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ABSTRACT

Recommender system usually faces popularity bias issues: from
the data perspective, items exhibit uneven (usually long-tail) distri-
bution on the interaction frequency; from the method perspective,
collaborative filtering methods are prone to amplify the bias by
over-recommending popular items. It is undoubtedly critical to
consider popularity bias in recommender systems, and existing
work mainly eliminates the bias effect with propensity-based unbi-
ased learning or causal embeddings. However, we argue that not
all biases in the data are bad, i.e., some items demonstrate higher
popularity because of their better intrinsic quality. Blindly pursuing
unbiased learning may remove the beneficial patterns in the data,
degrading the recommendation accuracy and user satisfaction.
This work studies an unexplored problem in recommendation
— how to leverage popularity bias to improve the recommenda-
tion accuracy. The key lies in two aspects: how to remove the bad
impact of popularity bias during training, and how to inject the
desired popularity bias in the inference stage that generates top-
K recommendations. This questions the causal mechanism of the
recommendation generation process. Along this line, we find that
item popularity plays the role of confounder between the exposed
items and the observed interactions, causing the bad effect of bias
amplification. To achieve our goal, we propose a new training and
inference paradigm for recommendation named Popularity-bias
Deconfounding and Adjusting (PDA). It removes the confounding
popularity bias in model training and adjusts the recommenda-
tion score with desired popularity bias via causal intervention. We
demonstrate the new paradigm on the latent factor model and
perform extensive experiments on three real-world datasets from
Kwai, Douban, and Tencent. Empirical studies validate that the
deconfounded training is helpful to discover user real interests
and the inference adjustment with popularity bias could further
improve the recommendation accuracy. We release our code at
https://github.com/zyang1580/PDA.
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1 INTRODUCTION

Recommender system provides personalized service for users to
seek information, playing an increasingly important role in a wide
range of online applications, such as e-commerce, news portal,
content-sharing platform, and social media. However, the system
faces popularity bias issues, which stand on the opposite of per-
sonalization. On one hand, the user-item interaction data usually
exhibits long-tail distribution on item popularity — a few head
items occupy most of the interactions whereas the majority of
items receive relatively little attention [2, 30]. On the other hand,
the recommender model trained on such long-tail data not only
inherits the bias, but also amplifies the bias, making the popular
items dominate the top recommendations [1, 20]. Worse still, the
feedback loop ecology of recommender system further intensifies
such Matthew effect [29], causing notorious issues like echo cham-
ber [16] and filter bubble [41]. Therefore, it is essential to consider
the popularity bias issue in recommender systems.

Existing work on popularity bias-aware recommendation mainly
performs unbiased learning or ranking adjustment, which can be
categorized into:

o Inverse Propensity Scoring (IPS), which adjusts the data distri-
bution to be even by reweighting the interaction examples for
model training [17, 38]. Although IPS methods have sound theo-
retical foundations, they hardly work well in practice due to the
difficulties in estimating propensities and high model variance.

e Causal Embedding, which uses bias-free uniform data to guide
the model to learn unbiased embedding [8, 27], forcing the model
to discard item popularity. However, obtaining such uniform data
needs to randomly expose items to users, which has the risk of
hurting user experience. Thus the data is usually of a small scale,
making the learning less stable.

e Ranking Adjustment, which performs post-hoc re-ranking on
the recommendation list [3, 50] or model regularization on the
training [2, 50]. Both types of methods are heuristically designed



to intentionally increase the scores of less popular items, which
however lack theoretical foundations for effectiveness.

Instead of eliminating the effect of popularity bias, we argue
that the recommender system should leverage the popularity bias.
The consideration is that not all popularity biases in the data mean
bad effect. For example, some items demonstrate higher popularity
because of better intrinsic quality or representing current trends,
which deserve more recommendations. Blindly eliminating the
effect of popular bias will lose some important signals implied in
the data, improperly suppressing the high-quality or fashionable
items. Moreover, some platforms have the need of introducing
desired bias into the system, e.g., promoting the items that have
the potential to be popular in the future. This work aims to fill the
research gap of effectively leveraging popularity bias to improve
the recommendation accuracy.

To understand how item popularity affects the recommenda-
tion process, we resort to the language of causal graph [35] for
a qualitative analysis first. Figure 1(a) illustrates that traditional
methods mainly perform user-item matching to predict the affinity
score: U (user node) and I (item node) are the causes, and C is the
effect node to denote the interaction probability. An example is the
prevalent latent factor model [18, 32], which forms the prediction
as the inner product between user embedding and item embedding.
Since how a model forms the prediction implies how it assumes the
labeled data be generated, this causal graph could also interpret the
assumed generation process of the observed interaction data. Item
popularity, although exerts a significant influence on data gener-
ation process, is not explicitly considered by such coarse-grained
modeling methods.

We next consider how item popularity affects the process, en-
riching the causal graph to Figure 1(b). Let node Z denote item
popularity, which has two edges pointing to C and I, respectively.
First, Z — C means the item popularity directly affects the inter-
action probability, since many users have herd mentality (a.k.a.,
conformity), thus tend to follow the majority to consume popu-
lar items [28, 48]. Second, Z — I means item popularity affects
whether the item is exposed, since recommender system usually
inherits the bias in the data and exposes popular items more fre-
quently!. Remarkably, we find Z is the common cause for I and C,
acting as the confounder [35] between the exposed items and the
observed interactions. It means that, item popularity Z affects the
observed interaction data with two causal paths: 1) Z — C and
2) Z — I — C, wherein the second path contains the bad effect
of bias amplification, since it increases observed interactions of
popular items even though they may not well match user interest.

