
Diffusion Recommender Model
Wenjie Wang

wenjiewang96@gmail.com
National University of Singapore

Yiyan Xu
yiyanxu24@gmail.com

University of Science and
Technology of China

Fuli Feng∗
fulifeng93@gmail.com

University of Science and
Technology of China

Xinyu Lin
xylin1028@gmail.com

National University of Singapore

Xiangnan He
xiangnanhe@gmail.com
University of Science and

Technology of China

Tat-Seng Chua
dcscts@nus.edu.sg

National University of Singapore

ABSTRACT
Generative models such as Generative Adversarial Networks
(GANs) and Variational Auto-Encoders (VAEs) are widely utilized
to model the generative process of user interactions. However,
they suffer from intrinsic limitations such as the instability of
GANs and the restricted representation ability of VAEs. Such
limitations hinder the accurate modeling of the complex user inter-
action generation procedure, such as noisy interactions caused by
various interference factors. In light of the impressive advantages
ofDiffusion Models (DMs) over traditional generative models in im-
age synthesis, we propose a novel Diffusion Recommender Model
(named DiffRec) to learn the generative process in a denoising
manner. To retain personalized information in user interactions,
DiffRec reduces the added noises and avoids corrupting users’
interactions into pure noises like in image synthesis. In addition,
we extend traditional DMs to tackle the unique challenges in
recommendation: high resource costs for large-scale item pre-
diction and temporal shifts of user preference. To this end, we
propose two extensions of DiffRec: L-DiffRec clusters items for
dimension compression and conducts the diffusion processes in
the latent space; and T-DiffRec reweights user interactions based
on the interaction timestamps to encode temporal information.We
conduct extensive experiments on three datasets under multiple
settings (e.g., clean training, noisy training, and temporal training).
The empirical results validate the superiority of DiffRec with two
extensions over competitive baselines.
CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Generative Recommender Model, Diffusion Model, Latent and
Temporal Diffusion Recommender Models
∗Corresponding author: Fuli Feng. This research is supported by the National Key
Research andDevelopment Program of China (2020YFB1406703), the National Natural
Science Foundation of China (62272437), and Huawei International Pte Ltd.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07…$15.00
https://doi.org/10.1145/3539618.3591663

ACM Reference Format:
Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-
Seng Chua. 2023. Diffusion Recommender Model. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3539618.3591663

1 INTRODUCTION
Generative models such as Generative Adversarial Networks
(GANs) and Variational Auto-Encoders (VAEs) have been broadly
utilized for personalized recommendation [19, 37, 50]. Generally
speaking, generative recommender models learn the generative
process to infer the user interaction probabilities over all non-
interacted items. Such generative process typically assumes that
users’ interaction behaviors with items (e.g., clicks) are determined
by some latent factors (e.g., user preference). Due to aligning
with the real-world interaction generation procedure, generative
recommender models have achieved significant success [19, 37].

Generative recommender models mainly fall into two groups:
• GAN-based models utilize a generator to estimate users’ interac-

tion probabilities and leverage adversarial training to optimize
the parameters [13, 37]. However, adversarial training is typi-
cally unstable, leading to unsatisfactory performance.

• VAEs-based models use an encoder to approximate the posterior
distribution over latent factors and maximize the likelihood of
observed interactions (Figure 1(a)) [19, 24].While VAEs typically
outperform GANs in recommendation, VAEs suffer from the
trade-off between tractability and representation ability [14, 34].
Tractable and simple encoders might not well capture hetero-
geneous user preference while the posterior distribution of
complex models is likely to be intractable [34].

Diffusion Models (DMs) [10, 34] have achieved state-of-the-art
results in image synthesis tasks [31], which alleviate the trade-
off by gradually corrupting the images in a tractable forward
process and learning the reverse reconstruction iteratively. As
shown in Figure 1(b), DMs forwardly corrupt 𝒙0 with random
noises step by step, and recover 𝒙0 from corrupted 𝒙𝑇 iteratively.
This forward process leads to a tractable posterior [34], and also
opens the door to iteratively modeling complex distributions by
flexible neural networks in the reverse generation. The objectives
of recommender models align well with DMs since recommender
models essentially infer the future interaction probabilities based
on corrupted historical interactions (Figure 1(c)), where corruption
implies that the interactions are noisy due to false-positive and

https://doi.org/10.1145/3539618.3591663
https://doi.org/10.1145/3539618.3591663

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wenjie Wang et al.

Encoder Decoder�� ���
…

…
�� ���� ��

Forward

Reverse

(a) Illustration of VAE. (b) Illustration of DiffRec.

(c) Objective of recommender systems. (d) Illustration of L-DiffRec.

…

…

�� ����
Forward

Reverse

E1

E2

�� ����
D2

D1

=

True-positive item
False-positive item

False-negative item
True-negative item

Historical
interactions

RecSys

Predicted future
interactions

�� ��

E1, E2: encoders D1, D2: decoders

Figure 1: Illustration of VAE, DiffRec, the objective of recom-
mender systems, and L-DiffRec.

false-negative items [32, 38]. As such, exploring DMs for recom-
mendation has great potential to model the complex interaction
generation more accurately with strong representation ability.

We propose a Diffusion Recommender Model named DiffRec,
which infers users’ interaction probabilities in a denoising manner.
Technically, DiffRec gradually corrupts users’ interaction histories
by injecting scheduled Gaussian noises in the forward process, and
then recovers original interactions from the corrupted interactions
iteratively via a parameterized neural network. Nevertheless, we
cannot directly graft the forward process in the image domain due
to the necessity of generating personalized recommendations. To
retain personalized information in users’ corrupted interactions,
we should avoid corrupting users’ interaction histories into pure
noises like in image synthesis. We thus significantly decrease the
added noise scales in the forward process (see Section 3.4).

Taking one step further, we handle two essential challenges
in building generative models for recommendation: large-scale
item prediction and temporal modeling. In detail, 1) generative
models require extensive resource costs as predicting the interac-
tion probabilities of all items simultaneously [19], limiting their
application to large-scale item recommendation; and 2) generative
models have to capture the temporal information in the interaction
sequence, which is crucial for handling user preference shifts [48].
To this end, we further extend DiffRec to Latent DiffRec (named
L-DiffRec) and Temporal DiffRec (named T-DiffRec).

• L-DiffRec clusters items into groups, compresses the interaction
vector over each group into a low-dimensional latent vector via
a group-specific VAE, and conducts the forward and reverse
diffusion processes in the latent space (Figure 1(d)). Owing to the
clustering and latent diffusion, L-DiffRec significantly reduces
the model parameters and memory costs, enhancing the ability
of large-scale item prediction (see Section 3.5 and 4.3).

• T-DiffRec models the interaction sequence via a simple yet ef-
fective time-aware reweighting strategy. Intuitively, users’ later
interactions are assigned with larger weights, and then fed into
DiffRec for training and inference (see Section 3.6 and 4.4).

We conduct extensive experiments on three representative datasets
and compare DiffRec with various baselines under multiple set-
tings (e.g., clean training, noisy training with natural or random
noises, and temporal training), validating the superiority of our

proposedDiffRec and two extensions.We release our code and data
at https://github.com/YiyanXu/DiffRec.

To sum up, the contributions of this work are as follows.
• We propose a novel Diffusion Recommender Model, a totally

new recommender paradigm that points out a promising future
direction for generative recommender models.

• We extend conventional DiffusionModels to reduce the resource
costs for high-dimensional categorical predictions and enable
the time-sensitive modeling of interaction sequences.

• We conduct substantial experiments on three datasets under
various settings, demonstrating remarkable improvements of
DiffRec with two extensions over the baselines.

