
Should Graph Convolution Trust Neighbors? A Simple Causal
Inference Method

Fuli Feng12∗, Weiran Huang3, Xiangnan He4, Xin Xin5, Qifan Wang6, Tat-Seng Chua12
1Sea-NExT Joint Lab, 2National University of Singapore, 3The Chinese University of Hong Kong

4University of Science and Technology of China, 5University of Glasgow, 6Google US
fulifeng93@gmail.com,huangweiran1998@outlook.com,xiangnanhe@gmail.com

x.xin.1@research.gla.ac.uk,wqfcr@google.com,dcscts@nus.edu.sg

ABSTRACT
Graph Convolutional Network (GCN) is an emerging technique for
information retrieval (IR) applications. While GCN assumes the
homophily property of a graph, real-world graphs are never perfect:
the local structure of a node may contain discrepancy, e.g., the labels
of a node’s neighbors could vary. This pushes us to consider the
discrepancy of local structure in GCN modeling. Existing work
approaches this issue by introducing an additional module such as
graph attention, which is expected to learn the contribution of each
neighbor. However, such module may not work reliably as expected,
especially when there lacks supervision signal, e.g., when the labeled
data is small. Moreover, existing methods focus on modeling the
nodes in the training data, and never consider the local structure
discrepancy of testing nodes.

This work focuses on the local structure discrepancy issue for
testing nodes, which has received little scrutiny. From a novel per-
spective of causality, we investigate whether a GCN should trust the
local structure of a testing node when predicting its label. To this
end, we analyze the working mechanism of GCN with causal graph,
estimating the causal effect of a node’s local structure for the predic-
tion. The idea is simple yet effective: given a trained GCN model,
we first intervene the prediction by blocking the graph structure; we
then compare the original prediction with the intervened prediction
to assess the causal effect of the local structure on the prediction.
Through this way, we can eliminate the impact of local structure dis-
crepancy and make more accurate prediction. Extensive experiments
on seven node classification datasets show that our causality-based
method effectively enhances the inference stage of GCN.

CCS CONCEPTS
• Information systems −→ Information retrieval; • Mathematics
of computing −→ Graph algorithms; • Computing methodolo-
gies −→ Neural networks; Learning latent representations.

∗Corresponding author. This research is supported by the Sea-NExT Joint Lab, National
Natural Science Foundation of China (U19A2079) and National Key Research and
Development Program of China (2020AAA0106000).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN xxx-x-xxxx-xxxx-x/xx/xx. . . $15.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

KEYWORDS
Graph Convolutional Network, Causal Intervention, Model Inference

ACM Reference Format:
Fuli Feng, Weiran Huang, Xiangnan He, Xin Xin, Qifan Wang, Tat-Seng
Chua. 2021. Should Graph Convolution Trust Neighbors? A Simple Causal
Inference Method. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’21), July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA,
11 pages. https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
GCN is being increasingly used in IR applications, ranging from
search engines [29, 57], recommender systems [5, 9, 12, 49] to
question-answering systems [14, 64]. Its main idea is to augment a
node’s representation by aggregating the representations of its neigh-
bors. In practice, GCN could face the local structure discrepancy
issue [3] since real-world graphs usually exhibit locally varying
structure. That is, nodes can exhibit inconsistent distributions of
local structure properties such as homophily and degree. Figure 1
shows an example in a document citation graph [15], where the
local structure centered at 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒2 has different properties
regarding cross-category edges1. Undoubtedly, applying the same
aggregation over 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒2 will lead to inferior node repre-
sentations. Therefore, it is essential for GCN to account for the local
structure discrepancy issue.

Existing work considers this issue by equipping GCN with an
adaptive locality module [44, 55], which learns to adjust the con-
tribution of neighbors. Most of the efforts focus on the attention
mechanism, such as neighbor attention [44] and hop attention [27].
Ideally, the attention weight could downweigh the neighbors that
causes discrepancy, e.g., the neighbors of different categories with
the target node. However, graph attention is not easy to be trained
well in practice, especially for hard semi-supervised learning setting
that has very limited labeled data [22]. Moreover, existing methods
mainly consider the nodes in the training data, ignoring the local
structure discrepancy on the testing nodes, which however are the
decisive factor for model generalization. As such, it is insufficient to
resolve the discrepancy issue by adjusting the architecture of GCN.

In this work, we argue that it is essential to empower the infer-
ence stage of a trained GCN with the ability of handling the local
structure discrepancy issue. In real-world applications, the graph
structure typically evolves along time, resulting in structure dis-
crepancy between the training data and testing data. Moreover, the
testing node can be newly coming (e.g., a new user), which may
exhibit properties different from the training nodes [42]. However,

1This work focuses on the discrepancy w.r.t. cross-category connections.

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Feng and Huang, et al.

A part of OGB-arXiv

node 1

node 2

0/3

cross-category
edges

3/4

Figure 1: Illustration of local structure discrepancy in OGB-
arXiv [15], a citation graph of papers. Nodes in different colors
belong to different categories.

the one-pass inference procedure of existing GCNs indiscriminately
uses the learned model parameters to make prediction for all testing
nodes, lacking the capability of handling the structure discrepancy.
This work aims to bridge the gap by upgrading the GCN inference
to be node-specific according to the extent of structure discrepancy.

To achieve the target, the key lies in analyzing the prediction
generation process of GCN on each node and estimating to what
extent accounting for node’s neighbors affects its prediction, i.e., the
causal effect of the local structure on GCN prediction. According to
the evidence that model output can reflect feature discrepancy [40],
we have a key assumption that the GCN output provides evidence on
the properties of the local structure centered at a testing node. For in-
stance, if the local structure exhibits properties distinct from the seen
ones, the model will be uncertain about its prediction when the neigh-
bors are taken into account. Accordingly, we should downweigh the
contribution of neighbors to reduce the impact of the discrepancy
on the prediction. Inherently, both a node’s features and neighbors
are the causes of the prediction for the node. By distinguishing the
two causal effects, we can assess revise the model prediction in a
node-specific manner.

To this end, we resort to the language of causal graph [35] to
describe the causal relations in GCN prediction. We propose a
Causal GCN Inference (CGI) model, which adjusts the prediction of
a trained GCN according to the causal effect of the local structure.
In particular, CGI first calls for causal intervention that blocks the
graph structure and forces the GCN to user a node’s own features
to make prediction. CGI then makes choice between the intervened
prediction and the original prediction, according to the causal effect
of the local structure, prediction confidence, and other factors that
characterize the prediction. Intuitively, CGI is expected to choose the
intervened prediction (i.e., trusting self) when facing a testing node
with local structure discrepancy. To learn a good choice-making
strategy, we devise it as a separate classifier, which is learned based
on the trained GCN. We demonstrate CGI on APPNP [21], one of
the state-of-the-art GCN models for semi-supervised node classifica-
tion. Extensive experiments on seven datasets of different evaluation
settings validate the effectiveness of our proposal. The codes are
released at: https://github.com/fulifeng/CGI.

The main contributions of this work are summarized as follows:

• We achieve adaptive locality during GCN inference and pro-
pose an CGI model that is model-agnostic.
• We formulate the causal graph of GCN working mechanism,

and the estimation of causal intervention and causal uncer-
tainty based on the causal graph.
• We conduct experiments on seven node classification datasets

to demonstrate the rationality of the proposed methods.

