵ

0.8

0.84

0.88

0.92

0.96

1

0 0.4 0.8 1.2 1.6 2

Ac
cu

ra
cy

 (t
ra

in
in

g)

ε

Pinterest

Adversarial Noise
Random Noise

(b) Training Accuracy vs. ϵ

0

0.04

0.08

0.12

0.16

0.2

0 0.2 0.4 0.6 0.8 1

N
DC

G
 (t

es
tin

g)

ε

Gowalla

Adversarial Noise
Random Noise

(c) Testing NDCG vs. ϵ

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

 (t
ra

in
in

g)

ε

Gowalla

Adversarial Noise
Random Noise

(d) Training Accuracy vs. ϵ

Figure 1: Impact of applying adversarial noises and random noises to the parameters of MF-BPR on Pinterest and Gowalla.

means that the model is not that robust and is vulnerable to certain

perturbations.

Settings. Considering the dominant role of MF in recommenda-

tion, we choose MF as the recommender model and optimize it with

BPR. We first train MF-BPR until convergence using SGD. We then

compare the effect of adding random perturbations and adversarial

perturbations to the embeddings of MF. For adversarial perturba-

tions, we define it as the perturbations that aim to maximize the

objective function of BPR:

Δadv = arg max
Δ, | |Δ | | ≤ϵ

LBPR (D|Θ̂ + Δ), (2)

where ϵ controls the magnitude of adversarial perturbations, | | · | |
denotes the L2 norm, and Θ̂ is a constant set denoting the current

model parameters. As MF is a bilinear model and BPR objective

function involves nonlinear operations, it is intractable to get ex-

act maximization with respect to Δ. Inspired by the fast gradient

method proposed in Goodfellow et al. [15], we approximate the ob-

jective function by linearizing it round Δ. With this approximation

and the max-norm constraint, we can obtain the optimal Δ as:

Δadv = ϵ
Γ

| |Γ | | where Γ =
∂LBPR (D|Θ̂ + Δ)

∂Δ
. (3)

As the number of training instances in D is huge, we sample one

unobserved item j to pair with an observed interaction (u, i). We

then perform experiments on this reduced set of examples D′ to
verify the effect of adversarial perturbations.

Results. Figure 1 shows the impact of applying adversarial and

random perturbations toMF-BPRwith different settings1 of ϵ on our
Pinterest and Gowalla datasets (details see Section 4.1). Specifically,

we show the performance evaluated by NDCG@100 on the holdout

testing set (Figure 1(a,c)) and the classification accuracy on the

reduced training set D′ (Figure 1(b,d)). The setting of ϵ = 0 means

no perturbations are used, indicating the performance of the well-

trained MF-BPR. We have two main observations.

• First, both datasets show that adding adversarial noises leads to

a more significant performance drop than adding random noises.

For example on Gowalla, when ϵ is set to 0.4, applying random

perturbations decreases the testing NDCG by 1.6%, which is a

very minor impact on recommendation; in contrast, applying

adversarial perturbations decreases NDCG significantly by 21.2%

— 13 times larger than that of random perturbations.

• Second, even though the adversarial perturbations are derived

based on partial training instances D′ only, it has a significant
1Note that we enforce the max-norm constraint of ϵ on each embedding vector in P
and Q, rather than the whole matrix.

adverse effect on the recommendation performance. For example

onGowalla, when ϵ is set to 1, NDCG decreases by 55.4%, whereas

the training accuracy decreases by 5.1% only. Similar finding

applies to the Pinterest dataset, where the drop of testing NDCG

and training accuracy at ϵ = 2 are 57.8% and 10.1%, respectively.

Our results indicate that MF-BPR is relatively robust to random

noises, but it is rather vulnerable to certain perturbations that are

purposefully designed. If a recommender model is robust and can

predict user preference well, how can it be confused so much by

perturbations at a small scale? The existence of such effective ad-

versarial perturbations implies that the model learns a complicated

function that overfits the training data and does not generalize well.

This motivates us to develop new training methods for personalized

ranking, which can lead to robust recommender models that are

insensitive to such adversarial perturbations.

3 PROPOSED METHODS

In this section, we first present APR, an adversarial learning frame-

work for personalized ranking. We then derive a generic solver

for APR based on SGD. Lastly, we present the AMF method, an

instantiation of APR that uses MF as the recommender model.

3.1 Adversarial Personalized Ranking

Our target is to design a new objective function such that by opti-

mizing it, the recommender model is both suitable for personalized

ranking and robust to adversarial perturbations. Due to the ratio-

nality of the BPR pairwise objective in personalized ranking, we

choose it as the building block. To enhance the robustness, we

enforce the model to perform well even when the adversarial per-

turbations (defined in Equation (2)) are presented. To achieve this,

we additionally optimize the model to minimize the BPR objective

function with the perturbed parameters. Formally, we define the

objective function of adversarial personalized ranking as follows:

LAPR (D|Θ) = LBPR (D|Θ) + λLBPR (D|Θ + Δadv),
where Δadv = arg max

Δ, | |Δ | | ≤ϵ
LBPR (D|Θ̂ + Δ), (4)

where Δ denotes the perturbations on model parameters, ϵ ≥ 0

controls the magnitude of the perturbations, and Θ̂ denotes the

current model parameters. In this formulation, the adversarial term

LBPR (D|Θ + Δadv) can be seen as regularizing the model by sta-

bilizing the classification function in BPR. As such, we also call

it as adversarial regularizer and use λ to control its strength. As

the intermediate variable Δ maximizes the objective function to be

minimized by Θ, the training process of APR can be expressed as

playing a minimax game:

Θ∗,Δ∗ = argmin
Θ

max
Δ, | |Δ | | ≤ϵ

LBPR (D|Θ) + λLBPR (D|Θ + Δ), (5)

where the learning algorithm for model parameters Θ is the mini-

mizing player, and the procedure for getting perturbations Δ acts as

the maximizing player, which aims to identify the worst-case per-

turbations against the current model. The two players alternately

play the game until convergence. Since the focus of APR is to get

a good recommender model, in practice we can determine when

to stop the adversarial training by tracking how does the model

perform on a validation set.

