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Abstract
While large language models (LLMs) are increasingly adapted for
recommendation systems via supervised fine-tuning (SFT), this ap-
proach amplifies popularity bias due to its likelihood maximization
objective, compromising recommendation diversity and fairness.
To address this, we present Flow-guided fine-tuning recommender
(Flower), which replaces SFT with a Generative Flow Network
(GFlowNet) [6] framework that enacts process supervision through
token-level reward propagation. Flower’s key innovation lies in
decomposing item-level rewards into constituent token rewards,
enabling direct alignment between token generation probabilities
and their reward signals. This mechanism achieves three criti-
cal advancements: (1) popularity bias mitigation and fairness en-
hancement through empirical distribution matching, (2) preser-
vation of diversity through GFlowNet’s proportional sampling,
and (3) flexible integration of personalized preferences via adapt-
able token rewards. Experiments demonstrate Flower’s superior
distribution-fitting capability and its significant advantages over
traditional SFT in terms of accuracy, fairness, and diversity, high-
lighting its potential to improve LLM-based recommendation sys-
tems. The implementation is available via https://github.com/Mr-
Peach0301/Flower.
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Figure 1: Illustration of two tuning paradigms in LLM-based
next-item recommendation tasks
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1 Introduction
In recent years, recommendation systems powered by Large Lan-
guage Models (LLMs) have emerged as a rapidly advancing field
of research [23, 41]. Leveraging LLMs’ vast repository of world
knowledge and advanced learning capabilities, LLMs have demon-
strated remarkable potential to enhance recommendation accu-
racy [4, 24], improve fairness [9, 15], and deliver more explainable
[28, 42] and controllable [7, 27, 38] recommendation results. These
advancements contribute significantly to improving the overall user
experience in recommendation systems.

While effective in general-purpose tasks, pretrained LLMs re-
quire supervised fine-tuning (SFT) to acquire the knowledge spe-
cific to downstream tasks. In recommendation tasks, preference
modeling is a key objective. A commonly used SFT paradigm in-
volves constructing instruction data from historical user behavior
sequences, enabling the LLM to predict the next item based on
prior interactions [3, 4, 10]. Items are typically represented by their
titles, which consist of multiple tokens generated sequentially by
the LLM. SFT leverages the cross-entropy (CE) loss to maximize
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the likelihood of the target labels. For example, in a next-movie
recommendation task (Fig. 1(a)), the movie title “Back to the Fu-
ture” is generated token by token. Given the prompt and the first
two tokens, “Back” and “to”, SFT optimizes the prediction of the
next ground-truth token, “the”. While effective, SFT introduces two
critical challenges for recommendation systems:

• Limited diversity. SFT often drives models to produce high-
probability tokens, leading to overfitting on dominant patterns
in the training data [20]. As a result, the model generates homo-
geneous, less personalized recommendations–undermining the
core goal of recommender systems.

• Popularity bias amplification. SFT reinforces biases present
in both fine-tuning data and pretraining corpora [9], causing
models to over-recommend popular items while underexposing
niche content, which harms fairness and user experience.

To address these limitations, existing solutions in LLM-based
recommendation systems (LRSs) can be broadly categorized into
two approaches. The first approach involves modifying the SFT
learning process. For example, assigning different weights to sam-
ples to adjust the learning loss [15] can mitigate category-specific
popularity bias but fails to enhance the diversity of LLM-generated
outputs. Another strategy is multi-stage SFT, where expert pri-
ors are integrated into successive stages to promote diversity [7].
However, this method relies heavily on manually designed, multi-
stage workflows, which are prone to error propagation and may
exacerbate bias. The second approach emphasizes post-SFT policy
optimization to better align LLMs with human preferences, aiming
to alleviate popularity bias and enhance diversity. For example,
reinforcement learning with human feedback (RLHF) leverages re-
ward signals to guide the recommender toward diverse outputs [27].
However, RLHF’s reward maximization objective often leads to a
collapse toward high-reward outcomes, which can further reduce
diversity [17, 43]. More recently, Direct Preference Optimization
(DPO) [32] has been applied to LRSs, using contrastive positive
and negative samples to reduce popularity bias [10, 21]. Despite
its promise, DPO tends to induce distributional collapse by driving
the probabilities of negative samples to zero [1], ultimately limiting
recommendation diversity [10].

The shortcomings of these multi-stage pipelines or post-hoc
corrections motivate our fundamental rethinking of alignment
paradigms for LLM-based recommenders. Rather than patching
SFT’s limitations through auxiliary mechanisms, we propose Flow-
guided fine-tuning recommender (Flower), which replaces conven-
tional SFT with the generative flow network (GFlowNet)-based fine
tuning. GFlowNet is a diversity-seeking reinforcement learning
algorithm that trains policies to sample items with probabilities
proportional to a given reward function rather than simply maxi-
mizing the reward [6].

By leveraging GFlowNet’s mechanism, we conceptualize the pre-
fix tree of all feasible items as an irreversible flow network, where
“flow” refers to the unnormalized probabilities moving from the
root node to the leaf nodes. The reward assigned to each item cor-
responds to the flow at the leaf nodes. This framework enables us
to compute the flow values at each branching point of the network,
which serve as token-level rewards for next-token prediction. With

Table 1: Comparison of finetuning and alignment methods.

Paradigm Method Reward Objective

Finetuning
SFT / Maximize the probability for

each ground-truth token.

Flower
Flow-guided

process
reward

Align the next-token proba-
bility distribution with token-
level reward distribution.

Preference
alignment

RLHF Outcome
reward

Maximize the reward of the
generated item or item list.

