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Abstract
Diffusion models have shown significant potential in generating or-
acle items that best match user preference with guidance from user
historical interaction sequences. However, the quality of guidance
is often compromised by unpredictable missing data in observed se-
quence, leading to suboptimal item generation. Since missing data
is uncertain in both occurrence and content, recovering it is imprac-
tical and may introduce additional errors. To tackle this challenge,
we propose a novel dual-side Thompson sampling-based Diffusion
Model (TDM), which simulates extra missing data in the guidance
signals and allows diffusion models to handle existing missing
data through extrapolation. To preserve user preference evolution
in sequences despite extra missing data, we introduce Dual-side
Thompson Sampling to implement simulation with two probability
models, sampling by exploiting user preference from both item
continuity and sequence stability. TDM strategically removes items
from sequences based on dual-side Thompson sampling and treats
these edited sequences as guidance for diffusion models, enhancing
models’ robustness to missing data through consistency regular-
ization. Additionally, to enhance the generation efficiency, TDM is
implemented under the denoising diffusion implicit models to ac-
celerate the reverse process. Extensive experiments and theoretical
analysis validate the effectiveness of TDM in addressing missing
data in sequential recommendations. Our data and code is available
at https://github.com/maowenyu-11/TDM.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Sequential Recommendation [14, 15, 20, 25] is to predict the next
item that aligns with a user’s preferences based on his/her historical
interaction sequence. Unlike conventional studies [8, 31, 46] that
learn to classify target items from sampled negatives, recent studies
[32, 34, 48] shift towards generating oracle items [49] with genera-
tive models that best match user preference. A promising direction
is employing diffusion models [17, 28, 49], which add noise to the
next items and iteratively denoise them toward oracle items, guided
by interaction history conditions.

However, we argue that diffusion models’ ability to generate
oracle items is largely constrained by missing data in the interac-
tion history. Typically, user interaction histories are only partially
observed, with missing data occurring unpredictably [53]. Consider
the case as illustrated in Figure 1, the recommender system might
only observe a partial sequence, with items 𝐴 and 𝐵 missing due to
various factors, such as privacy concerns [5] or technical limitations
[47]. Consequently, diffusion models may be misled by the unre-
liable guidance signal from the observed sequence and generate
suboptimal oracle items. Usually, missing data is uncertain in the
observed sequence [4, 39], as it is hard to infer where the missing
occurs and what content it might be due to the invisibility of
complete sequences. Thus, leading approaches that aim to recover
missing data [9, 36] and complete observed sequences [21, 50], may
introduce additional errors or distort user preference accidentally,
as shown in Figure 1.

To address this challenge, we propose a dual-side Thompson
sampling-based Diffusion Model (TDM), which simulates extra
missing data in the guidance signals rather than recovering existing
one. Such simulation enables diffusion models to address missing
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Figure 1: Phenomenon of uncertain missing data in se-
quences and the method comparison to address it. The green
curve represents the evolution of user preference over time.

data in real-world scenarios through extrapolation, suggesting that
if diffusion models can handle simulated missing data, they can
also manage real missing data. To simulate while maintaining the
underlying preference evolution (the changing of user preference
over time) in sequences, we introduce the Dual-side Thompson
Sampling [33] (DTS) strategy, which samples items to remove by
exploiting known user preference. Specifically, DTS hires two prob-
ability models — one operating at the local item side and the other
at the global sequence side — to capture dynamic preference:

• The local model depicts the continuity between adjacent items,
reflecting shifts in user preference. As depicted in Figure 1, a
high continuity score of 0.9 indicates a coherent preference for
clothes, while a low score of 0.2 suggests a preference shift from
mobile phones to headphones.

• The global model evaluates the stability of each entire sequence,
by calculating the entropy of continuity score distribution — a
high stability score indicates a stable preference, whereas a low
score reflects a volatile preference. For instance, the sequence in
Figure 1 experienced two significant fluctuations, resulting in a
stability score of 0.6.

High-continuity items in high-stability sequences are more likely to
be removed by DTS, which has little impact on the underlying pref-
erence evolution in sequences. This is evidenced by the consistent
green curves between the observed sequence and the one edited by
our method, as illustrated in Figure 1. Then, we treat such edited
sequences as guidance for diffusion models to generate the oracle
items, which can achieve consistency regularization [51] and en-
dows diffusion models with insensitivity to preference-preserving
perturbations (i.e., simulated missing data).

To further improve the efficiency, we utilize denoising diffusion
implicit models [35] rather than denoising diffusion probabilistic
models [10] to generate oracles, which can accelerate the genera-
tion during inference. To validate, we provide a theoretical analysis
of extrapolation and consistency regularization for TDM. Addition-
ally, extensive experiments demonstrate that TDM outperforms
multiple leading models in sequential recommendations. Our key
contributions are as follows:

• We propose TDM to simulate extra missing data in the guidance
signals, enabling diffusion models to handle existing missing data
through extrapolation and consistency regularization.

• We introduce Dual-side Thompson Sampling to implement sim-
ulation based on user preference and apply denoising diffusion
implicit models to accelerate generation.

• Theoretical analysis and extensive experiments validate the ef-
fectiveness of TDM in addressing missing data.

2 Related Work
In this section, we provide a review of missing data in recommen-
dation and generative recommenders.

Missing Data in Sequential Recommendation [40, 53] refers
to the absence of user behaviors in interaction sequences due to
complex factors, which may lead to sequences partially observed
and unreliable. To address this problem, recovering-based meth-
ods [21, 23, 50] have become mainstream, aiming to recover the
complete sequence through imputation [9, 36, 42]. For instance,
PDRec [23] leverages diffusion models to generate supplement
items to the observed sequences. SSDRec [50] augments the in-
teraction sequence by “insert” operations. Here we emphasize the
uncertain nature [4, 39] of missing data, which poses challenges
for recovering-based methods due to the invisibility of complete
sequences as labels. Thus we propose simulating missing data in-
stead of recovering it, enabling diffusion models’ extrapolation to
address real missing data.

Diffusion-based generative recommender aims to generate
oracle items that best match user preference, offering distinct ad-
vantages over discriminative recommenders that learn to classify
target items from sampled negatives, particularly in sequential
recommendation tasks. Since GANs and VAEs are limited in the
stability and quality of generation, diffusion models have emerged
as a promising technique, excelling at modeling complex data dis-
tributions and generating oracle items [24, 28, 49, 54]. For example,
DiffuRec [17], DreamRec [49], and DimeRec [16] generate the next
items directly by corrupting them with noise and denoising based
on the historical sequence. Additionally, DiffuASR [22], DiffKG
[13], and CaDiRec [2] enhance the traditional recommenders by
generating sequences or items with diffusion models as data aug-
mentation. Moreover, RecDiff [18] and DDRM [52] leverage the
denoising ability of Diffusion models to improve recommenders’
robustness against noisy feedback. In our work, we emphasize the
quality of diffusion models’ guidance, tackling challenges posed
by uncertain missing data and enhancing the robustness through
consistency regularization.

3 Preliminaries
In this section, we first detail denoising diffusion implicit models
[35], which can accelerate the reverse process of generation. We
then introduce Thompson sampling. Finally, we formulate the task
of generative sequential recommendation.

3.1 Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models [35] is designed to generate
samples faster than the original denoising diffusion probabilistic
models. Here we explain its forward and reverse processes.