2 PRELIMINARY
DMs have achieved impressive success in various fields, mainly
consisting of forward and reverse processes [10, 34].
• Forward process. Given an input data sample 𝒙0 ∼ 𝑞(𝒙0),
the forward process constructs the latent variables 𝒙1:𝑇 in a
Markov chain by gradually adding Gaussian noises in 𝑇 steps.
Specifically, DMs define the forward transition 𝒙𝑡−1 → 𝒙𝑡 as
𝑞(𝒙𝑡 |𝒙𝑡−1) = N(𝒙𝑡 ;

√
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡 𝑰), where 𝑡 ∈ {1, . . . ,𝑇 } refers

to the diffusion step, N denotes the Gaussian distribution, and
𝛽𝑡 ∈ (0, 1) controls the noise scales added at the step 𝑡 . If 𝑇 → ∞,
𝒙𝑇 approaches a standard Gaussian distribution [10].
• Reverse process. DMs learn to remove the added noises from
𝒙𝑡 to recover 𝒙𝑡−1 in the reverse step, aiming to capture minor
changes in the complex generation process. Formally, taking 𝒙𝑇
as the initial state, DMs learn the denoising process 𝒙𝑡 → 𝒙𝑡−1
iteratively by 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) = N(𝒙𝑡−1; 𝝁𝜃 (𝒙𝑡 , 𝑡), 𝚺𝜃 (𝒙𝑡 , 𝑡)), where
𝝁𝜃 (𝒙𝑡 , 𝑡) and 𝚺𝜃 (𝒙𝑡 , 𝑡) are the mean and covariance of the Gauss-
ian distribution predicted by a neural network with parameters 𝜃 .
• Optimization. DMs are optimized by maximizing the Evidence
Lower Bound (ELBO) of the likelihood of observed input data 𝒙0:

log𝑝 (𝒙0) = log
∫

𝑝 (𝒙0:𝑇)d𝒙1:𝑇

= logE𝑞 (𝒙1:𝑇 |𝒙0)

[
𝑝 (𝒙0:𝑇)

𝑞 (𝒙1:𝑇 |𝒙0)

]
≥ E𝑞 (𝒙1 |𝒙0) [log𝑝𝜃 (𝒙0 |𝒙1)]︸ ︷︷ ︸

(reconstruction term)

−𝐷KL (𝑞 (𝒙𝑇 |𝒙0) ∥ 𝑝 (𝒙𝑇))︸ ︷︷ ︸
(prior matching term)

− ∑𝑇
𝑡=2 E𝑞 (𝒙𝑡 |𝒙0) [𝐷KL (𝑞 (𝒙𝑡−1 |𝒙𝑡 , 𝒙0) ∥ 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡))]︸ ︷︷ ︸

(denoising matching term)

,

(1)

where 1) the reconstruction term denotes the negative reconstruc-
tion error over 𝒙0; 2) the prior matching term is a constant without
trainable parameters and thus ignorable in the optimization; and
3) the denoising matching terms regulate 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) to align
with the tractable ground-truth transition step 𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) [23].
In this way, 𝜃 is optimized to iteratively recover 𝒙𝑡−1 from 𝒙𝑡 .
According to [10], the denoising matching terms can be simplified
as

∑𝑇
𝑡=2 E𝑡,𝝐

[
| |𝝐 − 𝝐𝜃 (𝒙𝑡 , 𝑡) | |22

]
, where 𝝐 ∼ N(0, 𝑰); and 𝝐𝜃 (𝒙𝑡 , 𝑡)

is parameterized by a neural network (e.g., U-Net [10]) to predict
the noises 𝝐 that determine 𝒙𝑡 from 𝒙0 in the forward process [23].
• Inference. After training 𝜃 , DMs can draw 𝒙𝑇 ∼ N(0, 𝑰) and
leverage 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) to iteratively repeat the generation process

https://github.com/YiyanXu/DiffRec

Diffusion Recommender Model SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

�0 ��−1 �� ��

Forward Process

Reverse Process

��(��−1|��)

�(��|��−1)

Figure 2: An overview of DiffRec, where the histogram de-
notes the corrupted interactions of a user over all items.The
forward process gradually corrupts the user’s interaction
history by the transition step 𝑞(𝒙𝑡 |𝒙𝑡−1), and then themodel
learns to recover 𝒙0 using 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) step by step.

𝒙𝑇 → 𝒙𝑇−1 → · · · → 𝒙0. Besides, prior studies consider adding
some conditions to realize the controllable generation [18, 31].

3 DIFFUSION RECOMMENDER MODEL
To take advantage of the strong generation ability of DMs, we
propose a novel DiffRec to predict users’ future interaction proba-
bilities from corrupted interactions. Given users’ historical inter-
actions, DiffRec gradually corrupts them by adding noises in a
forward process, and then learns to recover original interactions
iteratively. By such iterative denoising training, DiffRec can model
complex interaction generation procedures and mitigate the ef-
fects of noisy interactions. Eventually, the recovered interaction
probabilities are used to rank and recommend non-interacted
items. In addition, we present two extensions of DiffRec for large-
scale item prediction and temporal modeling to facilitate the use
of DiffRec in practical recommender systems.

3.1 Forward and Reverse Processes
As shown in Figure 2, DiffRec has two critical processes: 1) a
forward process corrupts users’ interaction histories by adding
Gaussian noises step by step, and 2) a reverse process gradually
learns to denoise and output the interaction probabilities.
• Forward process. Given a user 𝑢 with the interaction history
over an item set I, i.e., 𝒙𝑢 = [𝑥1𝑢 , 𝑥2𝑢 , . . . , 𝑥

| I |
𝑢] where 𝑥𝑖𝑢 = 1 or 0

implies whether user 𝑢 has interacted with item 𝑖 or not, we can
set 𝒙0 = 𝒙𝑢 as the initial state1 and parameterize the transition by

𝑞(𝒙𝑡 |𝒙𝑡−1) = N(𝒙𝑡 ;
√
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡 𝑰), (2)

where 𝛽𝑡 ∈ (0, 1) controls the Gaussian noise scales added at each
step 𝑡 .Thanks to the reparameterization trick [10] and the additivity
of two independent Gaussian noises [10, 23], we can directly obtain
𝒙𝑡 from 𝒙0. Formally,

𝑞(𝒙𝑡 |𝒙0) = N(𝒙𝑡 ;
√
𝛼𝑡𝒙0, (1 − 𝛼𝑡)𝑰), (3)

where 𝛼𝑡 = 1−𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑡 ′=1 𝛼𝑡 ′ , and then we can reparameterize
𝒙𝑡 =

√
𝛼𝑡𝒙0 +

√
1 − 𝛼𝑡𝝐 with 𝝐 ∼ N(0, 𝑰). To regulate the added

noises in 𝒙1:𝑇 , we design a linear noise schedule for 1 − 𝛼𝑡 , i.e.,

1 − 𝛼𝑡 = 𝑠 ·
[
𝛼min +

𝑡 − 1
𝑇 − 1

(𝛼max − 𝛼min)
]
, 𝑡 ∈ {1, . . . ,𝑇 }, (4)

where a hyper-parameter 𝑠 ∈ [0, 1] controls the noise scales, and
two hyper-parameters 𝛼min < 𝛼max ∈ (0, 1) indicating the upper
and lower bounds of the added noises.
1For notation brevity, we omit the subscript 𝑢 in 𝒙0 for user 𝑢.

• Reverse process. Starting from 𝒙𝑇 , the reverse process gradu-
ally recovers users’ interactions by the denoising transition step:

𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) = N(𝒙𝑡−1; 𝝁𝜃 (𝒙𝑡 , 𝑡), 𝚺𝜃 (𝒙𝑡 , 𝑡)), (5)
where 𝝁𝜃 (𝒙𝑡 , 𝑡) and 𝚺𝜃 (𝒙𝑡 , 𝑡) are the Gaussian parameters out-
putted by any neural networks with learnable parameters 𝜃 .

3.2 DiffRec Training
To learn 𝜃 , DiffRec aims to maximize the ELBO of observed user
interactions 𝒙0:
log𝑝 (𝒙0) ≥ E𝑞 (𝒙1 |𝒙0) [log𝑝𝜃 (𝒙0 |𝒙1)]︸ ︷︷ ︸

(reconstruction term)

− ∑𝑇
𝑡=2 E𝑞 (𝒙𝑡 |𝒙0) [𝐷KL (𝑞 (𝒙𝑡−1 |𝒙𝑡 , 𝒙0) ∥ 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡))]︸ ︷︷ ︸

(denoising matching term)

.
(6)

Note that the prior matching term in Eq. (1) is omitted as it is a
constant. Besides, the reconstruction term measures the recovery
probability of 𝒙0 while denoising matching terms regulate the
recovery of 𝒙𝑡−1 with 𝑡 varying from 2 to𝑇 in the reverse process.
So far, the optimization lies in maximizing the reconstruction term
and denoising matching terms.
• Estimation of denoising matching terms. The denoising
matching term forces 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) to approximate the tractable
distribution𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) via KL divergence.Through Bayes rules,
𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) can be rewritten as the following closed form [23]:

𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) ∝ N (𝒙𝑡−1; �̃� (𝒙𝑡 , 𝒙0, 𝑡), 𝜎2 (𝑡)𝑰), where (7)
�̃� (𝒙𝑡 , 𝒙0, 𝑡) =

√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝒙𝑡 +

√
𝛼𝑡−1 (1 − 𝛼𝑡)

1 − 𝛼𝑡
𝒙0,

𝜎2 (𝑡) = (1 − 𝛼𝑡) (1 − 𝛼𝑡−1)
1 − 𝛼𝑡

.

