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ABSTRACT
Most recommender systems evaluate model performance offline
through either: 1) normal biased test on factual interactions; or 2) de-
biased test with records from the randomized controlled trial. In fact,
both tests only reflect part of the whole picture: factual interactions
are collected from the recommendation policy, fitting them better
implies benefiting the platform with higher click or conversion
rate; in contrast, debiased test eliminates system-induced biases
and thus is more reflective of user true preference. Nevertheless,
we find that existing models exhibit trade-off on the two tests, and
there lacks methods that perform well on both tests.

In this work, we aim to develop a win-win recommendation
method that is strong on both tests. It is non-trivial, since it re-
quires to learn a model that can make accurate prediction in both
factual environment (i.e., normal biased test) and counterfactual
environment (i.e., debiased test). Towards the goal, we perform
environment-aware recommendationmodeling by considering both
environments. In particular, we propose an Interpolative Distillation
(InterD) framework, which interpolates the biased and debiased
models at user-item pair level by distilling a student model. We
conduct experiments on three real-world datasets with both tests.
Empirical results justify the rationality and effectiveness of InterD,
which stands out on both tests especially demonstrates remarkable
gains on less popular items.
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Figure 1: Performance trade-off of existing methods on nor-
mal biased test and debiased test on Yahoo!R3 and Coat. For
instance, taking MF as the base model, AutoDebias boosts in
unbiased test but degrades in normal biased test.
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1 INTRODUCTION
Recommender system is a medium to connect users and content,
playing an increasingly important role in Web applications such as
e-commerce [44], social media [9], and content sharing [42]. Offline
model performance evaluation is indispensable in recommender
system, which can be divided into two categories.
• Normal biased test [16, 21, 28], which evaluates on the interactions
collected from factual environment with recommendation policy.
Models performing well under this test are supposed to benefit
the platform w.r.t. click or conversion rate.

• Debiased test [7, 26, 36], which evaluates on interactions collected
from a randomized controlled trial (i.e., random exposure). Since
system-induced biases [27] (e.g., exposure bias and popularity
bias) are eliminated in this counterfactual environment, this kind
of evaluation can better reflect user preference.

Considering that each evaluation protocol emphasizes the benefit
of one side, it is desirable to have models that perform well on both
tests. If a model is strong on both offline tests rather than one, the
platform will be more comfortable to launch it for real use.

Nevertheless, existing work usually adopts either test, leading to
two types of recommendation models: biased and debiased. Biased
models [15, 16] are directly trained from historical interactions in
the factual environment. However, they could leverage the bias as
the shortcut for model fitting, over-recommending popular items
and neglecting user preference on non-mainstream items [1, 25].
Debiased models eliminate the data biases with revised training

https://doi.org/10.1145/3477495.3532002
https://doi.org/10.1145/3477495.3532002


and/or inference, e.g., inverse propensity scoring (IPS) [7, 36], causal
representation learning [26, 51], causal adjustment [44, 49], etc.
Nevertheless, it is difficult to control the strength of debiasing. For
example, some representative work [3, 38, 44, 51] pursues an even
item distribution1 in the recommendation lists, which has the risk
of over-debiasing and hurting the click/conversion rate [49, 50, 52].

We find that debiasing typically results in performance trade-off
between the two tests. Figure 1 provides an empirical evidence
where we adopt Matrix Factorization (MF) [21] as the base model
and apply three representative debias strategies KD_Label [26],
IPS [36] and AutoDebias [7]. As can be seen, although the debiased
models improve MF on debiased test, their performance on normal
biased test is reduced significantly. Since the two tests measure
different aspects of the system, we desire to have models that are
strong in both tests. This requires to learn an environment-aware
model that can make accurate prediction in both environments.

Towards this goal, an intuitive solution is unifying the data from
both environments to train a model. However, random exposure is
at the high expense of hurting user experience, so the data collected
from the counterfactual environment is usually much smaller [7,
26, 38]. As such, the data from counterfactual environment can
hardly play a role by a simple data merging [4, 7, 29]. Another
direct solution is to train the biased and debiased model separately
and then ensemble them. However, it is unclear the two models are
strong/weak at which types of users or items, and existing ensemble
strategies [12] are not tailored for this win-win recommendation
scenario. To tackle these challenges, we need to aggregate the biased
and debiased models with fine-grained coefficients at the level of
user-item pair.

In this work, we propose an Interpolative Distillation (InterD)
framework that treats the biased and debiased models as teachers
for label-based distillation. The InterD distills knowledge of two
environments from the teachers to a student model, and automati-
cally adjusts the coefficient for each teacher at the user-item pair
level. Our consideration for assigning the coefficient is that the
student should trust the more reliable teacher on each user-item
pair. We thus set the coefficient based on the distance between the
teacher’s prediction and the rating for observed user-item pairs. We
also consider incorporating unobserved data (i.e.,missing data) into
InterD, and set the coefficient of unobserved pairs as the distance
between the student’s prediction and the teacher’s prediction. We
believe that starting with learning easier aspects of knowledge can
facilitate knowledge absorption of the student [6, 46], which means
relying more on the closer teacher. Empirical results show that
InterD can outperform both biased and debiased models on both
tests, especially on the less popular items, validating the rationality
and effectiveness of InterD.

To summarize, our main contributions are as follows:
• Revealing the trade-off issue of existing recommendation meth-
ods and formulate a new win-win recommendation problem.

• Solving the problem through environment-aware modeling and
a new Interpolative Distillation framework.

• Conducting extensive experiments to justify the rationality and
effectiveness of InterD.

1As items have different quality and attractiveness, pursuing an even distribution of
recommended items is not optimal.