Forward process: Unlike denoising diffusion probabilistic models
[10], the forward process of denoising diffusion implicit models is
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not restricted as aMarkovian chain, which enables it to denoise with
fewer steps. Given an input data sample x0 ∼ 𝑞(x0), the forward dif-
fusion process can be defined as:𝑞(x𝑡 |x0) = N(x𝑡 ;√𝛼𝑡x0, (1−𝛼𝑡 )I),
where 𝑡 ∈ [1, . . . ,𝑇 ] represents the diffusion step, [𝛼1, . . . , 𝛼𝑇 ] de-
notes a variance schedule. We can have: x𝑡 = √

𝛼𝑡x0 +
√

1 − 𝛼𝑡𝝐 .

Reverse process: Given x𝑇 ∼ N(0, I), denoising diffusion implicit
models eliminate the noises to recover x0 step by step. Formally,
the reverse process from x𝑡 to x𝑡−1 is:

𝑝𝜃,𝜎 (x𝑡−1 |x𝑡 ) = N
(
√
𝛼𝑡−1 x̂0 +

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡

x𝑡 − √
𝛼𝑡 x̂0

√
1 − 𝛼𝑡

, 𝜎2
𝑡 𝐼

)
,

(1)

x̂0 = (x𝑡 −
√

1 − 𝛼𝑡𝝐𝜃 (x𝑡 ))/
√
𝛼𝑡 . (2)

When 𝜎𝑡 = 0, it becomes a deterministic process. 𝝐𝜃 denotes the de-
noising model (e.g., U-Net [43] or Transformer [30]) parameterized
by 𝜃 , which is trained to approximate the data distribution 𝑞

(
x0)

by maximizing the evidence lower bound of the log-likelihood
log 𝑝𝜃

(
x0) . The training loss can be derivated as [35]:

L =

𝑇∑︁
𝑡=1

1
2𝑑𝜎2

𝑡 𝛼𝑡
Ex0,𝝐

[𝝐𝜃 (√𝛼𝑡x0 +
√

1 − 𝛼𝑡𝝐, 𝑡) − 𝝐
2

2

]
, (3)

where 𝝐𝜃 (
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐, 𝑡) is the output of the denoising net-

work to predict the noises 𝝐 that add in the forward process, 𝑑 is
the dimension of x0.

Acceleration: Since the denoising objective L is independent of a
specific forward process as long as 𝑞(x𝑡 |x0) is fixed [35], we can
redefine the non-Markovian forward process with a subsequence
[𝜏1, 𝜏2, · · · , 𝜏𝑆 ] from [1, . . . ,𝑇 ] as: 𝑞(x𝜏𝑠 |x0) = N(x𝜏𝑠 ;√𝛼𝜏𝑠 x0, (1 −
𝛼𝜏𝑠 )I). Then, the reverse process can be reformulated as:

x𝜏𝑠−1 =
√
𝛼𝜏𝑠−1

(x𝜏𝑠 − √︁
1 − 𝛼𝜏𝑠 𝝐𝜃 (x𝜏𝑠 , 𝜏𝑠 )√

𝛼𝜏𝑠

)
+

√︃
1 − 𝛼𝜏𝑠−1 − 𝜎2

𝜏𝑠 𝝐𝜃 (x
𝜏𝑠 , 𝜏𝑠 ) + 𝜎𝜏𝑠 𝝐 . (4)

With a smaller number of steps 𝑆 compared to the original 𝑇 , the
reverse process can be accelerated.

3.2 Thompson Sampling
Thompson sampling [33] has emerged as a prominent exploration
strategy for decision-making under uncertainty [26, 45]. To achieve
a balance between exploration and exploitation [29], Thompson
sampling utilizes a probability model to sample greedily based on
the values of execution results from the last round. Specifically,
given the value 𝑣 , the probability model of Thompson sampling
can be parameterized as 𝐹 (𝑣, 𝑝), where 𝑝 is a random variable that
ranges from 0 to 1. A higher value of 𝑣 can result in a higher sam-
pling probability 𝑝 from the probability model. Formally, at each
round, we have the sampling probability:

𝑝 ∼ 𝐹 (𝑣, 𝑝). (5)

Then, Thompson sampling executes based on the sampling proba-
bility 𝑝 , updating the value 𝑣 and probability model 𝐹 (𝑣, 𝑝) based
on the execution results of the last round.

3.3 Task Formulation
For generative sequential recommendation, the goal is to generate
the next item tailored to the target user conditioned on their histor-
ical interaction sequence. The mainstream solutions to this task are
from the embedding perspective. Formally, we denote a user’s his-
torical interaction sequence as e1:𝑁−1 = [e1, e2, . . . , e𝑁−1], where
e𝑛 represents the embedding of the𝑛-th item the user has interacted
with in chronological order. The subsequent item of this sequence,
which we aim to generate, is represented as e𝑁 . To apply diffu-
sion models in generative recommendation, following prior studies
[28, 49], noise is first added to e0

𝑁
(equivalent to e𝑁 ), followed by a

denoising process leveraging the guidance signal g extracted from
interaction history e1:𝑁−1 to ensure the generated oracle items
align closely with user preferences. The core is to model the item
generation distribution 𝑝𝜃 (e𝑡−1

𝑁
|e𝑡
𝑁
, g) at each 𝑡-th denoising step,

and inference step by step to generate the oracle items e0
𝑁
.

4 Methodology
In this section, we present our proposed TDM, designed to mitigate
the impact of missing data, as shown in Figure 2. We begin by de-
tailing the dual-side Thompson sampling (DTS) strategy in Section
4.1, which can simulate the mechanisms of missing data in user
behaviors. Next, we describe the learning and generating phases
of TDM in Section 4.2. Finally, we provide theoretical analysis for
TDM in Section 4.3.

4.1 Dual-side Thompson Sampling
In real-world scenarios, missing data is inherently uncertain [4, 39]
and hard to recover, so we simulate extra missing data in diffusion
models’ guidance signals, extrapolating to address the existing
missing data. To preserve user preference evolution in sequences
during simulation, we introduce a DTS strategy, sampling and
removing items by exploiting user preference evolution with two
probability models — one at the local item level and the other at
the global sequence level.

4.1.1 Definition of Two Probability Models. User preferences often
exhibit dynamic shifts between items within an interaction se-
quence. To capture these preference shifts locally, we introduce the
concept of continuity scores to measure the similarity between adja-
cent items. Formally, given a sequence e1:𝑁−1 = [e1, e2, . . . , e𝑁−1],
the continuity score for each item e𝑛 within the sequence is:

con𝑛 =
exp(sim(e𝑛, e𝑛+1))∑𝑁−2

𝑛′=1 exp(sim(e𝑛′ , e𝑛′+1))
, 𝑛 = 1, 2, . . . , 𝑁 − 2, (6)

where sim(·, ·) represents the cosine similarity function, con𝑛 is the
continuity score normalized using the softmax function. Intuitively,
a higher continuity score indicates a greater similarity between
adjacent items, indicating a stronger level of shared preference.

In addition to local preference shifts, user preferences often
fluctuate throughout the entire sequence [19]. To assess the degree
of these preference fluctuations, we calculate the entropy value ℎ
for each sequence with the continuity scores within it as below:

ℎ = −
𝑁−2∑︁
𝑛=1

con𝑛 log(con𝑛) . (7)
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Figure 2: The overview of the TDM framework, which simulates extra missing data with DTS in the guidance signals, achieving
diffusion models’ consistency regularization and extrapolating to address the existing missing data.