(8)

�̃� (𝒙𝑡 , 𝒙0, 𝑡) and𝜎2 (𝑡)𝑰 are themean and covariance of𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0)
derived from Eq. (2) and Eq. (3) [10]. Besides, to keep training
stability and simplify the calculation, we ignore the learning of
𝚺𝜃 (𝒙𝑡 , 𝑡) in 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) and directly set 𝚺𝜃 (𝒙𝑡 , 𝑡) = 𝜎2 (𝑡)𝑰 by
following [10]. Thereafter, the denoising matching term L𝑡 at step
𝑡 can be calculated by

L𝑡 ≜ E𝑞 (𝒙𝑡 |𝒙0) [𝐷KL (𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) ∥ 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡))]

= E𝑞 (𝒙𝑡 |𝒙0)

[
1

2𝜎2 (𝑡)
[
∥ 𝝁𝜃 (𝒙𝑡 , 𝑡) − �̃� (𝒙𝑡 , 𝒙0, 𝑡) ∥22

]]
,

(9)

which pushes 𝝁𝜃 (𝒙𝑡 , 𝑡) to be close to �̃� (𝒙𝑡 , 𝒙0, 𝑡). Following Eq. (8),
we can similarly factorize 𝝁𝜃 (𝒙𝑡 , 𝑡) via

𝝁𝜃 (𝒙𝑡 , 𝑡) =
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝒙𝑡 +

√
𝛼𝑡−1 (1 − 𝛼𝑡)

1 − 𝛼𝑡
�̂�𝜃 (𝒙𝑡 , 𝑡), (10)

where �̂�𝜃 (𝒙𝑡 , 𝑡) is the predicted 𝒙0 based on 𝒙𝑡 and 𝑡 . Furthermore,
by substituting Eq. (10) and Eq. (8) into Eq. (9), we have

L𝑡 = E𝑞 (𝒙𝑡 |𝒙0)

[
1
2

(
𝛼𝑡−1

1 − 𝛼𝑡−1
− 𝛼𝑡

1 − 𝛼𝑡

)
∥ �̂�𝜃 (𝒙𝑡 , 𝑡) − 𝒙0 ∥22

]
, (11)

which regulates �̂�𝜃 (𝒙𝑡 , 𝑡) to predict 𝒙0 accurately.
To summarize, for estimating denoising matching terms, we

need to implement �̂�𝜃 (𝒙𝑡 , 𝑡) by neural networks and calculate Eq.
(11). FollowingMultiVAE [19], we also instantiate �̂�𝜃 (·) via aMulti-
Layer Perceptron (MLP) that takes 𝒙𝑡 and the step embedding of 𝑡
as inputs to predict 𝒙0.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wenjie Wang et al.

Algorithm 1 DiffRec Training

Input: all users’ interactions �̄� and randomly initialized 𝜃 .
1: repeat
2: Sample a batch of users’ interactions 𝑿 ⊂ �̄� .
3: for all 𝒙0 ∈ 𝑿 do
4: Sample 𝑡 ∼ U(1,𝑇) or 𝑡 ∼ 𝑝𝑡 , 𝝐 ∼ N(0, 𝑰);
5: Compute 𝒙𝑡 given 𝒙0, 𝑡 , and 𝝐 via 𝑞(𝒙𝑡 |𝒙0) in Eq. (3);
6: Compute L𝑡 by Eq. (11) if 𝑡 > 1, otherwise by Eq. (12);
7: Take gradient descent step on ∇𝜃L𝑡 to optimize 𝜃 ;
8: until converged

Output: optimized 𝜃 .

• Estimation of the reconstruction term. We define L1 as the
negative of the reconstruction term in Eq. (6), and calculate L1 by

L1 ≜ −E𝑞 (𝒙1 |𝒙0) [log 𝑝𝜃 (𝒙0 |𝒙1)]
= E𝑞 (𝒙1 |𝒙0)

[
∥ �̂�𝜃 (𝒙1, 1) − 𝒙0 ∥22

]
,

(12)

where we estimate the Gaussian log-likelihood log𝑝 (𝒙0 |𝒙1) by
unweighted −||�̂�𝜃 (𝒙1, 1) − 𝒙0 | |22 as discussed in [19].
• Optimization. According to Eq. (11) and Eq. (12), ELBO in Eq.
(6) can be formulated as −L1 −

∑𝑇
𝑡=2 L𝑡 . Therefore, to maximize

the ELBO, we can optimize 𝜃 in �̂�𝜃 (𝒙𝑡 , 𝑡) by minimizing
∑𝑇
𝑡=1 L𝑡 .

In the practical implementation, we uniformly sample step 𝑡 to
optimize an expectation L(𝒙0, 𝜃) over 𝑡 ∼ U(1,𝑇). Formally,

L(𝒙0, 𝜃) = E𝑡∼U(1,𝑇)L𝑡 . (13)

The training procedure of DiffRec is presented in Algorithm 1.
• Importance sampling. Since the optimization difficulty might
vary across different steps. we consider using importance sam-
pling [25] to emphasize the learning over the steps with large loss
values of L𝑡 . Formally, we use a new sampling strategy for 𝑡 :

L△ (𝒙0, 𝜃) = E𝑡∼𝑝𝑡
[
L𝑡

𝑝𝑡

]
, (14)

where 𝑝𝑡 ∝
√
E
[
L2
𝑡

]
/
√∑𝑇

𝑡 ′=1 E
[
L2
𝑡 ′
]
denotes the sampling prob-

ability and
∑𝑇
𝑡=1 𝑝𝑡 = 1. We here calculate E

[
L2
𝑡

]
by collecting ten

L𝑡 values during training and taking the average. Before acquiring
enough L𝑡 , we still adopt the uniform sampling. Intuitively, the
steps with large L𝑡 values will be more easily sampled.

3.3 DiffRec Inference
In image synthesis tasks, DMs draw random Gaussian noises for
reverse generation, possibly guided by the gradients from a pre-
trained classifier or other signals such as textual queries. However,
corrupting interactions into pure noises will hurt personalized
user preference in recommendation (see empirical evidence in
Section 4.2.3). It is also non-trivial to design additional classifiers or
guidance signals. As such, we propose a simple inference strategy
to align with DiffRec training for interaction prediction.

Specifically, DiffRec firstly corrupts 𝒙0 by 𝒙0 → 𝒙1 → · · · →
𝒙𝑇 ′ for 𝑇 ′ steps in the forward process, and then sets �̂�𝑇 = 𝒙𝑇 ′ to
execute reverse denoising �̂�𝑇 → �̂�𝑇−1 → · · · → �̂�0 for 𝑇 steps.
The reverse denoising ignores the variance (like in MultiVAE [19])
and utilize �̂�𝑡−1 = 𝝁𝜃 (�̂�𝑡 , 𝑡) via Eq. (10) for deterministic inference.
In particular, in considering 1) the collected user interactions are

Algorithm 2 DiffRec Inference
Input: 𝜃 and the interaction history 𝒙0 of user 𝑢.
1: Sample 𝝐 ∼ N(0, 𝑰).
2: Compute 𝒙𝑇 ′ given 𝒙0, 𝑇 ′, and 𝝐 via Eq. (3), and set �̂�𝑇 = 𝒙𝑇 ′ .
3: for 𝑡 = 𝑇, . . . , 1 do
4: �̂�𝑡−1 = 𝝁𝜃 (�̂�𝑡 , 𝑡) calculated from �̂�𝑡 and �̂�𝜃 (·) via Eq. (10);

Output: the interaction probabilities �̂�0 for user 𝑢.

naturally noisy due to false-positive and false-negative interac-
tions [38, 39, 41] and 2) retaining personalized information, we
reduce the added noises in the forward process by setting 𝑇 ′ < 𝑇 .
Finally, we use �̂�0 for item ranking and recommend top-ranked
items. The inference procedure is summarized in Algorithm 2.

3.4 Discussion
Unlike image synthesis, we highlight two special points of DiffRec.
• Personalized recommendation. 1) During training, we do not

corrupt users’ interactions into pure noises for retaining some
personalized information; that is, the latent variable 𝒙𝑇 does
not approach the standard Gaussian noises that lose extensive
personalized characteristics. It is similar to the selection of 𝛽 in
MultiVAE to control the strength of the prior constraint, i.e., the
KL divergence (see Section 2.2.2 in [19]). In practice, We reduce 𝑠
and𝛼max in the noise schedule of Eq. (4) to lessen the noises. And
2) we also decrease the added noises for inference by controlling
𝑇 ′ < 𝑇 by considering the natural noises in user interactions.

• 𝒙0-ELBO.DiffRec is optimized by predicting 𝒙0 instead of 𝝐 like
in Section 2 because: 1) the key objective of recommendation is
to predict �̂�0 for item ranking, and thus 𝒙0-ELBO is intuitively
more appropriate for our task; and 2) randomly sampled 𝝐 ∼
N(0, 𝑰) is unsteady and forcing an MLP to estimate such a 𝝐 is
more challenging (see empirical analysis in Section 4.2.3).