DPO / Maximize the scores of the
chosen item over the rejected.

these token-level rewards, Flower supervises the generation prob-
abilities of each token during fine-tuning. As shown in Fig. 1(b),
unlike SFT, which focuses on optimizing the prediction of a single
ground truth token at a time, the objective of Flower is to align the
policy (i.e., the predicted probability distribution over tokens) with
the token-level reward distribution across all feasible tokens. Be-
yond fairness and diversity considerations, we further incorporate
personalized user preferences into the derived token-level rewards
using an auxiliary model, thereby enhancing both the accuracy and
personalization of the recommendations.

Flower is a new fine-tuning paradigm superior to conventional
SFT in enhancing diversity while maintaining accuracy. After tun-
ing with Flower, additional alignment methods such as RLHF and
DPO can still be applied. A comparison of different methods is
provided in Table 1. The main contributions are as follows:

• We identify two key issues caused by the SFT mechanism in
LRSs: limited diversity and popularity bias, both of which degrade
recommendation performance.

• We propose Flower, a fine-tuning paradigm that introduces the
concept of flow to assign token-level rewards to all feasible next
tokens, providing process-level supervision for LLMs.

• Our token-level rewards are heuristically assigned, requiring no
additional learning. This approach is simple yet effective and can
be easily modified to incorporate personalized preferences.

• Experiments validate the superiority of Flower over SFT in en-
hancing accuracy, diversity, and fairness. Moreover, these advan-
tages are preserved even when further alignment methods such
as PPO and DPO are applied.

2 Preliminary
This section introduces SFT for next-item recommendation with
LLMs, followed by an overview of the basics of GFlowNets.

2.1 SFT for Next-item Recommendation
Next-item prediction is a fundamental task in recommender sys-
tems, where the goal is to predict the next item a user is likely to
interact with, based on their historical behavior sequence. Lever-
aging the generative capabilities of LLMs, this task can be cast as
generating the next recommended item directly.
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Figure 2: Distribution of the top-5 recommendations across
five groups divided by their frequency of occurrence.

Following the instruction-tuning paradigm of BIGRec [3], we
define the task as: given a prompt x—typically describing the task
and listing the user’s previously interacted items—the model policy
𝜋𝜃 is trained to generate the next item y, represented as a token
sequence y = [𝑦1, 𝑦2, · · · , 𝑦𝑇 ].

The model is fine-tuned using standard cross-entropy loss with
teacher forcing:

LSFT = − 1
𝑇

𝑇∑︁
𝑡=1

log𝜋𝜃 (𝑦𝑡 | x, 𝑦1:𝑡−1), (1)

where 𝜋𝜃 denotes the model’s predicted probability for token 𝑦𝑡
given prior tokens and the input prompt.

After fine-tuning, the LLM is used to generate recommendations
during inference. However, it may produce invalid or nonexistent
items. Tomitigate this, Bao et al. [3] propose a matchingmechanism
to align outputs with real items, while Bao et al. [4] introduce con-
strained decoding to restrict token sampling to valid continuations.
We adopt the latter to ensure recommendation validity.

2.2 Problems in SFT-based Recommendations
SFT introduces bias and fairness issues in LRSs [9, 10, 15]. To illus-
trate this, we utilize the CDs and Video datasets from the Amazon
Review datasets, dividing all items into five groups based on their
frequency of occurrence in the historical sequences of the training
data. After fine-tuning the LLM with BIGRec1, we analyze the dis-
tribution of the top-5 recommended items across these five groups.
Furthermore, to investigate the influence of the temperature pa-
rameter during the inference stage, we conduct experiments with
temperatures set to 1.0, 1.2, 1.5, and 2.0.

As shown in Figure 2, Group 0 corresponds to the least popular
items, while Group 4 represents the most popular ones. The top-5
recommendation results reveal a noticeable tendency to recommend
items from the most popular group, disproportionately favoring
when compared to the historical sequences. This highlights a clear
presence of popularity bias, making the recommender system unfair
to less popular items. Moreover, as the temperature increases, the
unfairness is partially alleviated; however, both popularity bias and
unfairness persist to varying degrees.

1Detailed experimental settings are provided in Section 4

2.3 Generative Flow Networks (GFlowNets)
Generative Flow Networks (GFlowNets) [5] are a class of generative
models that learn stochastic policies for sequential decision-making.
Inspired by physical flow systems, GFlowNets define unnormalized
probabilistic flows tomodel diverse outcomes, allocating probability
mass proportional to outcome rewards.

GFlowNets operate over a directed acyclic graph (DAG), where
each path represents a sequence of actions from a root state to a
terminal state. The flow through each path determines the prob-
ability of generating a particular outcome, enabling diverse and
reward-aligned generation.

Formally, let𝐺 = (S,A) denote the DAG, where nodes 𝑠 ∈ S are
states and directed edges (𝑠1 → 𝑠2) ∈ A are actions. If (𝑠1 → 𝑠2)
exists, then 𝑠2 is a child of 𝑠1, and 𝑠1 is its parent. The graph has a
unique initial state 𝑠0 with no parents, and a set of terminal states
Y with no children. A trajectory 𝜏 ∈ T is a sequence of transitions
𝜏 = (𝑠𝑚 → 𝑠𝑚+1 → · · · → 𝑠𝑛).

A forward policy is a set of distributions 𝑃𝐹 (−|𝑠) over the children
of each nonterminal state 𝑠 ∈ S, inducing a trajectory distribution:

𝑃𝐹 (𝜏 = (𝑠0 → · · · → 𝑠𝑛)) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 | 𝑠𝑖 ). (2)

Given a nonnegative reward function 𝑅 : Y → R≥0, the objec-
tive of GFlowNets is to estimate a policy 𝑃𝐹 such that the likelihood
of sampling 𝑦 ∈ Y is proportional to 𝑅(𝑦):

𝑅(𝑦) = 𝑍
∑︁

𝜏=(𝑠0→···→𝑠𝑛=𝑦)
𝑃𝐹 (𝜏) ∀𝑦 ∈ Y, (3)

where 𝑍 is a normalization constant satisfying 𝑍 =
∑

𝑦∈Y 𝑅(𝑦).