Then, we define the stability score sta𝑘 for each sequence by nor-
malizing its entropy value ℎ𝑘 with softmax in a batch.

sta𝑘 =
exp(ℎ𝑘 )∑𝐾

𝑘 ′=1 exp(ℎ𝑘 ′ )
, 𝑘 = 1, 2, . . . , 𝐾, (8)

where 𝐾 is the number of sequences in the batch. A higher sta-
bility score reflects a higher entropy value, suggesting that user
preferences remain largely unchanged throughout the sequence.

We then parameterize the two probability models with value
con𝑛 and sta𝑘 as introduced in Section 3.2. Formally, we define
the local item-side probability model as 𝐿(con𝑛, 𝑝𝑛) and the global
sequence-side model as𝐺 (sta𝑘 , 𝑝𝑘 ), where 𝑝𝑛 and 𝑝𝑘 are the ran-
dom variables ranging from 0 to 1. Higher values in con𝑛 and sta𝑘
lead to higher sampling probabilities from their respective models.

4.1.2 Strategical Editing with DTS. To simulate missing data while
maintaining user preference evolution patterns in sequences, the
DTS samples sequences to edit and items to remove based on the
two probability models defined in Section 4.1.1. Formally, we have:

𝑝𝑛 ∼ 𝐿(con𝑛, 𝑝𝑛), 𝑝𝑘 ∼ 𝐺 (sta𝑘 , 𝑝𝑘 ), (9)

where 𝑝𝑘 is the sampling probabilities of the 𝑘-th sequence e1:𝑁−1
to be edited, and 𝑝𝑛 is probability for the 𝑛-th item e𝑛 (1 ≤ 𝑛 ≤
𝑁 − 2) within sequence e1:𝑁−1 to be discarded. To preserve the
last item e𝑁−1 in the sequence, we manually set 𝑝𝑁−1 = 0. Since
con𝑛 and sta𝑘 represent the local continuity and global stability
respectively, the dual-side Thompson sampling strategy tends to
sample items with higher continuity in sequences with greater
stability scores to remove. Removing such data is expected to have
little impact on the original preference shifts, as shown in the
consistent green curves in Figure 2. Therefore, we can simulate
uncertain data missing, while preserving the underlying preference
evolution pattern.

Having established 𝑝𝑘 and 𝑝𝑛 , we can decide whether the 𝑛-
th item in the 𝑘-th sequence would be discarded. Formally, the

strategically edited sequence is obtained as:

e′1:𝑁−1 =

{
[ edit(e𝑛) ]𝑁−1

𝑛=1 if 1 − 𝑝𝑘 < 𝜆1
e1:𝑁−1 otherwise

, (10)

edit(e𝑛) =
{
Φ if 1 − 𝑝𝑛 < 𝜆2
e𝑛 otherwise

, (11)

where Φ is a dummy token, 𝜆1 and 𝜆2 are thresholds for sampling
probabilities 𝑝𝑘 and 𝑝𝑛 , ranging from 0 to 1, which control the
proportion of removed items. Higher values of 𝜆1 and 𝜆2 result in
more items in more sequences being removed.

We then encode the strategically edited sequence e′1:𝑁−1 as the
guidance signals g using a Transformer encoder T-enc:

g = T-enc(e′1:𝑁−1) . (12)

In this way, the guidance is established after simulating extra miss-
ing data while preserving the evolution of users’ dynamic prefer-
ences with the DTS strategy.

4.2 Diffusion Model for Recommendation
Having acquired the guidance g as described in Section 4.1, we
then leverage g to guide diffusion models to denoise, enabling
TDM to recommend items robustly in the presence of missing
data. To accelerate the generation during inference, we employ
denoising diffusion implicit models introduced in Section 3.1 for
TDM to generate oracle items. Below, we detail TDM’s training and
generating phases.

4.2.1 Training Phase. For joint training of both conditional and
unconditional models, we train TDM under the classifier-free guid-
ance paradigm [11]. Specifically, we randomly replace the guidance
g with a dummy token Φ with probability 𝜌 , while keeping the
others unchanged. We view the next item e𝑁 as the input e0

𝑁
and

add noise to it, following: e𝜏𝑠
𝑁

=
√
𝛼𝜏𝑠 e

0
𝑁

+
√︁

1 − 𝛼𝜏𝑠 𝝐 . Similar to
DreamRec [49], we employ an MLP as the denoising neural net-
work 𝑓𝜃 (·, ·, ·) to directly predict e𝜏𝑠

𝑁
into ê0

𝑁
, rather than the noise

𝝐 , guided by g:

ê0
𝑁 = 𝑓𝜃 (

√
𝛼𝜏𝑠 e

0
𝑁 +

√︁
1 − 𝛼𝜏𝑠 𝝐, g, 𝜏𝑠 ), (13)



Addressing Missing Data Issue for Diffusion-based Recommendation SIGIR ’25, July 13–18, 2025, Padua, Italy

where ê0
𝑁

denotes the prediction of e0
𝑁
. According to Equation (3),

the loss function of TDM can be formulated as:

L =

𝑆∑︁
𝑠=1

1
2𝑑𝜎2

𝜏𝑠 (1 − 𝛼𝜏𝑠 )
Ee0

𝑁
,𝝐

[ê0
𝑁 − e0

𝑁

2
2

]
. (14)

4.2.2 Generating Phase. Having trained the denoisingmodel 𝑓𝜃 (·, ·, ·),
TDM can generate the oracle items step by step. Specifically, to
integrate the conditional and unconditional generation under the
classifier-free guidance paradigm, the denoising function is modi-
fied with a linear combination:

𝑓𝜃 (e𝜏𝑠𝑁 , g, 𝜏𝑠 ) = (1 +𝑤) 𝑓𝜃 (e𝜏𝑠𝑁 , g, 𝜏𝑠 ) −𝑤𝑓𝜃 (e
𝜏𝑠
𝑁
,Φ, 𝜏𝑠 ), (15)

where the hyperparameter 𝑤 controls the guidance strength. A
high value of 𝑤 increases reliance on the guidance g, but it may
lead to overfitting. Following Equation (4), the reverse denoising
step from 𝜏𝑠 to 𝜏𝑠−1 can be expressed as:

e𝜏𝑠−1
𝑁

=
√
𝛼𝜏𝑠−1 𝑓𝜃 (e

𝜏𝑠
𝑁
, g, 𝜏𝑠 )

+
√︁

1 − 𝛼𝜏𝑠−1

e𝜏𝑠
𝑁
− √

𝛼𝜏𝑠 𝑓𝜃 (e
𝜏𝑠
𝑁
, g, 𝜏𝑠 )√︁

1 − 𝛼𝜏𝑠
.

(16)

Under the guidance g encoded from a interaction sequence, the
oracel item e0

𝑁
is generated by denosing a Gaussian sample e𝜏𝑆

𝑁
∼

N(0, I) for 𝜏𝑆 times with Equation (16). Once the oracle item is
generated, we retrieve the K-nearest items from the candidate set
to provide the top-K recommendation results. See https://github.
com/maowenyu-11/TDM for the algorithms of the training and
generating phases of TDM.

4.3 Theoretical Analysis
Here we justify TDM in simulating extra missing data, which can
enable diffusion models to address existing missing data through
extrapolation and consistency regularization.