2 PRELIMINARIES
Node classification. We represent a graph with 𝑁 nodes as 𝐺 =

(𝑨,𝑿), i.e., an adjacency matrix 𝑨 ∈ R𝑁×𝑁 associated with a
feature matrix 𝑿 = [𝒙1, 𝒙2, · · · , 𝒙𝑁]𝑇 ∈ R𝑁×𝐷 . 𝑨 describes the
connections between nodes where 𝐴𝑖 𝑗 = 1 means there is an edge
between node 𝑖 and 𝑗 , otherwise 𝐴𝑖 𝑗 = 0. 𝐷 is the dimension of the
input node features.Node classification is one of the most popular
analytic tasks on graph data. In the general problem setting, the label
of 𝑀 nodes are given 𝒀 = [𝒚1,𝒚2, · · · ,𝒚𝑁]𝑇 ∈ R𝑁×𝐿 , where 𝐿 is
the number of node categories and 𝒚1 is a one-hot vector. The target
is to learn a classifier from the labeled nodes, formally,

𝑓 (𝒙,N(𝒙) |𝜽), N(𝒙) = {𝒙𝑛 |𝑨𝑖𝑛 = 1}, (1)

where 𝜽 denotes the parameter of the classifier and N(𝒙) denotes
the neighbor nodes of the target node 𝒙. In particular, there are four
popular settings with minor differences regarding the observability of
testing nodes during model training and the amount of labeled nodes.
Without loss of generality, we index the labeled nodes and testing
nodes in the range of [1, 𝑀] and (𝑇, 𝑁], respectively. Specifically,

• Inductive Full-supervised Learning: In this setting, testing nodes
are not included in the graph used for model training and all
training nodes are labeled. That is, 𝑀 = 𝑇 and learning the classi-
fier with 𝑓 (𝑿𝑡𝑟 |𝑨𝑡𝑟 , 𝜽) where 𝑿𝑡𝑟 ∈ R𝑀×𝐷 and 𝑨𝑡𝑟 denotes the
features and the subgraph of the training nodes.
• Inductive Semi-supervised Learning [11]: In many real-world

applications such as text classification [26], it is unaffordable
to label all the observed nodes, i.e., only a small portion of the
training nodes are labeled (in fact, 𝑀 ≪ 𝑇).
• Transductive Full-supervised Learning [15]: In some cases, the

graph is relatively stable, i.e., no new node occurs, where the
whole node graph 𝑿 and 𝑨 are utilized for model training.
• Transductive Semi-supervised Learning [20]: In this setting, the

whole graph is available for model training while only a small
portion of the training nodes are labeled.

It should be noted that we do not restrict our problem setting to be a
specific one like most previous work on GCN, since we focus on the
general inference model.

Graph Convolutional Network. Taking the graph as inputs, GCN
learns node representations that encodes the graph structure and node
features (the last layer makes predictions) [20]. The key operation
of GCN is neighbor aggregation, which can be abstracted as:

𝒙 = 𝐴𝐺𝐺 (𝒙, {𝒙𝑛 |𝒙𝑛 ∈ N (𝒙)}), (2)

where𝐴𝐺𝐺 denotes the node aggregation operation such as a weighted
summation [20]. 𝒙 and 𝒙 ∈ R𝐷 are the origin representation of the
target node (node features or representation at the previous layer)
and the one after aggregating neighbor node features. Note that stan-
dard GCN layer typically consists a feature transformation, which is
omitted for briefness.

Adaptive locality. In most GCN, the target node is equally treated
as the neighbor nodes, i.e., no additional operation except adding
the edge for self-connection. Aiming to distinguish the contribution
from target node and neighbor nodes, a self-weight 𝛼 is utilized, i.e.,
N(𝛼 ∗ 𝒙, {(1− 𝛼) ∗ 𝒙𝑛 |𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝒙)}). More specifically, neigh-
bor attention [44] is introduced to learn node specific weights, i.e.,

https://github.com/fulifeng/CGI

Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

N(𝛼𝒙, {𝛼𝑛 ∗𝒙𝑛 |𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝒙)}). The weights 𝛼 and 𝛼𝑛 are calcu-
lated by an attention model such as multi-head attention [43] with the
node representations 𝒙 and 𝒙𝑛 as inputs. Lastly, hop attention [27]
is devised to adaptively aggregate the target node representations at
different GCN layers 𝒙0, · · · , 𝒙𝑘 , · · · , 𝒙𝐾 into a final representation.
𝒙𝑘 is the convolution output at the 𝑘-th layer which encodes the
𝑘-hop neighbors of the target node. For a target node that is expected
to trust self more, the hop attention is expected to assign higher
weight for 𝒙0. Most of these adaptive locality models are learned
during model training except the self-weight 𝛼 in GCN models like
APPNP which is tuned upon the validation set.

Causal effect. Causal effect is a concept in causal science [35],
which studies the influence among variables. Given two variables
𝑋 and 𝑌 , the causal effect of 𝑋 = 𝑥 on 𝑌 is to what extent changing
the value of 𝑋 to 𝑥 affects the value of 𝑌 , which is abstracted as:

𝑌𝑥 − 𝑌𝑥∗ , (3)

where 𝑌𝑥 and 𝑌𝑥∗ are the outcomes of 𝑌 with 𝑋 = 𝑥 and 𝑋 = 𝑥∗ as
inputs, respectively. 𝑥∗ is the reference status of variable 𝑋 , which
is typically set as empty value (e.g., zero) or the expectation of 𝑋 .

3 METHODOLOGY
In this section, we first scrutinize the cause-effect factors in the
inference procedure of GCN, and then introduce the proposed CGI.
Assume that we are given a well-trained GCN 𝑓 (𝒙,N(𝒙) |𝜃), which
is optimized over the training nodes according to the following
objective function:

𝜃 = min
𝜃

𝑀∑
𝑖=1
(𝑙 (�̂�𝑖 ,𝒚𝑖)) + 𝜆∥𝜽 ∥2𝐹 , (4)

where 𝑙 (·) denotes a classification loss function such as cross-entropy,
�̂�𝑖 = 𝑓 (𝒙𝑖 ,N(𝒙𝑖) |𝜃) ∈ R𝐿 denotes the model prediction for node 𝑖,
and 𝜆 is a hyper-parameter to balance the training loss and regular-
ization term for preventing overfitting. It should be noted that �̂�𝑖 is a
probability distribution over the label space. The final classification
𝑧𝑖 corresponds to the category with the largest probability, which is
formulated as:

𝑧𝑖 = arg max
𝑗

𝑦 (𝑖, 𝑗) , 𝑗 ≤ 𝐿, (5)

where 𝑦 (𝑖, 𝑗) is the 𝑗-th entry of �̂�𝑖 . In the following, the mention of
prediction and classification mean the predicted probability distribu-
tion (�̂�𝑖) and category (𝑧𝑖), respectively. Besides, the subscript 𝑖 will
be omitted for briefness.

3.1 Cause-effect View
Causal graph. Causal graph is a directed acyclic graph to describe

a data generation process [35], where nodes represent variables in the
process, and edges represent the causal relations between variables.
To facilitate analyzing the inference of GCN, i.e., the generation
process of the output, we abstract the inference of GCN as a causal
graph (Figure 2(a)), which consists of four variables:
• 𝑋 , which denotes the features of the target node. 𝒙 is an instance

of the variable.
• 𝑁 , which denotes the neighbors of the target node, e.g., N(𝒙).

Note that the sample space of 𝑁 is the power set of all nodes in𝐺 .

• 𝑋 , which is the output of graph convolution at the last GCN layer.
• 𝑌 , which denotes the GCN prediction, i.e., the instance of 𝑌 is �̂�.

Functionally speaking, the structure 𝑋 −→ 𝑋 ←− 𝑁 represents the
graph convolution where both the target node features and neighbor
nodes directly affect the convolution output. The output of the graph
convolution 𝑋 then directly affects the model prediction, which is
represented as 𝑋 −→ 𝑌 Note that there is a direct edge 𝑋 −→ 𝑌 ,
which means that 𝑋 directly affects the prediction. We include this
direct edge for two considerations: 1) residual connection is widely
used in GCN to prevent the over-smoothing issue [20], which enables
the features of the target node influence its prediction directly; 2)
recent studies reveal the advantages of two-stage GCN where the
model first makes prediction from each node’s features; and then
conducts graph convolution.