3.5 Latent Diffusion
Generative models, such as MultiVAE and DiffRec, predict the
interaction probabilities �̂�0 over all items simultaneously, requir-
ing extensive resources and limiting large-scale item prediction in
industry. To reduce the costs, we offer L-DiffRec, which clusters
items for dimension compression via multiple VAEs and conducts
diffusion processes in the latent space as shown in Figure 3.
•Encoding for compression.Given an item setI, L-DiffRec first
adopts k-means to cluster items into 𝐶 categories {I1,I2, . . . ,I𝐶 }
based on item representations (e.g., trained item embeddings from
LightGCN). L-DiffRec then divides user interaction vector 𝒙0 into
𝐶 parts according to the clusters, i.e., 𝒙0 → {𝒙𝑐0}

𝐶
𝑐=1, where 𝒙𝑐0

represents the interactions of user 𝑢 over I𝑐 . Afterwards, we use
a variational encoder parameterized by 𝜙𝑐 to compress each 𝒙𝑐0 to
a low-dimensional vector 𝒛𝑐0, where the encoder predicts 𝝁𝜙𝑐

and
𝜎2
𝜙𝑐
𝑰 as the mean and covariance of the variational distribution

𝑞𝜙𝑐
(𝒛𝑐0 |𝒙

𝑐
0) = N(𝒛𝑐0; 𝝁𝜙𝑐

(𝒙𝑐0), 𝜎
2
𝜙𝑐
(𝒙𝑐0)𝑰). The clustering can lessen

resource costs since it can 1) achieve parallel calculation of differ-
ent categories and 2) break the full connections among themultiple
encoders to save parameters compared to vanilla VAE [19].
• Latent diffusion. By concatenating {𝒛𝑐0}

𝐶
𝑐=1, we can obtain the

compressed 𝒛0 for diffusion. Like DiffRec training, we replace 𝒙0

Diffusion Recommender Model SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

D1

D3
True-negative itemTrue-positive item

False-negative itemFalse-positive item

D2… …
Forward Reverse

Latent DiffusionE1

E2

E3

��

��

��
��

��

��

�

�

�� ��

�� ����

E1, E2, E3: encoders D1, D2, D3: decoders

Figure 3: Illustration of L-DiffRec. 𝒛0 = 𝝁 + 𝝈 ⊙ 𝝐 , where
𝝐 ∼ N(0, 𝑰). L-DiffRec clusters items for compression via
multiple VAEs and conducts latent diffusion.

with 𝒛0 to do the forward and reverse processes in the latent space.
Similar to Eq. (13), we have the optimization loss as L(𝒛0, 𝜃) =
E𝑡∼U(1,𝑇)L𝑡 , where 𝜃 marks the parameters of the denoisingMLP.
• Decoding. As shown in Figure 3, we split the reconstructed �̂�0
from the reverse process into {�̂�𝑐0}

𝐶
𝑐=1 according to item clusters.

Each �̂�𝑐0 is then fed into a separate decoder parameterized by𝜓𝑐 to
predict �̂�0 via 𝑝𝜓𝑐

(�̂�𝑐0 |�̂�
𝑐
0), which is similar to MultiVAE [19].

• Training. Intuitively, the encoder 𝑞𝜙𝑐
and decoder 𝑝𝜓𝑐

jointly
constitute a VAE that bridges the interaction space and the latent
space. Following MultiVAE [19], the set of VAEs with 𝜙 = {𝜙𝑐 }𝐶𝑐=1
and𝜓 = {𝜓𝑐 }𝐶𝑐=1 could optimized by:

L𝑣 (𝒙0, 𝜙,𝜓) =
𝐶∑
𝑐=1

[E𝑞𝜙𝑐 (𝒛𝑐0 |𝒙
𝑐
0)

[
log𝑝𝜓𝑐 (𝒙𝑐0 |𝒛𝑐0)

]
− 𝛾 · 𝐷KL (𝑞𝜙𝑐 (𝒛𝑐0 |𝒙𝑐0) | |𝑝 (𝒛𝑐0))],

(15)

where 𝛾 is to control the strength of KL regularization. Sub-
sequently, combining the loss of diffusion and VAEs, we have
L𝑣 (𝒙0, 𝜙,𝜓) + 𝜆 · L(𝒛0, 𝜃) for L-DiffRec optimization, where the
hyper-parameter 𝜆 ensures the two terms in the same magnitude.
• Inference. For inference, L-DiffRec first splits 𝒙0 into {𝒙𝑐0}

𝐶
𝑐=1,

and then compresses each 𝒙𝑐0 into a deterministic variable 𝒛𝑐0 =
𝝁𝜙𝑐

(𝒙𝑐0) without considering variance [19]. After that, L-DiffRec
concatenates {𝒛𝑐0}

𝐶
𝑐=1 into 𝒛0 for diffusion like DiffRec. Finally, by

feeding the reconstructed �̂�0 into the decoders, we will obtain �̂�0
for item ranking and generate top-𝐾 recommendations.

3.6 Temporal Diffusion
Since user preference might shift over time, it is crucial to cap-
ture temporal information during DiffRec learning. Assuming that
more recent interactions can better represent users’ current pref-
erences, we propose a time-aware reweighting strategy to assign
larger weights to users’ later interactions.

Formally, for user 𝑢 with 𝑀 interacted items, the interaction
time is available and the interaction sequence is formulated as S =
{𝑖1, 𝑖2, . . . , 𝑖𝑀 }, where 𝑖𝑚 denotes the ID of the𝑚-th interacted item.
We define the weights of interacted items𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑀] via
a time-aware linear schedule2:𝑤𝑚 = 𝑤min +

𝑚 − 1
𝑀 − 1

(𝑤max −𝑤min),
where the two hyper-parameters 𝑤min < 𝑤max ∈ (0, 1] represent
the lower and upper bounds of interaction weights. Thereafter, the
interaction history 𝒙0 of user𝑢 is reweighted as 𝒙0 = 𝒙0⊙�̄� , where

2We use a linear schedule instead of the exponential scaling to simplify the reweight-
ing strategy and save hyper-parameters, leaving more options to future work.

Table 1: Statistics of three datasets under two different set-
tings, where “C” and “N” represent clean training and natu-
ral noise training, respectively. “Int.” denotes interactions.

#User #Item (C) #Int. (C) #Item (N) #Int. (N)
Amazon-book 108,822 94,949 3,146,256 178,181 3,145,223
Yelp 54,574 34,395 1,402,736 77,405 1,471,675
ML-1M 5,949 2,810 571,531 3,494 618,297

�̄� ∈ R | I | is the weight vector calculated by𝒘 , i.e.,

�̄� [𝑖] =
{
𝒘 [Idx(𝑖)], if 𝑖 ∈ S
0, else

(16)

where Idx(𝑖) denotes the index of item 𝑖 in the interaction sequence
S of user 𝑢. By feeding the reweighted interaction history 𝒙0 into
DiffRec and L-DiffRec, we will obtain T-DiffRec and LT-DiffRec
using temporal information, respectively.

4 EXPERIMENTS
In this section, we conduct extensive experiments on three real-
world datasets to answer the following research questions:
• RQ1: How does our DiffRec perform compared to the baselines

under various experimental settings and how do the designs of
DiffRec (e.g., importance sampling, the inference step𝑇 ′, and the
reduced noise scales) affect the performance?

• RQ2: How does L-DiffRec perform regarding the recommenda-
tion accuracy and resource costs?

• RQ3: Can T-DiffRec surpass sequential recommender models
when interaction timestamps are available for training?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three publicly avail-
able datasets in different scenarios. 1) Amazon-book3 is from
the Amazon review datasets, which covers rich user interactions
with extensive books. 2) Yelp4 is a representative business dataset
containing user reviews for different restaurants. 3) ML-1M5 is a
popular benchmark dataset with user ratings on movies.

For all datasets, we first sort all interactions chronologically
according to the timestamps. Thereafter, we consider three dif-
ferent training settings as follows. 1) Clean training discards
user interactions with ratings < 4, and then splits the sorted
interactions into training, validation, and testing sets with the ratio
of 7:1:2. 2) Noisy training keeps the same testing set of clean
training, but adds some noisy interactions, including natural noises
(i.e., the interactions with ratings < 4) and randomly sampled
interactions into the training and validation sets. Note that we
keep the numbers of noisy training and validation interactions on
a similar scale as clean training for a fair comparison. 3)Temporal
training: to evaluate the effectiveness of temporal modeling, we
additionally consider using timestamps for training, i.e., modeling
the user interaction sequences like sequential recommender mod-
els. The testing set is also the same as clean and noisy training for
a fair comparison. The dataset statistics are summarized in Table 1.

