
NAIS: Neural Attentive Item Similarity
Model for Recommendation

Xiangnan He , Zhankui He, Jingkuan Song , Zhenguang Liu, Yu-Gang Jiang , and Tat-Seng Chua

Abstract—Item-to-item collaborative filtering (aka.item-based CF) has been long used for building recommender systems in industrial

settings, owing to its interpretability and efficiency in real-time personalization. It builds a user’s profile as her historically interacted

items, recommending new items that are similar to the user’s profile. As such, the key to an item-based CF method is in the estimation

of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item

similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works

attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by

optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for

learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work,

we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of

NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a

prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM) [1], our NAIS has stronger

representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public

benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based

CF, opening up new research possibilities for future developments of neural recommender systems.

Index Terms—Collaborative filtering, item-based CF, neural recommender models, attention networks

Ç

1 INTRODUCTION

RECOMMENDER system is a core service for many cus-
tomer-oriented online services to increase their traffic

and make profits, such as E-commerce and social media
sites. For example, it was reported that in YouTube, recom-
mendations accounted for about 60 percent video clicks for
the homepage [2]; in Netflix, recommender systems contrib-
uted about 80 percent of movies watched and placed the
business value of over $1 billion per year, as indicated by
their Chief Product Officer Neil Hunt [3].

In modern recommender systems, collaborative filtering
(CF)—a technique that predicts users’ personalized prefer-
ence from user-item interactions only—plays a central role
especially in the phase of candidate generation [4], [5]. Popu-
larized by theNetflix Prize,matrix factorization (MF)methods
have become the most popular recommendation approach
in academia and been widely studied in literatures [6], [7].

While MF methods are shown to provide superior accuracy
over neighbor-based methods in terms of rating prediction,
they have been relatively seldom reported to be used in indus-
trial applications. Onepossible reason is due toMF’s personal-
ization scheme—user-to-item CF that characterizes a user
with an ID and associates it with an embedding vector. As a
result, to refresh recommendations for a user with her new
interactions, the user’s embedding vector has to be updated.
However, re-training a MF model for large-scale data is diffi-
cult to achieve in real time andmay require complex software
stack to support online learning, making the approach less
attractive for industrial settings [8].

On the other hand, item-to-item CF—which characterizes
a user with her historically interacted items and recom-
mends items similar to the user’s profile—has been heavily
used in industrial applications [2], [3], [4], [9]. Not only does
item-based CF provide more interpretable prediction suit-
able for many recommendation scenarios, but it also makes
real-time personalization much easier to achieve. Specifi-
cally, the major computation that estimates item similarities
can be done offline and the online recommendation module
only needs to perform a series of lookups on similar items,
which can be easily done in real-time.

Early item-based CF approaches use statistical measures
such as Pearson coefficient and cosine similarity to estimate
item similarities [10]. Since such heuristic-based approaches
lack tailored optimization for recommendation, they typi-
cally underperform machine learning-based methods in
terms of top-K recommendation accuracy [6], [11]. To tackle
this, Ning et al. [12] adopt a machine learning view for
item-based CF, which learns item similarity from data by

� X. He and T.-S. Chua are with the School of Computing, National University
of Singapore, Singapore 119077.
E-mail: xiangnanhe@gmail.com, dcscts@nus.edu.sg.

� Z. He and Y.-G. Jiang are with the School of Computer Science, Fudan
University, Shanghai 200433, China. E-mail: {zkhe15, ygj}@fudan.edu.cn.

� J. Song is with the University of Electronic Science and Technology of
China, Chengdu 611731, China. E-mail: jingkuan.song@gmail.com.

� Z. Liu is with A* STAR, Singapore 138632.
E-mail: liuzhenguang2008@gmail.com.

Manuscript received 19 Nov. 2017; revised 20 Apr. 2018; accepted 22 Apr.
2018. Date of publication 30 Apr. 2018; date of current version 5 Nov. 2018.
(Corresponding author: Zhenguang Liu.)
Recommended for acceptance by M. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2831682

2354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8472-7992
https://orcid.org/0000-0001-8472-7992
https://orcid.org/0000-0001-8472-7992
https://orcid.org/0000-0001-8472-7992
https://orcid.org/0000-0001-8472-7992
https://orcid.org/0000-0002-2549-8322
https://orcid.org/0000-0002-2549-8322
https://orcid.org/0000-0002-2549-8322
https://orcid.org/0000-0002-2549-8322
https://orcid.org/0000-0002-2549-8322
https://orcid.org/0000-0002-1907-8567
https://orcid.org/0000-0002-1907-8567
https://orcid.org/0000-0002-1907-8567
https://orcid.org/0000-0002-1907-8567
https://orcid.org/0000-0002-1907-8567
mailto:
mailto:
mailto:
mailto:
mailto:

optimizing a recommendation-aware objective function.
Although better accuracy can be achieved, directly learning
the whole item–item similarity matrix has a quadratic com-
plexity w.r.t. the number of items, making it infeasible for
practical recommenders that need to deal with millions or
even billions of items.

To address the inefficiency issue of learning-based item-
to-item CF, Kabbur et al. [1] propose a factored item similar-
ity model, which represents an item as an embedding vector
and models the similarity between two items as the inner
product of their embedding vectors. Being a germ of repre-
sentation learning [13], [14], FISM provides state-of-the-art
recommendation accuracy and is well suited for online rec-
ommendation scenarios. However, we argue that FISM’s
modeling fidelity can be limited by its assumption that all his-
torical items of a user profile contribute equally in estimating
the similarity between the user profile and a target item. Intu-
itively, a user interacts with multiple items in the past, but it
may not be true that these interacted items reflect the user’s
interest to the same degree. For example, a fan of affectional
filmsmight also watch a horror film just because the filmwas
popular during that time. Another example is that user inter-
ests may change with time, and as such, recently interacted
items should bemore reflective of a user’s future preference.