To remove the bad effect of popularity bias on model training,
we need to intervene recommended items I to make them immune
to their popularity Z. Experimentally, it means we need to alter the
exposure policy to make it free from the impact of item popularity
and then recollect data, which is however costly and impossible
to achieve for academia researchers. Thanks to the progress on
causal science, we can achieve the same result with do-calculus [35]
without performing interventional experiments. In short, we esti-
mate the user-item matching as P(C|do(U, I)) that cuts off the path
Z — I during training, differing from the correlation P(C|U,I)
estimated by existing recommender models that confounds user

INote that we assume users make interaction choice on the exposed items only, and
do not consider other information seeking choices like search which is not the focus
of this work. Thus the observed interactions are conditioned on the exposure of the
interacted items before.

(a) Causal graph of tradi-(b) Causal graph that con-(c) We cut off Z — I
tional methods. siders item popularity.  for model training.

Figure 1: Causal graphs to describe the recommendation pro-
cess. U: user, I: exposed item, C: interaction probability, Z:
item popularity. We identify Z as the confounder between I
and C, and propose deconfounded training with P(C|do(U,I))
as the interest matching.

interest with popularity bias. Through such deconfounded training,

P(C|do(U,I)) estimates user interest matching on items more accu-

rately than P(C|U, I), removing the spurious correlations between I

and C due to the confounder of Z. During the inference stage, we in-

fer the ranking score as P(C|do(U, I),do(Z)), intervening the item
popularity Z with our desired bias (e.g., the forecasted popularity
in the testing stage).

The main contributions of this work are summarized as follows:

e We analyze how popularity bias affects recommender system
with causal graph, a powerful tool but is seldom used in the
community; we identify that the bad impact of popularity bias
stems from the confounding effect of item popularity.

e We propose Popularity-bias Deconfounding and Adjusting (PDA),
a novel framework that performs deconfounded training with
do-calculus and causally intervenes the popularity bias during
recommendation inference.

e We conduct extensive experiments on three real datasets, vali-
dating the effectiveness of our causal analyses and methods.

2 PRIMARY KNOWLEDGE

We use uppercase character (e.g., U) to denote a random variable
and lowercase character (e.g., u) to denote its specific value. We use
characters in calligraphic font (e.g., U/) to represent the sample space
of the corresponding random variable, and use P(-) to represent
probability distribution of a random variable.

Let D denote the historical data, which is sequentially collected
through T stages, i.e, O = {D1U- - -UDTH U = {us, ..., uqq} and
I ={i1,...,i|7|} denote all users and items, respectively. Through
learning on historical data, the recommender system is expected
to capture user preference and serves well for the next stage T + 1.
That is, it aims to obtain high recommendation accuracy on Dry.
In this work, we are interested in the factor of item popularity,
defining the local popularity of item i on the stage t as:

m! :Df/z D, (1)

jeI

where D! denotes the number of observed interactions for item
i in D;. We can similarly define the global popularity of an item
m; based on its interaction frequency in O, but we think the local
popularity has a larger impact on the system’s exposure mechanism
and user decision, since the system is usually periodically retrained
and the most recent data has the largest impact.

Popularity drift. Intuitively, item popularity is dynamic and changes
over time, meaning that the impact of popularity bias could also
be dynamic. To quantify the popularity drift, we define a metric
named Drift of Popularity (DP) to measure the drift between two
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Figure 2: Popularity drift between: (a) two successive stages
DP(t,t + 1); (b) the first and present stage DP(1,1).

stages. First, we represent each stage t as a probability distribution
over items: [mi el mTII]’ where each entry denotes an item’s fre-

quency in the stage. Then, we use the Jensen-Shannon Divergence
(JSD) [15] to measure the similarity between two stages:

DP(t,5) = JSD ([mf, ... mfy |, [m5,.....mi ] ). @

where t and s are the two stages. Similar to JSD, the range of DP is
[0,10g(2)], and a higher value indicates a larger popularity drift.

Figure 2(a) shows the DP value of two successive stages, ie.,
DP(t, t+1) where t iterates from 1 to 9, on three real-world datasets
(details in Section 4.1.1). We can see that the popularity drift ob-
viously exists in all three datasets, and different datasets exhibit
different levels of popularity drift. Figure 2(b) shows the DP value
of the first and present stage, i.e., DP(1,t), which measures the
accumulated popularity drift. We can see a clear increasing trend,
indicating that the longer the time interval is, the large popularity
drift the data exhibits. These results reveal that popularity bias and
its impact also change with time. The popularity bias in the future
stage differs from that of past stages. If we set the target of model
generalization as pursuing high accuracy on the next stage data
Dr412, then a viable way is to predict popularity trend and inject
it into the recommendations.

3 METHODOLOGY

We first analyze the impact of item popularity on recommendation
from a fundamental view of causality. Then we present our PDA
framework that eliminates the bad effect of popularity bias on
training and intervenes the inference stage with desired bias. Lastly,
we present in-depth analyses of our method.

3.1 Causal View of Recommendation

Figure 1(b) shows the causal graph that accounts for item popularity

in affecting recommendation. By definition, causal graph [35] is

a directed acyclic graph where a node denotes a variable and an

edge denotes a causal relation between two nodes [35]. It is widely

used to describe the process of data generation, which can guide
the design of predictive models. Next, we explain the rationality of
this causal graph.

e Node U represents the user node, e.g., user profile or history
feature that is used for representing a user.

e Node I represents the item node. We assume a user can only
interact with (e.g., click) the items that have been exposed to
him/her, thus I denotes the exposed item.

e Node C represents the interaction label, indicating whether the
user has chosen/consumed the exposed item.

2To our knowledge, many industrial practitioners on recommender systems use the
next stage data for model evaluation.

e Node Z represents the item popularity, which can be seen as
a hidden variable since it is usually not explicitly modeled by
traditional methods (e.g., [18, 32] form predictions with Figure
1(a)). But it has a large impact on the recommendation.