Extrapolation: Let ĝ, ḡ, and g̃ denote the guidance encoded from
observed sequence e1:𝑁−1, unavailable complete sequence e1:𝑁−1⊕
𝛿 and simulated sequence e′1:𝑁−1 = e1:𝑁−1 ⊖𝛿 ′, respectively, where
𝛿 denotes the real missing data and 𝛿 ′ denotes the simulatedmissing
data. Our objective is to demonstrate the validity of the extrapo-
lation, specifically the inequality ∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ḡ, 𝜏𝑠 ) − 𝑓𝜃 (e

𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 )∥ ≤

𝐶 ∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) − 𝑓𝜃 (e
𝜏𝑠
𝑁
, g̃, 𝜏𝑠 )∥ for some constant𝐶 , where e𝜏𝑠

𝑁
rep-

resents the next interacted item with noise of 𝜏𝑠 time steps, 𝑓𝜃 is
the denoising model.

Applying Taylor’s Formula, we can express the two functions as
follows:

𝑓𝜃 (e𝜏𝑠𝑁 , ḡ, 𝜏𝑠 ) =𝑓𝜃 (e
𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 ) + (ḡ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )

+ 𝑜 (∥ḡ − ĝ∥),
𝑓𝜃 (e𝜏𝑠𝑁 , g̃, 𝜏𝑠 ) =𝑓𝜃 (e

𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 ) + (g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )

+ 𝑜 (∥g̃ − ĝ∥) .

(17)

Then, combining the above two equalities, we have

𝑓𝜃 (e𝜏𝑠𝑁 , ḡ, 𝜏𝑠 ) − 𝑓𝜃 (e
𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 )

= (ḡ − ĝ)⊤∇𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) + 𝑜 (∥ḡ − ĝ∥)

=
(ḡ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )
(g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )

(g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) + 𝑜 (∥ḡ − ĝ∥)

=
(ḡ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )
(g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )

(𝑓𝜃 (e𝜏𝑠𝑁 , g̃, 𝜏𝑠 ) − 𝑓𝜃 (e
𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 ))

+ 𝑜 (∥ḡ − ĝ∥) + 𝑜 (∥g̃ − ĝ∥), (18)

where we assume that (g̃− ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) ≠ 0. Thus, we obtain
the following inequality:

∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ḡ, 𝜏𝑠 ) − 𝑓𝜃 (e
𝜏𝑠
𝑁
, ĝ, 𝜏𝑠 )∥

≤
����� (ḡ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )
(g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )

����� ∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) − 𝑓𝜃 (e𝜏𝑠𝑁 , g̃, 𝜏𝑠 )∥
+ 𝑜 (∥ḡ − ĝ∥) + 𝑜 (∥g̃ − ĝ∥), (19)

where ∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )− 𝑓𝜃 (e
𝜏𝑠
𝑁
, g̃, 𝜏𝑠 )∥ is the distance between the pre-

diction from observed sequence and simulated sequence. To bound

the coefficients
���� (ḡ−ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 ,ĝ,𝜏𝑠 )
(g̃−ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 ,ĝ,𝜏𝑠 )

����, we need to analyze the two in-
ner products, (ḡ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) and (g̃ − ĝ)⊤∇𝑔 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ).

If we can simulate the mechanism of missing data — specif-
ically, if the missing data process from e1:𝑁−1 to e1:𝑁−1 ⊖ 𝛿 ′ can
align well with that from e1:𝑁−1 ⊕ 𝛿 to e1:𝑁−1 — the difference
between the two pair of data will be roughly equivalent. Conse-
quently, the two differences in guidance, ḡ− ĝ and ĝ− g̃, will also be
approximately equal. In this scenario, the coefficient will be close
to 1, resulting in a bounded value 𝐶 > 0.

Thus we can validate that enhancing diffusion models’ insensitiv-
ity to simulated missing data enables resilience against real missing
data. Here, we implement the simulation mechanism as Dual-side
Thompson Sampling (DTS), which preserves user preferences in
sequences throughout the simulation.

Consistency regularization: To ensure the effectiveness of ex-
trapolation, we leverage consistency regularization to minimize
∥ 𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) − 𝑓𝜃 (e

𝜏𝑠
𝑁
, g̃, 𝜏𝑠 )∥. Since the interaction sequences are

edited probabilistically across different epochs, ĝ and g̃ can serve
as the perturbated pairs. Let the ground-truth label of the next item
be e0

𝑁
. By completing the square, we obtain the inequality:

| |𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 ) − 𝑓𝜃 (e
𝜏𝑠
𝑁
, g̃, 𝜏𝑠 ) | |22

≤ 2
(
| |𝑓𝜃 (e𝜏𝑠𝑁 , ĝ, 𝜏𝑠 )e

0
𝑁
| |22 + ||𝑓𝜃 (e𝜏𝑠𝑁 , g̃, 𝜏𝑠 ) − e0

𝑁
| |22

)
. (20)

Consequently, we can achieve consistency regularization of mini-
mizing the left-hand side by minimizing the right-hand side, which
stems from our reconstruction loss. Such consistency regulariza-
tion endows diffusion models with insensitivity to the simulated
missing data, allowing the extrapolation to resist the real missing
data issue.

https://github.com/maowenyu-11/TDM
https://github.com/maowenyu-11/TDM
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Table 1: Statistics of the five datasets.

Dataset YooChoose KuaiRec Zhihu Steam Beauty Toys

#sequences 128,468 92,090 11,714 281,428 22,363 19,4124
#items 9,514 7,261 4,838 13,044 12,101 11,924

#interactions 539,436 737,163 77,712 3,485,022 198,502 167,597

5 Experiments
In this section, we conduct extensive experiments across three
datasets to evaluate the effectiveness of TDM by answering the fol-
lowing questions. RQ1: How does TDM perform in the sequential
recommendation compared with diverse baseline models? RQ2:
What are the respective contributions of probability models and
denoising diffusion implicit models to our method? RQ3: How sen-
sitive is TDM to the thresholds of removing? RQ4: How robust
is TDM to varying degrees of missing data in datasets and differ-
ent sequence lengths? RQ5: Can DTS generalize on traditional
recommender systems rather than diffusion models?

5.1 Experimental Settings

Datasets. We conduct experiments on three real-world datasets
for sequential recommendation following the settings of Dream-
Rec [49]: YooChoose [1], KuaiRec [6], and Zhihu [7]. To mitigate
cold-start issues, we implement a preprocessing step that excludes
items with fewer than five interactions and sequences shorter than
3 interactions. For each dataset, we sort all sequences chronolog-
ically and split the data into training, validation, and testing sets
in an 8:1:1 ratio, ensuring that later interactions don’t leak into
the training data [12]. Additionally, to validate the effectiveness of
TDM on larger or diverse datasets from different domains, we also
conduct experiments on Steam, Amazon-beauty, and Amazon-toys.
The detailed statistics of datasets are provided in Table 1.

Baselines. We compare the performance of TDM against multiple
leading approaches, including:
• Traditional sequential recommenders: GRU4Rec [8], Caser [38],
SASRec [14], Bert4Rec [37], CL4SRec [46], IPS [44] andAdaRanker
[3], which employ neural networks to model data distribution
and capture user preferences.

• Generative recommenders: DiffRec [41], DiffRIS [28], and Dream-
Rec [49], which generate target items to recommend directly
with diffusion models.