2.4 Training Objective for GFlowNets
The sum over all 𝜏 ∈ T in Eq. (3) is generally intractable, prompting
the use of auxiliary variables to facilitate learning. We adopt the
Subtrajectory Balance (SubTB) objective [29], which introduces the
state flow 𝐹 (𝑠) — a nonnegative scalar representing the total flow
through state 𝑠:

𝐹 (𝑠) := 𝐹 ({𝜏 ∈ T : 𝑠 ∈ 𝜏}) =
∑︁

𝜏∈T:𝑠∈𝜏
𝐹 (𝜏) . (4)

Subtrajectory Balance. For any trajectory segment 𝜏𝑚:𝑛 = (𝑠𝑚 →
· · · → 𝑠𝑛), the following constraint holds:

𝐹 (𝑠𝑚)
𝑛−1∏
𝑖=𝑚

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖 ;𝜃 ) = 𝐹 (𝑠𝑛)
𝑛−1∏
𝑖=𝑚

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1;𝜃 ), (5)

where 𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖 ;𝜃 ) is the forward policy, parameterized by 𝜃 , rep-
resenting the probability of taking action (𝑠𝑖 → 𝑠𝑖+1) conditioned
on the state 𝑠𝑖 . Similarly, 𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1;𝜃 ) is the backward policy, mod-
eling the reverse transitions. Here, 𝐹 (𝑦) = 𝑅(𝑦) if 𝑦 is terminal, and
𝐹 (𝑠0) = 𝑍 if 𝑠0 is the initial state.

The Subtrajectory Balance constraint leads to the following sub-
trajectory balance objective:

ℓSubTB (𝜏𝑚:𝑛) =
(
log

𝐹 (𝑠𝑚)∏𝑛−1
𝑖=𝑚 𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖 ;𝜃 )

𝐹 (𝑠𝑛)
∏𝑛−1

𝑖=𝑚 𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1;𝜃 )

)2
. (6)

It is straightforward to observe that the objective in Eq. (6) satisfies
the desired condition of GFlowNets outlined in Eq. (3).
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3 Method: Flower
In this section, we introduce the problem formulation and present
how we fine-tune an LLM using our proposed method, Flower, to
achieve process supervision.

3.1 Problem Formulation
Let I denote the set of valid items in the dataset, where each
item 𝑖 ∈ I is represented by its title—a token sequence y(𝑖 ) =

[𝑦 (𝑖 )1 , 𝑦
(𝑖 )
2 , · · · , 𝑦 (𝑖 )

𝑇
], with each token 𝑦 (𝑖 )𝑡 belonging to the LLM’s

vocabulary. The titles collectively form a prefix tree, where shared
prefixes define common paths. For instance, “Back to the Future
II” and “Back to Life” share the prefix “Back to” before diverging.
Note that in this example, words are used as tokens for illustration
purposes. In practice, an item is automatically tokenized by an
open-source LLM, such as LLaMA or Qwen.

This prefix tree is a special DAG: nodes represent tokens, and
edges denote valid transitions to the next token. The root corre-
sponds to the empty sequence, and each path to a terminal node
forms a complete item title. We define:

• State 𝑠𝑡 as a prefix sequence 𝑠𝑡 = 𝑦≤𝑡 = [𝑦0, · · · , 𝑦𝑡 ], representing
a node’s path from the root.

• Action 𝑎𝑡 as appending a valid token 𝑦𝑡+1, transitioning from the
current state 𝑠𝑡 to a child state 𝑠𝑡+1.

Fig. 3(b) shows an example prefix tree for the 7 movie titles in
Fig. 3(a). At the node “to”, the state is “Back to”, and valid actions
lead to “Back to School”, “Back to Life”, or “Back to the”.

The traversal aligns with the GFlowNets framework, where the
probability of generating an item is the product of transition proba-
bilities along its path. For example, the probability of “Back to Life”
is computed as the product over “Back”→ “to” → “Life”.

Remark: This formulation casts generation as traversal through a
prefix tree, ensuring only valid tokens are sampled at each step. It
aligns model outputs with the dataset while leveraging GFlowNets
to promote diversity and reward-proportional generation.

3.2 LLM as The Policy for GFlowNets
Weemploy decoder-based LLMs to implement the policy inGFlowNets.
Given the prompt x, the model generates the tokens of an item 𝑦

sequentially: 𝑦1 → · · · → 𝑦𝑇 . The probability of generating the
item 𝑦 is defined as the product of the conditional probabilities of

its tokens. Specifically, the forward policy Eq. (2) is expressed as:

𝑃𝐹 (𝑦) =
𝑇∏
𝑡=1

𝜋𝜃 (𝑦𝑡 |x, 𝑦1:𝑡−1), (7)

where 𝑦1:𝑡−1 represents the sequence of tokens generated prior to
step 𝑡 , and 𝜋𝜃 is the decoder-based model parameterized by 𝜃 . For
example, the probability of generating the movie title “Back to Life”
is calculated as:

𝑃𝐹 (“Back to Life”) = 𝜋𝜃 (“Back”|x) · 𝜋𝜃 (“to”|x, “Back”)
· 𝜋𝜃 (“Life”|x, “Back to”). (8)

In the GFlowNets framework, the forward policy 𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖 ;𝜃 ) in
Eq. (5) is implemented as 𝜋𝜃 (𝑦𝑡 |x, 𝑦1:𝑡−1). Meanwhile, the backward
policy 𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1;𝜃 ) is always equal to 1, since each node in the
prefix tree has only one parent.