We can see that, similar to BPR, our formulation of APR leads to

a general learning framework which is model independent. As long

as the underlying model ŷui (Θ) is differentiable, it can be learned

under our APR framework using backpropagation and gradient-

based optimization algorithms. There are two hyper-parameters —

ϵ and λ — to be specified in APR in addition to the ones in BPR. In

what follows, we propose a generic solution for APR based on SGD.

3.2 A Generic SGD Solver for APR

Two optimization strategies are most widely used in recommen-

dation — coordinate descent (CD) and stochastic gradient descent

(SGD). A typical example of CD is alternating least squares [18],

which iterates through model parameters and updates one parame-

ter at a time. Note that CD is mostly used to optimize the pointwise

regression loss on linear models [2]. When the optimization target

involves nonlinearities, SGD becomes the default choice due to its

ease in deriving the update strategy [17, 35]. Since APR involves

nonlinear function in its objective function and it has a huge num-

ber of training instances (same as BPR), we optimize APR with SGD,

which is easier to implement and is more efficient than CD.

The idea of SGD is to randomly draw a training instance and

update model parameters with respect to the single instance only.

So we consider how to optimize model parameters with respect to

a randomly sampled instance (u, i, j).
Step 1. Constructing Adversarial Perturbations. Given a

training instance (u, i, j), the problem of constructing adversarial

perturbations Δadv can be formulated as maximizing

ladv ((u, i, j) |Δ) = −λ lnσ (ŷui (Θ̂ + Δ) − ŷuj (Θ̂ + Δ)). (6)

Here Θ̂ is a constant set denoting current model parameters. As

such, the L2 regularizer for Θ is dropped since it is irrelevant to

Δ. However, for many models of interest such as the bilinear MF

and multi-layer neural networks [17, 35], it is difficult to get the

exact optimal solution of Δadv . Thus, we employ the fast gradient

method proposed in Goodfellow et al. [15], a common choice in

adversarial training [24, 26, 34]. The idea is to approximate the

objective function around Δ as a linear function. To maximize the

approximated linear function, we only need to move towards the

gradient direction of the objective function with respect to Δ, which
can be derived as2:

∂ladv ((u, i, j) |Δ)
∂Δ

= −λ(1 − σ (ŷui j (Θ̂ + Δ)))
∂ŷui j (Θ̂ + Δ)

∂Δ
, (7)

2Note the used derivative rules are: ∂ lnx
∂x = 1

x
, and

∂σ (x)
∂x = σ (x) (1 − σ (x)).

Algorithm 1: SGD learning algorithm for APR.

Input: Training data D, adversarial noise level ϵ , adversarial
regularizer λ, L2 regularizer λΘ, learning rate η;

Output:Model parameters Θ;
1 Initialize Θ from BPR ;

2 while Stopping criteria is not met do

3 Randomly draw (u, i, j) from D ;

// Constructing adversarial perturbations

4 Δadv ← Equation (8) ;

// Updating model parameters

5 Θ← Equation (11) ;

6 end

7 return Θ

where ŷui j (x) = ŷui (x) − ŷuj (x) for short. With the max-norm

constraint | |Δ| | ≤ ϵ , we have the solution for Δadv as:

Δadv = ϵ
Γ

| |Γ | | where Γ =
∂ladv ((u, i, j) |Δ)

∂Δ
. (8)

Step 2. LearningModel Parameters. We now consider how to

learn model parameters Θ. The local objective function to minimize

for a training instance (u, i, j) is as follows:

lAPR ((u, i, j) |Θ) = − lnσ (ŷui (Θ) − ŷuj (Θ)) + λΘ | |Θ| |2
− λ lnσ (ŷui (Θ + Δadv) − ŷuj (Θ + Δadv)).

(9)

In this problem, Δadv is a constant obtained from Equation (8). The

derivative of the objective function with respect to Θ is as follows:

∂lAPR ((u, i, j) |Θ)
∂Θ

= − (1 − σ (ŷui j (Θ)))
∂ŷui j (Θ)

∂Θ
+ 2λΘΘ

− λ(1 − σ (ŷui j (Θ + Δadv)))
∂ŷui j (Θ + Δadv)

∂Θ
.

(10)

Then we can obtain the SGD update rule for Θ:

Θ = Θ − η ∂lAPR ((u, i, j) |Θ)
∂Θ

, (11)

where η denotes the learning rate.

To summarize the SGD solver for APR, we give the training process

in Algorithm 1. In each training step (line 3-5), we first randomly

draw a instance (u, i, j). We then execute the update rule for adver-

sarial perturbations and model parameters in sequential order.

Initialization. It is worth mentioning that the model parameters

Θ are initialized by optimizing BPR (line 1), rather than randomly

initialized. This is because the adversarial perturbations are only

reasonable and necessary to add when the model parameters start

to overfit the data. When the model is underfitting, normal training

process is sufficient to get better parameters. Besides pre-training

with BPR, another feasible strategy is to dynamically adjust ϵ that

controls the level of perturbations during training. For example, it

is possible to learn ϵ based on a holdout validation set. We leave

this exploration as future work, since we find that the current pre-

training strategy with a constant ϵ works quite well.

