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Abstract
Bundle recommendation aims to recommend a bundle of items for
a user to consume as a whole. Existing solutions integrate user-
item interaction modeling into bundle recommendation by sharing
model parameters or learning in a multi-task manner, which cannot
explicitly model the affiliation between items and bundles, and fail
to explore the decision-making when a user chooses bundles. In
this work, we propose a graph neural network model named BGCN
(short for Bundle Graph Convolutional Network) for bundle recom-
mendation. BGCN unifies user-item interaction, user-bundle inter-
action and bundle-item affiliation into a heterogeneous graph. With
item nodes as the bridge, graph convolutional propagation between
user and bundle nodes makes the learned representations capture
the item level semantics. Through training based on hard-negative
sampler, the user’s fine-grained preferences for similar bundles are
further distinguished. Empirical results on two real-world datasets
demonstrate the strong performance gains of BGCN, which outper-
forms the state-of-the-art baselines by 10.77% to 23.18%.
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1 Introduction
The prevalence of bundled items on e-commerce and content plat-
forms makes bundle recommendation become an important task.
It is not only able to avoid users’ monotonous choices to improve
their experience, but also increase business sales by expanding the
order sizes. Since a bundle is composed of multiple items, the attrac-
tiveness of a bundle depends on its items, and the attractiveness
of items in a bundle affects each other. Besides, users need to be
satisfied with most items in the bundle, which means that there is
a sparser interaction between the user and the bundle.

Most existing works for bundle recommendation [2, 7, 8] re-
gard item and bundle recommendation as two separate tasks, and
associate them by sharing model parameters. A recent study [3]
proposed a multi-task framework that transfers the benefits of the
item recommendation task to the bundle recommendation to allevi-
ate the scarcity of user-bundle interactions. Despite effectiveness,
we argue that they suffer from three major limitations:
• Separated modeling of two affiliated entities. Parameters sharing
does not explicitly model the relationship between users, items
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and bundles, and the combination of multi-task way is difficult
to balance the weights of the main task and auxiliary task.
• Substitution of bundles is not considered. Existing works only
consider the correlation between items in a bundle to enhance
the item task. However, the association between the bundles as
the recommended target is even more critical.
• Decision-making is ignored when users interact with bundles.At
the item level, even though a user likes most items in a bundle,
but may refuse the bundle because of the existence of one disliked
item. At the bundle level, for two highly similar bundles, the key
to the user’s final selection is their non-overlapping parts.
To address these limitations, we propose a solution named Bundle

Graph Convolutional Network (BGCN). Utilizing the strong power
of graph neural networks in learning from complicated topology
and higher-order connectivity, our BGCN effectively incorporates
item-awareness into bundle recommender as follows, a) It unifies
user nodes, item nodes and bundle nodes into a heterogeneous
graph, propagating embeddings between users and bundles with
items as the bridge; b) The bundle-item-bundle meta-path is built on
the graph to capture an alternative relationship between bundles; c)
Through training with hard-negative samples, the user’s decision-
making when choosing bundles is further explored.

To summarize, the main contributions of this work are as follows.
• To the best of our knowledge, we are the first to propose a graph
neural network model to explicitly model complex relations be-
tween users, items and bundles to solve the problem of bundle
recommender.
• We develop embedding propagation at two levels on the con-
structed graph, which distinguish affiliation between item and
bundle nodes to learn the representation of users and bundles
with item level information. Training with hard negatives further
explores the fine-grained differences between bundles.
• Extensive experiments on two real-world datasets show that our
proposed method outperforms existing state-of-the-art baselines
by 10.77% to 23.18%.

2 Problem Definition
In order to integrate item level information to improve bundle
recommendation accuracy, there are two types of important side in-
formation that need to bemodeled, the user’s preference to item and
bundle’s composition information.We useU ,B andI to denote the
set of users, bundles and items, and define user-bundle interaction
matrix, user-item interaction matrix, and bundle-item affiliation ma-
trix as XM×N = {xub |u ∈ U ,b ∈ B}, YM×O = {yui |u ∈ U , i ∈ I},
and ZN×O = {zbi |b ∈ B, i ∈ I} with a binary value at each entry,
respectively. An observed interaction xub means user u once in-
teracted bundle b, and an observed interaction yui means user u
once interacted item i . Similarly, an entry zbi = 1 means bundle b
contains item i .M , N and O denote the number of users, bundles
and items, respectively. Based on the above definition, the problem
of bundle recommendation is then formulated as follows:

Input: user-bundle interaction dataXM×N , user-item interaction
data YM×O , and bundle-item affiliation data ZN×O .