In this work, we propose an enhanced item similarity
model by distinguishing the different importance of inter-
acted items in contributing to a user’s preference. Our NAIS
model is built upon FISM, preserving the same merit with
FISM in terms of high efficiency in online prediction, while
being more expressive than FISM by learning the varying
importance of the interacted items. This is achieved by
employing the recent advance in neural representation
learning—the attention mechanism [15], [16], [17]—for learn-
ing item-to-item interactions. One of our key findings is that
the standard attention mechanism fails to learn from users
historical data, due to the large variance on the lengths of user
histories. To address this, we adjust the attention design by
smoothing user histories. We conduct comprehensive experi-
ments on two public benchmarks to evaluate top-K recom-
mendation, demonstrating that our NAIS betters FISM for a
4.5 percent relative improvement in terms of NDCG and
achieves competitive performance. To facilitate the research
community to validate and make further developments
upon NAIS, we have released our implementation codes in:
https://github.com/AaronHeee/Neural-Attentive-Item-
Similarity-Model.

The remainder of the paper is as follows. After introduc-
ing some preliminaries in Section 2, we elaborate our pro-
posed method in Section 3. We then perform experimental
evaluation in Section 4. We discuss related work in Section 5,
before concluding the whole paper in Section 6.

2 PRELIMINARIES

We first shortly recapitulate the standard item-based CF tech-
nique [10]. We then introduce the learning-based method for
item-based CF [12] and FISM [1], which are building blocks
for our proposedNAISmethod.

2.1 Standard Item-Based CF

The idea of item-based CF is that the prediction of a user u
on a target item i depends on the similarity of i to all items

the user has interacted with in the past. Formally, the pre-
dictive model of item-based CF is:

ŷui ¼
X
j2Rþ

u

rujsij; (1)

where Rþ
u denotes the set of items that user u has interacted

with, sij denotes the similarity between item i and j, and ruj
is an interaction denoting the known preference of user u
on j—for explicit feedback (e.g., ratings) ruj can be a real
value denoting the rating score, and for implicit feedback
(e.g., purchases) ruj can be a binary value 1 or 0 denoting
whether u has interacted with j or not.

The appealing property of efficient online recommenda-
tion is brought by its compositionality in computing the pre-
diction score. First, when item similarities have been
obtained offline, the online recommendation phase only
needs to retrieve top similar items of candidate items Rþ

u

and score them with Equation (1). Second, to refresh recom-
mendations for a user with her new interactions, we only
need to consider items that are similar to the newly inter-
acted items. This incremental complexity makes item-based
CF very suitable for online learning and real-time personali-
zation, as demonstrated in [2], [8].

For the item similarity sij, an intuitive approach is to rep-
resent an item as its interacted users and apply similarity
measures such as cosine similarity and Pearson coeffi-
cient [10]. Another common approach is to employ random
walks on the user-item interaction graph [4]. However, such
heuristic-based approaches for estimating item similarities
lack optimization tailored for recommendation, and thus
may yield suboptimal performance. In what follows, we
introduce learning-based methods which aim to boost the
accuracy of item-based CF by adaptively learning item simi-
larities from data.

2.2 Learning-Based Methods for Item-Based CF

In [12], the authors proposed a method named SLIM (short
for Sparse LInear Method), which learns item similarities by
optimizing a recommendation-aware objective function.
The idea is to minimize the loss between the original user-
item interaction matrix and the reconstructed one from the
item-based CF model. Formally, the objective function to
minimize is as follows:

L ¼ 1

2

XU
u¼1

XI
i¼1

ðrui � ŷuiÞ2 þ bjjSjj2 þ gjjSjj1

subject to S � 0; diagðSÞ ¼ 0;

(2)

where U and I denote the number of users and items,
respectively, S 2 RI�I denotes the item-item similarity
matrix, and b controls the strength of L2 regularization for
preventing overfitting. Note that in SLIM there are three
purposely designed constraints on S to ensure an effective
learning of item similarities: 1) the L1 regularization con-
trolled by g to enforce sparsity on S, as in practice there are
only a few items that are particularly similar to an item; 2)
the non-negativity constraint on each element of S to make
it a meaningful similarity measure; and 3) the zero con-
straint on diagonal elements of S to eliminate the impact of
the target item itself in estimating the prediction.

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2355

https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model

Despite better recommending accuracy can be achieved,
SLIM has two inherent limitations. First, the offline training
process can be very time consuming for large-scale data,
due to the direct learning on S that has I2 elements (the
time complexity is in the magnitude of OðI2Þ). Second, it
can only learn similarities for two items that have been co-
rated before, and fails to capture transitive relations
between items. To address the limitations, the later work [1]
proposed FISM (short for Factored Item Similarity Model),
which represents an item as a low-dimensional embedding
vector; then the similarity score sij is parameterized as the
inner product between the embedding vector of i and
j. Formally, the predictive model of FISM is1:

ŷui ¼ pT
i

1

jRþ
u ja

X
j2Rþ

u nfig
qj

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
user u0s representation

; (3)

where a is a hyper-parameter controlling the normalization
effect, pi and qj denote the embedding vector for item i and
j, respectively. The symbol nfig corresponds to the con-
straint of diagðSÞ ¼ 0 in Equation (2), to avoid the modeling
of self-similarity of the target item.

From the viewof user-basedCF, the term in the bracket can
be seen as the user u’s representation, which is aggregated
from the embeddings of historical items of u. Note that in
FISM, each item has two embedding vectors p and q to differ-
entiate its role of a prediction target or a historical interaction,
which can also increase model expressiveness; the rating
term ruj is omitted as FISM concerns implicit feedback where
ruj ¼ 1 for j 2 Rþ

u . Given the well-defined predictive model
of Equation (3), one can learn model parameters by optimiz-
ing standard losses for recommendation (i.e., without the
item similarity constraints used in SLIM), such as the point-
wise classification loss [5] and pairwise regression loss [18].

While FISM provides state-of-the-art performance among
item-based CF methods, we argue that its representation
ability can be limited by its equal treatments on all historical
items of a user when obtaining the user’s representation. As
mentioned before in introduction, this assumption is counter-
intuitive for real-world data andmay decreasemodel fidelity.
Our proposed NAIS model tackles this limitation of FISM by
differentiating the importance of historical items with a neu-
ral attention network.

3 NEURAL ATTENTIVE ITEM SIMILARITY MODEL

In this section, we present our proposed NAIS methods.
Before introducing the NAIS model, we first discuss several
designs of attention mechanism that attempt to address the
limitation of FISM. We then elaborate the optimization of
model parameters. We focus the discussion of optimizing
NAIS with implicit feedback, which is the recent focus of
recommendation research since implicit feedback is more
prevalent and easy to collect than explicit ratings. Lastly,
we discuss several properties of NAIS, including the time
complexity, support for online personalization, and options
for the attention function.