Recall that the conventional GCN inference, i.e., the calculation
of �̂�, is typically a one-pass forward propagation of the GCN model
with 𝒙 andN(𝒙) as inputs. Based on the causal graph, the procedure
can be interpreted as Figure 2(b), where every variable obtains an
instance (e.g., 𝑋 = 𝒙). Apart from the new understanding of the
conventional GCN inference, the causal theory also provides a set of
analytical tools based on the causal graph, such as causal interven-
tion [35], which enable the in-depth analysis of the factors resulting
in the prediction and further reasoning based on the prediction [36].

Causal intervention. Our target is to assess whether the prediction
on a target testing node faces the local structure discrepancy issue
and further adjust the prediction to achieve adaptive locality. We
resort to causal intervention to estimate the causal effect of target
node’s neighbors on the prediction (i.e., the causal effect of 𝑁 =

N(𝒙)), which forcibly assigns an instance to a treatment variable.
Formally, the causal effect 𝒆 ∈ R𝐿 is defined as:

𝒆 = 𝑓 (𝒙,N(𝒙) |𝜃) − 𝑓 (𝒙, 𝑑𝑜 (𝑁 = ∅)|𝜃),

= 𝑓 (𝒙,N(𝒙) |𝜃) − 𝑓 (𝒙, ∅|𝜃), (6)

= �̂� − �̂�𝑠 .

𝑑𝑜 (𝑁 = ∅) represents a causal intervention which forcefully assigns
a reference status of 𝑁 , resulting in a post-intervention prediction
𝑓 (𝒙, 𝑑𝑜 (𝑁 = ∅)|𝜃) (see Figure 2(c)). Since 𝑁 does not have prede-
cessor, 𝑓 (𝒙, 𝑑𝑜 (𝑁 = ∅)|𝜃) = 𝑓 (𝒙, ∅|𝜃), which is denoted as �̂�𝑠 ∈ R𝐿 .
Intuitively, the post-intervention prediction means: if the target node
has no neighbor, what the prediction would be. We believe that 𝒆
provides clues for performing adaptive locality on the target node.
For instance, we might adjust the original prediction, if the entries
of 𝒆 have abnormal large absolute values, which means that the local
structure at the target node may not satisfy the homophily assump-
tion [30]. Note that we take empty set as a representative reference
status of 𝑁 = N(𝒙) since the widely usage of empty value as refer-
ence in causal intervention [35], but can replace it with any subset
of N(𝒙) (see Section 3.3).

3.2 Causal GCN Inference Mechanism
The requirement of adaptive locality for the testing nodes pushes
us to build up an additional mechanism, i.e., CGI, to enhance the
GCN inference stage. We have two main considerations for devising
the mechanism: 1) the mechanism has to be learned from the data,
instead of handcrafted, to enable its usage on different GCN models

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Feng and Huang, et al.

!

"(!) %!

&' !

∅ %!)

&') self feature

(b) Original prediction (c) Post intervention
prediction

neighbors
convolution
output
prediction

*

+ ,*

-.

(a) Causal graph

Figure 2: Cause-effect view of GCN. (a) Causal graph of GCN inference process; (b) making original prediction; (c) causal interven-
tion 𝑑𝑜 (𝑁 = ∅) where dashed arrow means the effect from the predecessor is blocked.

and different datasets. 2) the mechanism should effectively capture
the connections between the causal effect of 𝑁 = N(𝒙) and local
structure discrepancy, i.e., learning the patterns for adjusting the
original prediction to improve the prediction accuracy.

𝐿-way classification model. A straight forward solution is devis-
ing the CGI as a 𝐿-way classification model that directly generates
the final prediction according to the original prediction �̂�, the post-
intervention prediction �̂�𝑠 , and the causal effect 𝒆. Formally,

𝒚 = ℎ(�̂�, �̂�𝑠 , 𝒆 |𝜔), (7)

whereℎ(·) denotes a 𝐿-way classifier parameterized by𝜔 and𝒚 ∈ R𝐿
denotes the final prediction. Similar to the training of GCN, we can
learn the parameters of ℎ(·) by optimizing classification loss over
the labeled nodes, which is formulated as:

�̂� = min
𝝎

𝑀∑
𝑖=1
(𝑙 (𝒚𝑖 ,𝒚𝑖)) + 𝛼 ∥𝝎∥2𝐹 , (8)

where 𝛼 is a hyperparameter to adjust the strength of regularization.
Undoubtedly, this model can be easily developed and applied to any
GCN. However, as optimized over the overall classification loss, the
model will face the similar issue of attention mechanism [22]. To
bridge this gap, it is essential to learn CGI under the awareness of
whether a testing node encounters local structure discrepancy.

Choice model. Therefore, the inference mechanism should focus
on the nodes with inconsistent classifications from �̂� and �̂�𝑠 , i.e., 𝑧 ≠
𝑧𝑠 where 𝑧 is the original classification and 𝑧𝑠 = arg max𝑗 𝑦𝑠(𝑗) , 𝑗 ≤
𝐿 is the post-intervention classification. That is, we let the CGI
mechanism learn from nodes where accounting for neighbors causes
the change of the classification. To this end, we devise the inference
mechanism as a choice model, which is expected to make wise
choice between 𝑧 and 𝑧𝑠 to eliminate the impact of local structure
discrepancy. Formally,

𝑧 =

{
𝑧, 𝑝 ≥ 𝑡,
𝑧𝑠 , 𝑝 < 𝑡,

𝑝 = 𝑔(�̂�, �̂�𝑠 , 𝒆 |𝜼), (9)

where 𝑔(·) denotes a binary classifier with parameters of 𝜼; the
output of the classifier 𝑝 is used for making choice; and 𝑡 is the
decision threshold, which depends on the classifier selected.

To learn the model parameters 𝜼, we calculate the ground truth
for making choice according to the correctness of 𝑧 and 𝑧𝑠 . Formally,
the choice training data of the binary classifier is:

D =
{
(𝒙, 𝑝) |𝑧 = 𝑧 ∪ 𝑧𝑠 = 𝑧

}
, 𝑝 = 𝑓 𝑙𝑎𝑔(𝑧 = 𝑧), (10)

where 𝑧 denotes the correct category of node 𝒙; 𝑓 𝑙𝑎𝑔(𝑧 = 𝑧) = 1 if 𝑧
equals to 𝑧, 𝑓 𝑙𝑎𝑔(𝑧 = 𝑧) = −1 otherwise. The training of the choice

model is thus formulated as:

𝜼 = min
𝜼

∑
(𝒙,𝑝) ∈D

𝑙 (𝑝, 𝑝) + 𝛽 ∥𝜼∥2𝐹 , (11)

where 𝛽 is a hyperparameter to adjust the strength of regularization.

Data sparsity. Inevitably, the choice training data D will face
sparsity issue for two reasons: 1) labeled nodes are limited in some
node classification applications; and 2) only a small portion of the la-
beled nodes satisfy the criteria ofD. To tackle the data sparsity issue,
we have two main considerations: 1) the complexity of the binary
classifier should be controlled strictly. Towards this end, we devise
the choice model as a Support Vector Machine [37] (SVM), since
SVM only requires a few samples to serve as the support vectors to
make choice. 2) the inputs of the binary classifier should free from
the number of classes 𝐿, which can be large in some applications. To
this end, we distill low dimensional and representative factors from
the two predictions (i.e., �̂� and �̂�𝑠) and the causal effect 𝒆) to serve
as the inputs of the choice model, which is detailed in Section 3.3.