2 RELATEDWORK
Debiased Recommendation. Recommender systems utilize user
feedback (e.g., rating and click) for model learning while user feed-
back has intrinsic biases [8], such as selection bias [38], confor-
mity bias [51], popularity bias [49], and position bias. To mitigate
the biases, many solutions have been proposed, including data
imputation [40, 43], regularization [3], and causal inference [33].
Specifically, data imputation estimates the effect of missing data by
training an additional imputation model [43] to alleviate selection
bias. Regularization can mitigate the biases in the recommendation
lists by introducing a regularizer into the training and/or infer-
ence [10]. Causal inference studies on debiasing usually follow two
classic causal frameworks: potential outcome [35] and structural
causal models [33]. In particular, IPS [38] and doubly robust (DR)
learning [43] are two popular methods in the potential outcome
framework, which are applied to reduce various bias issues, such
as popularity bias [7] and selection bias [43]. AutoDebias [7], pro-
motes existing IPS and DR methods by optimizing parameters for
debiasing with meta-learning, achieving state-of-the-art debiased
performance. For structural causal models, most researchers retro-
spect the data generation process and reduce the bias through causal
intervention [41, 49] or counterfactual inference [42, 44]. Despite
their great success, previous works pursue higher performances
on the debiased test but ignore the recommendation accuracy on
the normal biased test, which may hurt the benefits of the platform.
It is thus risky for the platform to adopt such methods without
biased test. Our work pursues win-win recommendation to achieve
superior performance on both biased and debiased tests.
Distillation for Recommendation. In the past several years, wit-
nessing the great success of neural network techniques, more com-
plicated neural network approaches are applied in recommender
systems [16, 48]. Although the cumbersome neural network im-
proves the accuracy of the recommendation, it also brings high
computational complexity and large storage requirements. To over-
come these shortcomings, a line of research employs a knowledge
distillation mechanism to distill a small student model from the
teacher [14, 23, 24]. For example, RD [39] is a ranking distillation
framework to distill a student model by learning from both the
data and the teacher model. DE-RRD [20] distills the latent knowl-
edge and relaxed ranking information of teacher model to a student
model. Ourwork is different from exiting distillationworks sincewe
aim to leverage the knowledge of two environments from teacher
models to develop a win-win recommender model rather than prun-
ing for cost-cutting purposes. To ensure the fairness of performance
comparison, we keep the student model has the same space cost
(i.e., embedding size) as the teacher model in our work.
Multistakeholder Recommendation. Recommender systems
have multiple stakeholders, including the user, item providers, and
the platform [2, 31, 34]. In the light that focusing on the benefit
of user is unfair to the other stakeholders, multistakeholder rec-
ommendation accounts for more stakeholders. For example, Fair-
Rec [32] reveals the two user groups of the two-sides platform as
multistakeholder, such as Uber drivers and passengers. They map
the multistakeholder recommendation problem to the fairly allo-
cating indivisible goods problem, and alleviating the trade-off of



stakeholders. TFROM [45] treats different item providers as mul-
tistakeholder, and regulates the recommendation result to be fair
across different item providers while serving users. Beyond the
fairness across users or items, our work considers the benefits of
the platform and users.

3 TASK FORMULATION
Under the probabilistic view, the goal of recommendation can be
seen as estimating the probability distribution 𝑃 (𝑅 |𝑈 , 𝐼 ) [37], which
indicates the rating (𝑅) likelihood between user (𝑈 ) and item (𝐼 ).
With the assumption that 𝑅 follows a Gaussian distribution [37],
we can train a recommender model 𝑓 (;𝜃 ) as the expectation of
𝑃 (𝑅 |𝑈 , 𝐼 ), i.e., the mean of the Gaussian distribution. After training
on historical data, the model scores each user-item pair by 𝑟 =

𝑓 (𝑢, 𝑖;𝜃 ) and generates personalized ranking accordingly.
Let 𝐸 ∈ {𝑒𝑏 , 𝑒𝑑 } denotes the environment variable to describe

which environment an interaction from: 𝑒𝑏 for factual environment
(with bias) and 𝑒𝑑 for counterfactual environment (without bias).
D𝑏 = {(𝑢, 𝑖, 𝑟 ) |𝑢 ∈ U, 𝑖 ∈ I} denotes the biased interactions,
which are collected from the previous recommendation policy in
the factual environment. 𝑟 denotes the labeled rating value2, and
U and I denote the user set and item set, respectively. Similarly,
D𝑑 = {(𝑢, 𝑖, 𝑟 ) |𝑢 ∈ U, 𝑖 ∈ I} denotes the interactions collected
from a randomized controlled trial (RCT) that is free from the impact
of system-induced biases. There is no overlap with D𝑏 and D𝑑 .
Note that |D𝑑 | is typically much smaller than |D𝑏 | since random
exposure is costly and hurts user experience [7, 26, 38].

In this work, we aim to build a model that performs well on both
normal biased test and debiased test. Let T𝑏 and T𝑑 be the holdout
testing data from 𝑒𝑏 and 𝑒𝑑 , respectively. We formulate the win-win
recommendation problem as modeling 𝑃 (𝑅 |𝑈 , 𝐼 ) s.t. its expectation
model 𝑓 (𝑢, 𝑖;𝜃 ) can perform well on both T𝑏 and T𝑑 .

4 METHODOLOGY
In this section, we conduct environment-awaremodeling of 𝑃 (𝑅 |𝑈 , 𝐼 ),
and then elaborate the proposed Interpolative Distillation for model
learning.

4.1 Environment-aware Modeling
A straightforward method to estimate 𝑃 (𝑅 |𝑈 , 𝐼 ) for two tests is
to directly train a model over historical interactions of two envi-
ronments i.e., D𝑏 ∪ D𝑑 . However, the data of counterfactual and
factual environments is highly imbalanced (i.e., |D𝑏 | ≫ |D𝑑 |), mak-
ing the utility of D𝑑 be overwhelmed by D𝑏 . Thus, we decompose
𝑃 (𝑅 |𝑈 , 𝐼 ) to make it environment-aware:

𝑃 (𝑅 |𝑈 , 𝐼 ) = 𝑃 (𝑅,𝑈 , 𝐼 )
𝑃 (𝑈 , 𝐼 ) (1a)

=

∑
𝐸 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸)𝑃 (𝑈 , 𝐼, 𝐸)

𝑃 (𝑈 , 𝐼 ) (1b)

=

∑
𝐸 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸)𝑃 (𝐸 |𝑈 , 𝐼 )𝑃 (𝑈 , 𝐼 )

𝑃 (𝑈 , 𝐼 ) (1c)

=
∑︁
𝐸

𝑃 (𝑅 |𝑈 , 𝐼, 𝐸)𝑃 (𝐸 |𝑈 , 𝐼 ). (1d)

2In this paper, we follow [7] to use binary ratings as 𝑟 ∈ {−1, 1} which can be easily
generalized to multiple levels.

Specifically, Eq. (1a) follows the Bayes’ theorem; Eq. (1b) follows
the law of total probability; Eq. (1c) also adopts Bayes’ theorem
over 𝑃 (𝑈 , 𝐼, 𝐸). Since 𝐸 ∈ {𝑒𝑏 , 𝑒𝑑 }, according to Eq. (1d), we can es-
timate 𝑃 (𝑅 |𝑈 , 𝐼 ) by separately modeling the underlying probability
distributions: 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ), 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ), and 𝑃 (𝐸 |𝑈 , 𝐼 ).
• 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) denotes the rating distribution in the factual
environment with bias, i.e., items are exposed according to the
deployed recommendation policy.

• 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ) represents the rating distribution in the counter-
factual environment, where system-induced biases are blocked,
i.e., imagining that items are randomly exposed to user under a
randomized controlled trial (RCT).