3.3 Flow-guided Token-level Reward
Denote 𝑅𝑜 (𝑦) as the outcome reward, i.e., the item-level reward for
generating an item 𝑦, we will derive the state flow 𝐹 (𝑦) as below:

3.3.1 State Flow on The Prefix Tree. By setting the state flow at a
terminal state equal to the outcome reward, i.e., 𝐹 (𝑦) = 𝑅(𝑦), and
the initial flow equal to the total reward, 𝐹 (𝑠0) = 𝑍 =

∑
𝑦∈Y 𝑅𝑜 (𝑦),

the flow for an intermediate state 𝑠 is recursively defined as the
sum of the flows of its child states:

𝐹 (𝑠) =
∑︁

𝑠′∈Child(𝑠 )
𝐹 (𝑠′) . (9)

Remark: Generally, estimating a proper flow in GFlowNets re-
quires learning a flow function over the DAG [6]. However, bene-
fiting from the prefix tree structure used in our approach, the flow
can be directly computed without additional parameter estimation.
This structure ensures computational simplicity and eliminates the
need for a dedicated flow model.

Using the state flow, we can derive the objective of subtrajectory
balance in Eq. (6) for any trajectory 𝜏𝑚,𝑛 = (𝑠𝑚 → · · · → 𝑠𝑛) as:

L(𝜏𝑚,𝑛) =
(
log

𝐹 (𝑠𝑚)∏𝑛−1
𝑡=𝑚 𝜋𝜃 (𝑦𝑡+1 |x, 𝑦≤𝑡 )

𝐹 (𝑠𝑛)

)2
. (10)

3.3.2 Process Reward. To better illustrate how the policy is opti-
mized through the flow mechanism, we define the process reward, a
token-level reward for generating the token 𝑦𝑡+1 given the prompt
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x and the previously generated tokens 𝑦≤𝑡 . As shown in Fig. 3(c),
the process reward is defined as:

𝑅𝑝 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑝 (𝑦≤𝑡 , 𝑦𝑡+1) =
𝐹 (𝑠𝑡+1)
𝐹 (𝑠𝑡 )

. (11)

Using this definition, the objective Eq. (10) can be rewritten as:

L𝑅 (𝜏𝑚,𝑛) =
(
𝑛−1∑︁
𝑡=𝑚

log𝜋𝜃 (𝑦𝑡+1 |x, 𝑦≤𝑡 ) −
𝑛−1∑︁
𝑡=𝑚

log𝑅𝑝 (𝑦≤𝑡 , 𝑦𝑡+1)
)2

.

(12)
When the length of the subtrajectory is reduced to 2, the objective
simplifies to directly fitting the policy 𝜋𝜃 (𝑦𝑡+1 |x, 𝑦≤𝑡 ) to the token-
level reward 𝑅𝑝 (𝑦≤𝑡 , 𝑦𝑡+1), thereby achieving process supervision.

3.3.3 Reward Setting. To evaluate bias and fairness issues in LRSs,
a common approach is to analyze the mismatch between the dis-
tribution of ground-truth user preferences and the distribution of
model-predicted results [9]. Based on this perspective, we define the
outcome reward 𝑅𝑜 (𝑦) of an item 𝑦 as its frequency of occurrence
in the historical sequences of the training data. The objective in
Eq. (12) encourages the policy to generate items with a distribution
aligned with the empirical data distribution, thereby addressing
popularity bias and mitigating fairness issues.

However, this reward remains static across all users and does
not account for personalized preferences. To address this limita-
tion, we introduce a preference score 𝑝𝑢𝑖 , which predicts the like-
lihood of user 𝑢 liking item 𝑖 . This score can be obtained from
any auxiliary model, such as a traditional recommendation sys-
tem. Given 𝑝𝑢𝑖 , we incorporate personalization by modifying the
process reward term log𝑅𝑝 (𝑦≤𝑡 , 𝑦𝑡+1) as: (1)

log𝑅𝑝 (𝑦≤𝑡 ,𝑦𝑡+1 )
𝑝𝑢𝑖

, or
(2) log(𝑝𝑢𝑖 · 𝑅𝑝 (𝑦≤𝑡 , 𝑦𝑡+1)). This adjustment effectively introduces
user-specific information into the process rewards without altering
the original flow derivation. In Section 4.5.1, we will compare the
performance of these reward variants.

Remark: Many policy optimization methods employ complex pro-
cess reward models (PRMs) [22, 39] to enhance reasoning in large
language models [35, 45], requiring significant computational re-
sources for learning and verification. In contrast, our approach
adopts heuristically assigned rewards, which are simple yet effec-
tive. This design avoids additional parameter learning and ensures
efficient process supervision.

3.4 Fine-tuning LLMs through Process Rewards
To fine-tune the policy 𝜋𝜃 , we integrate the original SFT loss LSFT
from Eq. (1) with the subtrajectory balance objective L𝑅 in Eq. (12).
SFT is trained on offline datasets, while the subtrajectory balance
objective is optimized on-policy by generating a batch of items,
traversing their title set T , and evaluating all feasible subtrajecto-
ries. The combined loss function of Flower is formulated as:

LFlower = LSFT + 𝜆
∑︁
𝜏∈T

∑︁
0≤𝑚<𝑛≤𝑇

L𝑅 (𝜏𝑚,𝑛), (13)

where 𝜏𝑚,𝑛 represents a token subsequence from the title of a spe-
cific item. The hyperparameter 𝜆 controls the trade-off between the
SFT loss and the subtrajectory balance objective.

Table 2: Dataset statistics before and after processing.

Dataset #User #Item #Interaction

CDs and Vinyl
2015.10-2018.10

Before 440490 179277 815053
After 7685 5841 69249

Video Games
2015.10-2018.10

Before 588656 45295 849496
After 9066 3858 70483

Movies and TV
2017.10-2018.10

Before 204439 53855 349292
After 3663 2653 31085

This combined loss preserves the supervised performance of
SFT while leveraging GFlowNets to promote diversity and reward-
proportionality, enabling the policy to generate fairer and more
representative items.