• Recovering-based algorithms: DiffuASR [22], CaDiRec [2], PDRec
[23], STEAM [21], and SSDRec [50]. DiffASR, CaDiRec, and
PDRec generate supplement items to the observed sequences
with diffusion models to enhance traditional sequential recom-
menders. STEAM and SSDRec aim to correct the interaction
sequence by “insert” or other operations.

Implementation Details. Following DreamRec [49], we set the
sequence length to 10, padding sequences with fewer than 10 inter-
actions using a padding token. Our experiments are implemented
using Python 3.9 and PyTorch 2.0.1, with computations performed
on Nvidia GeForce RTX 3090 GPUs. The dimension of item embed-
dings is 64 across all models. The learning rate is tuned within the
range of [0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005]. For diffusion

Table 2: Overall performance of different methods for the
sequential recommendation. The best score and the second-
best score are bolded and underlined, respectively. The last
row indicates the performance improvements of TDM over
the best-performing baseline method.

Methods YooChoose KuaiRec Zhihu

HR(%) NDCG(%) HR(%) NDCG(%) HR(%) NDCG(%)

GRU4Rec 3.89±0.11 1.62±0.02 3.32±0.11 1.23±0.08 1.78±0.12 0.67±0.03

Caser 4.06±0.12 1.88±0.09 2.88±0.19 1.07±0.07 1.57±0.05 0.59±0.01

SASRec 3.68±0.08 1.63±0.02 3.92±0.18 1.53±0.11 1.62±0.01 0.60±0.03

Bert4Rec 4.96±0.05 2.05±0.03 3.77±0.09 1.73±0.04 2.01±0.06 0.72±0.04

CL4SRec 4.45±0.04 1.86±0.02 4.25±0.10 2.01±0.09 2.03±0.06 0.74±0.03

IPS 3.81±0.05 1.73±0.03 3.73±0.03 1.40±0.05 1.66±0.04 0.64±0.02

AdaRanker 3.74±0.06 1.67±0.04 4.14±0.09 1.89±0.05 1.70±0.04 0.61±0.02

STEAM 4.69±0.06 1.76±0.02 4.98±0.05 2.90±0.02 1.75±0.02 0.69±0.02

SSDRec 4.52±0.07 1.95±0.03 4.19±0.08 3.28±0.06 2.03±0.06 0.72±0.03

DiffuASR 4.48±0.03 1.92±0.02 4.53±0.02 3.30±0.03 2.05±0.02 0.71±0.02

CaDiRec 5.05±0.05 2.21±0.10 2.56±0.04 1.79±0.03 2.14±0.05 0.72±0.07

PDRec 6.22±0.03 3.17±0.02 4.42±0.03 3.55±0.04 2.10±0.03 0.74±0.02

DiffRec 4.33±0.02 1.84±0.01 3.74±0.08 1.77±0.05 1.82±0.03 0.65±0.09

DiffRIS 4.51±0.03 1.95±0.02 4.28±0.03 2.03±0.04 - -
DreamRec 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

TDM 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

Improv. 9.85% 26.95% 5.84% 13.84% 14.72% 10.23%

models, we varied the total diffusion step𝑇 across [500, 1000, 2000],
employing intervals of 100 to obtain corresponding 𝜏𝑆 values of
[5, 10, 20] for denoising diffusion implicit models. The guidance
strength𝑤 is set within the range [0, 2, 4, 6, 8, 10], and the thresh-
old 𝜆1, 𝜆2 are tuning across the range [0, 0.1, . . . , 1]. We set the
unconditional training probability 𝜌 as 0.1 suggested by Ni et al.
[27]. We adopt the widely used metrics in sequential recommenda-
tion: hit ratio (HR@20) and normalized discounted cumulative gain
(NDCG@20) [14] to evaluate the recommendation performance.
In our result tables, we report the average performance of five
experimental runs, with their corresponding standard deviations.

5.2 Main Results (RQ1)
To answer RQ1, we compare the recommendation performance
of TDM against multiple baselines. Table 2 and Table 3 present
the experimental results on different datasets, demonstrating the
superiority of TDM. For example, on the KuaiRec dataset, TDM
outperforms DreamRec, a generative recommender that utilizes
diffusion models guided by observed sequences, with increases of
5.84% and 13.84% in HR@20 and NDCG@20, respectively. Similarly,
on the YooChoose dataset, TDM outperforms PDRec, a recovering-
basedmethod, with improvements of 9.85% in HR@20 and 26.95% in
NDCG@20. These indicate that simulating missing data with DTS
enhances the robustness of diffusionmodels to unreliable sequences,
thereby improving overall recommendation performance.

5.3 Ablation Study (RQ2)
The two probability models are designed to capture the dynamic
evolution of user preferences, thereby preserving these evolution
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Table 3: Experimental results on larger dataset (Steam) and
diverse datasets from different domains (Beauty and Toys).

Methods
Steam Toys Beauty

HR(%) NDCG(%) HR(%) NDCG(%) HR(%) NDCG(%)

GRU4Rec 9.23±0.05 3.56±0.03 3.18±0.08 1.27±0.03 3.85±0.09 1.38±0.06

Caser 15.20±0.09 6.62±0.05 8.83±0.09 4.02±0.05 8.67±0.06 4.36±0.10

SASRec 13.61±0.06 5.36±0.08 9.23±0.07 4.33±0.02 8.98±0.12 3.66±0.07

Bert4Rec 12.73±0.08 5.20±0.07 4.59±0.08 1.90±0.06 5.79±0.11 2.35±0.12

CL4SRec 15.06±0.08 6.12±0.06 9.09±0.03 5.08±0.03 10.18±0.11 4.85±0.12

IPS 15.65±0.08 6.46±0.02 9.29±0.01 5.27±0.04 10.15±0.02 4.56±0.07

AdaRanker 15.71±0.07 6.68±0.08 8.18±0.02 4.33±0.02 8.03±0.08 3.80±0.06

DiffuASR 15.74±0.04 6.59±0.06 9.39±0.04 5.19±0.06 10.03±0.06 5.16±0.11

CaDiRe 15.65±0.07 6.42±0.12 9.33±0.03 5.16±0.11 9.85±0.08 4.46±0.04

PDRec 15.78±0.07 6.51±0.08 9.08±0.08 5.12±0.06 10.24±0.06 5.02±0.09

DiffRec 15.09±0.04 6.89±0.03 9.18±0.06 5.25±0.04 10.21±0.04 5.14±0.02

DreamRec 15.08±0.08 6.39±0.08 9.18±0.08 5.22±0.08 10.32±0.03 4.88±0.07

TDM 16.19±0.01 7.52±0.03 9.88±0.01 5.39±0.03 10.72±0.06 5.40±0.04

Improv. 2.53% 8.38% 4.96% 2.60% 3.73% 7.04%

patterns in sequences despite the extra missing data simulated by
DTS. To evaluate the impacts of the two probability models, we con-
duct ablation studies with eight variants of TDM. The experimental
results are shown in Table 4. “w/o L” and “w/o G” indicate variants
where the local or global probability model is replaced with random
sampling, “w/o GL” denotes replacing both models with random
sampling, “Base” represents generating oracle items without simu-
latingmissing data. To extend ourmethod, we propose othermetrics
for probability models and compare their performance. Specifically,
“w/P” and “w/I” denote parameterizing the local probability model
with item popularity score (measured by the frequency of each
item in all interactions) or score of item position in the sequence.
Meanwhile, “w/D” and “w/S” represent parameterizing the global
probability model with intra-sequence diversity score or score for
sequence length.