3.1 Model Designs

Design 1. The original idea of attention is that different parts
of a model can contribute (i.e., attend) differently for the
final prediction [19]. In the scenario of item-based CF, we
can intuitively allow historical items contributing differ-
ently to a user’s representation by assigning each item an
individualized weight:

ŷui ¼ pT
i

1

jRþ
u ja

X
j2Rþ

u nfig
ajqj

0
@

1
A; (4)

where aj is a trainable parameter that denotes the attention
weight of item j in contributing to user representation.
Clearly, this model subsumes the FISM, which can be
resumed by fixing aj to 1 for all items. While this model
seems to be capable of differentiating the importance of his-
torical items, it ignores the impact of the target item on a
historical item. Particularly, we argue that it is unreasonable
to assign a historical item a global weight for all predictions,
regardless of which item to predict. For example, when pre-
dicting a user’s preference on a romantic movie, it is unde-
sirable to consider a horrible movie as equally important as
another romantic movie. From the perspective of user repre-
sentation learning, it assumes that a user has a static vector
to represent her interest, which may limit the model’s repre-
sentation ability.

Design 2. To address the limitation of Design 1, an intui-
tive solution is to tweak aj to be aware of the target item,
i.e., assigning an individualized weight for each ði; jÞ pair:

ŷui ¼ pT
i

1

jRþ
u ja

X
j2Rþ

u nfig
aijqj

0
@

1
A; (5)

where aij denotes the attention weight of item j in contribut-
ing to user u’s representation when predicting u’s prefer-
ence on target item i. Although this solution seems to be
technically viable, the problem is that if an item pair ði; jÞ
has never co-occurred in training data (i.e., no user has
interacted with both i and j), its attention weight aij cannot
be estimated and will be a trivial number.

Design 3. To solve the generalization issue of Design 2,
we consider relating aij with the embedding vector pi and
qj. The rationale is that the embedding vectors are sup-
posed to encode the information of items, thus they can be
used to determine the weight of an interaction ði; jÞ. Specifi-
cally, we parameterize aij as a function with pi and qj as the
input:

aij ¼ fðpi;qjÞ: (6)

The advantage of this parameterization is that even
though a pair ði; jÞ has never co-occurred, as long as pi

and qj have been reliably learned from data, they can still
be used to estimate the attention weight aij well. To
achieve this goal, we need to ensure the function f has
strong representation power. Inspired by the recent suc-
cess of using neural networks to model the attention
weight [15], [16], we similarly use a Multi-Layer Percep-
tion (MLP) to parameterize the attention function f . Spe-
cifically, we consider two ways to define the attention
network:1. The bias terms in the original paper are omitted for clarity.

2356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

1: fconcatðpi;qjÞ ¼ hTReLU W
pi

qj

" #
þ b

 !

2: fprodðpi;qjÞ ¼ hTReLUðWðpi � qjÞ þ bÞ

8>><
>>: ; (7)

where W and b are respectively the weight matrix and bias
vector that project the input into a hidden layer, and hT is
the vector that projects the hidden layer into an output
attention weight. We term the size of hidden layer as
“attention factor”, for which a larger value brings a stronger
representation power for the attention network. We use the
Rectified Linear Unit (ReLU) as the activation function for
the hidden layer, which has shown to have good perfor-
mance in neural attention network [15]. In later Section 3.3,
we discuss the pros and cons of the two attention functions
fconcat and fprod.

Following the standard setting of neural attention net-
work [16], [20], we can formulate the predictive model of
Design 3 as follows:

ŷui ¼ pT
i

X
j2Rþ

u nfig
aijqj

0
@

1
A;

aij ¼
expðfðpi;qjÞÞP

j2Rþ
u nfig expðfðpi;qjÞÞ

;

(8)

where the coefficient 1
jRþ

u ja is aborted into the attention

weight aij without affecting the representation power, and

the softmax function is used to convert the attention weights
to a probabilistic distribution. Note that this is the most nat-

ural and straightforward way to employ an attention net-

work on interaction history, which is the same as the history

modeling part of the Attentive CFmodel [16].
Unfortunately, we find such a standard solution of atten-

tion does not work well in practice—it underperforms FISM
significantly, even though it can generalize FISM in theory.
After investigating the attention weights, we unexpectedly
find the problem stems from the softmax function, a standard
choice in neural attention networks. The rationale is as
follows. In conventional usage scenarios of attention such
as CV and NLP tasks, the number of attentive components
does not vary much, such as words in sentences [21] and
regions in images [22], [23]. As such, using softmax can

properly normalize attention weights and in turn has a nice
probabilistic explanation. However, such a scenario does not
exist anymore for user historical data, since the history length
of users (i.e., number of historical items consumed by users)
can vary much. Qualitatively speaking, the softmax function
performs L1 normalization on attention weights, which may
overly punish theweights of active users with a long history.

To justify this point, we show the distribution of user his-
tory length on our experimented MovieLens and Pinterest
datasets in Fig. 2. We can see that for both real-world data-
sets, the history length of users varies a lot; specifically, the
ðmean; varianceÞ of user history length are ð166; 37145Þ and
ð27; 57Þ for MovieLens and Pinterest, respectively. Taking
the left subfigure of MovieLens data as an example, the
average length for all users is 166, while the maximum
length is 2313. Which means, the average attention weight
of the most active user is 1/2313, about 14 times fewer than
that of average users (i.e., 1/166). Such a large variance on
attention weights will cause problems in optimizing the
item embeddings of the model.

The NAIS Model. We now present our final design for the
NAIS model. As analyzed above, the weak performance of
Design 3 comes from the softmax,which performsL1 normal-
ization on attention weights and results in large variance on
attention weights of different users. To address the problem,
we propose to smooth the denominator of softmax, so as to
lessen the punishment on attention weights of active users
and meanwhile decrease the variance of attention weights.
Formally, the predictivemodel of NAIS is as follows:

ŷui ¼ pT
i

X
j2Rþ

u nfig
aijqj

0
@

1
A;

aij ¼
expðfðpi;qjÞÞ

½Pj2Rþ
u nfig expðfðpi;qjÞÞ�b

;

(9)

where b is the smoothing exponent, a hyperparameter to be
set in the range of ½0; 1�. Obviously, when b is set to 1, it
recovers the softmax function; when b is smaller than 1, the
value of denominator will be suppressed, as a result the
attention weights will not be overly punished for active
users. Although the probabilistic explanation of attention
network is broken with b < 1, we empirically find that it
leads to a performance much better than using the standard
softmax (see Section 4.4 for experiment results). We use the
term “NAIS-concat” and “NAIS-prod” to denote the NAIS
model that uses fconcat and fprod as the attention function,
respectively (cf. Equation (7)).