• 𝑃 (𝐸 |𝑈 , 𝐼 ) is the posterior distribution of environment given a
user-item pair: 𝑃 (𝐸 = 𝑒𝑏 |𝑈 , 𝐼 ) and 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) reflect how
likely the pair belongs to the factual and counterfactual environ-
ments, respectively. 𝑃 (𝐸 = 𝑒𝑏 |𝑈 , 𝐼 ) > 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) implies that
the rating of the user-item pair is more likely from the factual
environment. That is, 𝑃 (𝐸 |𝑈 , 𝐼 ) implies how likely the rating of
a pair is affected by system-induced biases. For instance, recom-
mendation takers who tend to follow the recommender system
have higher 𝑃 (𝐸 = 𝑒𝑏 |𝑈 , 𝐼 ) than recommendation ignorers [13],
since ratings made by recommendation takers are highly likely
affected by biases.
According to Eq. (1d), we can explain why the existing models en-

counter a trade-off on the two tests — they estimate 𝑃 (𝑅 |𝑈 , 𝐼 ) under
only one environment. Consequently, biased and debiased models
make recommendation with 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) and 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ),
respectively. As such, they only achieve strong performance un-
der either the normal biased test or debiased test. On the contrary,
we consider the whole picture as a mixture of both environments,
aiming to achieve strong performances on both tests.

After decomposing 𝑃 (𝑅 |𝑈 , 𝐼 ) to be environment-aware, we can
separately estimate 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ), 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ) and 𝑃 (𝐸 |𝑈 , 𝐼 )
to uncover 𝑃 (𝑅 |𝑈 , 𝐼 ). As the first two distributions can be estimated
by biased and debiased models3, respectively. The key to estimate
𝑃 (𝑅 |𝑈 , 𝐼 ) lies in a proper modeling of 𝑃 (𝐸 |𝑈 , 𝐼 ), which means given
a user-item pair, estimating how likely it belongs to each environ-
ment. Nevertheless, directly estimating 𝑃 (𝐸 |𝑈 , 𝐼 ) from D𝑏 ∪ D𝑑

(e.g., learning a binary classifier) also suffers from high data imbal-
ance (i.e., |D𝑏 | ≫ |D𝑑 |). The classifier will be over confident on
the major class 𝐸 = 𝑒𝑏 .

4.2 Interpolative Distillation
We next consider how to uncover the environment-aware 𝑃 (𝑅 |𝑈 , 𝐼 )
by estimating: 1○ 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸) and 2○ 𝑃 (𝐸 |𝑈 , 𝐼 ) as in Eq. (1d).

4.2.1 Estimate 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸). Note that 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) and 𝑃 (𝑅 |𝑈 ,

𝐼, 𝐸 = 𝑒𝑑 ) represent the rating distributions conditioned on a spe-
cific environment 𝑒𝑏 or 𝑒𝑑 . Furthermore, they imply two different
rating distributions when the corresponding pair is affected or
not affected by bias. As there has been extensive work on nor-
mal biased [21] and debiased models [7], we directly use them
to train a biased model 𝑓𝑏 (;𝜓∗) and a debiased model 𝑓𝑑 (;𝜙∗)
for 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) and 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ) respectively, where
3We refer this survey [8] for the detail of debiased training methods, which mainly
focus on accounting for both D𝑏 and D𝑑 to obtain more accurate estimation of
𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ) than learning directly from D𝑑 .



Figure 2: The procedure of InterD. From top to bottom, 1)
fetch predictions from teachers for each observed user-item
pair (𝑢, 𝑖); 2) calculate interpolation coefficients (i.e.,𝑤𝑏 and
𝑤𝑑 ) and 𝑟∗ for (𝑢, 𝑖); 3) train student model with distillation
loss 𝐿𝑂 . The figure only illustrates InterD with observed data
(𝑢, 𝑖). As to unobserved data, InterD replaces 𝑟 with student
model prediction 𝑟 to generate 𝑟 ′∗ and calculates imputation
distillation loss 𝐿𝑁 .

𝜓∗ and 𝜙∗ represent the optimized model parameters. Assuming
𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) and 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ) follow the Gaussian distribu-
tion (as the tradition in [37]), the model outputs 𝑟𝑏 = 𝑓𝑏 (𝑢, 𝑖;𝜓∗) and
𝑟𝑑 = 𝑓𝑑 (𝑢, 𝑖;𝜙∗) are the estimated expectations of 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 )
and 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ), respectively. And we term 𝑟𝑏 and 𝑟𝑑 as biased-
prediction and debiased-prediction, respectively.

4.2.2 Estimate 𝑃 (𝐸 |𝑈 , 𝐼 ). For notation briefness, given a user-item
pair (𝑢, 𝑖), we denote the environment posterior distributions 𝑃 (𝐸 =

𝑒𝑏 |𝑈 , 𝐼 ) and 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) as 𝑤𝑏 and 𝑤𝑑 , respectively. As they
interpolate the two rating distributions, we term them as inter-
polation coefficients [5]. Similar as [30], we assign 𝑤𝑏 and 𝑤𝑑

according to the loss of biased and debiased model predictions 𝑟𝑏
and 𝑟𝑑 . Formally,

𝑤𝑏 =
𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾1

𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾1 + 𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾1
,𝑤𝑑 =

𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾1
𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾1 + 𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾1

,

(2)

where 𝑟 denotes the observed rating for the (𝑢, 𝑖) pair , 𝐿𝑏 (·) denotes
a normal recommendation loss such as mean squared error (MSE);
𝐿𝑑 (·) denotes a debiased loss function such as an IPS weighted
MSE; and 𝛾1 is a negative hyper-parameter that can smooth the
interpolation coefficients. Increasing the absolute value of 𝛾1 will
increase the weight of the model that has the smaller loss.

The intuition behind Eq. (2) is that, if the given (𝑢, 𝑖) pair more
likely belongs to one environment, the corresponding prediction 𝑟𝑏

or 𝑟𝑑 should be closer to the observed rating 𝑟 . Taking the counter-
factual environment as an example, the debiased-prediction 𝑟𝑑 is
the estimated expectation of 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ), closer to the expec-
tation means higher probability that the observed rating 𝑟 comes
from 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ), 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) should thus be larger. And
we use the loss value 𝐿𝑑 (𝑟𝑑 , 𝑟 ) to measure the distance between
𝑟𝑑 and 𝑟 , since 𝑤𝑑 ∝ 𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾1 , the negative value of 𝛾1 ensures
that low loss 𝐿𝑑 (𝑟𝑑 , 𝑟 ) leads to large𝑤𝑑 . As the same,𝑤𝑏 expresses
how likely the rating of a (𝑢, 𝑖) pair will be observed in the factual
environment (i.e., 𝐸 = 𝑒𝑏 ), which is inversely proportional to the dis-
tance between biased-prediction and observed rating (i.e., 𝐿𝑏 (𝑟𝑏 , 𝑟 )).
Finally,𝑤𝑏 and𝑤𝑑 are normalized by the same denominators.