4 Experiments
In this section, we conduct experiments to address the following
research questions:
• RQ1: How effectively does Flower fit a specific distribution?
• RQ2: How do LLM-based methods perform in terms of accuracy,
fairness, and diversity in the next-item recommendation task?

• RQ3: What is the impact of using Flower as a reference policy
on RL and DPO-based methods?

• RQ4: What are the effects of the key factors in Flower?

4.1 Experimental Setup
4.1.1 Dataset. We conduct experiments on three real-world datasets
from Amazon review data2, including CDs, Video Games, and
Movies. These datasets contain user review data from May 1996
to October 2018. Following the preprocessing strategy in [3], we
truncate the dataset based on time information, remove unpopular
users and items with fewer than five interactions, and limit the
maximum item sequence length to 10. The datasets are chronolog-
ically split into training, validation, and test sets in an 8:1:1 ratio,
detailed statistical information is provided in Table 2.

4.1.2 Evaluation Protocal. We evaluate top-k recommendation per-
formance across three dimensions: Accuracy, Fairness, and Diver-
sity. Accuracy and Fairness are assessed at the item level, while
Diversity is evaluated at the word level.

For Accuracy, following prior work [3, 4, 15], we adopt two
widely used metrics: Hit Ratio (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@K). Fairness is measured using DGU@K
and MGU@K, which quantify the discrepancy between the group
distribution of recommended titles in the top-k results and their
distribution in the training set’s historical sequences [15]. Titles are
grouped by popularity: first, the frequency of each title in the train-
ing set is computed and sorted in descending order, then partitioned
into eight equal-sized groups. Titles absent from the training set’s
historical sequences are assigned to the least popular group. To as-
sessDiversity, we use twometrics: (1) Entropy ofWords (H), which
calculates the entropy of all English words in the recommended

2https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
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Figure 4: Comparison of the distributions between the target set and the recommended results across 100 movie titles.

titles, and (2) Type-Token Ratio (TTR), defined as the ratio of unique
words to the total number of words in the recommendations.

In the comparison results, we report NDCG@5, HR@5, DGU@10,
MGU@10, H, and TTR as evaluation metrics.

4.1.3 Baseline. We select one traditional sequential recommenda-
tion model and several SFT-based LRSs as baselines:

• SASRec [16] is a widely used sequential recommendation base-
line employing a self-attention mechanism.

• BIGRec [3] is one of the earliest and most classic supervised
fine-tuning (SFT) methods for directly generating item titles.

• Temp [4] adjusts the temperature coefficient for inference based
on the trained BIGRec model.

• 𝑫3 [4] enhances BIGRec by removing length normalization to
address amplification bias and incorporating a text-free assistant
model, SASRec, in the inference stage to mitigate the homogene-
ity issue and improve recommendation diversity.

• IFairLRS [15] improves fairness in BIGRec by balancing recom-
mendations across categories through weighting the SFT loss.

4.1.4 Implementation Details. For SASRec, we optimize using bi-
nary cross-entropy loss and the Adam optimizer, with a learning
rate in [1e-2, 1e-3, 1e-4], a batch size of 1024, and weight decay in
[1e-3, 1e-4, 1e-5, 1e-6]. For LLM-based methods, we use Qwen2.5-
1.5B-Instruct as the base model, with the learning rate set to 3e-4,
batch size to 128, maximum training epochs to 7, early stopping
patience to 2, and optimize models using the AdamW optimizer.
For experiments related to the temperature coefficient, we adjust it
within the range of [1.2, 1.5, 2.0]. Considering the scale difference
between the flow-guided loss and the SFT loss, 𝜆 is in the range of
[0.01, 0.005, 0.001, 0.0005, 0.0001]. Unless otherwise specified, we
use the process reward log𝑅𝑝

𝑝𝑢𝑖
described in Section 3.3.3 for Flower,

where the preference score 𝑝𝑢𝑖 is obtained from SASRec.

4.2 Distribution Fitting Capability (RQ1)
Before applying our method to personalized recommendation prob-
lems, we first evaluate the distribution fitting capabilities of Flower
compared to SFT, DPO, and PPO in a history-free recommendation
scenario using the Movies and TV dataset. In this setup, the LLM is
prompted to recommend a movie without providing any history
or examples, aiming to assess how well each method aligns with
the distribution of the training set, i.e., the target item set. We use

Table 3: Quantitative results of the distribution mismatch
between the target set (T) and the recommended results (R)
across 1500 movie titles. KL divergence and JS divergence are
computed at both the title and token levels.

Base Model BIGRec DPO PPO Flower

Title KL(T||R) 20.235 5.114 17.765 9.985 0.961
Title KL(R||T) 4.117 0.788 2.703 1.466 0.190
Title JS 0.513 0.184 0.449 0.341 0.047
Token KL(T||R) 16.999 3.646 13.653 6.549 1.982
Token KL(R||T) 5.291 1.307 2.940 2.174 0.838
Token JS 0.565 0.291 0.458 0.429 0.217

the same target item set for all methods. After tuning, each method
generates recommendations equal in size to the tuning dataset. We
evaluate the mismatch between the distribution of items in the
target set and the generated recommendations.

4.2.1 Qualitative Visualization. For illustration, we create the tar-
get set by sampling 100 items from the Movie dataset, preserving
their interaction frequencies as shown in Table 2. We employed
Qwen2.5-1.5B-Instruct as the base model. BIGRec uses all interac-
tions in the target set as training data. For DPO, we randomly select
one item as the chosen response and another less-interacted item
as the rejected response. For PPO, we assign normalized interaction
counts as item-level rewards. Additionally, we report the recom-
mendation results of the base model (pre-trained LLM without
tuning) as a reference.

The item-level distributions are illustrated in Fig. 4. The base
model’s recommendations concentrate on a few specific titles, while
BIGRec skews heavily toward popular titles, a bias further amplified
in DPO and PPO. In contrast, Flower effectively learns the target
distribution, capturing titles with varying popularity andmitigating
the unfairness observed in other methods.