Edges {U,I,Z} — C denote that an interaction label C is de-

termined by the three factors: user U, item I, and the item’s

popularity Z. Traditional methods only consider {U,I} — C

which is easy to explain: the matching between user interest and

item property determines whether a user consumes an item. Here
we intentionally add a cause node Z for capturing user confor-
mity — many users have the herd mentality and tend to follow
the majority to consume popular items [28, 48]. Thus, whether

there is an interaction is the combined effect of U, I and Z.

e Edge Z — I denotes that item popularity affects the exposure of
items. This phenomenon has been verified on many recommender
models, which are shown to favor popular items after training
on biased data [1].

From this causal graph, we find that item popularity Z is a con-
founder that affects both exposed items I and observed interactions
C. This results in two causal paths starting from Z that affect the
observed interactions: Z — C and Z — I — C. The first path is
combined with user-item matching to capture the user conformity
effect, which is as expected. In contrast, the second path means that
item popularity increases the exposure likelihood of popular items,
making the observed interactions consist of popular items more.
Such effect causes bias amplification, which should be avoided since
an authentic recommender model should estimate user preference
reliably and is immune to the exposure mechanism.

In the above text, we have explained the causal graph from the
view of data generation. In fact, it also makes sense to interpret it
from the view of model prediction. Here, we denote U and I as user
embedding and item embedding, respectively, and traditional mod-
els apply inner product [18, 32] or neural network [19] above them
for prediction (i.e., Figure 1(a)). Item popularity Z is not explicitly
considered in most models, however, it indeed affects the learning
of item embedding. For example, it increases the vector length of
popular items, making inner product models score popular items
high for every user [48]. Such effect justifies the edge Z — I, which
exerts a negative impact to learn real user interest.

To sum up, regardless of which explanation for the causal graph,
Z — I causes the bad effect and should be eliminated in formulating
the predictive model.

3.2 Deconfounded Training

We now consider how to obtain a model that is immune to the
impact of Z — I. Intuitively, if we can intervene the exposure
mechanism to make it randomly expose items to users, then the
collected interaction data is free from the impact of Z — I. Directly
training traditional models on it will do. However, the feasibility
and efficacy of such solutions are low: first, only the recommender
builder can intervene the exposure mechanism, and anyone else
(e.g., academia researcher) has no permission to do it; second, even
for recommender builder that can intervene the exposure mecha-
nism, they can only use small random traffic, since random exposure
hurts user experience much. Effective usage of small uniform data
remains an open problem in recommendation research [8, 27].
Fortunately, the progress of causal science provides us a tool to
achieve intervention without performing the interventional experi-
ments [35]. The secret is the do-calculus. In our context, performing
do(I) forces to remove the impact of I’s parent nodes, achieving our



target. As such, we formulate the predictive model as P(C|do(U, I)),
rather than P(C|U, I) estimated by traditional methods?>.

Let the causal graph shown in Figure 1(b) be G, and the inter-
vened causal graph shown in Figure 1(c) be G’. Then, performing
do-calculus on G leads to:

P(CldoU, 1)) Y Po (ClU T)
@ > P/ (CIU.L2)Po (2|U, 1)
z

= > Per(CIU, L 2) P (2) N

@ > P(CIU.L2)P(2),

where Pg/(-) denotes the probability function evaluated on G’.
Below explains this derivation step by step:

o (1) is because of backdoor criterion [35] as the only backdoor path
I « Z — C in G has been blocked by do(U, I);

e (2) is because of Bayes’ theorem;

e (3) is because that U and I are independent with Z in G’;

e (4) P(C|U,L,Z) = P5(C|U, I, Z) is because that the causal mech-
anism {U,I,Z} — C is not changed when cutting off Z — I,
P(Z) = Pg/(Z) since Z has the same prior on the two graphs.

Next, we consider how to estimate P(C|do(U,I)) from data. Ap-
parently, we need to first estimate P(C|U, I, Z), and then estimate
>. P(C|U, I z)P(z).

Step 1. Estimating P(C|U, I, Z). This conditional probability func-
tion evaluates that given a user-item pair U = u, I = i and the item’s
present popularity as Z = m!, how likely the user will consume
the item. Let the parameters of the conditional probability function
be ©, we can follow traditional recommendation training to learn
O, for example, optimizing the pairwise BPR objective function on
historical data D:

max Z logo (P@ (c=1lui, mf) - Pg (c =1]u, j, mj)) ., @
(u,i,j)eD
where j denotes the negative sample for u, o(-) is the sigmoid
function. The L, regularization is used but not shown for brevity.
Having established the learning framework, we next consider
how to parameterize Pg(c = 1|u, i, mf) Of course, one can design
it as any differentiable model, factorization machines, or neural
networks. But here our major consideration is to decouple the user-
item matching with item popularity. The benefits are twofold: 1)
decoupling makes our framework extendable to any collaborative
filtering model that concerns user-item matching; and 2) decoupling
enables fast adjusting of popularity bias in the inference stage (see
Section 3.3), since we do not need to re-evaluate the whole model.
To this end, we design it as:

Po(c =1|u,i,m}) = ELU’ (fo(u, 1)) x (m})Y, (5)

where fg (u, i) denotes any user-item matching model and we choose
the simple Matrix Factorization (MF) in this work; hyper-parameter
y is to smooth the item popularity and can control the strength
of conformity effect: setting y = 0 means no impact and larger
value assigns larger impact. ELU’(+) is a variant of the Exponential
Linear Unit [14] activation function that ensures the positivity of

3Note that since there is no backdoor path between U and C in our causal graph,
it holds that P(C|U,do(I)) = P(C|do(U),do(I)) = P(C|do(U,I)). Here we use
P(C|do(U,I)) as the intervention model for brevity.

the matching score:

ex, ifx <0

ELU (x) = { ()

x+1, else

This is to ensure the monotonicity of the probability function since
(mf )Y is always a positive number. Lastly, note that one needs
to normalize Pg(c = 1|u, i, mf ) to make it a rigorous probability
function, but we omit it since it is time-consuming and does not
affect the ranking of items.