4.2.3 Distillation. According to Eq. (1) we have:

𝑃 (𝑅 |𝑈 , 𝐼 ) = 𝑃 (𝐸 = 𝑒𝑏 |𝑈 , 𝐼 ) · 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) (3)
+ 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) · 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑑 ).

We estimate 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) and 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ) by 𝑤𝑏 and 𝑤𝑑

respectively, according to Eq. (2). And in Sec. 4.2.1 we have esti-
mated the expectations of 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) and 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 ) as
𝑟𝑏 = 𝑓𝑏 (𝑢, 𝑖;𝜓∗) and 𝑟𝑑 = 𝑓𝑑 (𝑢, 𝑖;𝜙∗), respectively. Since 𝑃 (𝑅 |𝑈 , 𝐼 )
follows a Gaussian distributions, we can estimate its expectation
by interpolating 𝑟𝑏 and 𝑟𝑑 . Formally, for each observed (𝑢, 𝑖) pair
in D𝑏 ∪ D𝑑 , we have:

𝑟∗ = 𝑤𝑏𝑟𝑏 +𝑤𝑑𝑟𝑑 , (4)

where 𝑟∗ denotes the expectation of 𝑃 (𝑅 |𝑈 , 𝐼 ), which can perform
well on both tests. We next consider how to obtain 𝑟∗ for testing
user-item pairs. Note that we cannot directly use 𝑟∗ for ranking
non-interacted items, since calculating it requires the observed
rating 𝑟 . We thus employ a label-based distillation mechanism to
distill a model 𝑓𝑠 (𝑢, 𝑖;𝜃 ) with the 𝑟∗ on observed data. The distilled
student model 𝑓𝑠 (𝑢, 𝑖;𝜃 ) can generate the predictions that follow
𝑃 (𝑅 |𝑈 , 𝐼 ) to perform well on both tests.

Formally, we optimize a distillation loss,

𝐿𝑂 =
1

|D𝑏 | + |D𝑑 |
∑︁

(𝑢,𝑖,𝑟 ) ∈D𝑏∪D𝑑

𝐿 (𝑓𝑠 (𝑢, 𝑖;𝜃 ), 𝑟∗) . (5)

Note that we omit the 𝐿2 regularization for briefness. As 𝑓𝑠 (𝑢, 𝑖;𝜃 )
is learned from the interpolation of biased and debiased models, we
term this training procedure (Figure 2) as Interpolative Distillation,
naming 𝑓𝑠 (𝑢, 𝑖;𝜃 ) as the student model; 𝑓𝑏 (𝑢, 𝑖;𝜓∗) and 𝑓𝑑 (𝑢, 𝑖;𝜙∗)
are biased-teacher and debiased-teacher, respectively. The student
model 𝑓𝑠 (𝑢, 𝑖;𝜃 ) adopts the same model configuration as teacher
models to keep the representation ability. InterD is thus different
from conventional distillation methods that aim to reduce model
size for saving costs.

4.2.4 Incorporate unobserved data. Most recommendation data is
highly sparse, i.e., only a small portion of user-item ratings are
observed (cf. Table 1). The distillation objective in Eq. (5) ignores
the missing data, which is known to be useful for item recommen-
dation [17]. In this light, we then consider how to incorporate the
unobserved data into the InterD framework. One belief is that the
biased and debiased models have encoded the knowledge of the two
environments. Accounting for their predictions on the unobserved
pairs has the potential of enhancing the student model.



Let D𝑛 = U ×I −D𝑏 ∪D𝑑 denote the unobserved data, where
U × I denotes the whole set of user-item pairs. To account for
unobserved data, the key lies in generating 𝑟 ′∗ for (𝑢, 𝑖) in D𝑛 .
Similar to Eq. (4), we define 𝑟 ′∗ as:

𝑟 ′∗ = 𝑤 ′
𝑏
𝑟𝑏 +𝑤 ′

𝑑
𝑟𝑑 , (6)

where𝑤 ′
𝑏
and𝑤 ′

𝑑
are the interpolation coefficient of unobserved

pairs corresponding to 𝑃 (𝐸 = 𝑒𝑏 |𝑈 , 𝐼 ) and 𝑃 (𝐸 = 𝑒𝑑 |𝑈 , 𝐼 ), respec-
tively. Similar to Eq. (2), we define𝑤 ′

𝑏
and𝑤 ′

𝑑
as:

𝑤 ′
𝑏
=

𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾2
𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾2 + 𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾2

,𝑤 ′
𝑑
=

𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾2
𝐿𝑏 (𝑟𝑏 , 𝑟 )𝛾2 + 𝐿𝑑 (𝑟𝑑 , 𝑟 )𝛾2

,

(7)
where 𝛾2 is also a negative hyper-parameter; and 𝑟 is the output
of student model 𝑓𝑠 (𝑢, 𝑖;𝜃 ). Based on the 𝑟 ′∗, we further define an
imputation distillation loss 𝐿𝑁 over the unobserved data D𝑛 , which
is formulated as:

𝐿𝑁 =
1

|D𝑛 |
∑︁

(𝑢,𝑖) ∈D𝑛

𝐿
(
𝑓𝑠 (𝑢, 𝑖;𝜃 ), 𝑟 ′∗

)
. (8)

By combining 𝐿𝑂 and 𝐿𝑁 , we obtain the final distillation ob-
jective with consideration of both observed and unobserved data.
Formally, we optimize the student model 𝑓𝑠 (·;𝜃 ) to estimate the
expectation of 𝑃 (𝑅 |𝑈 , 𝐼 ) by minimizing:

𝜃∗ = arg min
𝜃

(𝐿𝑂 + 𝛽𝐿𝑁 ), (9)

where 𝛽 is a non-negative hyper-parameter to adjust the contribu-
tion of the imputation distillation loss 𝐿𝑁 .

Note that 𝐿𝑏 (𝑟𝑏 , 𝑟 ) and 𝐿𝑑 (𝑟𝑑 , 𝑟 ) in Eq. (7) denote the distances
between predictions of teachers and the student. As 𝛾2 is negative, a
larger distance leads to a smaller interpolation coefficient. It means
the student model will learn more from the closer teacher over
unobserved data. In other words, the student tends to learn the
easier aspects of knowledge since the smaller distance makes it
easier to follow the corresponding teacher. This is similar to cur-
riculum learning [6, 46]. Notably, 𝑟 ′∗ in 𝐿𝑁 will be updated once
the student model has been updated during the distillation, since
the calculation of𝑤 ′

𝑏
and𝑤 ′

𝑑
relies on the student prediction. This

procedure is consistent with self-paced learning [19, 22].
Another interpretation of Eq. (7) is that the student prediction 𝑟

can be seen as an imputation value [11, 43] over the unobserved
pair. As the distillation proceeds, the student model continuously
learns from the two teachers over the labeled pairs through 𝐿𝑂 . The
student will gradually accumulate the knowledge about 𝑃 (𝑅 |𝑈 , 𝐼 )
and generate the more accurate imputation value. We thus pos-
tulate that the distance between 𝑟 and 𝑟𝑏 (or 𝑟𝑑 ) can reflect how
likely an unobserved pair belongs to the factual (or counterfac-
tual) environment and implies how reliable the biased-teacher (or
debiased-teacher) is (cf. Table 4).
To summarize, compared with conventional recommender model
training, our InterD demonstrates three main differences:
• InterD leverages both biased model and debiased model instead
of choosing only one specification.