As can be seen, almost all variants (i.e., “w/o GL”, “w/o G”, “w/o
L”, “w/P”, “w/I”, “w/D”, and “w/S”) outperform the “Base” model,
highlighting the effectiveness of simulating missing data in enhanc-
ing the robustness of diffusion models, and hence improving the
recommendation performance. Furthermore, our proposed TDM
outperforms other variants (including “w/o L”, “w/o G”, “w/o GL”,
“w/P”, “w/I”, “w/D”, and “w/S”). This demonstrates the effectiveness
of continuity and stability metrics in accounting for the evolution
of user preferences when generating extra missing data, which
aligns more closely with the missing mechanisms discussed in the
theoretical proof in Section 4.3.

Denoising diffusion implicit model (DDIM) [35] is designed to
accelerate the reverse process while maintaining the comparable
performance of denoising diffusion probabilistic model (DDPM)
[10]. We conduct experiments to demonstrate the impact of de-
noising diffusion implicit models on the performance of diffusion-
based recommenders. Specifically, we apply the two models to both
DreamRec [49] and TDM, yielding four variants. The experimental
results are presented in Table 5.

Table 4: Ablation Study for the metrics of probability models.

Methods
YooChoose KuaiRec Zhihu

HR(%) NDCG(%) HR(%) NDCG(%) HR(%) NDCG(%)

Base 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

w/o GL 6.24±0.07 3.91±0.06 5.37±0.05 4.19±0.06 2.30±0.05 0.80±0.02

w/o L 6.41±0.06 4.26±0.05 5.44±0.03 4.63±0.02 2.34±0.03 0.86±0.02

w/o G 6.48±0.01 4.29±0.04 5.43±0.04 4.64±0.02 2.44±0.02 0.81±0.08

w/ P 6.28±0.02 4.18±0.03 5.46±0.05 4.57±0.08 2.38±0.03 0.80±0.07

w/ I 6.28±0.04 3.96±0.02 5.20±0.03 4.55±0.04 2.24±0.08 0.79±0.05

w/ D 6.26±0.04 4.20±0.06 5.45±0.02 4.52±0.02 2.29±0.02 0.81±0.03

w/ S 6.27±0.03 4.30±0.06 5.46±0.03 4.54±0.08 2.30±0.08 0.83±0.06

TDM 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

Table 5: Performance comparison of different types of dif-
fusion models. “-P” denotes using DDPM [10], while “-I” de-
notes using DDIM [35].

Methods
YooChoose KuaiRec Zhihu

HR(%) NDCG(%) HR(%) NDCG(%) HR(%) NDCG(%)

DreamRec-P 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

DreamRec-I 4.85±0.06 2.26±0.07 4.93±0.03 4.01±0.07 2.25±0.02 0.82±0.02

TDM-P 6.82±0.02 4.33±0.02 5.49±0.02 4.74±0.08 2.45±0.03 0.85±0.02

TDM-I 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

As shown in Table 5, the performance of the two types of dif-
fusion models on sequential recommendation tasks is comparable,
as evidenced by similar results for DreamRec-P and DreamRec-I.
Furthermore, TDM consistently outperforms DreamRec, demon-
strating the effectiveness of our DTS in enhancing the robustness
of diffusion models. This indicates that while DDIM accelerates the
generation process, it does not improve recommendation perfor-
mance. Instead, it is the DTS strategy that facilitates performance
enhancement in diffusion-based sequential recommenders by ad-
dressing missing data issues.

5.4 Sensitivity Analysis (RQ3)
We examine the sensitivity of TDM to the parameters of threshold
𝜆1 and 𝜆2, which represent the proportion of edited sequences
and removed items when simulating data missing in TDM. The
experimental results are shown in Figure 3 and 4. We can observe
that the performance remains relatively stable; however, excessive
or insufficient removal can result in suboptimal outcomes. This
highlights the importance of choosing appropriate thresholds for
DTS to simulate missing data.

5.5 Robustness of TDM (RQ4)
To validate the robustness of TDM to various missing data ratios,
we create synthetic datasets with missing data proportions of 10%,
20%, and 30% respectively. We compare the recommendation perfor-
mance of TDM with representative baselines, including PDRec and
DreamRec, across synthetic datasets. PDRec is a recovering-based
method that utilizes diffusion models to enhance traditional rec-
ommenders, while DreamRec is a generative recommender where
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Figure 3: Sensitivity of TDM to the hyperparameter of 𝜆1 onmultiple datasets, demonstrating the proportion of edited sequences.
The “random” represents the variant “w/o GL” of TDM.

Figure 4: Sensitivity of TDM to the hyperparameter of 𝜆2 on multiple datasets, demonstrating the proportion of removed items.
The “random” represents the variant “w/o GL” of TDM.

diffusionmodels generate items to recommend directly. As shown in
Figure 5, TDM outperforms these baseline models on our synthetic
datasets with varying missing ratios. Furthermore, the performance
decline due to increased missing data in TDM is less significant than
that observed in baseline models, as evidenced by the increasing
height difference between the columns. These results demonstrate
the superior robustness of TDM to varying degrees of missing data
in datasets, as well as the effectiveness of DTS in addressing missing
data in sequential recommendation.

We further investigate the robustness of TDM on datasets with
different sequence lengths (i.e., <5, <20, <50). We compare the rec-
ommendation performance of TDM with representative baseline
models, including SASRec, Bert4Rec, and CL4SRec. The results are
shown in Figure 6. TDM maintains a significant lead on different
sequence lengths, validating the robustness of TDM to different
sequence lengths.

5.6 Generalization ability of TDM (RQ5)
Introducingmissing datawith DTS can be considered as introducing
a form of noise within the sequence, which can enhance diffusion
models’ denoising ability to missing data rather than Gaussian
noise. However, DTS can be a general algorithm to enhance
recommendation systems’ robustness against uncertain miss-
ing data. To validate the performance of DTS when extended to
traditional recommenders,We conduct experiments on other recom-
menders, including GRU4Rec, SASRec, CL4Rec, Caser, AdaRanker,
and DiffuASR. The experimental results are presented in Table 6.

As shown in Table 6, applying DTS to traditional recommenders
can yield nearly universal improvement in recommendation perfor-
mance. This empirically proves the effectiveness and extensibility

Table 6: Comparison of TDM and traditional recommenders
on performance improvement from the DTS strategy.