3https://jmcauley.ucsd.edu/data/amazon/.
4https://www.yelp.com/dataset/.
5https://grouplens.org/datasets/movielens/1m/.

https://jmcauley.ucsd.edu/data/amazon/.
https://www.yelp.com/dataset/.
https://grouplens.org/datasets/movielens/1m/.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wenjie Wang et al.

Table 2: Overall performance comparison between the baselines and DiffRec under clean training on three datasets. The best
results are highlighted in bold and the second-best results are underlined. % Improve. represents the relative improvements of
DiffRec over the best baseline results. ∗ implies the improvements over the best baseline are statistically significant (𝑝-value
< 0.05) under one-sample t-tests.

Amazon-book Yelp ML-1M
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
MF 0.0437 0.0689 0.0264 0.0339 0.0341 0.0560 0.0210 0.0276 0.0876 0.1503 0.0749 0.0966
LightGCN 0.0534 0.0822 0.0325 0.0411 0.0540 0.0904 0.0325 0.0436 0.0987 0.1707 0.0833 0.1083
CDAE 0.0538 0.0737 0.0361 0.0422 0.0444 0.0703 0.0280 0.0360 0.0991 0.1705 0.0829 0.1078
MultiDAE 0.0571 0.0855 0.0357 0.0442 0.0522 0.0864 0.0316 0.0419 0.0995 0.1753 0.0803 0.1067
MultiDAE++ 0.0580 0.0864 0.0363 0.0448 0.0544 0.0909 0.0328 0.0438 0.1009 0.1771 0.0815 0.1079
MultiVAE 0.0628 0.0935 0.0393 0.0485 0.0567 0.0945 0.0344 0.0458 0.1007 0.1726 0.0825 0.1076
CODIGEM6 0.0300 0.0478 0.0192 0.0245 0.0470 0.0775 0.0292 0.0385 0.0972 0.1699 0.0837 0.1087
DiffRec 0.0695* 0.1010* 0.0451* 0.0547* 0.0581* 0.0960* 0.0363* 0.0478* 0.1058* 0.1787* 0.0901* 0.1148*
% Improve. 10.67% 8.02% 14.76% 12.78% 2.47% 1.59% 5.52% 4.37% 4.86% 0.90% 9.21% 6.69%

4.1.2 Baselines. WecompareDiffRecwith competitive baselines,
including generative methods, and non-generative methods.
• MF [30] is one of the most representative collaborative filtering

methods based on matrix factorization.
• LightGCN [7] learns user and item representations via the lin-

ear neighborhood aggregation on graph convolution networks.
• CDAE [47] trains an Auto-Encoder (AE) to recover the original

user interactions from the randomly corrupted interactions.
• MultiDAE [19] uses dropout to corrupt the interactions and

recover them via an AE with the multinomial likelihood.
• MultiDAE++ is designed by us by adding noises to corrupt in-

teractions similar to DiffRec and training a MultiDAE to recover
clean interactions in a single decoding step. The added noises
in MultiDAE++ are the same as DiffRec while DiffRec learns to
denoise little by little in the reverse process.

• MultiVAE [19] utilizes VAEs to model the interaction genera-
tion process, where the posterior is approximated by an encoder.

• CODIGEM [36] is a generative model using the diffusion pro-
cess, which adopts multiple AEs to model the reverse generation
yet only utilizes the first AE for interaction prediction.

Evaluation. We follow the full-ranking protocol [7] by ranking
all the non-interacted items for each user. For performance com-
parison, we adopt two widely used metrics Recall@𝐾 (R@𝐾) and
NDCG@𝐾 (N@𝐾) over the top-𝐾 items, where 𝐾 is set as 10 or 20.

4.1.3 Hyper-parameters Settings. We select the best hyper-
parameters according to Recall@20 on the validation set. We tune
the learning rates of all models in {1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2}. As to
model-specific hyper-parameters, the search scopes are as follows.

- MF & LightGCN. The dropout ratio is selected from {0.1, 0.2,
0.3, 0.4, 0.5}. The weight decay is chosen from {1𝑒−6, 1𝑒−5, 1𝑒−4}
and the number of propagation layers is searched in {1, 2, 3}.

- CDAE & MultiDAE & MultiDAE++ & MultVAE. We tune the
weight decay and dropout ratio in the scopes of {0, 1𝑒−3, 1𝑒−1}
and {0.1, 0.3, 0.5}, respectively. Besides, we choose the activation
function of CDAE from {sigmoid, relu, tanh}. As to MultVAE, the
regularization strength 𝛽 and the annealing step are searched
in {0, 0.3, 0.5, 0.7} and {0, 200, 500}, respectively. The noises for

6The results on ML-1M differ from those reported in [36], owing to different data
processing procedures. [36] did not sort and split the training/testing sets according
to timestamps; however, temporal splitting aligns better with the real-world testing.

MultiDAE++ are fixed consistently with DiffRec. The hidden size
is set to the default value of [200, 600].

- CODIGEM. The diffusion step is chosen from {2, 5, 10, 40, 50,
100} and the noise 𝛽 at each step is tuned in range of {5𝑒−5, 1𝑒−4,
5𝑒−4}. The hidden sizes of the multiple five-layer AEs are set to the
default value of 200.

- DiffRec & L-DiffRec & T-DiffRec. The step embedding size is
fixed at 10.We choose the hidden size of theMLP of 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡) in
{[300], [200, 600], [1000]}. The diffusion step 𝑇 and the inference
step𝑇 ′ are tuned in {2, 5, 10, 40, 50, 100} and {0, 𝑇4 ,

𝑇
2 }, respectively.

Besides, the noise scale 𝑠 , the noise lower bound 𝛼min, the noise
upper bound 𝛼max are searched in {0, 1𝑒−5, 1𝑒−4, 5𝑒−3, 1𝑒−2, 1𝑒−1},
{5𝑒−4, 1𝑒−3, 5𝑒−3}, and {5𝑒−3, 1𝑒−2}, respectively. As to L-DiffRec,
the dimension of 𝒛0 is set to 300 and the category number𝐶 is cho-
sen from {1, 2, 3, 4, 5}. For T-DiffRec,𝑤min is tuned in {0.1, 0.3, 0.5}
and𝑤max is set to 1. More details are in our released code.

All experiments are done using a single Tesla-V100 GPU, except
for ACVAE in Table 7 using A40 due to high computing costs.

4.2 Analysis of DiffRec (RQ1)
4.2.1 Clean Training. We first present the comparison between
DiffRec and the baselines under clean trainingwithout using times-
tamps in Table 2, from which we have the following observations.

• Most generative methods (i.e., MultiVAE, MultiDAE, Multi-
DAE++, CDAE) usually yield better performance than MF and
LightGCN. These superior results are possibly attributed to
the alignment between the generative modeling and the real-
world interaction generation procedure. Among all generative
methods, MultiVAE reveals impressive performance, especially
on Amazon-book and Yelp. This is because it utilizes variational
inference and multinomial likelihood [19], leading to stronger
generation modeling.

• In all cases, our revised MultiDAE++ consistently outperforms
MultiDAE. This implies the effectiveness of denoising training
on enhancing the representation abilities of generative models.
Besides, CODIGEM performs worse compared to LightGCN and
other generative methods.This is fair because although multiple
AEs are trained to model the forward and reverse processes,
CODIGEM only uses the first AE for inference, and thus it is
essentially learning a MultiDAE with the noises at a small scale.

Diffusion Recommender Model SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 3: Performance comparison between DiffRec, the best generative baseline (MultiVAE), and the best non-generative
baseline (LightGCN) under noisy training with natural noises.

Amazon-book Yelp ML-1M
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

LightGCN 0.0400 0.0659 0.0231 0.0308 0.0466 0.0803 0.0278 0.0379 0.0648 0.1226 0.0470 0.0679
MultiVAE 0.0536 0.0820 0.0316 0.0401 0.0494 0.0834 0.0293 0.0396 0.0653 0.1247 0.0469 0.0680
DiffRec 0.0546 0.0822 0.0335 0.0419 0.0507 0.0853 0.0309 0.0414 0.0658 0.1236 0.0488 0.0703

0.02

0.05

0.08

10% 20% 30% 40% 50%

DiffRec
MultiVAE
LightGCN

(a)

(Recall@20)

0.01

0.03

0.05

10% 20% 30% 40% 50%

DiffRec
MultiVAE
LightGCN

(b)

(NDCG@20)

Figure 4: Performance comparison of noisy training with
random noises on Amazon-book.

The inferior performance of CODIGEM than MultiVAE is also
consistent with the results in Table 2 of [36].