• InterD distills a student model from the biased and debiased
models to handle both factual and counterfactual environments.

• InterD accounts for the unlabeled user-item pairs when distilling
the student model.

Algorithm 1: Interpolative Distillation
Input: Biased data D𝑏 and unbiased data D𝑑 .
Output: A win-win recommender model 𝑓𝑠 (·;𝜃∗).

1 Train a biased model 𝑓𝑏 (·;𝜙) as biased-teacher;
2 Train a debiased model 𝑓𝑑 (·;𝜓 ) as debiased-teacher;
3 Initialize the student model 𝑓𝑠 (𝑢, 𝑖;𝜃 );
4 while Stop condition is not reached do
5 Fetch (𝑢, 𝑖) pairs from U × I ;
6 if (𝑢, 𝑖) ∈ D𝑏 ∪ D𝑑 then
7 Calculate𝑤𝑑 and𝑤𝑏 with Eq. (2);
8 Generate 𝑟∗ with Eq. (4);
9 else
10 Calculate𝑤 ′

𝑑
and𝑤 ′

𝑏
with Eq. (7);

11 Generate 𝑟 ′∗ with Eq. (6);
12 end
13 Update 𝑓𝑠 (·;𝜃 ) with Eq. (9);
14 end
15 Return the student model 𝑓𝑠 (·;𝜃∗);

Lastly, we apply InterD over MF [21] and AutoDebias [7], and
elaborate its detailed procedure in Algorithm 1.

5 EXPERIMENTS
We conduct experiments to answer the following questions:
• RQ1: Does our proposed InterD outperform biased and debiased
models on the two tests?

• RQ2:Why does InterD perform well on both tests?
• RQ3:What factors influence the effectiveness of InterD?

5.1 Experimental Settings
Datasets. To validate the effectiveness of InterD, we utilize three
datasets with RCT data in different application domains: 1) Ya-
hoo!R34, 2) Coat5, and 3) Product6, which are obtained from the
music, coat, andmicro-video recommendation services, respectively.
All datasets contain both normal biased data D𝑏 collected from
historical interactions and the RCT data D𝑑 acquired by a random
exposure policy [38]. Following [7], we partition the RCT data into
the RCT training data (5%), RCT validation data (5%), and RCT
testing data (90%). Additionally, we extract 10% normal biased data
for normal biased test and treat the remaining 90% data as biased
training set. In this work, we combine the RCT training data and
normal biased training data to optimize InterD, and all baselines
leverage the RCT validation data to choose hyper-parameters. As
to Yahoo!R3 and Coat, explicit feedback with ratings larger than
3 is treated as 1, otherwise the feedback is labeled as -1. For the
Product dataset, the ratings are based on user’s playing time, which
are defined by the platform according to its business logic.
Compared methods. We compare InterD with its base model
MF, debiased models from advanced debias strategies, and model
learned with multistakeholder objectives. In particular,

4https://webscope.sandbox.yahoo.com/.
5https://www.cs.cornell.edu/~schnabts/mnar/.
6It is a popular micro-video sharing platform.

https://webscope.sandbox.yahoo.com/.
https://www.cs.cornell.edu/~schnabts/mnar/.


Table 1: Statistics of the datasets, NB-Tr and RCT-Tr are short
for normal biased training data and RCT training data, re-
spectively. NB-Te and RCT-Te are short for normal biased
testing data and RCT testing data, respectively.

Dataset #User #Item #NB-Tr #RCT-Tr #Val #NB-Te #RCT-Te
Yahoo!R3 15.4k 1.0k 249k 5.4k 33.8k 31.2k 48.6k
Coat 290 300 5.6k 464 928 696 4.1k

Product 7.1k 10.7k 1,060k 27k 146k 132.5k 243k

• MF [21]: it is a widely used benchmark model in recommenda-
tion. We train MF with the combination of normal biased and
RCT training data, following the setting of MF (combine) in [7].
Note that incorporating RCT training data can enhance the per-
formance of MF on both tests.

• MF-IPS [38]: we apply the classic IPS method to MF, where the
calculation of propensity scores follows [7, 38].

• AutoDebias [7]: it is a SOTA debiased model trained with nor-
mal biased and RCT training data. It optimizes propensity scores
and an imputation model over RCT training data. We adopt the
source code and hyper-parameter ranges for grid search released
in the original paper.

• MF-PD [49]: we enhance MF with the Popularity-bias Decon-
founding (PD) [49] technique, which leverages causal interven-
tion to reduce bias but focuses on popularity bias. We search the
hyper-parameter 𝛾 that controls the smoothness of popularity
effect in {1e-6, 5e-6, · · · , 5e-1}.

• KD_Label [26]: it is a SOTAdebias knowledge distillationmethod
that distills the knowledge of debiasing from a teacher model to
a student model. We train the teacher model with RCT data and
optimize the student model with the teacher outputs and biased
training data. We adopt the public implementation and tune the
hyper-parameters following the original paper.

• MF-TFROM [45]: TFROM is one of SOTA multistakeholder
recommendation methods, we apply it to MF and treat different
item groups as stakeholder according to item popularity. We
belief that controlling across groups will adjust the effect of
system-induced biases, such as popularity bias.

• Ensemble directly fuses the predictions of MF and AutoDe-
bias linearly via constant coefficients during the inference stage,
which also leverages the knowledge of two teachers. We search
the coefficient as the hyper-parameters with the step of 0.1.

• InterD7 takesMF andAutoDebias as biased-teacher and debiased-
teacher, and uses MSE in the distillation objective to optimize
the student model. Te student model is another MF that has the
same embedding size as biased-teacher and debiased-teacher.

Evaluation Metrics. We adopt UAUC and NDCG@K [18] to eval-
uate the recommendation performance. For each user, we calculate
the AUC [7] and NDCG@K over the exposed items in the testing
data, and then take the average scores of all users8 to obtain UAUC
and NDCG@K, respectively. Here K is set as 5 for all datasets, and
we omit K for simplicity in the following sections. Besides, we
adopt two metrics for clearly measuring the overall performance
7The code of proposed method InterD is available at https://github.com/Dingseewhole/
InterD_master
8We remove the testing users that only have positive (i.e., 1) or only have negative
(i.e., -1) testing samples, since their NDCG and AUC are always equal to 1 or 0.