Methods YooChoose KuaiRec Zhihu

HR(%) NDCG(%) HR(%) NDCG(%) HR(%) NDCG(%)

GRU4Rec 3.89 1.62 3.32 1.23 1.78 0.67
+ DTS 3.96 1.72 3.43 1.40 1.83 0.68
Improv. 1.77% 5.81% 3.21% 12.14% 2.73% 1.47%

SASRec 3.68 1.63 3.92 1.53 1.62 0.60
+DTS 3.98 1.58 3.96 1.63 1.70 0.72
Improv. 7.54% −3.07% 1.01% 6.13% 4.71% 11.11%

CL4SRec 4.45 1.86 4.25 2.01 2.03 0.74
+DTS 4.63 1.88 4.57 2.25 2.16 0.78
Improv. 3.89% 1.06% 7.00% 10.67% 6.02% 5.13%

Caser 4.06 1.88 2.88 1.07 1.57 0.59
+DTS 4.27 2.01 3.19 1.09 1.72 0.65
Improv. 4.92% 6.47% 9.72% 1.83% 8.72% 9.23%

AdaRanker 3.74 1.67 4.14 1.89 1.70 0.61
+DTS 4.16 1.97 4.33 1.93 1.64 0.67
Improv. 10.10% 15.22% 4.39% 2.07% −3.53% 8.96%

DiffuASR 4.48 1.92 4.53 3.30 2.05 0.71
+DTS 4.66 2.08 4.58 3.98 2.05 0.73
Improv. 3.86% 7.69% 1.09% 17.09% 0.00% 2.82%

DreamRec 4.78 2.23 5.16 4.11 2.26 0.79
+DTS 6.90 4.34 5.48 4.77 2.65 0.88
Improv. 30.72% 48.62% 5.84% 13.84% 14.72% 10.23%

of DTS. Notably, when applied to DreamRec, a generative recom-
mender using diffusion models, it yields the highest performance
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Figure 5: Performance of TDM on synthetic datasets with different missing ratios.

Figure 6: Performance of TDM on multiple datasets with different sequence lengths.

gains on average. This observation highlights that diffusion models
provide a solid foundation for DTS to achieve consistency regular-
ization from the empirical perspective, owing to their capability to
model complex data distributions and denoise missing data.

5.7 Computational Resource Comparison
Since the Thompson sampling strategy relies solely on similarity
computation and entropy calculation, its computational resource
consumption is negligible compared to that of the transformer
network architecture. As evidenced in Table 7, the computational
complexity of TDM for training each epoch is nearly similar to
other diffusion-based recommenders and traditional recommenders
that use the same sequence encoder. Furthermore, by employing
denoising diffusion implicit models to accelerate generation, we
enhance the efficiency of TDM during the inference phase. As
shown in Table 7, TDM substantially reduces the time cost during
the inference phase than DreamRec and has a similar training time
cost with other methods.

Table 7: Running time comparison of TDM and other meth-
ods on three datasets.

Methods
YooChoose KuaiRec Zhihu

Train Inference Train Inference Train Inference

SASRec 01m 38s 00m 06s 02m 07s 00m 08s 00m 10s 00m 01s
AdaRanker 02m 29s 00m 08s 03m 38s 00m 09s 00m 14s 00m 01s
DreamRec 01m 31s 21m 32s 03m 59s 32m 40s 00m 14s 01m 31s

TDM 01m 22s 00m 13s 02m 23s 00m 23s 00m 11s 00m 01s

6 Conclusion
In this paper, we propose TDM, a novel approach that simulates
extra missing data in diffusion models’ guidance signals and extrap-
olates to address existing missing data in sequential recommenda-
tions. By introducing a dual-side Thompson sampling strategy with
local and global probability models, TDM can preserve user prefer-
ence evolution in sequences during simulation. Treating such edited
sequences as guidance can achieve diffusion models’ consistency
regularization. Theoretical analysis and extensive experiments vali-
date the effectiveness of TDM, showcasing its potential to handle
missing data issues and improve recommendation performance.
The limitation is that the dynamics of user preferences may exhibit
intricate patterns that transcend the capabilities of our dual-side
probability models. Future research could benefit from integrating
a more sophisticated understanding of user preference evolution
into these models. Additionally, the issue of missing data, which
can stem from various factors, such as exposure bias or popularity
bias, presents an opportunity for targeted simulation to enhance
the robustness of diffusion models.

7 Acknowledgement
This research is supported by the National Natural Science Foun-
dation of China (92270114, 62302321, 62121002). This research is
also supported by the advanced computing resources provided by
the Supercomputing Center of the USTC and the Research Center
for Intelligent Operations Research at the Hong Kong Polytechnic
University.



SIGIR ’25, July 13–18, 2025, Padua, Italy Wenyu Mao et al.

References
[1] David Ben-Shimon, Alexander Tsikinovsky, Michael Friedmann, Bracha Shapira,

Lior Rokach, and Johannes Hoerle. 2015. RecSys Challenge 2015 and the YOO-
CHOOSE Dataset. In RecSys. ACM, 357–358.

[2] Ziqiang Cui, HaolunWu, Bowei He, Ji Cheng, and ChenMa. 2024. Diffusion-based
Contrastive Learning for Sequential Recommendation. CoRR abs/2405.09369
(2024).

[3] Xinyan Fan, Jianxun Lian, Wayne Xin Zhao, Zheng Liu, Chaozhuo Li, and Xing
Xie. 2022. Ada-Ranker: A Data Distribution Adaptive Ranking Paradigm for
Sequential Recommendation. In SIGIR. ACM, 1599–1610.

[4] Ziwei Fan, Zhiwei Liu, YuWang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng,
and Philip S. Yu. 2022. Sequential Recommendation via Stochastic Self-Attention.
In WWW. ACM, 2036–2047.

[5] Raymond Feng, Flávio Calmon, and Hao Wang. 2023. Adapting Fairness Inter-
ventions to Missing Values. In NeurIPS.

[6] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang,
Xiangnan He, Jiaxin Mao, and Tat-Seng Chua. 2022. KuaiRec: A Fully-observed
Dataset and Insights for Evaluating Recommender Systems. In CIKM. ACM,
540–550.

[7] Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun
Liu, and Shaoping Ma. 2021. A Large-Scale Rich Context Query and Recommen-
dation Dataset in Online Knowledge-Sharing. CoRR abs/2106.06467 (2021).

[8] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In ICLR
(Poster).

[9] Erna Hikmawati, Heru Nugroho, and Kridanto Surendro. 2024. Improve the
Quality of Recommender Systems based on Collaborative Filtering with Missing
Data Imputation. In ICSCA. ACM, 75–80.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic
Models. In NeurIPS.

[11] Jonathan Ho and Tim Salimans. 2022. Classifier-Free Diffusion Guidance. In
NeurIPS Workshop on Deep Generative Models and Downstream Applications.

[12] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2023. A Critical Study on Data
Leakage in Recommender System Offline Evaluation. ACM Trans. Inf. Syst. 41, 3
(2023), 75:1–75:27.

[13] Yangqin Jiang, Yuhao Yang, Lianghao Xia, and Chao Huang. 2024. DiffKG:
Knowledge Graph Diffusion Model for Recommendation. In WSDM. ACM, 313–
321.

[14] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-Attentive Sequential Rec-
ommendation. In ICDM. IEEE Computer Society, 197–206.

[15] Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, and
Xiangnan He. 2024. Customizing Language Models with Instance-wise LoRA for
Sequential Recommendation. In NeurIPS.

[16] Wuchao Li, Rui Huang, Haijun Zhao, Chi Liu, Kai Zheng, Qi Liu, Na Mou, Guorui
Zhou, Defu Lian, Yang Song, Wentian Bao, Enyun Yu, and Wenwu Ou. 2025.
DimeRec: A Unified Framework for Enhanced Sequential Recommendation via
Generative Diffusion Models. In WSDM. ACM, 726–734.

[17] Zihao Li, Aixin Sun, and Chenliang Li. 2024. DiffuRec: A Diffusion Model for
Sequential Recommendation. ACM Trans. Inf. Syst. 42, 3 (2024), 66:1–66:28.