Output: A recommendation model that estimates the probability
that user u will interact with bundle b.
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Figure 1: The illustration of BGCNmodel, where u1 is the target user and b2 is the target bundle. For a clear display, we divide
the unfied heterogeneous graph into two kinds of relationships and draw them separately. Best view in color.

3 Methodology
Figure 1 illustrates our proposed BGCN 1 model which is made up
of the following three parts. In this section, we elaborate on the
architecture component by component.
• Heterogeneous Graph Construction. We explicitly model the in-
teraction and affiliation between users, bundles, and items by
unifying them into a heterogeneous graph.
• Levels Propagation. The propagation at two levels on the con-
structed graph can capture the CF signal between users and
items/bundles, the semantics of bundles and the alternatives be-
tween bundles through distinguishing the affiliation relationship
between item and bundle nodes.
• Training with Hard Negatives. Considering the user’s caution
when choosing a bundle, the hard negatives further encode fine-
grained representations of the user and the bundle.

3.1 Heterogeneous Graph Construction
To explicitly model the relationship between users, bundles, and
items, we first build a unified heterogeneous graph. The interaction
and affiliation data can be represented by an undirected graph G =
(V, E), where nodes areV consisting of user nodes u ∈ U , bundle
nodes b ∈ B and item nodes i ∈ I, and edges are E consisting
of user-bundle interaction edges (u,b) with xub = 1, user-item
interaction edges (u, i ) with yui = 1, and bundle-item affiliation
edges (b, i ) with zbi = 1. The second block in Figure 1 illustrates
our constructed graph.

For user, item and bundle nodes on the constructed graph, we
apply one-hot encoding to encode the input and compress them to
dense real-value vectors as follows,

pu = PT vUu , qi = QT vIi , rb = RT vBb , (1)

where vUu , vIi , v
B
b ∈ R

N denotes the one-hot feature vector for user
u, item i , and bundle b. P, Q, and R denote the matrices of user
embedding, item embedding, and bundle embedding, respectively.
3.2 Item Level Propagation
The user’s preference for an item in the bundle can attract the
user’s attention and interest to this bundle. Since the bundled items
are often carefully designed, they are often compatible with each
other in function and compose some semantics to affect the user’s
selection context. For example, the bundle with a mattress and a bed
frame reflects the meaning of bedroom furniture, and the bundle
with a suit and a tie reflects the meaning of workplace dressing.

To capture user preferences for the item and characteristic of the
item itself, we build upon an embedded propagation layer between
user and item. Then information pooling from item to bundle can
seize the semantic information of the bundle from the item level.
The propagation-based and pooling-based embedding updating
rules for user u, item i and bundle b can be formulated as follows,
1Codes can be found on https://github.com/cjx0525/BGCN.
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)
,

p(0)u,1 = pu, q
(0)
i,1 = qi ,

(2)

where W1 is learned weight, b1 is learned bias, σ is non-linear
activation function LeakyReLU. Nu ,Ni ,Nb represent neighbors of
user u, item i and bundle b, respectively. We use the simple mean
function as the aggregation function and leave other more complex
functions for future exploration. Through the special propagation
mechanism, the impact of bundle data sparsity can be weakened and
the cold start capability of the model may be improved naturally.
3.3 Bundle Level Propagation
The close association between items in a bundle makes two bundles
that share some items very similar. The degree of similarity can be
inferred from how many items they share. For example, computer
sets that share five components are closer in performance than two,
and movie lists that share ten films are closer in theme than five. For
users, such bundles that share more items can often be considered
at the same time.