Table 2: Recommendation performances on Yahoo!R3, Coat,
and Product. The best and second best results are highlighted
with bold and underline, respectively. DT and NBT are short
for debiased test and normal biased test. "*" denotes the best
performance is significantly better than all baselines based
on paired t-test at the significance level of 0.05.

Yahoo!R3 DT NBT Overall
UAUC NDCG UAUC NDCG F1-UAUC F1-NDCG

MF 0.6597 0.5545 0.6660 0.8310 0.6628 0.6651
MF-IPS 0.6606 0.5552 0.6559 0.8250 0.6583 0.6637
KD_Label 0.6699 0.5760 0.6268 0.8128 0.6477 0.6742
AutoDebias 0.7327 0.6441 0.6346 0.8168 0.6802 0.7202
MF-PD 0.7232 0.6397 0.6647 0.8290 0.6927 0.7221
MF-TFROM 0.6602 0.5554 0.6658 0.8304 0.6630 0.6656
Ensemble 0.7460 0.6570 0.6614 0.8292 0.7012 0.7331
InterD 0.7583 0.6764 0.6770 0.8388 0.7153∗ 0.7489∗

Coat UAUC NDCG UAUC NDCG F1-UAUC F1-NDCG
MF 0.6690 0.4941 0.6736 0.8277 0.6713 0.6188
MF-IPS 0.6705 0.5081 0.6437 0.8037 0.6568 0.6090
KD_Label 0.6780 0.5059 0.6306 0.8038 0.6534 0.6210
AutoDebias 0.6806 0.5268 0.6516 0.8204 0.6658 0.6416
MF-PD 0.6710 0.5252 0.5756 0.7940 0.6197 0.6322
MF-TFROM 0.6701 0.5021 0.6669 0.8228 0.6685 0.6236
Ensemble 0.6822 0.5232 0.6431 0.8158 0.6621 0.6375
InterD 0.6851 0.5270 0.6785 0.8295 0.6818∗ 0.6445∗

Product UAUC NDCG UAUC NDCG F1-UAUC F1-NDCG
MF 0.5965 0.1344 0.7443 0.4956 0.6623 0.2114
MF-IPS 0.7219 0.1395 0.6712 0.4342 0.6956 0.2111
KD_Label 0.7380 0.1460 0.6306 0.4262 0.6801 0.2175
AutoDebias 0.8473 0.3210 0.6670 0.4263 0.7464 0.3662
MF-PD 0.7658 0.1467 0.6541 0.4279 0.7056 0.2185
MF-TFROM 0.7034 0.1375 0.6954 0.4443 0.6994 0.2100
Ensemble 0.8274 0.3185 0.6901 0.4410 0.7525 0.3699
InterD 0.8773 0.3615 0.7206 0.4732 0.7913∗ 0.4099∗

on the two tests: F1-UAUC and F1-NDCG, which are calculated by
the harmonic mean of the scores on the debiased test and normal
biased test. In particular,

F1-UAUC =
2 ×𝑈𝐴𝑈𝐶𝐷𝑇 ×𝑈𝐴𝑈𝐶𝑁𝐵𝑇

𝑈𝐴𝑈𝐶𝐷𝑇 +𝑈𝐴𝑈𝐶𝑁𝐵𝑇
,

F1-NDCG =
2 × 𝑁𝐷𝐶𝐺𝐷𝑇 × 𝑁𝐷𝐶𝐺𝑁𝐵𝑇

𝑁𝐷𝐶𝐺𝐷𝑇 + 𝑁𝐷𝐶𝐺𝑁𝐵𝑇
, (10)

where UAUCDT and UAUCNBT denote the UAUC scores on the
debiased test and normal biased tests, respectively. NDCGDT and
NDCGNBT denote the NDCG scores on the debiased test and normal
biased test, respectively.

5.2 Performance Comparison (RQ1)
Table 2 reports the performance comparison under two tests on
three datasets. From the table, we have the following observations:
• Compared with the base model MF, all debiased model perform
better on the debiased test but show inferior performance on
the normal biased test. In other words, there is a clear trade-off
between the two tests, i.e., debias methods promote the debi-
ased test performance with significant sacrifice of the biased test
performance. We postulate the reason is that these methods esti-
mates the rating distribution 𝑃 (𝑅 |𝑈 , 𝐼 ) as 𝑃 (𝑅 |𝑈 , 𝐼, 𝐸 = 𝑒𝑏 or 𝑒𝑑 ),



ignoring the counterpart. To pursue a win-win recommendation,
it is thus reasonable to perform environment-aware modeling.

• InterD achieves the best overall performance regarding both F1-
UAUC and F1-NDCG across the three datasets. It demonstrates
the effectiveness of InterD in tackling the performance trade-
off on the two tests. We attribute the performance gain to the
proposed distillation objective, which considers both observed
and unobserved data, and combines the knowledge of the two
environments at fine-grained level of user-item pairs.

• Remarkably, InterD outperforms all baselines regarding
debiased test performance on all datasets. For instance, on
the Product dataset, InterD achieves relative performance im-
provements of 3.5% and 12.56% w.r.t. UAUC and NDCG over
the second-best AutoDebias on debiased test. These results indi-
cate that InterD can achieve the SOTA debias performance. One
reason of the performance gain is InterD can alleviate the over-
debias issue of AutoDebias (more details in Sec. 5.3). Another
possible reason is that InterD optimizes model parameters with
all user-item pairs, which tackles some optimization issues of
AutoDebias and KD_label caused by learning debias parameters
only with RCT training data, which is usually very small.

• Ensemble also performs better than some debias methods un-
der debiased tests in some cases such as the Yahoo!R3 dataset.
This result indicates that jointly leveraging the outputs of bi-
ased and debiased teachers can counterweight some issues of
the teachers. This result is consistent with previous studies on
multi-teacher aggregation [47]. Moreover, it justifies the ratio-
nality of decomposing 𝑃 (𝑅 |𝑈 , 𝐼 ) and separately estimating the
underlying distributions, instead of directly learning 𝑃 (𝑅 |𝑈 , 𝐼 )
from the training data.

• In particular, InterD consistently surpasses Ensemble under both
tests on all datasets, while they have the same teachers. Noticing
that Ensemble use constant coefficients across all user-item pairs,
we attribute the performance gain of InterD to the fine-grained
user-item level interpolation coefficients. In other words, infer-
ring the environment posterior 𝑃 (𝐸 |𝑈 , 𝐼 ) from model prediction
distances is reasonable, leading to a more accurate interpolative
distribution of 𝑃 (𝑅 |𝑈 , 𝐼 ).