4.2.2 Quantitative Analysis. To quantify these observations, we in-
crease the target set to 1500 items and employ Qwen2.5-3B-Instruct
as the base model. We compute the Kullback-Leibler (KL) diver-
gence and Jensen-Shannon (JS) divergence between the generated
and target distributions at both the token and item levels. As shown
in Table 3, Flower achieves superior distribution fitting compared
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Table 4: Performance of all methods evaluated in terms of accuracy, fairness, and diversity. The best results are bolded.

CDs and Vinyl Video Games Movies and TV
NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑

SASRec 0.0641 0.0851 0.184 0.038 9.188 0.124 0.0369 0.0544 0.167 0.033 8.229 0.050 0.0902 0.1072 0.138 0.032 8.892 0.167
BIGRec 0.0573 0.0715 0.217 0.045 5.900 0.006 0.0326 0.0466 0.151 0.029 7.504 0.004 0.0930 0.1134 0.123 0.028 8.297 0.018
Temp 0.0503 0.0627 0.222 0.044 6.202 0.006 0.0306 0.0444 0.129 0.026 7.307 0.004 0.0852 0.1061 0.139 0.027 8.145 0.018
D3 0.0812 0.0999 0.355 0.072 7.635 0.013 0.0413 0.0607 0.220 0.041 7.645 0.005 0.1007 0.1225 0.147 0.033 8.348 0.020

IFairLRS 0.0621 0.0762 0.217 0.045 6.420 0.007 0.0396 0.0568 0.144 0.030 7.699 0.005 0.0957 0.1170 0.159 0.043 8.048 0.015
Flower 0.0700 0.0885 0.075 0.021 7.919 0.013 0.0543 0.0799 0.108 0.023 7.750 0.005 0.0959 0.1199 0.076 0.026 8.808 0.023

Table 5: Performance comparison of Flower (F) and BIGRec (B) as reference policies of RL and DPO-based methods.

CDs and Vinyl Video Games Movies and TV
NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑

B_PPO 0.0519 0.0640 0.246 0.049 5.670 0.005 0.0282 0.0401 0.191 0.035 7.204 0.004 0.0871 0.1075 0.175 0.033 8.114 0.016
B_S-DPO 0.0712 0.0908 0.104 0.025 8.539 0.016 0.0671 0.0900 0.083 0.020 8.223 0.008 0.1037 0.1232 0.070 0.022 9.068 0.025
B_RosePO 0.0641 0.0810 0.105 0.023 8.627 0.017 0.0599 0.0786 0.286 0.057 8.546 0.008 0.1012 0.1178 0.145 0.030 9.347 0.027
B_DMPO 0.0718 0.0890 0.083 0.016 8.275 0.015 0.0424 0.0622 0.056 0.015 8.254 0.007 0.0960 0.1199 0.076 0.026 8.807 0.023
F_PPO 0.0620 0.0788 0.085 0.023 7.574 0.011 0.0565 0.0757 0.124 0.024 7.561 0.005 0.0963 0.1196 0.083 0.028 8.751 0.022
F_S-DPO 0.0772 0.0944 0.085 0.019 8.326 0.016 0.0636 0.0834 0.075 0.016 8.393 0.007 0.1042 0.1269 0.073 0.017 9.159 0.026
F_RosePO 0.0701 0.0872 0.127 0.028 8.608 0.017 0.0608 0.0799 0.305 0.059 8.501 0.008 0.1012 0.1214 0.188 0.037 9.361 0.028
F_DMPO 0.0731 0.0913 0.063 0.012 8.545 0.017 0.0644 0.0869 0.043 0.013 8.233 0.007 0.0974 0.1211 0.072 0.022 8.721 0.024

to other methods, validating its ability to enhance diversity and
align with the target distribution.

4.3 Next-item Recommendation Results (RQ2)
We evaluate the recommendation performance of Flower and base-
line methods on the next-item recommendation task using three
open-world datasets. Unlike traditional recommendation models
that rely on item IDs to represent titles, LLM-based models are in-
herently constrained by the text generation nature of LLMs, leading
to a diversity gap compared to traditional methods. As a result, we
exclude SASRec from diversity comparisons. The overall experi-
mental results are summarized in Table 4, and the key observations
are as follows:

• Compared to baseline methods, Flower achieves optimal fair-
ness and diversity across all datasets. While Flower’s accuracy is
second only to 𝐷3 on the Video Games dataset, it demonstrates
consistent advantages in fairness and diversity. Notably, 𝐷3 im-
proves diversity by integrating SASRec collaborative information
during inference but suffers from the poorest fairness among all
methods, with a significant gap compared to Flower. This high-
lights Flower’s balanced performance across all metrics.

• For methods specifically aimed at enhancing fairness, Flower
outperforms IFairLRS across all metrics and datasets. This indi-
cates that, compared to IFairLRS’s approach of reweighting the
entire title, Flower’s use of probabilistic process supervision at
the token level through GFlowNets achieves better results.

• Temp improves fairness and diversity over BIGRec by introducing
higher randomness during inference. However, this improvement
comes at the expense of accuracy. In contrast, Flower’s approach
of decomposing title rewards into token-level conditional proba-
bilities allows for strict token-wise supervision. This mechanism
ensures a balance between randomness and control, leading to

simultaneous improvements in accuracy, fairness, and diversity
without sacrificing any single dimension.

• Both Flower and 𝐷3 leverage collaborative information from
SASRec. However, 𝐷3 focuses solely on accuracy optimization,
neglecting fairness and diversity by not imposing additional con-
straints. As a result, 𝐷3 achieves higher accuracy but suffers
from significant fairness degradation. Conversely, Flower inte-
grates fairness considerations into the collaborative information,
enabling simultaneous improvements in accuracy, fairness, and
diversity. This showcases Flower’s ability to balance multiple
objectives effectively.