Moreover, our NAIS model can be viewed under the
recently proposed Neural Collaborative Filtering (NCF) frame-
work [5], as illustrated in Fig. 1. Differing from the user-based
NCFmodels that use one-hot user ID as the input feature, our
NAIS model uses multi-hot interacted items as the input fea-
ture for a user. Together with the carefully designed attention
network as the hidden layer, our NAIS model can be more
intuitively understood as performing item-to-itemCF.

3.2 Optimization

To learn a recommender model, we need to specify an
objective function to optimize. As we deal with implicit
feedback where each entry is a binary value 1 or 0, we can

Fig. 1. The neural collaborative filtering framework of our Neural Atten-
tive Item Similarity (NAIS) model.

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2357

deem the learning of a recommender model as a binary clas-
sification task. Similar to the previous work on Neural CF
[5], we treat the observed user-item interactions as positive
instances, sampling negative instances from the remaining
unobserved interactions. Let Rþ and R� denote the set of
positive and negative instances, respectively, we minimize
the regularized log loss defined as follows:

L ¼ � 1

N

X
ðu;iÞ2Rþ

log sðŷuiÞ þ
X

ðu;iÞ2R�
log ð1� sðŷuiÞÞ

0
@

1
Aþ �jjQjj2;

(10)
where N denotes the number of total training instances, and
s is a sigmoid function that converts a prediction ŷui to a
probability value denoting the likelihood that u will interact
with i. The hyper-parameter � controls the strength of L2

regularization to prevent overfitting, and Q ¼ ffpig; fqig;
W;b;hg denotes all trainable parameters. We are aware of
other options of objective functions, such as the pointwise
regression [6], [24] and pairwise ranking [11], [20] losses,
can also be employed to learn NAIS for implicit feedback.
As the focus of the work is to show the effectiveness of
NAIS, especially on the improvement over FISM to justify
the usage of attention, we leave the exploration of other
objective functions as future work.

To optimize the objective function, we adopt Ada-
grad [25], a variant of Stochastic Gradient Descent (SGD) that
applies an adaptive learning rate for each parameter. It
draws a stochastic sample from all training instances,
updating the related parameters towards the negative direc-
tion of their gradients. We use the mini-batch version of
Adagrad to speedup the training process, and the genera-
tion of a mini-batch is detailed in Section 4.1 of experimental
settings. In each training epoch, we first generate all nega-
tive instances, and then feed them together with positive
instances into the training algorithm for parameter updates.
This leads to much faster training than sampling the nega-
tive instance on-the-fly (as done in Bayesian Personalized
Ranking [11]) when training on GPU platforms, since it
avoids the unnecessary switch between GPU (for parameter
updating) and CPU (for negative sampling). Specifically, for
each positive instance ðu; iÞ, we randomly sample X items
that u has never interacted before as negative instances. In
our experiments we set X as 4, an empirical number that
has shown good performance for neural CF methods [5].

Pre-Training. Due to the non-linearity of neural network
model and non-convexity of the objective function (w.r.t. all
parameters), optimization using SGD can be easily trapped
to local minimums of poor performance. As such, the

initialization of model parameters plays a vital role in the
model’s final performance. Empirically, when we try to
train NAIS from random initialization, we find it converges
slowly and leads to a final performance slightly better than
FISM. We hypothesize that it is due to the difficulty of opti-
mizing the attention network and item embeddings simulta-
neously. Since the outputs of attention network rescale item
embeddings, jointly training them may result in the co-
adaption effect, which slows down the convergence. For
example, a training epoch may decrease an attention weight
aij but increase the embedding product pT

i qj, resulting in
only a small progress in updating the prediction score.

To address the practical issue in training NAIS, we pre-
train NAIS with FISM, using the item embeddings learned
by FISM to initialize that of NAIS. Since FISM does not have
the co-adaption issue, it can learn item embeddings well in
encoding item similarity. As such, using FISM embeddings
to initialize NAIS can greatly facilitate the learning of the
attention network, leading to faster convergence and better
performance. With such a meaningful initialization of item
embeddings, we can simply initialize the attention network
with a random Gaussian distribution.

3.3 Discussions

In this subsection, we discuss three properties of NAIS,
namely, its time complexity, ease to support online person-
alization, and the two options for attention function.

Time Complexity Analysis. We analyze the time complex-
ity of the predictive model of NAIS, i.e., Equation (9). This
directly reflects the time cost of NAIS in testing (or recom-
mendation), and the time cost of training should be propor-
tional to that of testing. The time complexity of evaluating a
prediction ŷui with FISM (cf. Equation (3)) is OðkjRþ

u jÞ,
where k denotes the embedding size and jRþ

u j denotes the
number of historical interactions of user u. Compared to
FISM, the additional cost of evaluating a prediction with
NAIS comes from the attention network. Let a denote the
attention factor, then we can express the time complexity of
evaluating fðpi;qjÞ as OðakÞ. Since the denominator of soft-
max (and our proposed smoothed variant of softmax) needs
to traverse over all items in Rþ

u , the time complexity of eval-
uating an aij is OðakjRþ

u jÞ. As such, a direct implementation
of NAIS model takes time OðakjRþ

u j2Þ, since we need to
evaluate aij for each j in jRþ

u j. However, considering the
denominator term is shared across the computation of all
items in Rþ

u , we only need to compute it once and cache it
for all evaluations of aij (where j is inRþ

u). As such, the over-
all time complexity of evaluating a NAIS prediction can be
reduced to OðakjRþ

u jÞ, which is a times of that of FISM.
Support for Online Personalization. The offline training of a

recommender model provides personalized recommenda-
tion based on a user’s past history. For online personaliza-
tion, we consider the practical scenario that a user has new
interactions streaming in, and the recommender model
needs to refresh the top-K recommendation for the user
instantaneously [6], [26]. Since it is prohibitive to perform
model re-training in real-time,2 an alternative solution is to
perform local updates on model parameters based on the

Fig. 2. The distribution of user history length on our experimented Movie-
Lens and Pinterest datasets.