Step 2. Estimating ), P(C|U, I, z)P(z). Now we move forward
to estimate the interventional probability P(C|do(U,I)). Since the
space of Z is large, it is inappropriate to sum over its space for each
prediction evaluation. Fortunately, we can perform the following
reduction to get rid of the sum:

P(C|do(U, 1)) = ZP(CIU, 1,2)P(z)
= ZELU’ (fo(u,i)) x 2V P(z)
= ELU (fo(u, 1) ) 2" P(2)

= ELU’ (fo(u,i))E(ZY)

where E(ZY) denotes the expectation of Z¥. Note that the expec-
tation of one variable is a constant. Since P(C|do(U,I)) is used to
rank items for a user, the existence of E(ZY) does not change the
ranking. We can thus use ELU’ (fo (u, i)) to estimate P(C|do(U, I).

To summarize, we fit the historical interaction data with Pg(c =
1|u, i, mf), and use the user-item matching component ELU (fg (1, 1))
for deconfounded ranking. We name this method as Popularity-bias
Deconfounding (PD).

3.3 Adjusting Popularity Bias in Inference

Owing to P(C|do(U,I)), we can eliminate the bad effect of popu-
larity bias. We now seek for better usage of popularity bias, e.g.,
promoting the items that have the potential to be popular. Assume
the target popularity bias is z, and we want to endow the recom-
mendation policy with this bias. To achieve the target, we just need
to do the intervention of Z = Z for model inference:

P(Cldo(U = u,I = i),do(Z = 7)) = Pe(c = 1|u, i, ),  (7)

where m; denotes the popularity value of z. This intervention prob-
ability directly equals the conditional probability since there is no
backdoor path between Z and C in the causal graph. Since the focus
of this work is not on popularity prediction, we employ a simple
time series forecasting method to set m;:

m; = mlT + a(mlT - miT’I), (8)

where m? is the popularity value of the last stage, and « is the hyper-
parameter to control the strength of popularity drift in predicting
the future. We name this method as Popularity-bias Deconfounding
and Adjusting (PDA).

Figure 3 illustrates the workflow of PDA where the training
stage optimizes Equation (4) and the inference stage can adjust the
popularity bias as:

PDAy; = ELU (fo (u, i) X (rit;)7. ©)

v denotes the popularity smoothing hyper-parameter used for
model inference, which can be different from that used in training.
This is to consider that the strength of popularity bias can drift in
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Figure 3: The workflow of our method. The blue arrows rep-
resent the training stage and the red arrows represent the
inference stage.

the future. In practice, setting y = y can achieve expected perfor-
mance (cf. Table 2). Setting y = 0 degrades the method to PD that
uses only interest matching for recommendation. Considering the
importance of properly stopping model training, PDA uses a model
selection strategy based on the adjusted recommendation, which is
slightly different from that of PD (see Algorithm 1).

3.4 Comparison with Correlation P(C|U,I)

In the beginning, we argue that traditional methods estimate the cor-
relation P(C|U, I) and suffer from the bad effect of popularity bias
amplification. Here we analyze the difference between P(C|U,I)
and P(C|do(U,I)) to offer more insights on this point.

We first transform P(C|U, I) with the following steps:

peclu.n 2 Y Pc.zu.n)
z

23 p(CIU.L2PIU.D)

, (10)
® > P(CU.L2)P(zID)

@ > P(CIU.L2)P(I]2)P(2)

(1) is the definition of marginal distribution; (2) is because of the
Bayes’ theorem; (3) is because U is independent to Z according to
the causal graph; (4) is because of the Bayes’ theorem.

Comparing with P(C|do(U,I)) = >, P(C|U,I,z)P(z), we can
see that P(C|U,I) has an additional term: P(I|Z), which funda-
mentally changes the recommendation scoring. Suppose I = iisa
popular item, P(C|U,I = i,Z = mf) is a large value since mf is large,
which means the term has a large contribution to the prediction
score. P(I = i|Z = mf) is also a large value due to the popularity
bias in the exposure mechanism. Multiplying the two terms fur-
ther enlarges the score of i, which gives i a higher score than it
deserves. As a result, the popularity bias is improperly amplified.
This comparison further justifies the rationality and necessity of
P(C|do(U,I)) for learning user interests reliably.

4 EXPERIMENTS

In this section, we conduct experiments to answer two main ques-
tions: RQ1: Does PD achieve the goal of removing the bad effect of
popularity bias? How is its performance compared with existing
methods? RQ2: Can PDA effectively inject desired popularity bias?
To what extent leveraging popularity bias enhance the recommen-
dation performance.

Algorithm 1: PD/PDA

Input: dataset D = {(u, i, mf)} hyper-parameter y;
predicted popularity {m;}; mode: PD or PDA

1 while stop condition is not reached do
2 Update model parameters © by optimizing Equation (4);
3 if mode==PD then validate model with ELU’ ( fo(u,i));
4 else validate model with Equation (9) (simplify y = y);
5 end
6 if mode==PD then recommend items using ELU’ (fo(u,i));
7 else recommend items using Equation (9) (simplify y = y);

4.1 Experimental Settings

4.1.1 Datasets. We conduct experiments on three datasets:

1) Kwai: This dataset was adopted in Kuaishou User Interest
Modeling Challenge?, which contains click/like/follow records be-
tween users and videos. It spans about two weeks. In this paper, we
only utilize clicking data. Following previous work [42], we take
10-core filtering to make sure that each user and each item have at
least 10 interacted records. After filtering, the experimented data
has 7,658,510 interactions between 37,663 users and 128,879 items.

2) Douban Movie: This dataset is collected from a popular re-
view website Douban® in China by [39]. It contains user ratings for
movies and spans more than ten years. We take all rating records
as positive samples and only utilize the data after 2010. The 10-
core filtering is also adopted. After filtering, there are 7,174,218
interactions between 47,890 users and 26,047 items.