• DiffRec significantly achieves superior performance on three
datasets. The large improvements over VAE-based methods vali-
date the superiority of applying DMs for recommender systems.
Such improvements result from that 1) DiffRec is capable of
modeling complex distributions via gradually learning each
denoising transition step from 𝑡 to 𝑡 − 1 with shared neural
networks [31]; 2) DiffRec utilizes simple forward corruption for
tractable posterior distribution, alleviating the intrinsic trade-off
between the tractability and representation ability of VAE-based
methods; and 3) notably, the scheduled noises for corruption in
Eq. (4) ensure personalized preference modeling (cf. Section 3.4).

4.2.2 Noisy Training. In real-world recommender systems, col-
lected user interactions in implicit feedback naturally contain false-
positive and false-negative items. To analyze the performance of
DiffRec on learning from noisy interactions, we compare DiffRec
with the best non-generative method LightGCN and the best
generative method MultiVAE under two noisy settings: 1) natural
noises, where we randomly add some false-positive interactions
with ratings < 4 as positive ones to the training and validation sets
(see Section 4.1.1); and 2) random noises, where we randomly
add a proportion of non-interacted items as positive interactions
for each user. We summarize the performance of natural noises in
Table 3 and the results of random noises with the noise proportion
ranging from 10% to 50% in Figure 4. In Figure 4, we only show
the results on Amazon-book to save space as we have similar
observations on Yelp and ML-1M.

From Table 3, we can observe that DiffRec usually surpasses
MultiVAE and LightGCN, verifying the strong robustness of
DiffRec against natural noises. This is reasonable since such false-
positive interactions are essentially corrupted interactions and
DiffRec is intrinsically optimized to recover clean interactions iter-
atively from the corruption. By contrast, LightGCN is vulnerable
to noisy interactions because it might amplify the negative effect
of noises by emphasizing high-order propagation, thus leading to
poor performance. In addition, the comparable results on ML-1M
are because this dense dataset is relatively easier for prediction.

0.054

0.0546

0.0552

0.098

0.1

0.102
Recall@20
NDCG@20

(Recall@20) (NDCG@20)

(a)

0.102

0.100

0.098

0.0552

0.0546

0.054
𝓛(#)𝓛△(#)

0.054

0.0544

0.0548

0.098

0.0997

0.1014
Recall@20
NDCG@20

(Recall@20) (NDCG@20)

T'=0 T'=T/4 T'=T/2 T'=T
(b)

0.0141

0.0997

0.098

0.0548

0.0544

0.054

Figure 5: Effects of L△ (·), L(·), and 𝑇 ′, where L△ (·) and
L(·) mean importance sampling in Eq. (14) and uniform
sampling in Eq. (13), respectively. 𝑇 ′ is the inference step.

0.04

0.045

0.05

0.055

0.08

0.089

0.098

0.107

Recall@20
NDCG@20

𝒔

(Recall@20) (NDCG@20)

𝟏𝒆!𝟓 𝟏𝒆!𝟒 𝟓𝒆!𝟑 𝟏𝒆!𝟐 𝟏𝒆!𝟏0
0.05

0.052

0.054

0.056

0.095

0.099

0.103

0.107

2 5 10 50 100

Recall@20
NDCG@20

𝑻

(Recall@20) (NDCG@20)

Figure 6: Effects of the noise scale 𝑠 and diffusion step 𝑇 .

From the results in Figure 4, we can find: 1) from adding 10%
to 50% random noises, the performance of LightGCN, MultiVAE,
and DiffRec gradually declines. This observation makes sense
because it is harder to predict user preference as noises increase.
Nevertheless, 2) DiffRec still outperformsMultiVAE and LightGCN
even under a large scale of noises. The reason is that DiffRec is
trained under different noise scales at each step, facilitating the
recovery of real interactions from heavily corrupted interactions.

4.2.3 In-depth Analysis. We further explore the effects of dif-
ferent designs in DiffRec such as importance sampling, 𝒙0-ELBO,
inference step 𝑇 ′, and noise scales. The results on Amazon-book
are reported in Figure 5 while the results on Yelp and ML-1M with
similar observations are omitted to save space.
• Importance sampling. We compare the performance between
importance sampling (L△ (·) in Eq. (14)) and uniform sampling
(L(·) in Eq. (13)) in Figure 5(a). The declined performance of L(·)
validates the effectiveness of importance sampling, which assigns
large sampling probabilities to the large-loss steps and thus focuses
on “hard” denoising steps for optimization.
• Effect of inference step 𝑇 ′. We vary 𝑇 ′ from 0 to 𝑇 during
inference and show the results in Figure 5(b), from which we can
find that using𝑇 ′ = 0 achieves better performance. It makes sense
because collected interactions from real-world data naturally con-
tain noises, and too much corruption might hurt personalization.
In addition, the results are comparable when𝑇 ′ changes from𝑇 /4

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wenjie Wang et al.

Table 4: Performance comparison between L-DiffRec and DiffRec under natural noise training on three datasets.
Amazon-book Yelp ML-1M

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
DiffRec 0.0546 0.0822 0.0335 0.0419 0.0507 0.0853 0.0309 0.0414 0.0658 0.1236 0.0488 0.0703
L-DiffRec6660.0586+7.3%6660.0876+6.6%6660.0347+3.6%6660.0434+3.6%6660.0521+2.8%6660.0876+2.7%6660.0311+0.7%6660.0419+1.2%6660.0665+1.1%6660.1272+2.9%6660.0493+1.0%6660.0710+1.0%

Table 5: Performance of 𝝐-ELBO on ML-1M.
Variants R@10 R@20 N@10 N@20
DiffRec (𝒙0-ELBO) 0.1058 0.1787 0.0901 0.1148
𝝐-ELBO 0.0157 0.0266 0.0170 0.0204

to𝑇 , possibly because the scheduled noise scale is relatively small,
leading to minor changes in the ranking positions of top-𝐾 items.
• Effects of noise scale 𝑠 and step 𝑇 . In DiffRec, there are two
important hyper-parameters: diffusion step𝑇 and noise scale 𝑠 . To
analyze their effect, we vary 𝑠 at different scales and change𝑇 from
2 to 100, respectively. From the results in Figure 6, we can observe
that: 1) as the noise scale increases, the performance first rises com-
pared to training without noise (𝑠 = 0), verifying the effectiveness
of denoising training. However, enlarging noise scales degrades
the performance due to corrupting the personalization. Hence, we
should carefully choose a relatively small noise scale (e.g., 1𝑒−4)
as discussed in Section 3.4. And 2) the performance fluctuation
w.r.t.𝑇 indicates that increasing diffusion steps has little effects on
accuracy due to the relatively small noises in the forward process.
Considering𝑇 being too large will cause high computing burdens,
we choose 𝑇 = 5 for good performance as well as low costs.
• 𝒙0-ELBO vs. 𝝐-ELBO. The comparison between predicting 𝒙0
and 𝝐 (𝝐-ELBO, introduced in Section 3.4) on ML-1M is in Table 5.
The results of 𝝐-ELBO on Amazon-book and Yelp are close to zero
due to severer data sparsity, and thus are omitted to save space. We
attribute the worse results of 𝝐-ELBO to the difficulty of predicting
randomly sampled noises via an MLP. Besides, the reduced noise
scales 𝑠 may also enhance the prediction difficulty because the
noises of different steps are becoming small withminor differences.
We leave the further theoretical analysis to future work.

4.3 Analysis of L-DiffRec (RQ2)
To analyze L-DiffRec performance w.r.t. accuracy and resource
costs, we evaluate L-DiffRec on three datasets under clean and
noisy training. Moreover, we examine the effect of clustering
category numbers to facilitate the future application of L-DiffRec.

4.3.1 Clean Training. From Table 6, we can find that L-DiffRec
significantly outperforms MultiVAE with fewer resource costs
(38.39% parameters and 10.61% GPU memory reduced on average),
justifying the superiority of L-DiffRec. Meanwhile, it drastically
lowers the costs of DiffRecwith comparable accuracy, i.e., reducing
56.17% parameters and 24.64% GPU usage on average. The com-
parable accuracy might be attributed to that the diffusion in the
interaction space has redundant information and the dimension
compression via clustering does not lose key information. The
remarkable decline of resources is due to that 1) item clustering
reduces the parameters of the encoder and decoder; 2) the latent
diffusion lessens the parameters of the denoisingMLPwith 𝜃 . With
significantly fewer resource costs, L-DiffRec has the potential to
enable large-scale item prediction in industrial scenarios.