3.3 Adversarial Matrix Factorization

To demonstrate how the APR works, we now provide a specific

recommender solution based onMF, a basic yet very effective model

in recommendation. The solution is simple and straightforward

— we first train MF with BPR, and then further optimize it under

our APR framework. We term the method as Adversarial Matrix

Factorization (AMF). Figure 2 illustrates our AMF method. Since

the parameters of MF are embedding vectors for users and items,

we apply adversarial perturbations on the embedding vector. Given

a (u, i) pair, the predictive model with perturbations is defined as:

ŷui (Θ + Δ) = (pu + Δu)
T (qi + Δi), (12)

where Δu ∈ RK and Δi ∈ RK denote the perturbation vector for

user u and item i , respectively. Note that the max-norm constraint

| |Δ| | ≤ ϵ is enforced on the level of perturbation vector. To apply

Algorithm 1 in AMF, we simply need to materialize Equation (8)

and (11). For Equation (8), we give the key derivatives as:

∂ŷui j (Θ̂ + Δ)

∂Δu
= qi + Δi − qj − Δj ,

∂ŷui j (Θ̂ + Δ)

∂Δi
= pu + Δu,

∂ŷui j (Θ̂ + Δ)

∂Δj
= −pu − Δu .

(13)

To implement Equation (11), we give the key derivatives as follows:

∂ŷui j (Θ)

∂pu
= qi − qj ,

∂ŷui j (Θ)

∂qi
= pu ,

∂ŷui j (Θ)

∂qj
= −pu ,

∂ŷui j (Θ + Δadv)

∂pu
= qi + Δi − qj − Δj ,

∂ŷui j (Θ + Δadv)

∂qi
= pu + Δu ,

∂ŷui j (Θ + Δadv)

∂qj
= −pu − Δu .

(14)

3.3.1 Mini-batch Training for AMF. Modern computing units

such as CPU and GPU usually provide speedups for matrix-wise

float operations. To leverage such speedups in learning complex

models, a common strategy is to perform SGD in a mini-batch man-

ner, i.e., updating model parameters on a set of training instances

rather than one instance only. In fact, many machine learning meth-

ods implemented in modern tools such as TensorFlow and Theano

apply mini-batch optimizers. Since AMF plays a minimax game

and has two coupled procedures, there are several ways to perform

mini-batch training. Below we detail how we perform mini-batch

training for AMF.

First, given the mini-batch size S , we randomly draw S training

instances fromD and term the mini-batch asD′. We then construct

adversarial perturbations by maximizing the adversarial regularizer

over the mini-batch:

Ladv (D′|Δ) =
∑

(u,i, j)∈D′
ladv ((u, i, j) |Δ), (15)

where ladv ((u, i, j) |Δ) has been defined in Equation (6). For each

user and item3 that occurred inD′, we compute its perturbed vector

by enforcing the max-norm constraint on
∂Ladv (D′ |Δ)

∂Δ .

3Note that the item includes both positive item i and negative item j . It is possible
that a positive i occurs in another instance as a negative item, and vice versa. This
needs to be taken into account to avoid mistake.

0 1 0 …

User (u)

qi pu qj

0 0 1 …

Item (j)

ŷui

0 1 0 …

Item (i)

ŷuj

-ln σ(ŷui - ŷuj)
Training

Minimizer

Δi Δu Δj
+ + +

Input

Embeddings &
Perturbations

Predictions

Figure 2: Illustration of our AMFmethod. The perturbations

Δ are enforced on each embedding vector of user and item.

Next, we update the model parameters based on the mini-batch

D′. The APR objective function over the mini-batch is given as:

LAPR (D′|Θ) =
∑

(u,i, j)∈D′
lAPR ((u, i, j) |Θ), (16)

where lAPR ((u, i, j) |Θ) has been defined in Equation (10). Similarly,

for each user and item that occurred in D′, we perform a SGD up-

date as Θ = Θ−η ∂LAPR (D′ |Θ)
∂Θ . We iterate the above two steps until

AMF reaches a convergence state or the validation performance

starts to degrade.

4 EXPERIMENTS

As the key contribution of this work is to develop a new adversarial

learning method APR for personalized ranking, we aim to answer

the following research questions via experiments.

RQ1 How is the effect of adversarial learning? Can AMF improve

over MF-BPR by performing adversarial learning?

RQ2 How does AMF perform compared with state-of-the-art item

recommendation methods?

RQ3 How do the hyper-parameters ϵ and λ affect the performance

and how to choose optimal values?

Next, we first describe the experimental settings. We then report

results by answering the above research questions in turn.

4.1 Experimental Settings

4.1.1 Datasets. We experiment with three publicly available

datasets. Table 1 summarizes the statistics of the datasets (after

all pre-processing steps). These three million-size scale datasets

represent different item recommendation scenarios for business,

image, and location check-in.

Table 1: Statistics of the experimented datasets.

Dataset Interaction# Item# User# Sparsity

Yelp 730,790 25,815 25,677 99.89%

Pinterest 1,500,809 9,916 55,187 99.73%

Gowalla 1,249,703 52,400 54,156 99.96%

1. Yelp4. This is the Yelp Challenge data of user ratings on busi-

nesses. We use the filtered subset created by [18] for evaluating

item recommendation. We find that a user may rate an item mul-

tiple times at different timestamps. Since a recommender system

4Downloaded from: https://github.com/hexiangnan/sigir16-eals

0.1

0.12

0.14

0.16

0.18

0.2

0 400 800 1200 1600 2000

H
R

Epoch

Yelp

MF
AMF

0.025

0.030

0.035

0.040

0.045

0.050

0 400 800 1200 1600 2000

N
DC

G
Epoch

Yelp

MF
AMF

Figure 3: Training curves of MF-BPR and AMF on Yelp.

typically aims to recommend items that a user did not consume

before, we further merge repetitive ratings to the earliest one. This

can also avoid a testing interaction appearing in the training set.

2. Pinterest5. This implicit feedback dataset was originally con-

structed by [13] for content-based image recommendation. We use

the filtered subset created by [17] for evaluating collaborative rec-

ommendation on images. Since no repetitive interactions are found,

we use the downloaded dataset as it is.

3. Gowalla6. This is the check-in dataset constructed by [23] for

item recommendation. Each interaction represents a user’s check-in

behavior on a venue in Gowalla, a location-based social network.