3) Tencent: This dataset is collected from Tencent short-video
platform from Dec 27 2020 to Jan 6 2021. In this dataset, user in-
teractions are likes, which are reflective of user satisfaction but far
more sparse than clicks. Because of its high sparsity, we adopt the
5-core filtering setting, obtaining 1,816,046 interactions between
80,339 users and 27,070 items.

Following Cafiamares and Castells [9], we split the datasets
chronologically. In particular, we split the datasets into 10 time
stages according to the interaction time, and each stage has the
same time interval. The last stage is left for validation and testing,
in which 30% of users are regarded as validation set and the other
70% of users are regarded as testing set.

4.1.2 Baselines. We compare PD with the following baselines:

- MostPop. This method simply recommends the most popular
items for all users without considering personalization.

- BPRMF, which optimizes the MF model with BPR loss [36].

- xQuAD [3]. This is a Ranking Adjustment method that aims to
increase the coverage of long-tail items in the recommendation list.
We use the codes released by the authors, and utilize it to re-rank
the result of BPRMF. Following its original setting, we tune the bias
controlling hyper-parameter A in [0, 1] with step 0.1.

- BPR-PC [50]. This is a state-of-the-art Ranking Adjustment
method for controlling popularity bias. It has two choices: re-
ranking and regularization. Here we implement the re-ranking
method based on the BPRMF, because this method shows better
performance in the original paper. Following the paper, we tune
the bias controlling hyper-parameters « [0.1, 2.0] with step 0.2, and
pin [0, 1] with step 0.2.

*https://www.kuaishou.com/activity/uime
Swww.douban.com



Table 1: Recommendation performance after deconfounded training on the three datasets. “RI” refers to the relative improve-
ment of PD over the corresponding baseline. The best results are highlighted in bold and sub-optimal results are underlined.

Top 20 Top 50

Dataset  Methods | oo 1l precision HR NDCG RI Recall Precision HR NDCG RI
MOStPOp 0.0014 0.0019 0.0341 0.0030 632.4% 0.0040 0.0021 0.0802 0.0036  480.9%
BPRMF  0.0054  0.0057  0.0943 00067 1463% 00125  0.0053  0.1866 0.0089 121.0%
Koai | XQuad 00054 00057  0.0048 00068 1450% 00125 00055  0.1867 0.009 1203%
BPR-PC  0.0070  0.0056  0.0992 0.0072 125.0% 00137 00046  0.1813 0.0092 123.7%
DICE 00053  0.0056  0.0957 00067 147.8% 00130 00052  0.1872 0.0090 119.0%

PD  0.0143 00138 02018 00177 -  0.0293 00118 0.3397 00218 -
MostPop  0.0218  0.0207 02373 0.0349  75.4% 0.0490  0.0256  0.3737 0.0406  55.9%
BPRMF 0.0274 0.0336 0.2888 0.0405 47.0% 0.0581 0.0291 0.4280 0.0475 34.3%
Douban xQuad 0.0274 0.0336 0.2895 0.0391 48.3% 0.0581 0.0291 0.4281 0.0473 34.4%
BPR-PC  0.0282 00307 02863 00381 51.6% 00582 00271 04260 00457 38.0%
DICE 00273 00336 02845 00421 46.2% 00513 00273 04000 00460 44.5%

PD  0.0453 00454 03970 00607 -  0.0843 00362 0.5271 00686 -
MostPop  0.0145  0.0043  0.0684 0.0093 340.8% 0.0282  0.0035  0.1181 0.0135 345.8%
BPRMF  0.0553 00153  0.2005 0.0328 27.1% 0.1130  0.0120 03303 00497  253%
Tencent | XQuad 00552 00153 02007 00326 27.3% 01130 00129 03302 00497 253%
BPR-PC 0.0556 0.0153 0.2018 0.0331 26.5% 0.1141 0.0128 0.3322 0.0500 24.9%
DICE 0.0516 0.0149 0.1948 0.0312 32.8% 0.1010 0.0132 0.3312 0.0486 29.0%

PD 0.0715 0.0195 0.2421 0.0429 - 0.1436 0.0165 0.3875 0.0641 -

- DICE [48]. This is a state-of-the-art method for learning causal
embeddings to handle the popularity bias. It designs a framework
with causality-oriented data to disentangle user interest and con-
formity into two sets of embedding. We use the codes provided by
the authors, and we take the settings suggested for large datasets
instead of the default settings since our datasets are relatively large.
Because DICE demonstrates superior performance over IPS-based
methods [17, 38], we do not include IPS-based methods as baselines.

To evaluate the effect of PDA on leveraging desired popularity
bias, we compare it with the following popularity-aware methods:

- MostRecent [21]. This is an improved version of MostPop,
which recommends the most popular items in the last stage rather
than in the entire history. Note that PDA takes the last stage to
forecast the popularity of next stage to make adjustment.

- BPRMEF(t)-pop [33]. This method models the temporal popu-
larity by training a set of time-specific parameters for each stage.
We directly utilize the parameters corresponding to the last training
stage for validation and testing.

- BPRMF-A and DICE-A. We enhance BPRMF and DICE to
inject desired popularity bias during inference in the same manner
as PDA by substituting fg (u, i) with the prediction of BPRMF/DICE
in Equation (9). We tune the smooth hyper-parameter y.

4.1.3  Hyper-parameters and Metrics. For a fair comparison, all
methods are optimized by BPR loss and tuned on the validation
data. We optimize all models with the Adam [24] optimizer with
batch size as 2,048 and default choice of learning rate (i.e., 0.001)
for all the experiments. We search Ly regularization coefficients
in the range of {0.01,0.001...,107°,0} for all models. We adopt
the early stopping strategy that stops training if Recall@20 on the
validation data does not increase for 100 epochs. For DICE, we use
its provided stopping strategy and tune the threshold for stopping
to make it comparable to our strategy. For PD and PDA, we search
y in [0.02,0.25] with a step size of 0.02. For BPRMF-A and DICE-A,
we search y from 0.02 to 1 with a step size of 0.02 and stop searching
if the evaluation results do not change for 3 steps.