We design a bundle-to-user embedding propagation module to
learn preference for bundles from the bundle level. Then, a user-to-
bundle embedding propagation is performed to extract bundle over-
all attributes. Because highly overlapping bundles exhibit similar
patterns in attracting users, we develop weighted propagation based
on the degree of overlap on the bundle-item-bundle meta-path to
seize alternative relationships between bundles. The embedding
updating rules at the bundle level can be formulated as follows,

p(ℓ+1)u,2 = σ
(
W (ℓ+1)

2
(
p(ℓ)u,2 + aggregate

(
r(ℓ)b,2 |b ∈ Nu

))
+ b (ℓ+1)

2
)
,

r(ℓ+1)b,2 = σ
(
W (ℓ+1)

2
(
r(ℓ)b,2 + aggregate

(
p(ℓ)u,2 |u ∈ Nb

)
+

aggregate
(
βbb′ · r

(ℓ)
b′,2 |b

′ ∈ Mb
))
+ b (ℓ+1)

2
)
,

p(0)u,2 = pu, r(0)b,2 = rb,

(3)

whereW2 and b2 are the trainable transformation matrix and bias,
respectively.Mb represents neighbors of bundle b on the bundle-
item-bundle meta-path. βbb′ represents the overlap intensity be-
tween bundles after normalization. Propagation of attributes ex-
pressed by similar b helps bundles learn better representations and
further enhance message-passing between u and b.
3.4 Prediction
After we iteratively do such propagation for L times, we obtain L
user/bundle embeddings. We concatenate all layers’ embeddings
to combine the information received from neighbors of different
depths for prediction.
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p∗u,1 = p(0)u,1 | | · · · | |p
(L)
u,1, r∗b,1 = r(0)b,1 | | · · · | |r

(L)
b,1,

p∗u,2 = p(0)u,2 | | · · · | |p
(L)
u,2, r∗b,2 = r(0)b,2 | | · · · | |r

(L)
b,2 .

(4)

Finally, we use the inner product for final prediction and combine
bundle and item levels as follows,

ŷub = p∗u,1
⊤r∗b,1 + p

∗
u,2
⊤r∗b,2 . (5)

3.5 Training with Hard Negatives
Because bundles contain more items and have higher prices, users
are often cautious when making decisions or spending money in
bundle scenarios to avoid unnecessary risks. For example, even
though a user likes most items in a bundle, but may refuse the
bundle because of the existence of one disliked item. For two highly
similar bundles, the key to the user’s final selection is their non-
overlapping parts.

To optimize our BGCN model and take into account the user’s
decision-making when interacting with the bundle, we design a
learning strategy based on hard-negative samples. Firstly, we adopt
a pairwise learning manner that is widely used in implicit rec-
ommender systems [9]. Then after the model converges, the hard
negative samples are introduced with a certain probability for more
detailed training. Thus, we define the objective function as follows,

Loss =
∑

(u,b,c )∈Q

−lnσ (ŷub − ŷuc ) + λ · ∥Θ∥2, (6)

where Q = {(u,b, c ) |(u,b) ∈ Y+, (u, c ) ∈ Y−} denote the pairwise
training data with negative sampling. Y+ and Y− denote the ob-
served and unobserved user-bundle interaction, respectively. In
the hard-negative sampler, for every (u,b) ∈ Y+, c ∈ Y− is the
bundle thatu has not interacted with but interacted with most of its
internal items or that overlaps with b, as shown in the fifth block in
Figure 1. To prevent over-fitting, we adopt L2 regularization where
Θ stands for model parameters and λ controls the penalty strength.
4 Experiments
Then we conduct extensive experiments on two real-world datasets.
4.1 Experimental Settings

4.1.1 Datasets and Metrics We use the following two real-
world datasets for evaluation, with their statistics shown in Table 1.
• Netease2 This is a dataset from the largest music platform in
China collected by [2]. It enables users to bundle songs with a
specific theme or add any bundles to their favorites.
• Youshu3 This dataset is constructed by [3] from Youshu, a Chi-
nese book review site. Similar to Netease, every bundle is a list
of books that users desired.