Same as the setting of Yelp, we merge repetitive check-ins to the

earliest check-in. We then filter out items that have less than 10

interactions and users that have less than 2 interactions.

4.1.2 Evaluation Protocol. We employ the standard leave-one-

out protocol, which has been widely used in item recommendation

evaluation [2, 18, 28]. Specifically, for each user in Yelp and Gowalla,

we hold out the latest interaction as the testing set and train a

model on the remaining interactions. As the Pinterest data has no

timestamp information, we randomly hold out an interaction for

each user to form the testing set.

After a model is trained, we generate the personalized ranking

list for a user by ranking all items that are not interacted by the user

in the training set. To study the performance of top-K recommenda-

tion, we truncate the ranking list at position K ; the default setting
of K is 100 without special mention. We then evaluate the ranking

list using Hit Ratio (HR) and Normalized Discounted Cumulative

Gain (NDCG). HR is a recall-based metric, measuring whether the

testing item is in the top-K list. While NDCG is position-sensitive,

which assigns higher score to hits at higher positions. For both

metrics, larger values indicate better performance. We report the

average score for all users, and perform one-sample paired t-test to

judge the statistical significance where necessary.

4.1.3 Baselines. We compare with the following methods:

- ItemPop. This method ranks items based on their popularity,

evidenced by the number of interactions in the training set. This

is a non-personalized method to benchmark the performance of

personalized recommendation.

- MF-BPR [28]. This method optimizes MF with the BPR objec-

tive function. It is a highly competitive approach for item recom-

mendation. We tuned the learning rate and the coefficient for L2
regularization.

5Downloaded from: https://github.com/hexiangnan/neural_collaborative_filtering
6Downloaded from: http://dawenl.github.io/data/gowalla_pro.zip

0.2

0.24

0.28

0.32

0.36

0.4

0 400 800 1200 1600 2000

H
R

Epoch

Pinterest

MF
AMF

0.05

0.06

0.07

0.08

0.09

0.1

0 400 800 1200 1600 2000

N
DC

G

Epoch

Pinterest

MF
AMF

Figure 4: Training curves of MF-BPR and AMF on Pinterest.

0.2

0.3

0.4

0.5

0.6

0.7

0 400 800 1200 1600 2000

H
R

Epoch

Gowalla

MF
AMF

0.05

0.09

0.13

0.17

0.21

0.25

0 400 800 1200 1600 2000

N
DC

G

Epoch

Gowalla

MF
AMF

Figure 5: Training curves of MF-BPR and AMF on Gowalla.

- CDAE [35]. This method extends the Denoising Auto-Encoder

for item recommendation. It has been shown to be able to generalize

several latent factor models. We used the original implementation

released by the authors7, and tuned the hyperparameters in the

same way as reported in their paper, including the loss function,

corruption level, L2 regularization and learning rate.

- NeuMF [17]. Neural Matrix Factorization is the state-of-the-art

item recommendation method. It combines MF and multi-layer

perceptrons (MLP) to learn the user-item interaction function. As

suggested in the paper, we pre-trained the model with MF, and

tuned the depth and L2 regularizer for the hidden layers.

- IRGAN [31]. This method combines two types of models via

adversarial training, a generative model that generates items for

a user and a discriminative model that determines whether the

instance is from real data or generated. We used the implementa-

tion released by the authors8. We followed the setting of the paper

that pre-trains the generator with LambdaFM [38]. We tuned the

learning rate and number of epochs for generator and discriminator

separately, which we found to have a large impact on its perfor-

mance. Further tuning of the sampling temperature did not improve

the results, so we used their default settings.

This set of baselines stands for the state-of-the-art performance for

the item recommendation task. In particular, CDAE and NeuMF

are the recently proposed neural recommender models which have

shown significant improvements over conventional shallow meth-

ods like MF and FISM [19]. IRGAN takes advantage of generative

adversarial networks [14] and shows good performance on several

IR tasks including recommendation in their paper.

4.1.4 Implementation and Parameter Settings. Our implementa-

tion is based on TensorFlow, which is available at: https://github.

com/hexiangnan/adversarial_personalized_ranking. To tune the

hyper-parameters, we randomly holdout one interaction for each

user from the training interactions as the validation set, and we

7https://github.com/jasonyaw/CDAE
8https://github.com/geek-ai/irgan

0.13

0.14

0.15

0.16

0.17

0.18

0.19

4 8 16 32 64

H
R

Embedding Size

Yelp

MF
AMF

0.26

0.29

0.32

0.35

0.38

4 8 16 32 64

H
R

Embedding Size

Pinterest

MF
AMF

0.2

0.3

0.4

0.5

0.6

4 8 16 32 64

H
R

Embedding Size

Gowalla

MF
AMF

Figure 6: Performance comparison of HR between MF-BPR and AMF with respect to different embedding sizes.

choose the optimal hyperparameters based on NDCG@100. For a

fair comparison, all models are set with an embedding size of 64

and optimized using the mini-batch Adagrad [12] with a batch size

of 512; moreover, the learning rate is tuned in [0.005, 0.01, 0.05]. For

AMF,we tune ϵ in [0.001, 0.005, 0.01, ..., 1, 5] and λ in [0.001, 0, 01, ..., 1000].
With MF-BPR as pre-training, AMF achieves good performance

when ϵ = 0.5 and λ = 1 on all datasets. As such, without special

mention, we report the performance of AMF on this specific setting.

4.2 Effect of Adversarial Learning (RQ1)

To validate the effect of adversarial learning, we first train MF with

BPR for 1, 000 epochs (mostly converged), where each epoch is

defined as training the number of instances the same as the size as

the training set. We then continue training MF with APR, i.e., our

proposed AMF method; as a comparison, we further train MF with

BPR to be consistent with APR.