To measure the recommendation performance, we adopt four
widely-used evaluation metrics: Hit Ratio (HR), Recall, Precision,
which consider whether the relevant items are retrieved within
the top-K positions, and NDCG that measures the relative orders
among positive and negative items in the top-K list. All metrics
are computed by the all-ranking protocol — all items that are not
interacted by a user are the candidates. We report the results of
K =20 and K = 50 in our experiments.

4.2 Deconfounding Performance (RQ1)

In this section, we will first study the recommendation performance
of our proposed algorithm PD. Then, we analyze its recommenda-
tion lists and showcase its rationality. At last, we study the necessity
of computing item popularity at different stages in training (i.e.,
computing local popularity).

4.2.1 Overall Performance. Table 1 shows the comparison of top-K
recommendation performance. From the table we can find:

o The proposed PD achieves the best performance, and consistently
outperforms all the baselines on all datasets. This verifies the
effectiveness of PD, which is attributed to the deconfounded
training to remove the bad effect of popularity bias. In addition,
the superior performance of PD reflects the rationality of our
causal analysis and the potential of do-calculus in mitigating the
bias issue in recommendation.

e PD achieves different degrees of improvement on the three datasets.
In particular, PD outperforms all baselines by at least 119%, 34%,
and 24% on Kwai, Douban, and Tencent, respectively. We think
the difference in the improvement is due to the different prop-
erties of the three datasets. For example, the level of popularity
drift in the data differs substantially as shown in Figure 2: the
popularity drifts of Kwai are much larger than that of the other
two datasets. Higher drifts imply that item popularity Z has
larger impact on the recommendation data. That is why the pro-
posed PD outperforms baseline methods the most on the Kwai
dataset. Hence, we believe that formulating the recommender
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Figure 4: Recommendation rate(RR) over item groups.

model as P(C|do(U,I)) has larger advantages over P(C|U,I) in
the scenarios exhibiting higher popularity drift.

e For BPR-PC and xQuad, which perform ranking adjustment, only
BPR-PC has limited improvements over BPRMF on recall, i.e.,
ranking adjustment has little effect in our setting. The reason is
that: heuristic adjustment of the original model prediction can
only guarantee an increase in the proportion of long-tail items
but cannot guarantee the promoted items are of real interest.
BPR-PC performs better than xQuad since xQuad only considers
group-level popularity, while BPR-PC computes popularity in a
finer granularity at item level.

e DICE tries to disentangle popularity and interest influence for
an observed interaction to get causal embedding. It only demon-
strates a similar performance to BPRMF in our setting, which
indicates the rationality of leveraging popularity bias instead of
blindly eliminating the bias. Note that in the original paper of
DICE, the evaluation data is manually intervened to ensure an
even distribution of testing interactions over items, which re-
moves popularity bias in the testing data. Whereas in our setting,
the evaluation data is split by time to reflect real-world evaluation
of recommender system, and contains popularity bias. Although
DICE boosts the scores of unpopular items over popular items, it
may under-estimate users’ interest matching for popular items.

4.2.2  Recommendation Analysis. We claim that PD can alleviate
the amplification of popularity bias, i.e., removing the bad effect
of popularity bias. We conduct an analysis of the recommendation
lists to show that deconfounded recommendation does not favor
popular items as much as conventional recommendations. Items
are placed into 10 different groups in two steps: (1) we sort items
according to their popularity in descending order and (2) we divide
the items into 10 groups and ensure that the sum of popularity
over items in each group is the same. As such, the number of items
will increase from group 1 to group 10 and the average popularity
among items in each group decreases from group 1 to group 10.
Hence we say group 1 is the most popular group and group 10 is
the least popular group.

For each method, we sum the number of times of items rec-
ommended from each group. Then we divide this number by the
total number of recommendations to get the recommendation rate
for each group. Formally, we define recommendation rate (RR) for

group g as:

ZiEGroupg RC(i, algo)

RR(g, algo) =
(4. algo) ZieAllGroups RC(i, algo)

where RC(i, algo) gives the number of times the algorithm algo
recommends item i in top-K recommendation lists.

For training, the recommendation rate of different groups is
uniform (see the black line in Figure 4). If more popular groups
have higher recommendation rates, there is the amplification of
popularity bias. We show the recommendation rates of each group
by different methods in Figure 4, in which (a), (b), and (c) are the
results on Kwai, Douban, and Tencent, respectively. Figure 4 (d) is
to show the standard deviation (std. dev.) of recommendation rates
over all the groups: a smaller value means the recommendation rate
is more uniform and is closer to the recommendation rates from
training set. The main findings are as follows.

o It is clear that popularity bias will be amplified by BPRMF. Fig-
ures 4 (a) (b) (c) show that as the average item popularity de-
creases from group 1 to group 10, the recommendation rate de-
creases almost linearly. The gap between the chances to recom-
mend popular items and unpopular items becomes bigger in the
recommendation lists compared with that in the training set.

e For DICE, the recommendation rate increases initially and then
decreases from group 1 to group 10. This is because DICE strate-
gically increases the scores of unpopular items to suppress the
problem of amplified interest for popular items. However, this
suppression brings two side effects: (1) the items from group
1 and group 2 are over-suppressed such that they have lower
chances to be recommended than they have in the training set
on Kwai and Tencent and (2) it over-amplifies the interest for the
middle groups that contain sub-popular items. As such, blindly
eliminating popularity bias would remove the beneficial patterns
in the data.

e In Figure 4 (a) (b) (c), the RRs of PD exhibit lines that are flatter
than other methods, which are the most similar to the training
set. Moreover, as we can see in Figure 4 (d), the RR of PD has the
smallest standard deviation across groups, indicating the least
difference across groups. These results verify that PD provides
relatively fair recommendations across groups, and will not over-
amplify or over-suppress interest for popular items. Along with
the recommendation performance in Table 1, the results demon-
strate the rationality and effectiveness of only removing the bad
effect of popularity bias by deconfounded training.

e For the group 10, which has the least popular items, PD has a
little higher recommendation rate than other methods. However,
PD also cannot provide enough chances of recommendation be-
cause of the sparse interactions of items in this group and the
insufficient learning of item embedding.