2. To the authors’ knowledge, the current industrial servings of rec-
ommender systems usually performmodel re-training on a daily basis.

2358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

new feedback only. This is the common strategy used by
user-based CF model, such as matrix factorization [6]. How-
ever, we argue that even local updates on parameters are
difficult to achieve in practice. The key difficulty is that
users may have concurrent interactions on an item. As such,
separately performing local updates on a per interaction
basis will result in collision, and it is non-trivial to resolve
the collision in a distributed setting in real-time.

Instead of updating model parameters to adapt new
interactions, NAIS can refresh the representation vector of a
user without updating any model parameter, reducing the
difficulty of provide online personalization services. This is
attributed to the item-based CF mechanism that character-
izes a user with her interaction history, rather than her ID.
Specifically in NAIS, a user’s representation vector is aggre-
gated by a weighted sum on item embeddings, which
allows a nice decomposable evaluation on a prediction. For
example, let’s assume user u has a new interaction on item
t. To refresh the prediction of u on a candidate item i (i.e.,
ŷui), instead of computing ŷui from scratch (i.e., following
Equation (9)), we only need to evaluate the score of aitp

T
i qt,

and then sum it with the old prediction of ŷui. With the
cache of the denominator of softmax, the refresh of ŷui can
be done in OðakÞ time. This is much more efficient than per-
forming local updates with MF [6] (for which the time com-
plexity is Oðk2 þ jRþ

u jkÞ), since a is usually a small number
(typically set to be the same as k).

Options for Attention Function. The two choices of atten-
tion function differ in the construction of input: the first
choice fconcat simply concatenates pi and qj to learn the
attention weight wij [19], while second choice fprod feeds the
element-wise product of pi and qj into the attention net-
work [15]. Analytically speaking, since the attention weight
wij is to score the interaction pT

i qj, using the element-wise
product pi � qj as input may facilitate the hidden layer in
learning the attention function (since pT

i qj ¼ 1T ðpi � qjÞ);
as a downside, it may also cause some information loss
unintentionally, since the original information encoded in
pi and qj are discarded. In contrast, fconcat leverages the
original information encoded in pi and qj to learn their
interaction weight, which has no information loss; however,
due to the numerical gap between the concatenation
½pi;qj�T and element-wise product pi � qj, it may lead to
slower convergence. We will empirically compare the two
choices of attention function in the experiments section.

4 EXPERIMENTS

In this section, we conduct experiments with the aim of
answering the following research questions:

RQ1 Are our proposed attention networks useful for pro-
viding more accurate recommendations?

RQ2 How do our proposed NAIS methods perform com-
paredwith state-of-the-art recommendationmethods?

RQ3 What are the key hyper-parameters for NAIS and how
do they impact NAIS’s performance? In what follows,
we first present the experimental settings, followed by
results answering the above questions.

4.1 Experimental Settings

Datasets and Evaluation Protocol. We adopt the same Movie-
Lens andPinterest datasets as the ones used in theNCFpaper
[5]. Since both datasets have some pre-processing steps such
as removing sparse users and train-test splitting, we directly
evaluate on the processed data.3 Table 1 summarizes the sta-
tistics of the two datasets. More details on the generation of
the two datasets have been elaborated in [5], so we do not
restate them. Note that during training each interaction is
paired with 4 negative instances, thus the number of training
instances ismuchmore than the number of interactions.

We adopt the leave-one-out evaluation protocol [5], [11],
which holds out the latest interaction of each user as the
testing data and uses the remaining interactions for training.
Specifically, each testing instance is paired with 99 ran-
domly sampled negative instances; then each method out-
puts prediction scores for the 100 instances (1 positive plus
99 negatives), and the performance is judged by Hit Ratio
(HR) [27] and Normalized Discounted Cumulative Gain
(NDCG) [28] at the position 10. Both metrics have been
widely used to evaluate top-K recommendation [1] and
ranking systems [29] in information retrieval literatures. We
report the average scores for all users, where HR@10 can be
interpreted as a recall-based measure that indicates the per-
centage of users are successfully recommended (i.e., the
positive instance appears in top-10), and NDCG@10 is a
precision-based measure that accounts for the predicted
position of the positive instance, the larger the better.

Baselines. We compare NAIS with the following item rec-
ommendation methods:

Pop. This is a non-personalized method to benchmark the
performance of the top-K recommendation task. It ranks
items by their popularity, judged by the number of interac-
tions that an item received.

ItemKNN [10]. This is the standard item-based CF
method as formulated in Equation (1). We use consine simi-
larity to measure sij. We experiment with different numbers
of nearest item neighbors to consider, finding using all
neighbors lead to best results.

FISM [1]. This is a state-of-the-art item-based CF model
as formulated in Equation (3). We test a from 0 to 1 with a
step size of 0.1, finding a value of 0 leads to best result on
both datasets (the variance is actually small when a is
smaller than 0.6).

MF-BPR [11]. MF-BPR learns MF by optimizing the pair-
wise Bayesian Personalized Ranking (BPR) loss. This method
is a popular choice for building a CF recommender from
implicit feedback.

MF-eALS [6]. This method also learns a MF model, but
optimizes a different pointwise regression loss that treats all
missing data as negative feedback with a smaller weight.
The optimization is done by an element-wise Alternating
Learning Square (eALS) algorithm.

TABLE 1
Statistics of the Evaluation Datasets

Dataset Interaction# Train# Item# User#

MovieLens 1,000,209 4,970,845 3,706 6,040
Pinterest 1,500,809 7,228,110 9,916 55,187

3. The processed datasets are directly downloaded from: https://
github.com/hexiangnan/neural_collaborative_filtering

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2359

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/hexiangnan/neural_collaborative_filtering

MLP [5]. This method applies a multi-layer perceptron
above user and item embeddings to learn the scoring func-
tion from data. We employ a 3-layer MLP and optimize the
same pointwise log loss, which was reported to perform
well on the two datasets.