Table 6: Performance of L-DiffRec with 𝐶 = 2, DiffRec, and
MultiVAE under clean training. “par.” denotes parameters.
DatasetsMethod R@10↑R@20↑N@10↑N@20↑ #par.(M)↓GPU(MB)↓

Amazon
-book

MultiVAE 0.0628 0.0935 0.0393 0.0485 114 3,711
DiffRec 0.0695 0.1010 0.0451 0.0547 190 5,049
L-DiffRec 0.0694 0.1028 0.0440 0.0540 75 3,077

Yelp
MultiVAE 0.0567 0.0945 0.0344 0.0458 42 1,615
DiffRec 0.0581 0.0960 0.0363 0.0478 69 2,103
L-DiffRec 0.0585 0.0970 0.0353 0.0469 29 1,429

ML-1M
MultiVAE 0.1007 0.1726 0.0825 0.1076 4 497
DiffRec 0.1058 0.1787 0.0901 0.1148 4 495
L-DiffRec 0.1060 0.1809 0.0868 0.1122 2 481

4.3.2 Noisy Training. The resource costs of noisy training are
the same as clean training while we observe that L-DiffRec con-
sistently outperforms DiffRec under noisy training as shown in
Table 4. One possible reason is that some clustered categories have
few interactions, which are more likely to be false-positive inter-
actions. The effect of such noises is weakened after representation
compression via item clustering.

4.3.3 Effect of category number. To inspect the effect of cate-
gory number on L-DiffRec, we compare the results with clustering
category numbers changing from 1 to 5 on Amazon-book. We
omitted similar results on Yelp and ML-1M to save space. From
Figure 7, we can find that: 1) the Recall, NDCG, GPU usage, and
parameters decline as the category number𝐶 increases as shown in
Figure 7(a) and (b).This is reasonable since increasing𝐶 will reduce
the parameters, hurting the representation ability. 2) The resource
costs are substantially reduced compared to DiffRec and MultiVAE
even if clustering is disabled (𝐶 = 1). This is due to the significant
parameter reduction of the denoisingMLP via latent diffusion. And
3) L-DiffRec is comparable with DiffRec when 𝐶 = 1 or 2 while L-
DiffRec consistently outperformsMultiVAEwhen𝐶 = 1, 2, or 3. As
such, L-DiffRec can save extensive resources with comparable or
superior accuracy by carefully choosing 𝐶 .
4.4 Analysis of T-DiffRec (RQ3)
To verify the effectiveness of T-DiffRec on temporal modeling, we
compare T-DiffRec and LT-DiffRec with a SOTA sequential recom-
mender model ACVAE [48], which employs VAE with contrastive
learning and adversarial training for recommendation.

From Table 7, we have the following observations: 1) T-DiffRec
and LT-DiffRec perform better than DiffRec and L-DiffRec by a
large margin, justifying the effectiveness of the proposed time-
aware reweighting strategy on temporal modeling; 2) the superior
performance of T-DiffRec and LT-DiffRec than ACVAE is attrib-
uted to both capturing temporal shifts and conducting diffusion
processes, leading to more accurate and robust user representa-
tions; 3) despitemore parameters, DiffRec-basedmethods consume
much less GPU memory than ACVAE, thus reducing computing
costs; 4) it is highlighted that LT-DiffRec yields comparable per-
formance to T-DiffRec with fewer parameters, which is consis-
tent with observations in Section 4.3; and 5) the relatively small

Diffusion Recommender Model SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

0.075

0.085

0.095

0.105

0.115

1 2 3 4 5

DiffRec MultiVAE

(a) Effect of 𝑪w.r.t. Recall

(Recall@20)

0.03

0.04

0.05

0.06

1 2 3 4 5

DiffRec MultiVAE

(b) Effect of 𝑪w.r.t. NDCG

(NDCG@20)

0

2,300

4,600

6,900

1 2 3 4 5

DiffRec MultiVAE

(c) Effect of 𝑪 w.r.t. GPU usage

(GPU (MB))

0

80

160

240

1 2 3 4 5

DiffRec MultiVAE

(d) Effect of 𝑪w.r.t. parameters

(# par. (M))

Figure 7: Effects of the clustering category number of L-DiffRec on Amazon-book under clean training.

Table 7: Performance comparison between DiffRec variants and a SOTA sequential baseline ACVAE. The models are trained
using timestamps. The results on ML-1M are similar to Amazon-Book and omitted to save space. “par.” denotes parameters.

Amazon-book Yelp
R@10↑ R@20↑ N@10↑ N@20↑ #par. (M)↓ GPU (MB)↓ R@10↑ R@20↑ N@10↑ N@20↑ #par. (M)↓ GPU (MB)↓

ACVAE 0.0770 0.1107 0.0547 0.0647 13 37,711 0.0567 0.0947 0.0342 0.0456 5 14,697
DiffRec 0.0695 0.1010 0.0451 0.0547 190 5,049 0.0581 0.0960 0.0363 0.0478 69 2,107
T-DiffRec 0.0819 0.1139 0.0565 0.0661 190 5,049 0.0601 0.0987 0.0377 0.0494 69 2,107
L-DiffRec 0.0694 0.1028 0.0440 0.0540 75 3,077 0.0585 0.0970 0.0353 0.0469 29 1,429
LT-DiffRec 0.0838 0.1188 0.0560 0.0665 75 3,077 0.0604 0.0982 0.0369 0.0484 29 1,429

improvements of T-DiffRec over DiffRec on Yelp and the inferior
results of ACVAE than DiffRec on Yelp are because user preference
over food is relatively stable and the temporal shifts are limited. As
such, considering temporal information receives minor benefits.

5 RELATEDWORK
• Generative recommendation. Discriminative recommender
models [20, 43] usually predict user-item interaction probabilities
given the user and item representations. Although discriminative
methods are cost-friendly, generative models can better learn col-
laborative signals between items due to simultaneously modeling
the predictions over all items [28, 50]. Besides, generative models
are specialized to capture the complex and non-linear relations
between user preference and interactions as detailed in [16, 17,
33]. Existing generative recommender models can be roughly
divided into two groups: GAN-based methods [6, 49] and VAE-
based methods [21, 24]. GAN-based approaches utilize adversarial
training [8, 37, 42, 46] to optimize the generator for predicting
user interactions [3, 5, 13]. As to VAE-based methods [24, 51],
they mainly learn an encoder for posterior estimation [9, 29],
and a decoder to predict the interaction probabilities over all
items [40]. For example, the most representative MultiVAE [19]
achieves impressive performance by variational modeling.

Despite their success, DMs have shown great advantages over
GANs and VAEs such as low instability and high generation
quality in diverse tasks, including image synthesis [35], text gener-
ation [11], and audio generation [12]. As such, we consider revising
DMs for generative recommendation.
• Diffusion models. DMs recently have shown the capability of
high-quality generation [4, 26], covering conditional generation [2,
10, 22, 31] and unconditional generation [1, 15].

In spite of their success, utilizing DMs for recommendation
receives little scrutiny. CODIGEM [36] claims to generate recom-
mendation via DMs, which however is essentially a noise-based
MultiDAE method [19] with inferior performance (cf. Table 2
in [36]). Specifically, CODIGEM iteratively introduces noises step

by step and utilizes multiple different AEs for the prediction at
each step. During inference, it estimates the interaction probabil-
ities merely using the first AE, and thus the remaining AEs are
totally useless. As such, CODIGEM differs from our DiffRec that
employs a shared MLP for the multi-step prediction and considers
the multi-step denoising for inference. In addition, some studies on
social recommendation consider information diffusion on social
networks [44, 45]. However, they mainly focus on the influence
of social connections on user preference through diffusing pro-
cesses [27], which intrinsically differ from DiffRec.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed a novel DiffRec, which is a totally
new recommender paradigm for generative recommender models.
To ensure personalized recommendations, we reduced the noise
scales and inference steps to corrupt users’ interactions in the
forward process. We also extended traditional DMs via two ex-
tensions to reduce the resource costs for large-scale item predic-
tion and enable the temporal modeling of interaction sequences.
Specifically, L-DiffRec clusters items for dimension compression
and conducts diffusion processes in the latent space. Besides, T-
DiffRec utilizes a time-aware reweighting strategy to capture the
temporal patterns in users’ interactions. Empirical results on three
datasets under various settings validate the superiority of DiffRec
with two extensions in terms of accuracy and resource costs.

This work opens up a new research direction for generative
recommender models by employing DMs. Following this direction,
many promising ideas deserve further exploration: 1) although L-
DiffRec and T-DiffRec are simple yet effective, it is beneficial to
devise better strategies to achieve better model compression and
encode temporal information (e.g., transformers); 2) it is mean-
ingful to explore controllable or conditional recommendations
based on DiffRec, e.g., guiding the interaction prediction via a pre-
trained classifier; and 3) exploring the effectiveness of more prior
assumptions (e.g., different noise assumptions other than Gaussian
distribution) and diverse model structures is interesting.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wenjie Wang et al.