1. Training Process. Figure 3 to 5 show the performance of MF

and AMF evaluated per 20 epochs on the three datasets. We can see

that all figures show the same trend — after 1, 000 epochs, further

training MF with APR leads to a significant improvement, whereas

further training MF with BPR has little improvements. For example,

on Yelp (Figure 3) the best HR and NDCG of MF-BPR are 0.1721

and 0.0420, respectively, which are improved to 0.1881 and 0.0470

by training with APR. This roughly 10% relative improvement is

very remarkable in recommendation, especially considering that

the underlying recommender model remains the same and we only

change the way of training it.

On Gowalla (Figure 5), the improvements are even larger — 13.5%

and 16.8% in terms of HR and NDCG, respectively. On Pinterest (Fig-

ure 4), we notice that HR and NDCG of MF exhibit different trends,

where after 1, 000 epochs HR starts to decrease while NDCG keeps

increasing. This is understandable, since HR and NDCG measure

different aspects of a ranking list — NDCG is position-sensitive by

assigning higher rewards to hits at higher positions while HR is not.

Moreover, this points to the strength of BPR in ranking top items,

owing to its pairwise objective. This observation is consistent with

[18]’s finding in evaluating top-K recommendation.

2. Improvements vs. Model Size. Furthermore, we investigate

whether the advantages of adversarial learning apply to models

of different sizes. Figure 6 show the performance of MF-BPR and

AMF with respect to different embedding sizes. Note that we show

the results of HR only due to space limitation, and the figures of

NDCG admit the same findings. First, we can see a clear trend that

the performance of both methods increase with a larger embedding

size. This indicates that a larger model is beneficial to top-K recom-

mendation due to the increased modeling capability. Second, we

observe that AMF demonstrates consistent improvements over MF

on models of all embedding sizes. Notably, AMF with an embedding

size of 32 even performs better than MF with a larger embedding

size of 64 on all datasets. This further verifies the positive effect of

adversarial learning in our APR method.

Lastly, it is worth noting that the improvements of AMF are

less significant when the embedding size is small, compared to the

setting of large embedding size. This implies that when a model is

small and has limited capability, its robustness is not a serious issue.

While for large models that are easy to overfit the training data, it

is crucial to increase a model’s robustness by learning with adver-

sarial perturbations, which in turn can increase its generalization

performance. We believe that this insight is particularly useful for

the recommendation task, which typically involves a large space

of input features (e.g., user ID, item ID, and other attributed and

contextual variables). Given such a large feature space, even a shal-

low embedding model like Factorization Machine [27] will have a

large number of parameters, not to mention the more expressive

deep neural networks such as Neural Factorization Machine [16]

and Deep Crossing [29]. This work introduces adversarial learning

to address the ranking task, providing a new means to increase the

generalization ability of large models and having the potential to

improve a wide range of models.

Table 2: The impact of applying adversarial perturbations

to the MF model trained by BPR and APR, respectively. The

number shows the relative decrease in NDCG.

ϵ = 0.5 ϵ = 1.0 ϵ = 2.0

Dataset BPR APR BPR APR BPR APR

Yelp -22.1% -4.7% -42.7% -12.5% -63.8% -31.0%

Pinterest -9.5% -2.6% -25.1% -7.2% -55.7% -23.4%

Gowalla -26.3% -2.9% -53.0% -13.2% -78.0% -29.2%

3. Robustness of AMF. We retrospect our motivating example in

Section 2.3 to investigate the robustness of a model trained by APR.

Table 2 shows the impact of applying adversarial perturbations to

the MF model trained by BPR and APR, respectively.

We can see that by trainingMFwith APR, themodel becomes less

sensitive to adversarial perturbations compared to that trained with

BPR. For example, on Gowalla, adding adversarial perturbations at

a noise level of 0.5 to MF-BPR decreases NDCG by 26.3%, while the

number is only 2.9% for AMF. These results verify that our AMF is

rather robust to adversarial perturbations, an important property

that indicates good generalization ability of a model.

Table 3: Top-K recommendation performance at K = 50 and K = 100. The best result of each setting is highlighted in bold font.

∗ indicates that the improvement of the best result is statistically significant for p < 0.01 compared against all other methods.

The last column “RI” indicates the relative improvement of AMF over the corresponding baseline on average.

Yelp, HR Yelp, NDCG Pinterest, HR Pinterest, NDCG Gowalla, HR Gowalla, NDCG RI

K=50 K=100 K=50 K=100 K=50 K=100 K=50 K=100 K=50 K=100 K=50 K=100

ItemPop 0.0405 0.0742 0.0114 0.0169 0.0294 0.0485 0.0085 0.0116 0.1183 0.1560 0.0367 0.0428 +416%

MF-BPR 0.1053 0.1721 0.0312 0.0420 0.2226 0.3403 0.0696 0.0886 0.4061 0.5072 0.1714 0.1878 +11.2%

CDAE [35] 0.1041 0.1733 0.0293 0.0405 0.2254 0.3495 0.0672 0.0873 0.4435 0.5483 0.1837 0.2007 +9.5%

IRGAN [31] 0.1119 0.1765 0.0361∗ 0.0465∗ 0.2254 0.3363 0.0724 0.0904 0.4157 0.518 0.1853 0.2019 +5.9%

NeuMF [17] 0.1135 0.1817 0.0335 0.0445 0.2342 0.3526 0.0734 0.0925 0.4558 0.5642 0.1962 0.2138 +2.9%

AMF 0.1176∗ 0.1885∗ 0.0350 0.0465∗ 0.2375∗ 0.3595∗ 0.0741∗ 0.0938∗ 0.4693∗ 0.5763∗ 0.2039∗ 0.2212∗ -

600

800

1000

1200

1400

1600

1800

0 40 80 120 160 200

Em
be

dd
in

g
N

or
m

Epoch

Yelp

MF(L2_reg=0)
MF(L2_reg=0.0001)
AMF

500

1000

1500

2000

2500

0 20 40 60 80 100

Em
be

dd
in

g
N

or
m

Epoch

Gowalla

MF(L2_reg=0)
MF(L2_reg=0.0001)
AMF

Figure 7: The norm of embedding matrices of MF and AMF

at each training epoch on Yelp and Gowalla.