4.4 Flower as a Reference Policy (RQ3)
Existing RLHF and DPO-based methods are typically fine-tuned on
top of SFT. In contrast, Flower is a fine-tuning framework designed
to address the diversity and unfairness issues inherent in SFT. We
investigate the performance of Flower and BIGRec (an SFT-based
method) as reference policies for preference alignment methods,
such as RL and DPO-based approaches.

We select three DPO-based recommendation methods for com-
parison: DMPO [2] is framework that bridges the gap between
LLMs and recommendation tasks by sampling multiple negative
items as rejected responses. S-DPO [8] is method that incorporates
multiple negative samples in user preference data and generalizes
pairwise DPO loss to a softmax ranking loss. RosePO [21] is a gen-
eral framework that combines negative sampling strategies with
personalized uncertainty to improve fairness, unbiasedness, and
robustness. In our experiments, we sample rejected items based
on item popularity distributions for comparison with RosePO. For
RL-based methods, we implement PPO [34], using the frequency of
each title in the training set as the reward.

As shown in Table 5, similar to how Flower outperforms BI-
GRec, preference alignment methods based on Flower generally



SIGIR ’25, July 13–18, 2025, Padua, Italy Chongming Gao et al.

Table 6: Recommendation performance under different reward settings. The best results are highlighted in bold.

CDs and Vinyl Video Games Movies and TV
NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑ NDCG↑ HR↑ DGU↓ MGU↓ H↑ TTR↑

log𝑅𝑝 0.0712 0.0880 0.071 0.019 7.885 0.013 0.0372 0.0539 0.102 0.020 7.651 0.005 0.0930 0.1123 0.084 0.022 8.944 0.025
log(𝑅𝑝 · 𝑝𝑢𝑖 ) 0.0700 0.0898 0.060 0.018 7.902 0.013 0.0366 0.0532 0.092 0.018 7.595 0.005 0.0905 0.1156 0.115 0.026 8.540 0.019

log𝑅𝑝

𝑝𝑢𝑖
0.0700 0.0885 0.075 0.021 7.919 0.013 0.0543 0.0799 0.108 0.023 7.750 0.005 0.0953 0.1192 0.076 0.027 8.808 0.023
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Figure 5: Impact of title partitioning granularities on the
Video Games dataset.

achieve better performance compared to their BIGRec-based coun-
terparts. This demonstrates the potential of Flower-tuned methods
for downstream applications.

Notably, RosePO excessively suppresses popular items, leading
Flower’s results—initially closer to the target distribution than BI-
GRec’s—to deviate further from the target distribution compared
to B_RosePO, resulting in poorer fairness for F_RosePO. Further-
more, due to the simplicity of its reward design, PPO fails to effec-
tively optimize performance. However, Flower-based F_PPO still
outperforms its BIGRec-based counterpart, B_PPO, highlighting
the robustness of Flower as a reference policy.

4.5 Analysis of Key Factors in Flower (RQ4)
To comprehensively evaluate the contributions of Flower, we con-
duct ablation studies on three critical factors: reward formulation,
the granularity of title segmentation, and the hyperparameter 𝜆 in
Eq. (13). Each factor plays a distinct and essential role in shaping
the model’s performance: (1) reward formulation determines the
target distribution for supervision, (2) partitioning titles into sub-
trajectories of varying granularity enables supervision at different
intensities, and (3) 𝜆 controls the balance between the flow-guided
loss and the SFT loss. By systematically varying these factors, we
aim to understand their individual impacts and optimize their con-
figurations to achieve the best trade-off among accuracy, fairness,
and diversity.

4.5.1 Effects of Reward Setting. We investigate the effects of dif-
ferent process reward formulations. Specifically, we evaluate the
results using the following three reward definitions:
• log𝑅𝑝 : The original process reward term, as defined in Eq. (11).
• log𝑅𝑝

𝑝𝑢𝑖
: A modified process reward described in Section 3.3.3,

where the preference score 𝑝𝑢𝑖 is obtained from SASRec.
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Figure 6: Performance with varying 𝜆 on the CDs dataset.

• log(𝑅𝑝 · 𝑝𝑢𝑖 ): Another modified process reward, with the prefer-
ence score 𝑝𝑢𝑖 also derived from SASRec.
The comparison of recommendation performance is shown in

Table 6. For accuracy, log𝑅𝑝

𝑝𝑢𝑖
achieves the best performance on

the Video Games and Movies datasets. Except for NDCG on the
CDs dataset, all optimal accuracy is attained by methods incor-
porating SASRec scores, which validates the positive impact of
personalized preferences on accuracy. For fairness, log(𝑅𝑝 · 𝑝𝑢𝑖 )
demonstrates superior performance on the CDs and Video Games
datasets compared to other methods, while log𝑅𝑝 performs well
on only one metric of one dataset. This indicates that the effective
integration of fairness and personalized preferences can simulta-
neously improve both accuracy and fairness. For diversity, log𝑅𝑝

𝑝𝑢𝑖
outperforms others on two datasets and ranks second only to log𝑅𝑝
on one dataset. Considering all three aspects, log𝑅𝑝

𝑝𝑢𝑖
exhibits the

best comprehensive performance.

4.5.2 Impact of Supervision Granularity. Theoretically, convergence
guarantees identical distributions regardless of how the states are
partitioned. However, in practical scenarios, optimization is con-
strained to a finite number of steps, making it difficult to achieve
the theoretical optimum. Therefore, ensuring sample efficiency be-
comes critical. To address this, we investigate how partitioning titles
with varying granularities affects the effectiveness of fine-tuning.