To summarize, as compared to conventional GCN inference, the
proposed CGI has two main differences:
• In addition to the original prediction, CGI calls for causal inter-

vention to further make a post-intervention prediction.
• CGI makes choice between the original prediction and post-intervention

prediction with a choice model.
Below summarizes the slight change of GCN’s training and infer-

ence schema to apply the proposed CGI:

Algorithm 1 Applying CGI to GCN
Input: Training data 𝑿 , 𝑨, 𝒀 .

/* Training */
1: Optimize Equation (4), obtaining GCN (𝜽); ⊲ GCN training
2: Construct D; ⊲ Causal intervention
3: Optimize Equation (11), obtaining choice model (�̂�); ⊲ CGI training
4: Return 𝜽 and �̂�.

/* Testing */
5: Calculate 𝑓 (𝒙,N(𝒙) |𝜽); ⊲ Original prediction
6: Calculate 𝑓 (𝒙, ∅ |𝜽); ⊲ Post-intervention prediction

Calculate final classification with Equation (9);

3.3 Input Factors
To reduce the complexity of the choice model, we distill three types
of factors as the input: causal uncertainty, prediction confidence,
category transition.

Causal uncertainty. According to the homophily assumption [30],
the neighbors should not largely changes the prediction of the target
node. Therefore, the target node may face the local structure discrep-
ancy issue if the causal effect 𝒆 of the neighbors has large variance.

Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1 2 3 4 5 6 7 8 9 10
Node Category

1
2

3
4

5
6

7
8

9
10

No
de

 C
at

eg
or

y

0.19 0.00 0.01 0.00 0.00 0.03 0.00 0.04 0.00 0.02

0.00 0.22 0.00 0.00 0.06 0.01 0.01 0.00 0.05 0.00

0.00 0.00 0.64 0.00 0.01 0.01 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.26 0.06 0.02 0.04 0.01 0.03 0.00

0.00 0.01 0.01 0.02 0.54 0.02 0.00 0.00 0.03 0.01

0.00 0.00 0.01 0.01 0.02 0.45 0.00 0.00 0.04 0.01

0.00 0.00 0.00 0.07 0.02 0.01 0.28 0.00 0.01 0.00

0.07 0.00 0.02 0.02 0.00 0.06 0.00 0.25 0.01 0.01

0.00 0.00 0.00 0.01 0.02 0.03 0.00 0.00 0.49 0.00

0.00 0.00 0.04 0.00 0.01 0.01 0.00 0.00 0.00 0.53
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: Illustration of the category transition matrix on OGB-
arXiv. To save space, we cut the number of categories to ten.

That is, the causal effect exhibits high uncertainty w.r.t. different
reference values. Inspired by the Monte Carlo uncertainty estima-
tion, we resort to the variance of 𝒆 to describe the causal uncertainty,
which is formulated as:

𝒗 = 𝑣𝑎𝑟 ({𝑓 (𝒙,N(𝒙)𝑘 |𝜃) |𝑘 ≤ 𝐾}), (12)

where N(𝒙)𝑘 ⊂ N(𝒙), 𝑣𝑎𝑟 (·) is an element-wise operation that cal-
culates the variance on each class over the 𝐾 samples, and 𝒗 ∈ R𝐿
denotes class-wise variance. In particular, we perform 𝐾 times of
causal intervention with 𝑁 = N(𝒙)𝑘 and then calculate the variance
of the corresponding 𝐾 causal effects. If an entry of 𝒗 exhibits a
large value, it reflects that minor changes on the subgraph structure
can cause large changes on the prediction probability over the cor-
responds class. According to the original classification 𝑧, we select
the 𝑧-th entry of 𝒗 as a representative of the Monte Carlo causal
effect uncertainty, which is termed as graph_var. In practice, we
calculate the post-intervention predictions by repeating 𝐾 times of
GCN inference with edge dropout [39] applied, i.e., each edge has a
probability 𝜏 to be removed.

Prediction confidence. There has been a surge of attention on us-
ing the values of model prediction such as model distillation [13] and
self-supervised learning [8]. The intuition is that a larger probability
indicates higher confidence on the classification. As such, a factor
of prediction reliability is the prediction confidence, i.e., trusting
the prediction with higher confidence. Formally, we calculate two
factors: self_conf (�̂�𝑧) and neighbor_conf (�̂�𝑠

𝑧𝑠
), respectively.

Category transition. The distribution of edges over categories
is not uniform w.r.t. : the ratio of intra-category connection and
inter-category connection. Over the labeled training nodes, we can
calculate the probabilities and form a category transition matrix 𝑇
where 𝑇𝑖, 𝑗 is the ratio of edges between category 𝑖 and 𝑗 to the edges
connect category 𝑖. Figure 3 illustrates these probabilities on the
OGB-arXiv dataset (raw normalized). From the diagonal entries,
we can see that the probability of intro-category connection varies
in a large range ([0.19, 0.64]). The distribution of inter-category
probability is also skewed. Intuitively, such probabilities can be
clues for choosing the correct prediction. For instance, �̂� might be
trustworthy if 𝑇𝑧,𝑧 is high. To this end, we calculate four factors:

self_self (𝑇𝑧,𝑧), neighbor_neighbor (𝑇𝑧𝑠 ,𝑧𝑠), self_neighbor (𝑇𝑧,𝑧𝑠),
and neighbor_self (𝑇𝑧𝑠 ,𝑧).

4 EXPERIMENTS
We conduct experiments on seven node classification datasets to
answer the following research questions:

• RQ1: How effective is the proposed CGI model to resolve
the local structure discrepancy issue?
• RQ2: To what extend the proposed CGI facilitates node clas-

sification under different problem settings?
• RQ3: How do the distilled factors influence the effectiveness

of the proposed CGI?

4.1 Experimental Settings
4.1.1 Dataset. For the full-supervised settings, we use the widely
used benchmark dataset of citation network, OGB-arXiv [15], which
represents papers and their citation relations as nodes and edges,
respectively. Each node has 128 features generated by averaging the
embeddings of words in its title and abstract, where the embeddings
are learned by the skip-gram model [31]. Considering that the old-
fashioned way may not generate representative text features, we
replace the node features with a 768-dimensional vector extracted by
feeding the title and abstract into RoBERTa [28] (12-layer2), where
the representation of [CLS] token at the second last layer is selected.

For the semi-supervised settings, we adopt three widely used cita-
tion networks, Cora, Citeseer, and Pubmed, and select the 20-shot
data split released by [20], where 500 and 1000 nodes are selected
as validation and testing, 20 nodes from each category are labeled
for training. Apart from the real-world graphs, we further created
three synthetic ones based on Citeseer by intentionally adding cross-
category edges on 50% randomly selected nodes, which leads to
local structure discrepancy between the poisoned nodes and the un-
affected ones. Note that more cross-category edges lead to stronger
discrepancy, making adaptive locality more critical for GCN mod-
els. In particular, according to the number of edges in the original
Citeseer, we add 10%, 30%, and 50% of cross-category edges, con-
structing Citeseer(10%), Citeseer(30%), and Citeseer(50%). Note
that the data split and node features are unchanged.

4.1.2 Compared Methods. To justify the proposed CGI, we com-
pare it with the representative GCN, including GraphSAGE [11],
GCN [20], GAT [44], JKNet [55], DAGNN [27], and APPNP [21],
which adopts normal inference. Apart from GCN models, we also
test MLP, which discard the graph structure and treat node classifica-
tion as normal text classification. Lastly, as CGI uses two predictions,
we include an ensemble baseline which averages the prediction of
APPNP and MLP. For these models, we use the implementations
on the OGB leaderboard3. If necessary, e.g., under the transductive
full-supervised setting, the hyper-parameters are tuned according to
the settings in the original paper of the model. For the proposed CGI,
we equipped the SVM with RBF kernel4 and apply CGI to APPNP.
For the SVM, we tune two hyper-parameters 𝑐 and 𝛾 through 5-fold
cross-validation, i.e., splitting the nodes in validation into 5 folds. In

2https://github.com/huggingface/transformers.
3https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv.
4https://scikit-learn.org/stable/modules/svm.html.

https://github.com/huggingface/transformers
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
https://scikit-learn.org/stable/modules/svm.html

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Feng and Huang, et al.

addition, for the MCE that estimates graph uncertainty, we set the
number of repeats and the edge dropout ratio 𝜏 as 50 and 0.15.