[18] Zongwei Li, Lianghao Xia, and Chao Huang. 2024. RecDiff: Diffusion Model for
Social Recommendation. In CIKM. ACM, 1346–1355.

[19] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018.
Learning from History and Present: Next-item Recommendation via Discrimina-
tively Exploiting User Behaviors. In KDD. ACM, 1734–1743.

[20] Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang,
and Xiangnan He. 2024. LLaRA: Large Language-Recommendation Assistant. In
SIGIR. ACM, 1785–1795.

[21] Yujie Lin, Chenyang Wang, Zhumin Chen, Zhaochun Ren, Xin Xin, Qiang Yan,
Maarten de Rijke, Xiuzhen Cheng, and Pengjie Ren. 2023. A Self-Correcting
Sequential Recommender. In WWW. ACM, 1283–1293.

[22] Qidong Liu, Fan Yan, Xiangyu Zhao, Zhaocheng Du, Huifeng Guo, Ruiming Tang,
and Feng Tian. 2023. Diffusion Augmentation for Sequential Recommendation.
In CIKM. ACM, 1576–1586.

[23] Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, and Zhanhui
Kang. 2024. Plug-In Diffusion Model for Sequential Recommendation. In AAAI.
AAAI Press, 8886–8894.

[24] Wenyu Mao, Shuchang Liu, Haoyang Liu, Haozhe Liu, Xiang Li, and Lanatao
Hu. 2025. Distinguished Quantized Guidance for Diffusion-based Sequence
Recommendation. CoRR abs/2501.17670 (2025).

[25] Wenyu Mao, Jiancan Wu, Weijian Chen, Chongming Gao, Xiang Wang, and
Xiangnan He. 2025. Reinforced prompt personalization for recommendation with
large language models. ACM Trans. Inf. Syst. 43, 3 (2025), 1–27.

[26] Thomas M. McDonald, Lucas Maystre, Mounia Lalmas, Daniel Russo, and Kamil
Ciosek. 2023. Impatient Bandits: Optimizing Recommendations for the Long-
Term Without Delay. In KDD. ACM, 1687–1697.

[27] Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall,
Daniel Cer, and Yinfei Yang. 2022. Sentence-T5: Scalable Sentence Encoders from
Pre-trained Text-to-Text Models. In ACL (Findings). Association for Computa-
tional Linguistics, 1864–1874.

[28] Yong Niu, Xing Xing, Zhichun Jia, Ruidi Liu, Mindong Xin, and Jianfu Cui.
2024. Diffusion Recommendation with Implicit Sequence Influence. In WWW
(Companion Volume). ACM, 1719–1725.

[29] Ian Osband and Benjamin Van Roy. 2015. Bootstrapped Thompson Sampling and
Deep Exploration. CoRR abs/1507.00300 (2015).

[30] William Peebles and Saining Xie. 2023. Scalable Diffusion Models with Trans-
formers. In ICCV. IEEE, 4172–4182.

[31] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. 2022. Contrastive Learn-
ing for Representation Degeneration Problem in Sequential Recommendation. In
WSDM. ACM, 813–823.

[32] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej
Kula, Ed H. Chi, and Mahesh Sathiamoorthy. 2023. Recommender Systems with
Generative Retrieval. In NeurIPS.

[33] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.
2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (2018),
1–96.

[34] Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi. 2019. Se-
quential Variational Autoencoders for Collaborative Filtering. InWSDM. ACM,
600–608.

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising Diffusion
Implicit Models. In ICLR. OpenReview.net.

[36] Harald Steck. 2013. Evaluation of recommendations: rating-prediction and rank-
ing. In RecSys. ACM, 213–220.

[37] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In CIKM. ACM, 1441–1450.

[38] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In WSDM. ACM, 565–573.

[39] ChenxuWang, Fuli Feng, Yang Zhang, QifanWang, XunhanHu, and XiangnanHe.
2023. Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation.
IEEE Trans. Big Data 9, 6 (2023), 1607–1619.

[40] Jun Wang, Haoxuan Li, Chi Zhang, Dongxu Liang, Enyun Yu, Wenwu Ou, and
Wenjia Wang. 2023. CounterCLR: Counterfactual Contrastive Learning with
Non-random Missing Data in Recommendation. In ICDM. IEEE, 1355–1360.

[41] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua.
2023. Diffusion Recommender Model. In SIGIR. ACM, 832–841.

[42] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly Robust
Joint Learning for Recommendation on Data Missing Not at Random. In ICML
(Proceedings of Machine Learning Research, Vol. 97). PMLR, 6638–6647.

[43] Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He,
Zhangyang Wang, Weizhu Chen, and Mingyuan Zhou. 2023. Patch Diffusion:
Faster and More Data-Efficient Training of Diffusion Models. In NeurIPS.

[44] Zhenlei Wang, Shiqi Shen, Zhipeng Wang, Bo Chen, Xu Chen, and Ji-Rong Wen.
2022. Unbiased Sequential Recommendation with Latent Confounders. InWWW.
ACM, 2195–2204.

[45] Zhendong Wang and Mingyuan Zhou. 2020. Thompson Sampling via Local
Uncertainty. In ICML (Proceedings of Machine Learning Research, Vol. 119). PMLR,
10115–10125.

[46] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive Learning for Sequential Recommendation.
In ICDE. IEEE, 1259–1273.

[47] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
2020. Adversarial Counterfactual Learning and Evaluation for Recommender
System. In NeurIPS.

[48] Yiyan Xu, Wenjie Wang, Fuli Feng, Yunshan Ma, Jizhi Zhang, and Xiangnan He.
2024. Diffusion Models for Generative Outfit Recommendation. In SIGIR. ACM,
1350–1359.

[49] Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and
Xiangnan He. 2023. Generate What You Prefer: Reshaping Sequential Recom-
mendation via Guided Diffusion. In NeurIPS.

[50] Chi Zhang, Qilong Han, Rui Chen, Xiangyu Zhao, Peng Tang, and Hongtao Song.
2024. SSDRec: Self-Augmented Sequence Denoising for Sequential Recommen-
dation. In ICDE. IEEE, 803–815.

[51] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. 2020. Consistency
Regularization for Generative Adversarial Networks. In ICLR. OpenReview.net.

[52] Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, Fuli Feng, and Tat-Seng Chua.
2024. Denoising Diffusion Recommender Model. In SIGIR. ACM, 1370–1379.

[53] Xiaolin Zheng, Menghan Wang, Renjun Xu, Jianmeng Li, and Yan Wang. 2022.
Modeling Dynamic Missingness of Implicit Feedback for Sequential Recommen-
dation. IEEE Trans. Knowl. Data Eng. 34, 1 (2022), 405–418.

[54] Yunqin Zhu, Chao Wang, Qi Zhang, and Hui Xiong. 2024. Graph Signal Diffusion
Model for Collaborative Filtering. In SIGIR. ACM, 1380–1390.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Denoising Diffusion Implicit Models
	3.2 Thompson Sampling
	3.3 Task Formulation

	4 Methodology
	4.1 Dual-side Thompson Sampling
	4.2 Diffusion Model for Recommendation
	4.3 Theoretical Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Main Results (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Sensitivity Analysis (RQ3)
	5.5 Robustness of TDM (RQ4)
	5.6 Generalization ability of TDM (RQ5)
	5.7 Computational Resource Comparison 

	6 Conclusion
	7 Acknowledgement
	References