We experiment with four granularities on the Video Games
dataset: partitioning titles every 1 token (the original Flowermethod),
5 tokens, 10 tokens, or treating the entire title as a single state. Dur-
ing training, evaluations are performed every 20 steps, and the
average values for each metric are calculated. As illustrated in
Fig. 5, accuracy, fairness, and diversity improve progressively as
the granularity becomes finer. The best performance is achieved
when each token is treated as an individual partition, indicating
that finer-grained constraints provide stronger supervision and
lead to better training outcomes.

4.5.3 Performance Varying 𝜆. The flow-guided loss and SFT loss
can differ by 3 to 4 orders of magnitude, prompting us to explore
the impact of 𝜆 across different magnitudes. We report the results
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on the CDs dataset. As shown in Fig. 6, as 𝜆 increases from left to
right, the influence of the SFT loss diminishes while that of the flow-
guided loss increases. Accuracy, fairness, and diversity generally
exhibit a trend of first improving and then declining, with the best
performance observed around 𝜆 = 0.005. When the weight of the
flow-guided loss becomes excessively large, the lack of SFT loss
constraints leads to a collapse in performance. Conversely, when
𝜆 ≤ 0.001 (x-axis value of 10 or lower), the influence of the flow-
guided loss becomes negligible, and the performance gradually
converges to that of the SFT-only method.

5 Related Work
5.1 LLMs for Recommendation
Large Language Models (LLMs) have shown strong capabilities in
text generation, reasoning, and generalization, motivating their
use in personalized recommendation tasks. Supervised fine-tuning
(SFT) has become a core approach for adapting LLMs to domain-
specific recommendation data, significantly boosting performance
[3, 7, 46]. To further align model outputs with user preferences and
reduce bias, post-SFT training methods such as Direct Preference
Optimization (DPO) have been proposed [8, 10].

Despite these advances, SFT-based models often suffer from pop-
ularity bias, leading to filter bubbles and degraded user experience
[11, 12]. This is largely due to overfitting introduced by the cross-
entropy loss used in fine-tuning, which biases the model toward
frequently occurring items in the training set. While recent efforts
represent items using unique identifier sequences [33, 40], they
remain within the CE loss framework and inherit its limitations.

In this work, we propose a novel fine-tuning paradigm that
addresses the shortcomings of SFT and promotes more balanced,
personalized recommendations.

5.2 Process Supervised
To better align LLMs with human preferences or enhance reasoning
ability, a post-SFT alignment step is often introduced. Techniques
like RLHF and DPO [32] apply outcome-level supervision by evalu-
ating model responses holistically. However, such supervision is
coarse-grained, making it hard to interpret or guide intermediate
reasoning steps [36].

Recently, process supervision has gained attention for its abil-
ity to provide step-level feedback using Process Reward Models
(PRMs) [19, 47]. Compared to outcome-level methods, process su-
pervision offers more interpretable and direct optimization signals,
leading to improved reasoning quality and alignment. Most existing
approaches require learning parametric PRMs—e.g., modeling step-
wise correctness probabilities [37, 39]—which is often impractical
in recommendation tasks due to sparse user feedback. In this work,
we adopt simple yet effective heuristic rewards to approximate
step-level quality. This design avoids additional parameter learning
and enables efficient process supervision in data-scarce settings.

5.3 Applications of GFlowNets
A key advantage of GFlowNets lies in their ability to sample diverse
solutions while maintaining proportionality to the reward. Further-
more, GFlowNets demonstrate strong generalization capabilities,
allowing them to handle states not encountered during training

[5, 6, 30, 44]. These properties make GFlowNets particularly well-
suited for tasks that require exploring a wide solution space, such
as molecular design [14, 48] and structured prediction [31]. In rec-
ommendation systems, GFlowNets have also shown significant
potential. For example, Liu et al. [25] use GFlowNets to introduce
diversity while maintaining quality in listwise recommendations,
and Liu et al. [26] apply GFlowNets to enhance user retention while
fostering exploration.

Recently, GFlowNets have been employed in fine-tuning LLMs
for specific tasks. For example, Hu et al. [13] fine-tune LLMs us-
ing GFlowNets to achieve diversity in tasks such as sentence in-
filling, chain-of-thought reasoning, and problem-solving with ex-
ternal tools. Lee et al. [18] adopt GFlowNets to fine-tune LLM-
based attacker models, enabling the generation of diverse and ef-
fective attack prompts for Red-teaming. Similarly, Yu et al. [43]
apply GFlowNets to train LLMs for puzzle-solving tasks, includ-
ing BlocksWorld and Game24. In this work, we are the first to
use GFlowNets to address the limitations of SFT in LLM-based
next-item recommendation tasks.

6 Conclusion
This work addresses key limitations of supervised fine-tuning (SFT)
in LLM-based recommendation systems, notably limited diversity
and amplified popularity bias, which hinder accuracy, fairness, and
personalization. These issues largely arise from the overfitting na-
ture of cross-entropy loss used in SFT. To overcome these challenges,
we propose Flower, a novel fine-tuning paradigm based on gen-
erative flow networks (GFlowNets) and process-level supervision.
Flower frames recommendation as a flow network, propagating
item-level rewards—derived from item frequencies—to token-level
supervision. This aligns token generation with reward distributions,
promoting balanced, diverse, and fair recommendations. Experi-
ments on three real-world sequential recommendation datasets
show that Flower outperforms SFT in accuracy, diversity, and fair-
ness. Furthermore, applying alignment methods after Flower fine-
tuning yields better results than applying them on top of standard
SFT models.

This study emphasizes the transformative potential of integrat-
ing diversity-seekingmechanisms into LLM-based recommendation
systems. By introducing the Flow-guided fine-tuning paradigm, we
address core limitations of conventional approaches, bridging the
gap between accuracy, fairness, and personalization. Beyond its im-
mediate applications, this framework lays the foundation for future
innovations, including extending its applicability to diverse recom-
mendation contexts and refining reward design to better capture
nuanced user preferences and domain-specific goals.
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