4.2 Effects of CGI (RQ1)
We first investigate to what extent the proposed CGI address the
local structure discrepancy issue on the three synthetic datasets
Citeseer(10%), Citeseer(30%), and Citeseer(50%). Table 1 shows the
performance of APPNP, APPNP_Self, and APPNP_CGI on the three
datasets, where the final prediction is the original prediction (i.e., �̂�,
the post-intervention prediction (i.e., �̂�𝑠), and the final prediction
from CGI (i.e., 𝒚), respectively. Note that the graph structure of
the three datasets are different, the APPNP model trained on the
datasets will thus be different. As such, the APPNP_Self will get
different performance on the three datasets, while the node features
are unchanged. From the table, we have the following observations:
• In all cases, APPNP_CGI outperforms APPNP, which validates

the effectiveness of the proposed CGI. The performance gain is
attributed to the further consideration of adaptive locality dur-
ing GCN inference. In particular, the relative improvement over
APPNP achieved by APPNP_CGI ranges from 1.1% to 7.2%
across the three datasets. The result shows that CGI achieves
large improvement over compared conventional one-pass GCN
inference as more cross-category edges are injected, i.e., facing
with more severe local structure discrepancy issue. The result
further exhibits the capability of CGI to address the local structure
discrepancy issue.
• As more cross-category edges being added, APPNP witnesses se-

vere performance drop from the accuracy of 71.0% to 64.2%. This
result is reasonable since GCN is vulnerable to cross-category
edges which pushes the representations of node in different cat-
egories to be close [4]. Considering that APPNP has considered
adaptive locality during model training, this result validates that
adjusting the GCN architecture is insufficient to address the local
structure discrepancy issue.
• As to APPNP_Self, the performance across the three datasets is

comparable to each other. It indicates that the cross-category edges
may not hinder the GCN to encode the association between target
node features and the label. Therefore, the performance drop of
APPNP when adding more cross-category edges is largely due
to the improper neighbor aggregation without thorough consid-
eration of the local structure discrepancy issue. Furthermore, on
Citeseer(50%), the performance of APPNP_Self is comparable
to APPNP, which indicates that the effect of considering adaptive
locality during training is limited if the discrepancy is very strong.

4.3 Performance Comparison (RQ2)
To further verify the proposed CGI, we conduct performance com-
parison under both full-supervised and semi-supervised settings on
the real-world datasets.

4.3.1 Semi-supervised setting. We first investigate the effect of
CGI under the semi-supervised setting by comparing the APPNP_CGI
with APPNP, APPNP_Self, and APPNP_Ensemble. The four meth-
ods corresponds to four inference mechanisms: 1) conventional one-
pass GCN inference (APPNP); 2) causal intervention without con-
sideration of graph structure (APPNP_Self); 3) ensemble of APPNP
and APPNP_Self (APPNP_Ensemble); and 4) the proposed CGI.

Dataset Citeseer(10%) Citeseer(30%) Citeseer(50%)
APPNP 71.0% 64.4% 64.2%
APPNP_Self 65.1% 62.9% 64.3%
APPNP_CGI 71.8% 66.9% 68.6%
RI 1.1% 3.9% 7.2%

Table 1: Performance of APPNP’s original prediction, post-
intervention prediction, and CGI prediction on the three syn-
thetic datasets w.r.t. accuracy. RI means the relative improve-
ment over APPNP achieved by APPNP_CGI.

Dataset Cora Citeseer Pubmed
APPNP 81.8% 72.6% 79.8%
APPNP_Self 69.3% 66.5% 75.9%
APPNP_Ensemble 78.0% 71.4% 79.2%
APPNP_CGI 82.3% 73.7% 81.0%
RI 5.5% 2.8% 2.3%

Table 2: Performance of APPNP with different inference mecha-
nisms on three semi-supervised node classification datasets w.r.t.
the classification accuracy. RI means the relative improvement
of APPNP_CGI over APPNP_Ensemble.

Note that the four inference mechanisms are applied on the same
APPNP model with exactly same model parameters. Table 2 shows
the node classification performance on three real-world datasets:
Cora, Citeseer, and Pubmed. From the table, we have the following
observations:

• On the three datasets, the performance of APPNP_Self is largely
worse than APPNP, i.e., omitting graph structure during GCN in-
ference witnesses sharp performance drop under semi-supervised
setting, which shows the importance of considering neighbors.
Note that the performance of APPNP_Self largely surpasses the
performance of MLP reported in [20], which highlights the dif-
ference between performing causal intervention 𝑑𝑜 (𝑁 = ∅) on a
GCN model and the inference of MLP which is trained without
the consideration of graph structure.
• In all cases, APPNP_Ensemble performs worse than APPNP,

which is one of the base models of the ensemble. The inferior
performance of APPNP_Ensemble is mainly because of the huge
gap between the performance of APPNP and APPNP_Self. From
this results, we can conclude that, under semi-supervised setting,
simply aggregating the original prediction and post-intervention
prediction does not necessarily lead to better adaptive locality.
Furthermore, the results validate the rationality of a carefully
designed inference mechanism.
• In all cases, APPNP_CGI achieves the best performance. The

performance gain is attributed to the choice model, which further
validates the effectiveness of the proposed CGI. That is, it is
essential to an inference model from the data, which accounts for
the causal analysis of the original prediction. Moreover, this result
reflects the potential of enhancing the inference mechanism of
GCN for better decision making, especially the causality oriented
analysis, which deserves further exploration in future research.

4.3.2 Full-supervised setting. We then further investigate the
effect of CGI under the full-supervised setting. Note that we test
the models under both inductive and transductive settings on the

Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Feature Method Inductive Transductive

Word2Vec
(128)

MLP 55.84% 55.84%
GraphSAGE 71.43% 71.52%
GCN 71.83% 71.96%
GAT 71.93% 72.04%
JKNet 72.25% 72.48%
DAGNN 72.07% 72.09%
APPNP 71.61% 71.67%

RoBERTa
(768)

JKNet 75.59% 75.54%
MLP 72.26% 72.26%
DAGNN 74.93% 74.83%
APPNP 75.74% 75.61%
APPNP_Self 73.43% 73.38%
APPNP_Ensemble 76.26% 75.86%
APPNP_CGI 76.52% 76.07%

Table 3: Performance comparison under full-supervised set-
tings of node classification. We use bold font and underline to
highlight the best and second best performance in each setting.