4. Adversarial Regularization vs. L2 Regularization. The rea-
son that APR improves over BPR is because of the adversarial

regularizer. To be clear about its effect on parameter learning, we

perform some micro-level analysis on model parameters. Figure 7

shows the norm of embedding matrices (i.e., | |P| |2 + | |Q| |2) of MF

and AMF in each epoch on Yelp and Gowalla. As a comparison, we

also show the effect of L2 regularization, a popular technique in
recommendation to prevent overfitting.

Interestingly, we find that adding adversarial regularization in-

creases the embedding norm. This is reasonable, since we constrain

the adversarial perturbations in APR to have a fixed norm, thus

increasing the embedding norm is helpful to reduce the impact of

perturbations. Nevertheless, simply increasing the norm by scaling

up the parameters is a trivial solution, which will not improve a

model’s generalization performance. This provides evidence that

our proposed learning algorithm indeed updates parameters in a

rather meaningful way towards enhancing the model’s robustness.

In contrast, adding L2 regularization decreases the embedding norm

to combat overfitting. Based on these, we conclude that adversarial

regularization improves a model’s generalization in a different but

more effective way from the conventional L2 regularization.

4.3 Performance Comparison (RQ2)

We now compare our AMF with baselines. Table 3 shows the re-

sults of top-K recommendation with K setting to 50 and 100. Note

that we do not report results at smaller K , because our protocol
ranks all items which makes the results at smaller K exhibit large

variances. More importantly, evaluating at a larger K is more in-

structive for practitioners9. From Table 3, we have the following

key observations:

9Practical recommender systems typically have two stages [33], 1) candidate selection
that selects hundreds of items that might be of interest to a user, and 2) ranking
that re-ranks the candidates to show top a few results. The first stage typically relies
on collaborative filtering (CF) with the objective of a high recall. Thus, it is more
instructive to evaluate CF with a large K of hundreds, rather than a small number.

1. Our AMF achieves the best results in most cases. The only

exception is on Yelp, where IRGAN outperforms AMF by a small

margin in NDCG@50 and is on par with AMF in NDCG@100.

For the other cases, AMF outperforms other comparing methods

statistically significantly with a p-value of smaller than 0.01. This

signifies that AMF achieves the state-of-the-art performance for

item recommendation.

2. Specifically, compared to NeuMF — a recently proposed and

very expressive deep learning model, AMF exhibits an average

improvement of 2.9%. This is very remarkable, since AMF uses the

shallow MF model that has much fewer parameters, which also

implies the potential of improving conventional shallow methods

with a better training algorithm.

3. Moreover, as compared to IRGAN, which also applies adversar-

ial learning on MF but in a different way, AMF betters it by 5.9% on

average. This further verifies the effectiveness of our APR method.

It is worth mentioning that APR is more efficient and much easier

to train than IRGAN, which needs to be carefully tuned to avoid

mode collapse, while APR only requires an initialization from BPR.

4. Among the baselines, NeuMF performs the best, which ver-

ifies the advantage of nonlinear neural networks in learning the

user-item interaction function. Another neural recommender model

CDAE performs weaker, which only shows significant improve-

ments over MF-BPR on the Gowalla dataset. IRGAN manages to

outperform MF-BPR in most cases, which can be attributed to its

improved training process, since the underlying model is also MF.

Lastly, all personalized methods outperform ItemPop by a large

margin, which indicates the necessity of personalization in recom-

mendation task. This is not a new finding and has been verified by

many previous works [2, 17, 28, 35, 38].

4.4 Hyper-parameter Studies (RQ3)

Our APR method introduces two additional hyper-parameters ϵ
and λ to control the noise level and the strength of adversarial

regularizer, respectively. Here we show how do the two hyper-

parameters impact the performance and also shed lights on how

to set them. Due to space limitation, we show the results on the

Pinterest and Gowalla datasets only, and the results on the Yelp

dataset show exactly the same trend.

First, we fix λ to the default value of 1 and vary ϵ . As can be

seen from Figure 8, the optimal value is around 0.5. When ϵ is too

small (e.g., less than 0.1), AMF behaves similarly to MF-BPR and

has only minor improvements. This further verifies the positive

effect of increasing the robustness of a model to perturbations on

0

0.02

0.04

0.06

0.08

0.1

0.1

0.18

0.26

0.34

0.42

0.5

0.1 0.3 0.5 0.7 0.9 1 5

N
D

CG

H
R

ε

Pinterest

HR
NDCG

0

0.05

0.1

0.15

0.2

0.25

0

0.16

0.32

0.48

0.64

0.8

0.1 0.3 0.5 0.7 0.9 1 5

N
D

CG

H
R

ε

Gowalla

HR
NDCG

Figure 8: Performance of AMF with respect to different val-

ues of ϵ on Pinterest and Gowalla (λ is set to 1).

its parameters. Moreover, when ϵ is too large (e.g., larger than 1),

the performance drops dramatically. This indicates that too large

perturbations will destroy the learning process of model parameters.

As such, our suggested setting of ϵ is 0.5 for AMF when it has been

pre-trained with BPR.

0.085

0.087

0.089

0.091

0.093

0.095

0.33

0.34

0.35

0.36

0.37

0.38

0.001 0.01 0.1 1 10 100 1000

N
D

CG

H
R

λ

Pinterest

HR
NDCG

0.18

0.19

0.2

0.21

0.22

0.23

0.5

0.524

0.548

0.572

0.596

0.62

0.001 0.01 0.1 1 10 100 1000

N
D

CG

H
R

λ

Gowalla

HR
NDCG

Figure 9: Performance of AMF with respect to different val-

ues of λ on Pinterest and Gowalla (ϵ is set to 0.5).