Note that we omit the RRs of the ranking adjustment meth-
ods (i.e., BPR-PC and xQuad) since their recommendation rates
for unpopular items are manually increased. Instead of tuning the
recommendation rate for groups of different popularity, we concen-
trate more on whether the learned embedding can precisely reveal
the real interests of users.



Table 2: Top-K recommendation performance with popularity adjusting on Kwai, Douban, and Tencent Datasets.

Datasets Kwai Douban Tencent
Methods top 20 top 50 top 20 top 50 top 20 top 50
Recall NDCG | Recall NDCG | Recall NDCG | Recall NDCG | Recall NDCG | Recall NDCG
MostRecent 0.0074  0.0096  0.0139 0.011 0.0398 0.0582  0.0711  0.0615 | 0.0360  0.0222  0.0849  0.0359
BPRMF(t)-pop | 0.0188 0.0241 0.0372  0.0286 0.0495 0.0682  0.0929  0.0760 | 0.1150 0.0726  0.2082  0.1001
BPRMF-A (a) | 0.0191 0.0249 0.0372  0.0292 0.0482 0.0666  0.0898  0.0744 | 0.1021 0.0676  0.1805  0.0905
(b) | 0.0201 0.0265 0.0387  0.0306 0.0486 0.0667  0.0901 0.0746 | 0.1072 0.0719 0.1886  0.0953
DICE-A (a) | 0.0242 0.0315 0.0454 0.0363 0.0494  0.0681 0.0890 0.0736 | 0.1227 0.0807 0.2161 0.1081
(b) | 0.0245 0.0323 0.0462  0.0370 0.0494 0.0680 0.0882 0.0734 | 0.1249 0.0839 0.2209 0.1116
PDA (a) | 0.0279 0.0352  0.0531  0.0413 0.0564 0.0746 0.1066 0.0845 | 0.1357 0.0873 0.2378  0.1173
(b) | 0.0288 0.0364 0.0540 0.0429 | 0.0565 0.0745 0.1066 0.0843 | 0.1398 0.0912 0.2418 0.1210
0.15 0.07 012
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Figure 5: Comparisons between PD and PD-G on Recall@50 @ '}\éwai ®) Douban

and NDCG@50. PD-G is a version of PD that computes item
popularity over the total training set.

4.2.3  Global Popularity V.S. Local Popularity. To investigate the
necessity of local popularity, we evaluate a variant of PD that uses
global popularity defined on the interaction frequency in the entire
training set . We keep the other settings the same as PD and
name this method as PD-Global (PD-G). Figure 5 shows the rec-
ommendation performance of PD and PD-G on the three datasets.
Due to the limited space, we only show the results on recall and
NDCG for top-50 recommendation, other metrics show the similar
results. According to the figure, PD-G is far worse than PD, which
verifies the importance of calculating item popularity locally. We
believe PD-G performs poorly because there is only one instance
of P(Clu,i,Z) on Z, making P(C|u, i, Z) hard to be learned well.

4.3 Performance of Adjusting Popularity (RQ2)

In this section, we verify the performance of our proposed method
PDA, which introduces some desired popularity bias into recom-
mendation. Firstly, we compare our method with the baselines that
inject some popularity bias as well — MostRecent, BPRMF (t)-pop,
BPRMF-A, and DICE-A. Secondly, we study the influence of re-
fined prediction of item popularity for PDA. Lastly, we demonstrate
overall improvements compared with the baseline model BPRMF.

4.3.1 Comparisons with Baselines. We utilize two methods to pre-
dict the popularity of the testing stage. Specially, method (a) takes
the popularity of items from the last stage D7 as the predicted pop-
ularity, while method (b) computes populairity as Equation (8). We
apply both (a) and (b) to PDA, DICE-A, and BPRMF-A. The results
are shown in Table 2, which lead to the following observations:

o By comparing the results of PDA, DICE-A, BPRMF-A, and MostRe-
cent with the results of PD, DICE, BPRMF, and MostPop in Table 1,
we find that introducing desired popularity bias into recommen-
dations can improve the recommendation performance. This
validates the rationality of leveraging popularity bias, i.e., pro-
moting the items that have the potential to be popular (desired
popularity bias) benefits recommendation performance.

Figure 6: PDA recommendation performance regarding Re-
call@50 and NDCG@50 on Kwai and Douban, with the last
training stage split into N sub-stages.

e Compared with other methods, PDA can outperform both the
method BPRMF(t)-pop, which is specially designed for utilizing
temporal popularity, and the modified methods BPRMF-A and
DICE-A. This is attributed to PDA introducing the desired pop-
ularity bias by an intervention, preventing the learning model
to amplify the effect of popularity and injecting desired popu-
larity bias in inference, whereas other models are influenced by
popularity bias in training. The results validate the advantage of
causal intervention in more accurately estimating true interests.

e On Kwai and Tencent, method (b) outperforms method (a), indi-
cating that introducing the linear predicted popularity is more
effective than straightforwardly utilizing the popularity from the
previous stage; On Douban, these two methods achieve almost
the same performance. This is because the Douban dataset spans
over a longer period of time than the other two datasets, making
it harder to predict the popularity from the trends of popularity
in training stages.