OGB-arXiv dataset. As OGB-arXiv is a widely used benchmark, we
also test the baseline methods. Table 3 shows the node classification
performance of the compared methods on the OGB-arXiv dataset
w.r.t. accuracy. Apart from the RoBERTa features, we also report the
performance of baseline models with the original Word2Vec features.
From the table, we have the following observations:

• The performance gap between MLP and GCN models will be
largely bridged when replacing the Word2Vec features with the
more advanced RoBERTa features. In particular, the relative per-
formance improvement of GCN models over MLP shrinks from
27.9% to 3.7%. The result raises a concern that the merit of GCN
model might be unintentionally exaggerated [20] due to the low
quality of node features.
• Moreover, as compared to APPNP, DAGNN performs better as

using the Word2Vec features, while performs worse when using
the RoBERTa features. It suggests accounting for feature qual-
ity in future research that investigates the capability of GCN or
compares different GCN models.
• As to RoBERTa features, APPNP_Ensemble performs slightly bet-

ter than its base models, i.e., APPNP_Self and APPNP. This result
is different from the result in Table 2 under semi-supervised setting
where the performance of APPNP_Self is inferior. We thus believe
that improving the accuracy of the post-intervention prediction
will benefit GCN inference [66]. As averaging the prediction of
APPNP_Self and APPNP can also be seen as a choosing strategy
by comparing model confidence, the performance gain indicates
the benefit of considering adaptive locality during inference under
full-supervised setting.
• APPNP_CGI further outperforms APPNP_Ensemble under both

inductive and transductive settings, which is attributed to the
choice model that learns to make choice from patterns of causal
uncertainty, prediction confidence, and category transition fac-
tors. This result thus also shows the merit of characterizing the
prediction of GCN models with the distilled factors.
• In all cases, the model achieves comparable performance under

the inductive setting and the transductive setting. We postulate that
the local structure discrepancy between training and testing nodes
in the OGB-arXiv dataset is weak, which is thus hard for CGI

self_conf

neighbor_conf
self_se

lf

neighbor_neighbor

self_neighbor

neighbor_se
lf

graph_var
degree

63

64

65

66

67

Pe
rfo

rm
an

ce
 (A

cc
) All factors

Majority class

Figure 4: Illustration of factor influence on CGI.

to achieve huge improvements. In the following, the experiment
is focused on the inductive setting which is closer to real-world
scenarios that aim to serve the upcoming nodes.

4.4 In-depth Analysis (RQ3)
4.4.1 Effects of Distilled Factors. We then study the effects of
the distilled factors as the inputs of the choice model in CGI. In
particular, we compare the factors w.r.t. the performance of CGI
as removing one factor in each round, where lower performance
indicates larger contribution of the factor. Note that we report the
accuracy regarding whether CGI makes the correct choice for testing
nodes, rather than the accuracy for node classification. That is to
say, here we only consider “conflict” testing nodes where the two
inferences of CGI (i.e., APPNP and APPNP_Self) have different
classifications. Figure 4 shows the performance on OGB-arXiv under
the inductive setting, where 6,810 nodes among the 47,420 testing
nodes are identified as the conflict nodes. We omit the results of
other datasets under the semi-supervised setting for saving space,
which have a close trend.

From the figure, we have the following observations: 1) Discard-
ing any factor will lead to performance drop as compared to the case
with all factors as inputs of the choice model (i.e., All factors). This
result indicates the effectiveness of the identified factors on charac-
terizing GCN predictions which facilitate making the correct choice.
2) Among the factors, removing self_conf and neighbor_conf leads
to the largest performance drop, showing that the confidence of
prediction is the most informative factor regarding the reliability of
the prediction. 3) In all cases, the performance of CGI surpasses
the Majority class, which always chooses the original GCN pre-
diction, i.e., CGI degrades to the conventional one-pass inference.
The result further validates the rationality of additionally consider-
ing adaptive locality during GCN inference, i.e., choosing between
the original prediction and the post-intervention prediction without
consideration of neighbors. Lastly, considering that the “conflict”
nodes account for 14.4% in the testing nodes (6,810/47,420) and the
accuracy of CGI’s choices is 66.53%, there is still a large area for
future exploration.

4.4.2 Study on causal uncertainty. Recall that we propose a
Monte Carlo causal effect uncertainty (MCE) estimation to estimate
the uncertainty of neighbors’ causal effect. We then investigate
to what extent the MCE sheds light on the correctness of GCN
prediction. Figure 5(a) shows the group-wise performance of APPNP
on OGB-arXiv where the testing nodes are ranked according to the

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Feng and Huang, et al.

1 2 3 4 5 6 7 8 9 10
Node Group

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (A

cc
) Overall Acc

(a) MCE

1 2 3 4 5 6 7 8 9 10
Node Group

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (A

cc
) Overall Acc

(b) Confidence (Conf)

1 2 3 4 5 6 7 8 9 10
Node Group (MCE)

1
2

3
4

5
6

7
8

9
10

No
de

 G
ro

up
 (C

on
fid

en
ce

)

81.3 12.9 2.4 1.3 0.6 0.5 0.4 0.3 0.2 0.2

17.4 52.7 15.8 5.3 2.8 2.0 1.3 1.0 0.9 0.8

0.4 20.5 33.4 17.9 10.8 6.5 3.8 2.7 2.0 2.0

0.1 3.3 14.4 21.4 18.5 14.1 10.6 8.8 5.2 3.6

0.1 1.4 6.1 11.7 15.6 16.9 15.2 13.8 12.7 6.5

0.1 1.0 4.4 8.8 11.7 14.1 15.8 15.4 16.0 12.6

0.1 0.8 4.1 7.1 10.3 11.8 14.5 17.1 16.9 17.2

0.1 1.0 4.6 7.6 9.7 11.7 14.5 14.8 16.6 19.4

0.1 2.2 5.7 8.3 9.8 11.3 13.0 14.5 15.8 19.4

0.4 4.3 9.2 10.6 10.1 11.1 10.8 11.6 13.6 18.3
10

20

30

40

50

60

70

80

(c) Conf and MCE redundancy

Figure 5: Group-wise illustration of the causal uncertainty and the confidence of APPNP prediction, where MCE stands for the Monte
Carlo causal effect uncertainty estimation (i.e., graph_var.)

Model APPNP JKNet DAGNN
Self+Neighbor 76.03 75.69 75.28
Self+Neighbor_Trust 78.30 75.71 78.61
Self+Neighbor_Bound 81.40 81.96 82.03

Table 4: Node classification performance of three GCN models:
APPNP, JKNet, and DAGNN on OGB-arXiv.

value of graph_var in an ascending order and split into ten groups
with equal size. Note that we select OGB-arXiv for its relatively
large scale where the testing set includes 47,420 nodes. From the
figure, we can see a clear trend that the classification performance
decreases as the MCE increases. It means that the calculated MCE
is informative for the correctness of GCN predictions. For instance,
a prediction has higher chance to be correct if its MCE is low.

As a reference, in Figure 5(b), we further depict the group-wise
performance w.r.t. the prediction confidence (i.e., neighbor_conf).
In particular, the testing nodes are ranked according to the value
of neighbor_conf in a descending order. As can be seen, there is
also a clear trend of prediction performance regarding the confi-
dence, i.e., the probability of being correct is higher if APPNP is
more confident on the prediction. To investigate whether MCE and
GCN confidence are redundant, we further calculate the overlap
ratio between the groups split by graph_var and the ones split by
neighbor_conf. Figure 5(c) illustrates the matrix of overlap ratios.
As can be seen, the weights are not dedicated on the diagonal entries.
In particular, there are only two group pairs with overlap ratio higher
than 0.5, which means that the MCE reveals the property of GCN
prediction complementary to the confidence. That is, causal analysis
indeed characterizes GCN predictions from distinct perspectives.

4.4.3 Training with trustworthiness signal. To further investi-
gate the benefit of performing adaptive locality during model infer-
ence, we further conduct a study on OGB-arXiv to test whether the
GCN equipped with adaptive locality modules can really assess the
trustworthiness of neighbors. Three representative GCN models with
consideration of adaptive locality, APPNP, JKNet, and DAGNN, are
tested under three different configurations:
• Self+Neighbor: This is the standard configuration of GCN model

that accounts for the graph structure, i.e., trusting neighbors.
• Self+Neighbor_Trust: As compared to Self+Neighbor, a trust-

worthy feature is associated with each node, which indicates
the “ground truth” of trusting self or neighbors. In particular,

we train the GCN model, infer the original prediction and the
post-intervention prediction, calculate the trustworthy feature ac-
cording to Equation (10) (i.e., 𝑝). For the nodes where the original
classification and the post-intervention classification are equal,
we set the value as 0. By explicitly incorporating such value as
a node feature, it should be easy for GCN to learn for properly
performing adaptive locality if it works properly.
• As a reference, we study the GCNs in an ideal case, named

Self+Neighbor_Bound, where the trustworthy feature is also given
when performing adaptive locality during model inference.