Second, we fix ϵ to 0.5 and vary λ. Figure 9 shows the results.
We can see that when λ is smaller than 1, increasing λ leads to

gradual improvements. When λ is larger than 1, further increasing

it neither improves nor decreases the performance up until a large

value of 1, 000. This means that AMF is rather insensitive when

λ is sufficiently large to reflect the adversarial effect. As such, we

suggest to set λ to 1 (or a larger value such as 10) for AMF.

5 RELATEDWORK

5.1 Item Recommendation

Due to the abundance of user feedback such ratings and purchases

that can directly reflect a user’s preference, research on item rec-

ommendation have mainly focused on mining the feedback data,

known as collaborative filtering (CF). Among the various CF meth-

ods, matrix factorization (MF) [18], a special type of latent factor

models, is a basic yet most effective recommender model. Popu-

larized by the Netflix Challenge, early works on CF have largely

focused on explicit ratings [20, 27]. These works formulated the

recommendation task as a regression problem to predict the rating

score. Later on, some research found that a good CF model in rating

prediction may not necessarily perform well in top-K recommen-

dation [10], and called on recommendation research to focus more

on the ranking task.

Along another line, research on CF has gradually shifted from

explicit ratings to one-class implicit feedback [18, 28]. Rendle et

al. [28] first argued that item recommendation is a personalized

ranking task, and such that, the optimization should be tailored

for ranking rather than regression. They then proposed a pairwise

learning method BPR, which optimizes a model based on the rel-

ative preference of a user over pairs of items. Later on, BPR has

been used to optimize a wide range of models [6, 7, 35, 37–39, 41],

being a dominant technique in recommendation. Recently, Ding

et al. [11] improved BPR with a better negative sampler by addi-

tionally leveraging view data in E-commerce. Our proposed APR

directly enhances BPR by adversarial training, having the potential

to improve all existing recommender systems based on BPR.

From the perspective of models, there are many recent efforts de-

veloping non-linear neural network models for CF [1, 3, 7–9, 17, 22,

32, 35, 36, 41] to take advantage of deep learning. In particular, He et

al. [17] argued the limitation of fixed interaction function (i.e., inner

product) in MF, and proposed a neural collaborative filtering (NCF)

framework that learns the interaction function from data. They then

designed a NCF model named NeuMF, which unifies the strength of

MF and MLP in learning the interaction function. Later on, the NCF

framework was extended to incorporate the neighborhoods [1]

and attributes [32] of users and items, to model contexts for POI

recommendation [36], to model image/video content features for

multi-media recommendation [7], to model aspects in textual re-

views [9], to recommend items for a group of users [5], and so on.

In addition to the feed-forward NCF framework, recurrent neural

networks have also been developed to handle the temporal signal

in session-aware recommendation [3, 22].

5.2 Adversarial Learning

This work is inspired by the recent developments of adversarial

machine learning techniques [15, 24–26, 30, 34]. Briefly speaking, it

was found that normal supervised training process makes a classier

vulnerable to adversarial examples [30], which revealed the po-

tential issue of an unstable model in generalization. To address

the issue, researchers then proposed adversarial training methods

which augment the training process by dynamically generating ad-

versarial examples [15]. Learning over these adversarial examples

can be seen as a way to regularize the training process. Recently,

the idea of adversarial training has been extended to learn adaptive

dropout for hidden layers in deep neural networks [26].

Existing work on the emerging field of adversarial learning was

largely focused on the domain of image classification. There are

very few studies on adversarial learning for ranking — the core task

in IR. The work that is most relevant with ours is IRGAN [31], which

also employs adversarial learning, more precisely the GAN frame-

work [14], to address the matching problem. Our APR methodology

is fundamentally different from IRGAN, which aims to unify the

strength of generative and discriminative models. Specifically, in

the pairwise formulation of IRGAN, the generator approximates

the relevance distribution to generate document (item) pairs given

a query (user), and the discriminator tries to distinguish whether

the document pairs are from real data or generated. Unfortunately,

it is intuitively difficult to understand why IRGAN-pairwise can

improve personalized ranking in item recommendation (in fact,

both the original paper and their released codes only have IRGAN-

pointwise for the recommendation task).

It is worth noting that in the literature of recommender systems,

the concept of robustness usually refers to the degree that an algo-

rithm can resist the profile injection attack, i.e., the attack that tries

to manipulate the recommendation by inserting user profiles [4].

This line of research is orthogonal to our work, since we consider

improving a recommender model by making it resistant to adversar-

ial perturbations on its parameters. Through this way, we can get a

more robust and stable predictive function, and in turn improving

its generalization performance. To the best of our knowledge, this

has never been explored before in the domain of IR.

6 CONCLUSION AND FUTUREWORK

This work contributes a new learning method for optimizing rec-

ommender models. We show that a model optimized by BPR, a

dominant pairwise learning method in recommendation, is vulner-

able to adversarial perturbations on its parameters. This implies

the possible weakness of a model optimized with BPR in gener-

alization. Towards the goal of learning more robust models for

personalized ranking, we propose to perform adversarial training

on BPR, namely, Adversarial Personalized Ranking. We develop a

generic learning algorithm for APR based on SGD, and employ the

algorithm to optimize MF. In our evaluation, we perform extensive

analysis to demonstrate the highly positive effect of adversarial

learning for personalized ranking.

In future, we plan to extend our APR method to other recom-

mender models. First, we are interested in exploring more generic

feature-based models like Neural Factorization Machines [16] and

Deep Crossing [29] that can support a wide range of recommen-

dation scenarios, such as cold-start, context-aware, session-based

recommendation and so on. Second, we will employ APR on the

recently developed neural CF models such as NeuMF [17] and

neighbor-based NCF [1] to further advance the performance of

item recommendation. The challenge here is how to properly em-

ploy adversarial training on deep hidden layers, since this work

addresses the embedding layer of shallow MF model only. Lastly,

it is worth mentioning that our APR represents a generic method-

ology to improve pairwise learning by using adversarial training.