We have deliberately chosen the above methods to cover
a diverse range of recommendation methods: ItemKNN
and FISM are representative of item-based CF approaches
to validate the utility of our attention-argument modeling,
MF-BPR and MF-eALS are competitive user-based CF
approaches to evidence the state-of-the-art performance of
recommendation from implicit feedback, and MLP is a
recently proposed deep neural network-based CF method.
Note that we focus on the comparison of single CF models.
As such, we do not further compare with NeuMF which
achieves the best performance in the NCF paper, since
NeuMF is an ensemble method that fuses MF and MLP in
the latent space.

Parameter Settings. For each method, we first train it with-
out regularization; if overfitting is observed (i.e., training
loss keeps decreasing but the performance becomes worse),
we then tune the regularization coefficient � in the range of
½10�6; 10�5:::; 1�. The validation set is consisted of a ran-
domly drew interaction for each user. For the embedding
size k, we test the values of ½8; 16; 32; 64�, and set the atten-
tion factor a same as the embedding size in each setting. For
a fair comparison with FISM, we optimize it with the same
pointwise log loss using the same Adagrad learner. We find
that using the item embeddings learned by FISM to initial-
ize NAIS (i.e., the pre-training step) leads to slightly better
performance but much faster convergence. Without special
mention in texts, we report the performance of NAIS with
following default settings: 1) b ¼ 0:5, 2) k ¼ a ¼ 16, 3) � ¼ 0,
4) Adagrad with a learning rate of 0.01, and 5) pre-training
with FISM embeddings.

Implementation Details.We implement NAIS using Tensor-

Flow4. Since in the input layer an item (user) is represented as
a one-hot (multi-hot) vector where most entries are zeros, for
efficiency and memory concern, we adopt sparse representa-
tion that stores the IDs of non-zero entries only. Here an
implementation challenge is that different users have differ-
ent number of non-zero entries, while TensorFlow requires
all training instances of a batch must be of the same length
(same as other programming tools for deep learning like The-
ano). To tackle the challenge, a widely adopted solution is to
use the masking trick, which adds masks (i.e., pseudo non-
zero entries) to ensure all instances of a batch have a same

length (i.e., the maximum length of instances of the batch).
However, we find this solution is very time-consuming on
CF datasets, as some active users may have interacted with
over thousands of items, making a sampled mini-batch very
large. To address the issue, we innovatively form a mini-
batch as all training instances of a randomly sampled user,
rather than randomly sampling a fixed number of training
instances as a mini-batch. This trick of user-based mini-batch
has two advantages: 1) no mask is used thus it is much faster
(empirically 3X speedup over the masking trick), and 2)
no batch size needs to be specified which refrains the pain of
tuning the batch size. Moreover, the recommendation perfor-
mance remains the same according to our experiments.

Training Time. Table 2 shows the training time per epoch
of NAIS and baselines that are implemented with Tensor-
Flow. A training epoch is defined as training 5jRþj instan-
ces, since the negative sampling ratio is 4. The running
environment is a server with Intel Xeon CPU E5-2630 @
2.20 GHz and 64 GB memory. Note that the running time of
ItemKNN and MF-eALS are not shown since they are
implemented with Java, which are not comparable with
other methods. We can see that item-based CF methods
(FISM and NAIS) take longer training time than user-based
CF methods (MF-BPR and MLP). This is reasonable, since
user-based methods use an ID only to represent a user in
the input layer, while item-based methods use interacted
items to represent a user. MLP uses more time than MF-
BPR, since it has three more hidden layers than MF-BPR.
Moreover, the two NAIS methods take longer time than
FISM, due to the additional use of attention network. The
additional time cost is quite acceptable, which is roughly 0.8
times of the training time of FISM. Among the two NAIS
methods, NAIS_concat takes slightly longer time than
NAIS_prod, since concatenation increases the input dimen-
sion while product does not.

4.2 Effectiveness of Attention Networks (RQ1)

Technically speaking, our NAIS model enhances FISM by
replacing the constant weight (i.e., 1=jRþ

u ja) of an estimated
item-item similarity (i.e., pT

i qj) with a variable weight
learned by an attention network. To demonstrate the effi-
cacy of our designed attention networks, we first run FISM
until convergence, and then use FISM embeddings to initial-
ize NAIS for training the attention network.

Fig. 3 shows the stable performance of FISM and the
scores of our two NAIS methods at embedding size 16 in
each epoch. We can clearly see the effectiveness of using
attention networks. Specifically, the initialized performance
of NAIS are close to FISM, while by training the attention
network, the two NAIS methods improve over FISM signifi-
cantly. Here we show the performance of 50 epochs only,
and further training on NAIS can lead to even better perfor-
mance. Upon convergence (results can be found in Table 5),
both NAIS methods achieve a relative improvement of 6.3
and 3.6 percent over FISM in terms of NDCG on MovieLens
and Pinterest, respectively. We believe the improvements
on recommendation accuracy stem from the strong repre-
sentation power of NAIS. Moreover, we find that NAIS-
prod converges faster than NAIS-concat (while their final
performance are close). This confirms our analysis in
Section 3.3 by providing empirical evidence that feeding

TABLE 2
Training Time per Epoch (Seconds) of Methods

That Are Implemented Using Tensorflow

Methods MovieLens Pinterest

MF-BPR 24.4 s 17.3 s
MLP 125.8 s 155.8 s
FISM 238.3 s 353.3 s
NAIS_concat 455.2 s 525.6 s
NAIS_prod 428.5 s 485.2 s

4. Our implementation codes are available at https://github.com/
AaronHeee/Neural-Attentive-Item-Similarity-Model

2360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model

pi � qj into the attention network can facilitate learning the
weight of pT

i qj.

4.2.1 Qualitative Analysis

Here we provide some qualitative analysis on the attention
weights to show their learnability and interpretability.

First, it is interesting to see how do the attention weights
evolve during training. However, a prediction of ŷui has jRþ

u j
attention weights, and it is difficult to plot the attention
weights for all predictions. Instead, we record the statistics—
mean and variance—of the attention weights of a prediction,
and effective learning of the attention network is evidenced
by a large variance (note that the variances of FISM are 0).
Fig. 4 shows the scatter plot of the statistics learned by NAIS-
prod at different epochs in Pinterest, where each scatter
point denotes the prediction of a testing instance. We can see
that in the initial phase of training (Epoch 1), the points are
concentrated near x-axis, i.e., variances are close to zero.
With more training epochs, the points become more disper-
sive along the y-axis, andmany points start to get a high vari-
ance. Togetherwith Fig. 3which showsmore training epochs
lead to better performance, we can conclude that the atten-
tion weights have been properly trained to be more distin-
guishable for historical items. This reveals the reason of
NAIS improving over FISM, justifying our key argument of

this work that the historical items of a user do not contribute
equally in a prediction.