• AutoDebias steadily outperforms MF-PD, KD_Label and MF-
TFROM under debiased test, which shows that leveraging the
meta-learning mechanism to learn debias parameters with RCT
data can still help debias. This is consistent with the findings in
the original paper of AutoDebias [7].

• In comparison with other debias methods, MF-TFROM fails to
demonstrate superior performance on debiased test, but it mostly
sacrifices minimal normal biased test performance. It confirms
that multiple objectives can alleviate the performance trade-off
issue. Nevertheless, it is unlikely to outperform biased and debi-
ased models on their strong test.

5.3 Exploratory Analysis (RQ2).

Performances on Less Popular Items. To further justify the
superiority of InterD, we test it on the less popular items of testing
data. The popularity of an item is determined by its frequency in
the training data. Figure 3(a) and Figure 3(b) show the F1-UAUC
regarding 80% and 30%most unpopular items, respectively. We omit
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Figure 3: Performances regarding the most 80% and 30% un-
popular items on Yahoo!R3 and Product datasets.
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Figure 4: The sensitivity of interpolation coefficients with
increasing item popularity in Yahoo!R3.

this result on Coat since it only has 300 unique items. According to
the figures, InterD consistently outperforms its teachers on the rec-
ommendations of less popular items. Furthermore, InterD achieves
higher gains on F1-UAUC of the 30% unpopular items as compared
with the 80% unpopular items. These two findings demonstrate In-
terD can promote teachers recommendation performances on less
popular items (more empirical evidence are shown in Figure 5(a)(c)).

Study on the Interpolation Coefficient. To study how interpo-
lation coefficients (i.e., 𝑤𝑑 and 𝑤𝑏 ) promote InterD, we visualize
the changes of interpolation coefficients as the popularity of items
increases in Yahoo!R3. We visualize the results on Yahoo!R3 since
it is public and relatively larger. Figure 4 shows that as the item
popularity increases, the value of 𝑤𝑑 keeps decreasing while 𝑤𝑏

keeps enlarging. The trend indicates that, in the distillation phase,
InterD trusts the debiased-teacher more on less popular items, but
relies more on the biased-teacher for popular items. This is rea-
sonable since during the training phase of teachers, the debiased-
teacher generates larger inverse propensity scores for less popular
items [7, 36], making the model pay more attention to these items.
Thus the debiased-teacher learns better representations of less pop-
ular items than the biased-teacher that without debias strategy. On
the contrary, the biased-teacher naturally focuses more on popular
items due to their massive interactions in the training data, which
produces better representations of popular items. Recall that we
design InterD for finely aggregating the knowledge of both envi-
ronments, Figure 4 proves that InterD can fine-grained adjust the
interpolation coefficient according to the advantages of teachers.
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Figure 5: The distribution of recommendation results on DT
(a) and (b); and NBT (c) and (d) of Yahoo!R3. Hit and error
denote the correct and incorrect recommendation results,
respectively. For each method, the sum of popular item ratio
and less popular ratio is 1.

Recommendation Comparison w.r.t. Item Popularity. Table 2
shows that InterD achieves good performance on both tests, and
mostly beats its teachers in their advantageous test (e.g., beats MF
on NBT meanwhile beats AutoDebias on DT on Yahoo!R3). To in-
vestigate the underlying reasons, we compare the recommendation
results of InterD and its two teachers AutoDebias and MF. Specif-
ically, 1) we collect top-5 items for each user recommended by
AutoDebias, MF, and InterD. 2) Then we split all items in top-5
recommendation results into the popular set (Figure 5(b)(d)) and
less popular set (Figure 5(a)(c)) based on item popularity in training
data. We group the top 20% most popular items into the popular set,
while the other items are in the less popular set. 3) We separately
visualize the results on DT (Figure 5(a)(b)) and NBT (Figure 5(c)(d)).
From the figures, we have the following observations:

• By comparing Figure 5(a) and Figure 5(b), we find that in rec-
ommendation results of AutoDebias, 69% items belong to less
popular set and 31% items belong to popular set. In contrast, only
36% of items recommended by MF are less popular, while 64% are
popular. This finding proves that AutoDebias tend to recommend
less popular items but MF tend to recommend popular items.

The same conclusion can be drawn by comparing Figure 5(c) and
Figure 5(d).

• We can find out why InterD always beats its debiased-teacher on
DT by studying Figure 5(a). As compared to AutoDebias, InterD
recommends fewer less-popular items, and the reduced recom-
mendations are all from the error part (i.e., negative testing sam-
ples). It means although InterD recommends fewer less-popular
items, it maintains the same hit rate as AutoDebias, which im-
proves accuracy. The study also confirms that AutoDebias has
the over-debias issue that indiscriminately recommends less pop-
ular items, and InterD can alleviate the issue by fitting 𝑟∗ that
generated by two teachers.

• In Figure 5(a), compared with MF, InterD dramatically increases
the hit rate, while keeping the same error rate of less popular
items recommendations. And in Figure 5(b) InterD makes the
almost same hit rate as MF, but greatly reduces the error rate.
These observations demonstrate InterD can alleviate the problem
about over-recommend popular items to achieve extremely better
performance than MF in DT.

• Recall in Table 2, InterD mostly beats its biased-teacher MF on
NBT. We can find out the reason in Figure 5(d), that InterD re-
duces the error rate of popular item recommendations.

• In Figure 5(a) and Figure 5(c), we can clearly see how InterD
outperforms AutoDebias and MF for recommendations on less
popular items. This study verifies that environment-aware rec-
ommendation modeling can improve the accuracy of recommen-
dations for less popular items.

Case Studies. For further analysis, we conduct four case studies on
Yahoo!R3. Table 3 shows four recommendation results, the former
two results are collected from normal biased test, while the other
two results are from debiased test. From Table 3 we can observe:

• For user-1747, MF recommends item-2 that is the 18th most pop-
ular item out of 1000 items. However, AutoDebias recommends
very unpopular item-243 (614th/1000 popular) as top-1 recom-
mendation. But the ground-truths of these two items are all neg-
ative (i.e., user-1747 does not like item-2 and item-243), and only
InterD makes the correct prediction of these items. From these
observations we can find out MF and Autodebias are easily misled
by popularity, resulting in bias amplification or over-debias issue.
And it verifies only modeling the 𝑃 (𝑅 |𝑈 , 𝐼 ) under a specific envi-
ronment is not good enough. Fortunately, AutoDebias makes the
correct prediction on item-2, and MF makes the correct predic-
tion on item-243. Thus InterD is able to counterbalance incorrect
predictions of two teachers based on interpolative distillation.

• In debiased test, for user-684, Autodebias and MF also make the
similar wrong recommendations: Autodebias recommends a very
unpopular negative item-788 (709th/1000) as top-1 recommen-
dation and MF recommends a very popular negative item-37
(15th/1000) as top-1 item. These incorrect recommendations are
all corrected by InterD through aggregating the predictions of
two teachers. It demonstrates InterD is a superior debiased model
and makes examples to explain why InterD consistently outper-
forms debiased-teacher AutoDebias in debiased test.