REFERENCES
[1] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne

van den Berg. 2021. Structured denoising diffusion models in discrete state-
spaces. In NeurIPS, Vol. 34. Curran Associates, Inc., 17981–17993.

[2] Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang,
Yu-Lun Liu, Yu-Lin Chang, Chia-Ping Chen, and Chun-Yi Lee. 2022. Denois-
ing Likelihood Score Matching for Conditional Score-based Data Generation.
arXiv:2203.14206 (2022).

[3] Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng He,
and Zhoujun Li. 2022. Generative Adversarial Framework for Cold-Start Item
Recommendation. In SIGIR. ACM, 2565–2571.

[4] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah.
2022. Diffusion models in vision: A survey. arXiv:2209.04747 (2022).

[5] Min Gao, Junwei Zhang, Junliang Yu, Jundong Li, Junhao Wen, and Qingyu
Xiong. 2021. Recommender systems based on generative adversarial networks:
A problem-driven perspective. Inf. Sci. 546 (2021), 1166–1185.

[6] GuibingGuo, HuanZhou, Bowei Chen, Zhirong Liu, XiaoXu, XuChen, Zhenhua
Dong, and Xiuqiang He. 2020. IPGAN: Generating informative item pairs by
adversarial sampling. TNNLS 33, 2 (2020), 694–706.

[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network
for recommendation. In SIGIR. ACM, 639–648.

[8] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In SIGIR. ACM, 355–364.

[9] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained variational framework. In
ICLR.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilis-
tic models. In NeurIPS. Curran Associates, Inc., 6840–6851.

[11] Emiel Hoogeboom,DidrikNielsen, Priyank Jaini, Patrick Forré, andMaxWelling.
2021. Argmax flows and multinomial diffusion: Learning categorical distribu-
tions. In NeurIPS. Curran Associates, Inc., 12454–12465.

[12] Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, Chenye Cui, and Yi Ren.
2022. Prodiff: Progressive fast diffusion model for high-quality text-to-speech.
In MM. ACM, 2595–2605.

[13] Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, JianhuiMa, Xing Xie, and Enhong Chen.
2020. Sampling-decomposable generative adversarial recommender. In NeurIPS.
Curran Associates, Inc., 22629–22639.

[14] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. 2016. Improved variational inference with inverse autoregressive
flow. In NeurIPS. Curran Associates, Inc., 4743–4751.

[15] Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and Dong Yu. 2021. Bilateral
denoising diffusion models. arXiv:2108.11514 (2021).

[16] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via
marginalized denoising auto-encoder. In CIKM. ACM, 811–820.

[17] Xiaopeng Li and James She. 2017. Collaborative Variational Autoencoder for
Recommender Systems. In KDD. ACM, 305–314.

[18] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B
Hashimoto. 2022. Diffusion-lm improves controllable text generation. In
arXiv:2205.14217.

[19] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. InWWW. ACM, 689–698.

[20] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-
Aware Message-Passing GCN for Recommendation. In WWW. ACM, 1296–
1305.

[21] Shuchang Liu, Fei Sun, Yingqiang Ge, Changhua Pei, and Yongfeng Zhang.
2021. Variation control and evaluation for generative slate recommendations.
In WWW. ACM, 436–448.

[22] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan,
Yuxiao Hu, Humphrey Shi, Anna Rohrbach, and Trevor Darrell. 2023. More
control for free! image synthesis with semantic diffusion guidance. In WACV.
IEEE, 289–299.

[23] Calvin Luo. 2022. Understanding diffusion models: A unified perspective. In
arXiv:2208.11970.

[24] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019.
Learning Disentangled Representations for Recommendation. In NeurIPS. Cur-
ran Associates, Inc., 5712–5723.

[25] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising
diffusion probabilistic models. In ICML. PMLR, 8162–8171.

[26] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail
Kudinov. 2021. Grad-tts: A diffusion probabilistic model for text-to-speech. In
ICML. PMLR, 8599–8608.

[27] Dimitrios Rafailidis and Fabio Crestani. 2017. Recommendation with social
relationships via deep learning. In SIGIR. ACM, 151–158.

[28] Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, HuiWang, Bolin Ding,
and Ji-Rong Wen. 2020. Sequential recommendation with self-attentive multi-
adversarial network. In SIGIR. ACM, 89–98.

[29] Zhaochun Ren, Zhi Tian, Dongdong Li, Pengjie Ren, Liu Yang, Xin Xin,
Huasheng Liang, Maarten de Rijke, and Zhumin Chen. 2022. Variational Rea-
soning about User Preferences for Conversational Recommendation. In SIGIR.
ACM, 165–175.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
UAI. AUAI Press, 452–461.

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
CVPR. IEEE, 10684–10695.

[32] Masahiro Sato, Sho Takemori, Janmajay Singh, and Tomoko Ohkuma. 2020.
Unbiased Learning for the Causal Effect of Recommendation. In RecSys. ACM,
378–387.

[33] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I
Nikolenko. 2020. Recvae: A new variational autoencoder for top-n recommen-
dations with implicit feedback. In WSDM. ACM, 528–536.

[34] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
ICML. PMLR, 2256–2265.

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising diffusion
implicit models. In ICLR.

[36] Joojo Walker, Ting Zhong, Fengli Zhang, Qiang Gao, and Fan Zhou. 2022. Rec-
ommendation via Collaborative Diffusion Generative Model. In KSEM. Springer,
593–605.

[37] JunWang, Lantao Yu,Weinan Zhang, Yu Gong, Yinghui Xu, BenyouWang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR. ACM, 515–524.

[38] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.
Denoising implicit feedback for recommendation. In WSDM. ACM, 373–381.

[39] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.
2021. Clicks can be cheating: Counterfactual recommendation for mitigating
clickbait issue. In SIGIR. ACM, 1288–1297.

[40] Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, Min Lin, and Tat-Seng Chua.
2022. Causal Representation Learning for Out-of-Distribution Recommendation.
In WWW. ACM, 3562–3571.

[41] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan
He. 2022. Learning Robust Recommenders through Cross-Model Agreement.
In WWW. ACM, 2015–2025.

[42] Zhidan Wang, Wenwen Ye, Xu Chen, Wenqiang Zhang, Zhenlei Wang, Lixin
Zou, and Weidong Liu. 2022. Generative session-based recommendation. In
WWW. ACM, 2227–2235.

[43] Yinwei Wei, XiangWang, Liqiang Nie, Shaoyu Li, DingxianWang, and Tat-Seng
Chua. 2022. Causal Inference for Knowledge Graph based Recommendation.
TKDE (2022).

[44] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang.
2022. DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation. TKDE 34, 10 (2022), 4753–4766.

[45] LeWu, Peijie Sun, Yanjie Fu, Richang Hong, XitingWang, andMengWang. 2019.
A neural influence diffusion model for social recommendation. In SIGIR. ACM,
235–244.

[46] Qiong Wu, Yong Liu, Chunyan Miao, Binqiang Zhao, Yin Zhao, and Lu Guan.
2019. PD-GAN: Adversarial Learning for Personalized Diversity-Promoting
Recommendation.. In IJCAI, Vol. 19. 3870–3876.

[47] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. In WSDM. ACM,
153–162.

[48] Zhe Xie, Chengxuan Liu, Yichi Zhang, Hongtao Lu, Dong Wang, and Yue
Ding. 2021. Adversarial and contrastive variational autoencoder for sequential
recommendation. In WWW. ACM, 449–459.

[49] Lanling Xu, Jianxun Lian, Wayne Xin Zhao, Ming Gong, Linjun Shou, Daxin
Jiang, Xing Xie, and Ji-Rong Wen. 2022. Negative Sampling for Contrastive
Representation Learning: A Review. arXiv:2206.00212 (2022).

[50] Xianwen Yu, Xiaoning Zhang, Yang Cao, and Min Xia. 2019. VAEGAN: A Col-
laborative Filtering Framework based on Adversarial Variational Autoencoders..
In IJCAI. AAAI Press, 4206–4212.

[51] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. Autosvd++ an efficient hybrid
collaborative filtering model via contractive auto-encoders. In SIGIR. ACM, 957–
960.

	Abstract
	1 Introduction
	2 Preliminary
	3 Diffusion Recommender Model
	3.1 Forward and Reverse Processes
	3.2 DiffRec Training
	3.3 DiffRec Inference
	3.4 Discussion
	3.5 Latent Diffusion
	3.6 Temporal Diffusion

	4 Experiments
	4.1 Experimental Settings
	4.2 Analysis of DiffRec (RQ1)
	4.3 Analysis of L-DiffRec (RQ2)
	4.4 Analysis of T-DiffRec (RQ3)

	5 Related Work
	6 Conclusion and Future Work
	References