4.3.2  More Refined Predictions for Popularity. We conduct an ex-
periment to show that the performance of PDA can be improved
with more refined predicted popularity. To get more refined pre-
dictions, we uniformly split the data in the last training stage into
N sub-stages by time, and achieve a more refined prediction of
popularity in the last sub-stage, which is closest to the testing stage.
We set N = 1, 2, 4,8, 16 and employ method (a) to predict the desired
popularity. The results are shown in Figure 6. The performance
of PDA can be improved with better-predicted popularity for test-
ing. On the Kwai dataset, the performance first increases and then
slightly decreases as N increases. However, on the Douban dataset,
with a larger N, the performance does not drop evidently. This is
mainly because the item space of Kwai is far larger than Douban,
but they have a similar number of interactions. When N is set to a



Table 3: The total relative improvements of PDA compared
with the base recommendation model, i.e, BPRMF. Each re-
sult is averaged on top 20 and top 50.

Dataset | Recall Precision HR NDCG
Kwai 488% 441% 241% 532%

Douban | 124% 68% 57% 97%

Tencent | 133% 133% 79% 161%

large value, the interaction frequency is insufficient to accurately
compute item popularity for Kwai. This experiment shows that the
performance of PDA can be further improved with a more precise
prediction of popularity.

4.3.3 Total Improvements of PDA. To quantify the strengths of
PDA, we show the relative improvements of PDA over the basic
model that PDA is built on, i.e., BPRMF in Table 3. On the Kwai
dataset, we get more than 241% improvements over all metrics. On
the Douban and Tencent datasets, for the recall and NDCG, we get
at least 97% improvements, and for precision and HR, we get at least
57% improvements. The results clearly indicate the superiority of
PDA in recommendation and the huge potential of causal analysis
and inference for leveraging bias in recommendation.

5 RELATED WORKS

This work is closely related to two topics: popularity bias in recom-
mender system and causal recommendation.

5.1 Popularity Bias

Popularity bias has long been recognized as an important issue
in recommendation systems. One line of research [4, 9, 20, 30, 40]
studies the phenomenon of popularity bias. [20] studies how pop-
ularity bias influences different recommendation models and con-
cludes that popularity has a larger impact on BPR-based models
[48] than point-wise models [19]; [4] tries to study the relation
between popularity bias and other problems such as fairness and
calibration. Another line of research [1-3, 8, 38, 48, 50] attempts
to improve recommendation performance by removing popularity
bias. These works mainly consider three types of methods: IPS-
based methods [17, 38], causal embedding-based methods [8, 27, 48],
and the methods based on post-hoc re-ranking or model regular-
ization [2, 3, 23, 34, 50]. Similar to our work, a very recent work
[48] also tries to compute the influence of popularity via causal
approaches. The difference is that we analyze the causal relations
from a confounding perspective whearas this important aspect was
not considered in their work. Some other works have attempted to
remove the impact of other bias problems [11], position bias [5],
selection bias [43], and exposure bias [12, 26] etc. The most widely
considered method for handling aforementioned biases is IPS-based
method [6, 38, 47, 49]. However, there is no guaranteed accuracy
for estimating propensity scores. Utilizing unbiased data is another
option for solving bias problems [8, 27], however the unbiased data
is difficult to obtain and may hurt user experience [43].

Some other methods recognize the importance of utilizing pop-
ularity and consider drifted popularity to improve the model per-
formance (7, 21, 25, 33]. [25] tries to utilize temporal popularity in
music recommendation and [22] utilizes local popularity for rec-
ommending news. [7, 21, 33] also try to utilize temporal popularity
for general recommendation. The biggest difference between our
work and other works is that we precisely differentiate popularity
bias to be removed and popularity drift to be taken advantage of.

5.2 Causal Recommendation

Some efforts have considered causality in recommendation. The
first type of work is on confounding effects [10, 13, 37, 44]. For
example, [44] takes the de-confounding technique in linear models
to learn real interest influenced by unobserved confounders. They
learn substitutes for unobserved confounders by fitting exposure
data. [37] tries to estimate the causal effect of the recommending
operation. They consider the features of users and items as con-
founders, and reweight training samples to solve the confounding
problem. [10] explores the impact of algorithmic confounding on
simulated recommender systems. [13] identifies expose rate as a
confounder for user satisfaction estimation and uses IPS to handle
the confounding problem. In this work, we introduce a different
type of confounder that is brought by item popularity.

The second type is counterfactual learning methods [31, 45, 46].
[31] utilizes a quasi-experimental Bayesian framework to quantify
the effect of treatments on an outcome to generate counterfactual
data, where counterfactual data refers to the outcomes of unob-
served treatments. [46] utilizes a model that is learned with few
unbiased data to generate labels for unobserved data. [45] extends
Information Bottleneck [45] to counterfactual learning with the idea
that the counterfactual world should be as informative as the fac-
tual world to deal with the Missing-Not-At-Random problem [43].
Though these works study the problem of causal recommenda-
tion, they do not specifically consider popularity bias as well as
popularity drift for boosting recommendation performance.

6 CONCLUSION

In this work, we study how to model and leverage popularity bias
in recommender system. By analyzing the recommendation gener-
ation process with the causal graph, we find that item popularity
is a confounder that misleads the estimation of P(C|U, I) as done
by traditional recommendation models. Different from existing
work that eliminates popularity bias, we point out that some pop-
ularity bias should be decoupled for better usage. We propose a
Popularity-bias Deconfounding and Adjusting framework to de-
confound and leverage popularity bias for better recommendation.
We conduct experiments on three real-world datasets, providing
insightful analyses on the rationality of PDA.

This work showcased the limitation of pure data-driven models
for recommendation, despite their dominant role in recommenda-
tion research and industry. We express the prior knowledge of how
the data is generated for recommendation training as a causal graph,
performing deconfounded training and intervened inference based
on the causal graph. We believe this new paradigm is general for
addressing the bias issues in recommendation and search systems,
and will extend its impact to jointly consider more factors, such
as position bias and selection bias. Moreover, we are interested in
extending our method to the state-of-the-art graph-based recom-
mendation models and incorporate the content features of users
and items.
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