We adopt two widely used metrics, Recall@K and NDCG@K, to
judge the performance of the ranking list, where Recall@K mea-
sures the ratio of test bundles that have been contained by the
top-K ranking list, while NDCG@K complements Recall by assign-
ing higher scores to the hits at higher positions of the list.

4.1.2 Baselines andHyper-parameters To demonstrate the
effectiveness of our BGCN model, we compare it with the following
six state-of-the-art methods.
• MFBPR[9] This is a matrix factorizationmethod under a Bayesian
Personalized Ranking pairwise learning framework.
• GCN-BG[1] This is a widely used graph neural network model
in the recommendation. In the method, we apply GCN to the
user-bundle bipartite interaction graph.
• GCN-TG[1] We use the same way with BGCN to build the user-
item-bundle tripartite unified graph, but the difference is that the
message is passed between all kinds of nodes at the same time.

2https://music.163.com
3http://www.yousuu.com

Table 1: Statistics of two utilized real-world datasets

Dataset #U #I #B #U-I #U-B #Avg. I in B

Netease 18,528 123,628 22,864 1,128,065 302,303 77.80
Youshu 8,039 32,770 4,771 138,515 51,377 37.03

• NGCF-BG[10] This is the state-of-the-artmodel which uses graph
neural network to extract higher-order connectivity for the rec-
ommendation. Similar to GCN-BG, here only user and bundle
are used to build the interaction bipartite graph.
• NGCF-TG[10] NGCF-TG performs propagation in the same way
as GCN-TG on the tripartite graph. Since item information is
introduced, the embedding learned by the model might have
stronger representation ability.
• DAM[3] This is the state-of-the-art deep model in bundle rec-
ommendation. It uses the attention mechanism and multi-task
learning framework to extend NCF[5].

For all these methods, we adopt BPR loss and set the negative
sampling rate to 1. We employ Adam optimizer with the 2048-size
mini-batch and fit the embedding size as 64. The learning rate is
searched in {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3} and L2 regularization
term is tuned in {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}. For GCN-based
methods, we search the message dropout and node dropout within
{0, 0.1, 0.3, 0.5}. For training, the hard-negative samples are selected
with an 80% probability.
4.2 Overal Performance
The experiment results are reported in Table 2. From the results,
we have the following observations.
• Our proposed BGCN achieves the best performance. We can ob-
serve that our model BGCN significantly outperforms all base-
lines in terms of Recall and NDCG metrics. Specifically, BGCN
outperforms the best baseline by 19.65% - 23.18% and 10.77% -
12.36% on the Netease dataset and Youshu dataset, respectively.
Due to the special design, BGCN is the best model for utilizing
graph structure and item interaction at the same time.
• Graph models are effective but not enough. Although the better
performance of GCN and NGCF compared to MFBPR proves
the strong power of the graph model, they fail to exceed the
state-of-the-art baseline DAM that leverage item interaction to
recommend bundle. Therefore, designs to make graph neural
network work in bundle task is necessary, which validates our
motivation of incorporating items into the user-bundle graph.
• More input does not always mean better performance. The per-
formance of GCN-TG and NGCF-TG with the same constructed
graph as BGCN is not always better than GCN-BG and NGCF-
BG. This shows that if the model itself cannot distinguish the
affiliation relation between item and bundle nodes, the extra
item input may bring the noise. Therefore, our special design for
propagation in the tripartite unified graph is necessary.

4.3 Ablation Study
To evaluate the effectiveness of several key designs in BGCN, we
performed ablation studies as shown in Table 3.
• Effectiveness of Levels PropagationWe compare the performance
of the model performing propagation at the only item level, only
bundle level, and both levels. The results show that the model
with two levels outperforms the model with on only bundle level
by 9.36% - 11.57% and 2.75% - 11.39% on the Netease dataset and
Youshu dataset, respectively.
• Effectiveness of B2B Propagation The impact of overlap-based
bundle propagation is tested by comparing the performance
of models with no b2b propagation, unweighted b2b propaga-
tion, and weighted b2b propagation. The performance gains of
the model introduced overlap-based b2b propagation are 5.84%
- 6.74% and 1.79% - 9.02% on the Netease dataset and Youshu
dataset, respectively. It is shown that adding b2b propagation
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Table 2: Performance comparisons on two real-world datasets with six baselines