Second, we show a case study on the attention weights of
a prediction of a sampled user in Table 3. The weights have
been L1 normalized to make a clear comparison with FISM,
which assumes a uniform weight on the historical items. In
this example, the target item #1382 is a positive example in
the testing set and should be scored larger. We can see that
FISM weights all historical items (more precisely, their
interactions with the target item) uniformly, which leads to
a relatively smaller prediction score. In contrast, NAIS-prod
assigns a higher weight on item #894 and a lower weight
on item #131, successfully scoring the target item #1382
larger, which is desired. To demonstrate the rationality, we
further investigate the content of these items (i.e., Pinterest
images). We find that both the target item #1382 and the
highest attended item#894 are about natural scenery, while
the lowest attended item #131 is a family photo. This is as
expected, because when predicting a user’s preference on a
target item, her historical items of the same category should
have a larger impact than other less relevant items. This
well justifies our motivating example in introduction, pro-
viding evidence on the correlation of the attention weights
and the characteristics of items.

4.2.2 Effect of Pre-Training

To demonstrate the effect of pre-training (i.e., using the
embeddings learned by FISM as model initialization), we
show the performance of NAISwith andwithout pre-training
at embedding size 16 in Table 4. Note that the hyper-
parameters of NAIS without pre-training have been sepa-
rately tuned. As can be seen, by pre-training the two NAIS
methodswith FISM embeddings, bothmethods are improved
significantly. Besides the performance improvements, NAIS
methods with pre-training have a faster convergence rate

Fig. 3. Testing performance of FISM, NAIS-prod, and NAIS-concat of embedding size 16 in each epoch.

Fig. 4. The scatter plot of mean (x-axis) and variance (y-axis) of attention weights learned by NAIS-prod at different epochs. Each scatter point
denotes the prediction of a testing point in Pinterest.

TABLE 3
Attention Weights Breakdown of a Sampled

User on Target Item #1382 in Pinterest

Item ID #131 #894 #1534 #3157 sðŷuiÞsðŷuiÞ
FISM 0.25 0.25 0.25 0.25 0.17
NAIS-prod 0.03 0.52 0.22 0.23 0.81

The user has four historical items which are shown in column 1 to 4, and the
last column denotes the prediction score (after sigmoid).

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2361

than random initialization. This points to the positive effect of
using FISM embeddings to initialize NAIS. Moreover, train-
ing NAIS from scratch leads to a performance better than
FISM, which further verifies the usefulness of the attention
network.

4.3 Performance Comparison (RQ2)

We now compare the performance of NAIS with other item
recommendation methods. For these embedding-based
methods (MF, MLP, FISM, and NAIS), the embedding size
controls their modeling capability; as such, we set it to 16
for all methods for a fair comparison. In later Section 4.4 of
hyper-parameter study, we vary the embedding size for
each method. Table 5 shows the overall recommendation
accuracy. We have the following main observations.

� 1. The two NAIS methods achieve the highest NDCG
and HR scores on both datasets. They reach the same
performance level, achieving significant improve-
ments over other methods (p < 10�3 judged by the
one-sample paired t-test). We believe the benefits are
credited to the effective design of the attention net-
works in learning item-to-item interactions.

� 2. Learning-based CF approaches perform better
than heuristic-based approaches Pop and ItemKNN.
In particular, FISM outperforms its counterpart
ItemKNN with about 10 percent relative improve-
ments. Considering that both methods use the same
prediction model while differ in the way of estimat-
ing item similarities, we can clearly see the positive
effect of tailored optimization for recommendation.

� 3. Among the baselines, there is no obvious winner
between user-based CF models (MF, MLP) and item-
based CF model (FISM). Specifically, on MovieLens
user-based models perform better than FISM, while
on Pinterest FISM outperforms user-based models.

Since user interactions of the Pinterest data are more
sparse, it reveals that item-based CF might be more
advantageous for sparse datasets, which is in consis-
tent with the finding in previous work [1].

It is worth pointing out that the performance of NAIS
reported in Table 5 uses the default settings of hyper-
parameters (reported in Section 4.1). Further improvements
can be observed by tuning hyper-parameters, which will be
explored in the next subsection.

4.4 Hyper-Parameter Study (RQ3)

By introducing an attention network, NAIS has two addi-
tional hyper-parameters—the hidden layer size of the atten-
tion network (aka. the attention factor a) and the smoothing
exponent b. In addition, as an embedding-based model, the
embedding size is another crucial hyper-parameter for
NAIS. This subsection investigates the impact of the three
hyper-parameters.

Table 6 shows the performance of embedding-based
methods at embedding size 8, 32, and 64. We can see that the
performance trends are generally in consistent with the
observations at embedding size 16 (elaborated in Section 4.3).
Our NAIS methods achieve the best performance in most
cases, with the only exception of embedding size 8, where
MLP performs the best. This is because when the embedding
size is small, linear models are limited by the small embed-
ding size, while non-linear models are easy to express stron-
ger representation ability than linearmodels.

Fig. 5 shows the performance of NAIS w.r.t.attention fac-
tor. We can see that regardless of the setting of attention fac-
tor, both NAIS methods outperform FISM. Among the two
methods, NAIS-prod performs better than NAIS-concat for

TABLE 4
Performance of NAIS Methods with (w/) and without (w/o)

FISM Pre-Training at Embedding Size 16

MovieLens Pinterest

Methods HR NDCG HR NDCG

FISM 66.47 39.49 87.40 55.22
NAIS-concat w/o pre-training 67.77 40.41 87.90 56.23
NAIS-concat w/ pre-training 69.72 41.96 88.44 57.20
NAIS-prod w/o pre-training 68.04 40.55 87.90 56.04
NAIS-prod w/ pre-training 69.69 41.94 88.44 57.22

TABLE 6
Recommendation Accuracy Scores (%) of Embedding-Based Methods at Embedding Size 8, 32, and 64

Embedding size = 8 Embedding size = 32 Embedding size = 64

MovieLens Pinterest MovieLens Pinterest MovieLens Pinterest

Methods HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

MF-BPR 62.86 36.08 85.85 53.26 68.54 41.14 86.34 54.54 68.97 41.91 85.8 54.58
MF-eALS 62.8 36.35 86.26 51.86 70.4 42.16 86.75 53.84 70.35 43.5 85.77 53.77
MLP 67.1 39.98 85.9 53.67 69.24 42.51 86.77 54.2 70.18 42.64 86.9 54.5
FISM 61.71 35.73 87.03 54.82 69.29 41.71 88.43 57.13 70.17 42.82 88.62 57.18
NAIS-concat 64.17 37.36 87.44 55.27 70.83 43.36 88.56 57.47 71.66 44.15 88.74 57.75
NAIS-prod 64.5 37.6 87.88 55.75 70.91 43.39 88.67 57.59 71.82 44.18 88.84 57.9

The best performance of each setting is highlighted as bold font.