Table 3: Case studies on Yahoo!R3. Pop rank denotes the pop-
ularity rank of an item w.r.t. its frequency in training data,
the lower rank represents the higher popularity, pos/neg de-
note positive/negative i.e., -1/1 rating, GT denotes the ground-
truth of each interaction.

Test Statistics of user and item Rank and recommend results GTname User Item Pop rank MF AutoDebias InterD
Normal 1747 2 18th/1000 top-1, pos top-6, neg top-5, neg neg
bias test 1747 243 614th/1000 top-7, neg top-1, pos top-3, neg neg
Debiased 684 788 709th/1000 top-6, neg top-1, pos top-5, neg neg
test 684 37 15th/1000 top-1, pos top-8, neg top-8, neg neg

Table 4: The performance of vanilla InterD, InterD-B, InterD-
O and InterD-I in DT and NBT. DT and NBT are short of
debiased test and normal biased test. The best results are
highlighted with bold font.

Dataset Method DT NBT Overall
UAUC NDCG UAUC NDCG F1-UAUC F1-NDCG

Yahoo!R3

InterD-B 0.6521 0.5433 0.6158 0.8048 0.6334 0.6487
InterD-O 0.7521 0.6674 0.6720 0.8385 0.7098 0.7432
InterD-I 0.7482 0.6657 0.6737 0.8373 0.7090 0.7417
InterD 0.7583 0.6764 0.6770 0.8388 0.7153 0.7489

Coat

InterD-B 0.6696 0.4952 0.6713 0.8274 0.6704 0.6195
InterD-O 0.6832 0.5184 0.6738 0.8288 0.6785 0.6378
InterD-I 0.6849 0.5220 0.6762 0.8289 0.6805 0.6406
InterD 0.6851 0.5270 0.6785 0.8295 0.6818 0.6445

Product

InterD-B 0.6840 0.2379 0.7012 0.4290 0.6925 0.3061
InterD-O 0.8593 0.3242 0.6929 0.4513 0.7672 0.3773
InterD-I 0.8671 0.3415 0.7014 0.4523 0.7755 0.3892
InterD 0.8773 0.3615 0.7206 0.4732 0.7913 0.4099

5.4 In-depth Analyses (RQ3)

Ablation Study. In Table 4, we compare the InterD with InterD-
B. The InterD-B is an Interpolative Distillation framework that
calculates the interpolation coefficient with a binary method:{

𝑤𝑑 = 1,𝑤𝑏 = 0 𝑖 𝑓 𝑤𝑑 > 𝑤𝑏

𝑤𝑑 = 0,𝑤𝑏 = 1 𝑖 𝑓 𝑤𝑑 < 𝑤𝑏{
𝑤 ′
𝑑
= 1,𝑤 ′

𝑏
= 0 𝑖 𝑓 𝑤 ′

𝑑
> 𝑤 ′

𝑏
𝑤 ′
𝑑
= 0,𝑤 ′

𝑏
= 1 𝑖 𝑓 𝑤 ′

𝑑
< 𝑤 ′

𝑏

(11)

Obviously, in Table 4 the performance of InterD-B is always worse
than InterD across all datasets on all metrics, it demonstrates that
the fine-grained interpolative coefficient at the user-item pair level
enhances the performance of InterD. And it also confirms the ratio-
nality of Eq. (2) and Eq. (7).

Another observation in Table 4 is the InterD consistently out-
performs the InterD-O which does not leverage the unobserved
data i.e., setting 𝛽 ≡ 0 in Eq. (9). It verifies our motivation of incor-
porating the unobserved data (i.e., missing data) into InterD with
imputation loss 𝐿𝑁 to boost its performance.

Furthermore, we compare the InterD with InterD-I. The InterD-I
is a variant of InterD, which adopts a default imputationmethod that
sets the imputation values of all unobserved data as zero [11]. Thus,
the InterD-I calculates𝑤 ′

𝑏
and𝑤 ′

𝑑
with replacing 𝑟 by 0 in Eq. (7). It

means InterD-I assumes that the teacher model whose prediction is
closer to 0 is more reliable for unobserved data. Table 4 shows the
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Figure 6: Performances of InterD as changing hyper-
parameters 𝛽 , 𝛾1 and 𝛾2 on Yahoo!R3.

InterD steadily outperforms InterD-I across all datasets. Since the
student model accumulates the knowledge about 𝑃 (𝑅 |𝑈 , 𝐼 ) during
distillation, its output can be viewed as the imputation value that
is more accurate than the conventional imputation of unobserved
data. These results also verify the rationality of Eq. (7).

Study ofHyper-parameters.We study how the hyper-parameters
of InterD affect its performances on two tests. Figure 6(a) shows
the performance of InterD as the value of 𝛽 increasing. As can be
seen, both F1-UAUC and F1-NDCG show a clear trend of increasing
than decreasing. The increasing part reflects that incorporating
unobserved data into InterD with relatively smaller value of 𝛽 can
enhance the student model. The decreasing part is also reasonable
since too big 𝛽 value will lead to more contributions of 𝐿𝑁 , which
dilutes the information of observed data from 𝐿𝑂 . Figure 6(b) and
Figure 6(c) show InterD is not particularly sensitive to 𝛾1 and 𝛾2,
but when 𝛾1 = 0 or 𝛾2 = 0 InterD will degenerate into the variants
of InterD-B, and the performance is worst. It proves that generating
the interpolative coefficients by Eq. (2) and Eq. (7) is better than
the binary method in Eq. (11).

6 CONCLUSION
In this work, we explored a new recommendation problem with
both normal biased test in a factual environment (with bias); and
debiased test in a counterfactual environment (without bias). We
revealed that existing methods encounter trade-off between the
two tests due to considering one specific environment and ignor-
ing the other. To pursue win-win recommendation, we conducted
environment-aware recommendation modeling with consideration
of both environments. To tackle the estimation challenge we pro-
posed the Interpolative Distillation (InterD) framework to fine-
grained interpolate the rating distributions of the environments.
We applied InterD on basic MF (biased-teacher) and AutoDebias
(debiased-teacher), and conducted extensive experiments on three
real-world datasets. Empirical results confirm InterD achieves the
best performance on both tests in most cases. Besides, InterD
achieves remarkable gains on less popular items.

This work opens up a new research direction in recommendation
— developing win-win recommender systems that serve users better
while benefiting platforms. In the future, we would like to extend
InterD to more complex biased and debiased models to explore the
performance ceiling of InterD. Moreover, we will test InterD under
the setting of implicit feedback to validate InterD more comprehen-
sively. Lastly, conducting theoretical analysis for InterD is also an
interesting direction.
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