Table 4 shows the model performance under the node classifica-
tion setting of inductive full-supervised learning. From the table, we
have the following observations:

• As compared to Self+Neighbor, all the three models, especially
APPNP and DAGNN, achieve better performance under the con-
figuration of Self+Neighbor_Trust. It indicates a better usage of
the graph structure, which is attributed to the trustworthy feature.
The result thus highlights the importance of modeling neighbor
trustworthiness and performing adaptive locality.
• However, there is a large gap between Self+Neighbor_Trust and

Self+Neighbor_Bound, showing the underuse of the trustworthy
feature by the current adaptive locality methods. We postulate
the reason to be the gap between the training objective, i.e., as-
sociating node representation with label, and the target of identi-
fying trustworthy neighbors, which is the limitation of consider-
ing adaptive locality in model training. The performance under
Self+Neighbor_Bound also reveals the potential of considering
adaptive locality in model inference.

Furthermore, we study the impact of trustworthy feature on model
training. Figure 6 illustrates the training loss along the training pro-
cedure of the tested GCNs under the configuration of Self+Neighbor
and Self+Neighbor_Trust. It should be noted that we select the
period from 200 to 750 epochs for better visualization. From the
figure, we can see that, in all the three cases, the loss of GCN un-
der Self+Neighbor_Trust is smaller than that under Self+Neighbor.
The result shows that the trustworthy feature facilitates the GCN
model fitting the training data, i.e., capturing the correlation between
the node label and the node features as well as the graph structure.
However, the adaptive locality module, especially graph attention,
is distracted from the target of assessing neighbor trustworthiness.
Theoretically, the graph attention can achieve the target by simply

Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

200 300 400 500 600 700
Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Tr

ai
ni

ng
 lo

ss

DAGNN:Self+Neighbor_Trust
DAGNN:Self+Neighbor
JKNet:Self+Neighbor_Trust
JKNet:Self+Neighbor
APPNP:Self+Neighbor_Trust
APPNP:Self+Neighbor

Figure 6: Training loss on OGB-arXiv under the Self+Neighbor
and Self+Neighbor_Trust model configurations.

recognizing the value of the trustworthy feature from the inputs. For
instance, the hop attention in DAGNN should highlight the target
node representation at layer 0 if the trustworthy feature is 1.

5 RELATED WORK
Graph Convolutional Network. According to the format of the
convolution operations, existing GCN models can be divided into
two categories: spatial GCN and spectral GCN [65]. Spectral GCN is
defined as performing convolution operations in the Fourier domain
with spectral node representations [2, 10, 20, 25, 52]. For instance,
Bruna et al. [2] perform convolution over the eigenvectors of graph
Laplacian which are treated as the Fourier basis. Due to the high com-
putational cost of the eigen-decomposition, a line of spectral GCN
research has been focused on accelerating the eigen-decomposition
with different approximation techniques [10, 20, 25, 52]. However,
applying such spectral GCN models on large graphs still raises unaf-
fordable memory cost, which hinders the their practical research.

To some extent, the attention on GCN research has been largely
dedicated on the spatial GCN, which performs convolution opera-
tions directly over the graph structure by aggregating the features
from spatially close neighbors to a target node [1, 11, 20, 44, 45, 51,
54]. This line of research mainly focuses on the development of the
neighbor aggregation operation. For instance, Kipf and Welling [20]
propose to use a linear aggregator (i.e., weighted sum) that uses
the reverse of node degree as the coefficient. In addition to aggre-
gating information from directly connected neighbors, augmented
aggregators also account for multi-hop neighbors [18, 53]. Moreover,
non-linear aggregators are also employed in spatial GCNs such as
capsule [45] and Long Short-Term Memory (LSTM) [11]. Besides,
the general spatial GCN designed for simple graphs is extended to
graphs with heterogeneous nodes [50] and temporal structure [34].
Beyond model design, there are also studies on the model capability
analysis [54], model explanation [58], and training schema [16].

However, most of the existing studies focus on the training stage
and blindly adopt the one-pass forward propagation for GCN infer-
ence. This work is in an orthogonal direction, which improve the
inference performance with an causal inference mechanism so as to
better solve the local structure discrepancy issue. Moreover, to the
best of our knowledge, this work is the first to introduce the causal
intervention and causal uncertainty into GCN inference.

Adaptive Locality. Amongst the GCN research, a surge of atten-
tion has been especially dedicated to solving the over-smoothing
issue [24]. Adaptive locality has become the promising solution to
alleviate the over-smoothing issue, which is typically achieved by
the attention mechanism [6, 9, 44, 46, 47, 50, 55, 61] or residual
connection [7, 20, 23]. Along the line of research on attention de-
sign, integrating context information into the calculation of attention
weight is one of the most popular techniques. For instance, Wang
et al. [47] treats the neighbors at different hops as augmentation of
attention inputs. Moreover, to alleviate the issue of lacking direct
supervision, Wang et al. [46] introduce additional constraints to facil-
itate attention learning. Similar as Convolutional Neural Networks,
residual connection has also been introduced to original design of
GCN [20], which connects each layer to the output directly. In ad-
dition to the vanilla residual connection, the revised versions are
also introduced such as the pre-activation residual [23] and initial
residual [7]. Besides, the concept of inception module is also intro-
duced to GCN model [19], which incorporates graph convolutions
with different receptive fields. For the existing methods, the adaptive
locality mechanism is fixed once the GCN model is trained. Instead,
this work explores adaptive locality during model inference, which
is in an orthogonal direction.

Causality-aware Model Prediction. A surge of attention is be-
ing dedicated to incorporating causality into the ML schema [17, 32,
56, 60, 62, 63]. A line of research focuses on enhancing the infer-
ence stage of ML model from the cause-effect view [33, 41, 48, 59].
This work differs from them for two reasons: 1) none of the existing
work studies GCN; and 2) we learn a choice model to make final
prediction from causal intervention results instead of performing a
heuristic causal inference for making final prediction.

6 CONCLUSION
This paper revealed that learning an additional model component
such as graph attention is insufficient for addressing the local struc-
ture discrepancy issue of GCN models. Beyond model training, we
explored the potential of empowering the GCNs with adaptive local-
ity ability during the inference. In particular, we proposed an causal
inference mechanism, which leverages the theory of causal interven-
tion, generating a post intervention prediction when the model only
trusts own features, and makes choice between the post intervention
prediction and original prediction. A set of factors are identified to
characterize the predictions and taken as inputs for choosing the
final prediction. Especially, we proposed the Monte Carlo estimation
of neighbors’ causal effect. Under three common settings for node
classification, we conducted extensive experiments on seven datasets,
justifying the effectiveness of the proposed CGI.

In the future, we will test the proposed CGI on more GCN mod-
els such as GAT, JKNet, and DAGNN. Moreover, we will extend
the proposed CGI from node classification to other graph analytic
tasks, such as link prediction [38]. In addition, following the original
Monte Carlo estimation, we would like to complete the mathematical
derivation of Equation 12, i.e., how the graph_var approximates the
variance of the causal effect distribution. Lastly, we will explore how
the property of the choice model 𝑔(·) influences the effectiveness of
CGI, e.g., whether non-linearity is necessary.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Feng and Huang, et al.

REFERENCES
[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In NeurIPS. 1993–2001.
[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

networks and locally connected networks on graphs. ICLR (2014).
[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-smoothing Problem for Graph Neural Networks from the
Topological View. AAAI (2020), 3438–3445.

[4] Deli Chen, Xiaoqian Liu, Yankai Lin, Peng Li, Jie Zhou, Qi Su, and Xu Sun.
2019. Improving Node Classification by Co-training Node Pair Classification: A
Novel Training Framework for General Graph Neural Networks. arXiv preprint
arXiv:1911.03904 (2019).