Method
Netease Youshu

Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

MFBPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
GCN-BG 0.0370 0.0189 0.0617 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
GCN-TG 0.0402 0.0204 0.0657 0.0272 0.1051 0.0362 0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF-BG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
NGCF-TG 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561
DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851

% Improv. 19.67% 22.89% 20.17% 23.18% 19.65% 21.76% 10.77% 12.22% 12.36% 12.33% 11.23% 11.62%

Table 3: Ablation study of the key designs

Model
Netease Youshu

Recall@40 NDCG@40 Recall@40 NDCG@40

Levels
Propagation

Item Level 0.0121 0.0046 0.0786 0.0419
Bundle Level 0.0685 0.0284 0.2805 0.1387
I&B Levels 0.0749 0.0317 0.3124 0.1425

B2B
Propagation

No B2B 0.0708 0.0297 0.2866 0.1400
Unweighted B2B 0.0738 0.0312 0.3040 0.1418
Weighted B2B 0.0749 0.0317 0.3124 0.1425

Hard-negative
Sample

No Hard 0.0749 0.0317 0.3124 0.1425
Item Level 0.0807 0.0343 0.3235 0.1573
Bundle Level 0.0816 0.0343 0.3240 0.1581
I&B Levels 0.0829 0.0346 0.3248 0.1593

can help extract bundle correlations, especially when the degree
of overlap is injected into the model.
• Effectiveness of Hard-negative sample We compare the perfor-
mance of the model under training with no hard samples, and
hard samples at the item level, the bundle level, and both levels,
respectively. We can observe that the model with hard-negative
sample performs better than the model with simple sample by
9.26% - 10.64% and 3.95% - 11.78% on the Netease dataset and
Youshu dataset, respectively. This demonstrates that hard-negative
sample improves performance, especially when considering hard-
negative samples at both item and bundle levels.

4.4 Impact of Data Sparsity
Compared to items, bundles have extremely rare interactions, so
data sparsity is a significant issue for bundle recommendation.
To study whether BGCN can alleviate the issue, we divide users
into three groups according to sparsity as shown in Figure 2 and
present the recommendation performance of the Netease dataset.
We can observe that the performance gap between BGCN and other
methods becomes larger when data become sparser, except for
the NGCF-TG which is very similar to our model. Furthermore,
even in the user group with only 0~3 purchase records, BGCN still
keeps an excellent performance of 0.069 for Recall@40 and 0.023
for NDCG@40, which outperforms the best method NGCF-TG by
30.19% and 27.78%, respectively. As a summary, we conclude that
our proposed BGCN model can alleviate data sparsity issue.
5 Related Work
Although bundles are currently widely used everywhere, few efforts
have been made in solving the bundle recommendation problem.
LIRE [7] and EFM [2] simultaneously utilized the users’ interactions
with both items and bundles under the BPR framework. The BBPR
Model [8] made use of the parameters previously learned through
an item BPR model. Recently, DAM [3] jointly modeled user-bundle
interactions and user-item interactions in a multi-task manner.

With the strong power of learning structure, GCN [6] is widely
applied in recommender systems. Berg et al. [1] first applied GCN
to the recommendation to factorize several rating matrices. Ying et
al. [11] extended it toweb-scale recommender systemswith neighbor-
sampling. Wang et al. [10] approached a more general model that
uses high-level connectivity learned by GCN to encode CF signals.
Recently, He et al. [4] proposed to remove non-linear and feature-
transformation operations to further improve the performance.
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Figure 2: Performance with different data sparsity

6 Conclusions and Future Work
In this work, we study the task of bundle recommender systems.
We propose a graph-based solution BGCN that re-construct the two
kinds of interaction and an affiliation into the graph. The model
utilizes the graph neural network’s powerful ability to learn the
representation of two dependent entities from complex structures.
Extensive experiments demonstrate its effectiveness on real-world
datasets. As future work, we plan to generate personalized bun-
dles while recommending them and further consider how to set
discounts to raise the user’s willingness to interact with bundles.
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