Pairwise learning is not specific to recommendation, and it has

been widely applied to many other IR tasks, such as text retrieval,

web search, question answering, knowledge graph completion, to

name a few. We will work on extending the impact of APR to these

fields beyond recommendation.

Acknowledgments. This work is supported by NExT, by the Na-

tional Research Foundation Singapore under its AI Singapore Pro-

gramme, Linksure Network Holding Pte Ltd and the Asia Big Data

Association (Award No.: AISG-100E-2018-002), and by the National

Natural Science Foundation of China under Grant No.: 61702300.

REFERENCES
[1] T. Bai, J. Wen, J. Zhang, and W. X. Zhao. A neural collaborative filtering model

with interaction-based neighborhood. In CIKM, pages 1979–1982, 2017.
[2] I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent framework

for learning from implicit feedback. In WWW, pages 1341–1350, 2017.
[3] A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi. Latent cross:

Making use of context in recurrent recommender systems. In WSDM, pages
46–54, 2018.

[4] R. Burke, M. P. O’Mahony, and N. J. Hurley. Robust Collaborative Recommendation,
pages 961–995. Springer US, Boston, MA, 2015.

[5] D. Cao, X. He, L. Miao, Y. An, C. Yang, and R. Hong. Attentive group recommen-
dation. In SIGIR, 2018.

[6] D. Cao, L. Nie, X. He, X. Wei, S. Zhu, and T.-S. Chua. Embedding factorization
models for jointly recommending items and user generated lists. In SIGIR, pages
585–594, 2017.

[7] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua. Attentive collaborative
filtering: Multimedia recommendation with item- and component-level attention.

In SIGIR, pages 335–344, 2017.
[8] X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin. Personalized key frame

recommendation. In SIGIR, pages 315–324, 2017.

[9] Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. Kankanhalli. A3NCF: An
adaptive aspect attention model for rating prediction. In IJCAI, 2018.

[10] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms
on top-n recommendation tasks. In RecSys, pages 39–46, 2010.

[11] J. Ding, F. Feng, X. He, G. Yu, Y. Li, and D. Jin. An improved sampler for bayesian
personalized ranking by leveraging view data. In WWW, pages 13–14, 2018.

[12] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[13] X. Geng, H. Zhang, J. Bian, and T. Chua. Learning image and user features for
recommendation in social networks. In ICCV, pages 4274–4282, 2015.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages 2672–
2680, 2014.

[15] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[16] X. He and T.-S. Chua. Neural factorization machines for sparse predictive analyt-
ics. In SIGIR, pages 355–364, 2017.

[17] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative
filtering. In WWW, pages 173–182, 2017.

[18] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online
recommendation with implicit feedback. In SIGIR, pages 549–558, 2016.

[19] S. Kabbur, X. Ning, and G. Karypis. Fism: Factored item similarity models for
top-n recommender systems. In KDD, pages 659–667, 2013.

[20] Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In KDD, pages 426–434, 2008.

[21] H. Li. Learning to Rank for Information Retrieval and Natural Language Processing,
Second Edition. Synthesis Lectures on Human Language Technologies. Morgan
& Claypool Publishers, 2014.

[22] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based
recommendation. In CIKM, pages 1419–1428, 2017.

[23] D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user exposure in
recommendation. In WWW, pages 951–961, 2016.

[24] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods for semi-
supervised text classification. In ICLR, 2017.

[25] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial
perturbations. In CVPR, pages 86–94, 2017.

[26] S. Park, J.-K. Park, S.-J. Shin, and I.-C. Moon. Adversarial dropout for supervised
and semi-supervised learning. In AAAI, 2018.

[27] S. Rendle. Factorization machines. In ICDM, pages 995–1000, 2010.
[28] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian

personalized ranking from implicit feedback. In UAI, pages 452–461, 2009.
[29] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. Deep crossing: Web-

scale modeling without manually crafted combinatorial features. In KDD, pages
255–262, 2016.

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[31] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang.
Irgan: A minimax game for unifying generative and discriminative information
retrieval models. In SIGIR, pages 515–524, 2017.

[32] X. Wang, X. He, L. Nie, and T.-S. Chua. Item silk road: Recommending items
from information domains to social users. In SIGIR, pages 185–194, 2017.

[33] Z. Wang, Z. Jiang, Z. Ren, J. Tang, and D. Yin. A path-constrained framework
for discriminating substitutable and complementary products in e-commerce. In
WSDM, pages 619–627, 2018.

[34] Y. Wu, D. Bamman, and S. Russell. Adversarial training for relation extraction.
In ACL, pages 1778–1783, 2017.

[35] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In WSDM, pages 153–162, 2016.

[36] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han. Bridging collaborative filtering
and semi-supervised learning: A neural approach for poi recommendation. In
KDD, pages 1245–1254, 2017.

[37] W. Yu, H. Zhang, X. He, X. Chen, L. Xiong, and Z. Qin. Aesthetic-based clothing
recommendation. In WWW, pages 649–658, 2018.

[38] F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang. Lambdafm: Learning
optimal ranking with factorization machines using lambda surrogates. In CIKM,
pages 227–236, 2016.

[39] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base
embedding for recommender systems. In KDD, pages 353–362, 2016.

[40] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua. Discrete collaborative
filtering. In SIGIR, pages 325–334, 2016.

[41] Y. Zhang, Q. Ai, X. Chen, and W. B. Croft. Joint representation learning for
top-n recommendation with heterogeneous information sources. In CIKM, pages
1449–1458, 2017.