[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He.
2020. Bias and Debias in Recommender System: A Survey and Future Directions.
arXiv preprint arXiv:2010.03240 (2020).

[6] Jingjing Chen, Liangming Pan, Zhipeng Wei, Xiang Wang, Chong-Wah Ngo,
and Tat-Seng Chua. 2020. Zero-shot ingredient recognition by multi-relational
graph convolutional network. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 10542–10550.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. ICML (2020).

[8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big self-supervised models are strong semi-supervised learners.
arXiv preprint arXiv:2006.10029 (2020).

[9] Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo,
Dawei Yin, and Yongdong Zhang. 2019. Semi-supervised User Profiling with
Heterogeneous Graph Attention Networks. In IJCAI. 2116–2122.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
3844–3852.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[14] Guangyi Hu, Chongyang Shi, Shufeng Hao, and Yu Bai. 2020. Residual-Duet
Network with Tree Dependency Representation for Chinese Question-Answering
Sentiment Analysis. In Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. 1725–1728.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS (2020).

[16] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In ICLR.

[17] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and Hanwang Zhang.
2021. Distilling Causal Effect of Data in Class-Incremental Learning. IEEE
Conference on Computer Vision and Pattern Recognition (2021).

[18] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken.
2020. Redundancy-Free Computation for Graph Neural Networks. In SIGKDD.
997–1005.

[19] Anees Kazi, Shayan Shekarforoush, S Arvind Krishna, Hendrik Burwinkel,
Gerome Vivar, Karsten Kortüm, Seyed-Ahmad Ahmadi, Shadi Albarqouni, and
Nassir Navab. 2019. InceptionGCN: receptive field aware graph convolutional
network for disease prediction. In International Conference on Information Pro-
cessing in Medical Imaging. Springer, 73–85.

[20] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. ICLR (2017).

[21] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. ICLR
(2019).

[22] Boris Knyazev, Graham W Taylor, and Mohamed Amer. 2019. Understanding
Attention and Generalization in Graph Neural Networks. In NeurIPS. 4204–4214.

[23] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI.

[25] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard Zemel. 2019. Lanczos-
Net: Multi-Scale Deep Graph Convolutional Networks. In ICLR.

[26] Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heteroge-
neous graph attention networks for semi-supervised short text classification. In
EMNLP-IJCNLP. 4823–4832.

[27] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural
Networks. In SIGKDD. 338–348.

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining approach. arXiv e-prints (2019).
arXiv:1907.11692

[29] Kelong Mao, Xi Xiao, Jieming Zhu, Biao Lu, Ruiming Tang, and Xiuqiang He.
2020. Item Tagging for Information Retrieval: A Tripartite Graph Neural Network
based Approach. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2327–2336.

[30] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a
feather: Homophily in social networks. Annual review of sociology 27, 1 (2001),
415–444.

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurIPS. 3111–3119.

[32] Guoshun Nan, Rui Qiao, Yao Xiao, Jun Liu, Sicong Leng, Hao Zhang, and Wei
Lu. 2021. Interventional Video Grounding with Dual Contrastive Learning. In
IEEE Conference on Computer Vision and Pattern Recognition.

[33] Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-
Rong Wen. 2021. Counterfactual vqa: A cause-effect look at language bias. IEEE
Conference on Computer Vision and Pattern Recognition (2021).

[34] Hogun Park and Jennifer Neville. 2019. Exploiting interaction links for node
classification with deep graph neural networks. In IJCAI. 3223–3230.

[35] Judea Pearl. 2009. Causality. Cambridge university press.
[36] Judea Pearl. 2019. The seven tools of causal inference, with reflections on machine

learning. Commun. ACM 62, 3 (2019), 54–60.
[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. JMLR 12
(2011), 2825–2830.

[38] Zhaochun Ren, Shangsong Liang, Piji Li, Shuaiqiang Wang, and Maarten de Rijke.
2017. Social collaborative viewpoint regression with explainable recommenda-
tions. In Proceedings of the tenth ACM international conference on web search
and data mining. 485–494.

[39] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. Dropedge:
Towards deep graph convolutional networks on node classification. In ICLR.

[40] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. 2018. Adver-
sarial Dropout Regularization. In International Conference on Learning Represen-
tations.

[41] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. 2020. Long-Tailed Classi-
fication by Keeping the Good and Removing the Bad Momentum Causal Effect.
Advances in Neural Information Processing Systems 33 (2020).

[42] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal,
Prasenjit Mitra, and Suhang Wang. 2020. Investigating and Mitigating Degree-
Related Biases in Graph Convoltuional Networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 1435–1444.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In NeurIPS. 5998–6008.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

[45] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.

[46] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2019. Improving
graph attention networks with large margin-based constraints. arXiv preprint
arXiv:1910.11945 (2019).

[47] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Direct Multi-
hop Attention based Graph Neural Network. arXiv preprint arXiv:2009.14332
(2020).

[48] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.
2021. " Click" Is Not Equal to" Like": Counterfactual Recommendation for
Mitigating Clickbait Issue. Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (2021).

[49] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[50] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022–2032.

[51] Zhang Xinyi and Lihui Chen. 2019. Capsule Graph Neural Network. In ICLR.
[52] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. 2019. Graph

Wavelet Neural Network. In ICLR.
[53] Chunyan Xu, Zhen Cui, Xiaobin Hong, Tong Zhang, Jian Yang, and Wei Liu.

2019. Graph inference learning for semi-supervised classification. In ICLR.
[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks? ICLR (2019).
[55] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. ICML (2018), 8676–8685.

[56] Xun Yang, Fuli Feng, Wei Ji, Meng Wang, and Tat-Seng Chua. 2021. Decon-
founded Video Moment Retrieval with Causal Intervention. In Proceedings of

http://arxiv.org/abs/1907.11692

Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval.

[57] Zuoxi Yang. 2020. Biomedical Information Retrieval incorporating Knowledge
Graph for Explainable Precision Medicine. In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval. 2486–2486.

[58] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. In
NeurIPS. 9244–9255.

[59] Zhongqi Yue, Tan Wang, Hanwang Zhang, Qianru Sun, and Xian-Sheng Hua. 2021.
Counterfactual Zero-Shot and Open-Set Visual Recognition. IEEE Conference on
Computer Vision and Pattern Recognition (2021).

[60] Zhongqi Yue, Hanwang Zhang, Qianru Sun, and Xian-Sheng Hua. 2020. Interven-
tional Few-Shot Learning. Advances in Neural Information Processing Systems
33 (2020).

[61] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. In NeurIPS. 11983–11993.

[62] Shengyu Zhang, Tan Jiang, Tan Wang, Kun Kuang, Zhou Zhao, Jianke Zhu,
Jin Yu, Hongxia Yang, and Fei Wu. 2020. DeVLBert: Learning Deconfounded
Visio-Linguistic Representations. In Proceedings of the 28th ACM International
Conference on Multimedia. 4373–4382.

[63] Shengyu Zhang, Dong Yao, Zhou Zhao, Tat-Seng Chua, and Fei Wu. 2021.
CauseRec: Counterfactual User Sequence Synthesis for Sequential Recommenda-
tion. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval.

[64] Wenxuan Zhang, Yang Deng, and Wai Lam. 2020. Answer ranking for product-
related questions via multiple semantic relations modeling. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 569–578.

[65] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. TKDE (2020).

[66] Zhi-Hua Zhou. 2012. Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Cause-effect View
	3.2 Causal GCN Inference Mechanism
	3.3 Input Factors

	4 Experiments
	4.1 Experimental Settings
	4.2 Effects of CGI (RQ1)
	4.3 Performance Comparison (RQ2)
	4.4 In-depth Analysis (RQ3)

	5 Related Work
	6 Conclusion
	References