TABLE 5
Recommendation Accuracy Scores (%) of Compared

Methods at Embedding Size 16

MovieLens Pinterest

Methods HR NDCG HR NDCG

Pop 45.36 25.43 27.39 14.09
ItemKNN 62.27 35.87 78.57 48.32
MF-BPR 66.64 39.73 86.90 54.01
MF-eALS 67.88 39.83 87.13 52.55
MLP 68.41 41.03 86.48 53.85
FISM 66.47 39.49 87.40 55.22
NAIS-concat 69.72 41.96 88.44 57.20
NAIS-prod 69.69 41.94 88.44 57.22

2362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

small attention factors, demonstrating the positive effect of
using pi � qj of as input to the attention network for learn-
ing the weight of pT

i qj. Moreover, using a large attention
factor for NAIS-concat can compensate the performance
gap between NAIS-prod. This implies the utility of using an
expressive model for learning the attention weights.

Fig. 6 shows the performance of NAIS w.r.t. b. It is clear
that when b is smaller than 1, both NAIS methods show
good performance and outperform FISM. However, when b

is set to 1, the performances of NAIS degrade significantly
and are worse than FISM. Note that setting b to 1 means
using softmax to normalize the attention weights, a stan-
dard setting for neural attention networks [15], [16], [19].
Unfortunately, such a standard setting does not work well
for CF datasets. We believe the reason is caused by the large
variance of the length of user histories. Specifically, on Mov-
ieLens and Pinterest, the ðmean; varianceÞ of user history’s
length are ð166; 37145Þ and ð27; 57Þ, respectively. Such a
large variance on the number of attentive components sel-
dom happens in NLP and CV tasks that deal with sentences
(i.e., attention on words) and images (i.e., attention on
regions). This is a key insight of this work for employing
attention networks on user behavior data, which to our
knowledge has never been investigated before.

5 RELATED WORK

Early works on CF mostly deal with explicit feedback like
user ratings, formulating it as a rating prediction task [10],
[30]. The target is to minimize the error between observed
ratings and the corresponding model predictions. For
this regression-based CF task, MF—a linear latent factor
model—is known to be the most effective approach. Its
basic idea is to associate each user and item with a latent
vector (aka. embedding), modeling their matching score as
the inner product between their latent vectors. Many

variants to MF have been proposed, such as SVD++ [30],
Localized MF [31], Hierarchical MF [32], Social-aware
MF [26], and Cross-Platform MF [33]. The SVD++ model
has demonstrated strong representation power in fitting rat-
ings; in particular, it is reported to be the best single model
in the Netflix challenge. In our view, this shall be creditable
to its integration of user-based CF and item-based CF under
the latent factor model. While in the original paper of SVD+
+ [30], the authors claimed to enhance MF by incorporating
implicit feedback, the modeling of implicit feedback part is
essentially an item-based CF model.

Later research efforts on CF have shifted towards learning
recommenders from implicit feedback [1], [5], [6], [8], [11]. By
nature implicit feedback is a one-class data, where only users’
interaction behaviors are recorded and their explicit prefer-
ences on items (i.e., likes or dislikes) are unknown. Distinct
from early CF methods that predict rating scores, the works
on implicit feedback typically treat CF as a personalized rank-
ing task, adopting a ranking-based evaluation protocol on
top-K recommendations. It is obvious that evaluating a CF
method with a ranking-based protocol is more convincing
and practically valuable, since recommendation is naturally a
top-K ranking task for many applications. Moreover, there is
empirical evidence showing that a CF model of lower rating
prediction error does not necessarily result in higher accuracy
in top-K recommendation [34].

Technically speaking, the key difference between rating
prediction methods and top-K recommendation methods is
in theway of optimizing the CFmodel [6]. Specifically, rating
predictionmethods often optimize a regression loss on obser-
ved data only, while top-K recommendation methods need
to account for missing data (aka.negative feedback) [34].
As such, it is technically feasible to tailor a rating prediction
CF method for implicit feedback by simply adjusting the
objective function to optimize.

Fig. 5. Testing performance of NAIS methods w.r.t. the attention factor a.

Fig. 6. Testing performance of NAIS methods w.r.t. the smoothing exponent b.

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2363

To learn a recommender model from implicit feedback,
two types of learning to rank (L2R) objective functions have
been commonly applied: pointwise and pairwise. Pointwise
L2R methods either optimize a regression-based squared
loss [1], [35] or classification-based log loss [5], by either sam-
pling negative feedback frommissing data [36] or treating all
missing data as negative feedback [6]. For linear CF models
like MF and its variants (e.g., factorization machines), there
exist efficient coordinate descent algorithms that optimize
squared loss over all missing data [6], [8]. However for com-
plex non-linear CF models like neural networks, only SGD-
based optimization methods are applicable, and sampling
negative feedback frommissing data is necessary for the sake
of efficiency. Pairwise L2Rmethods consider a pair of a user’s
positive and (sampled) negative feedback, maximizing the
margin of their predicted scores regardless of their exact val-
ues [11], [20]. The underlying assumption is that an observed
interaction should be more likely of interest to the user than
an unobserved feedback. A state-of-the-art work develops
adversarial personalized ranking [37], which employs adver-
sarial training on pairwise learning to enhance the robustness
of recommender models and improve their generalization
performance.

In recent years, using deep neural networks (DNNs, aka.
deep learning) for recommendation becomes increasingly
popular. DNNs have strong ability to learn complex func-
tions from data, being well known for extracting high-level
features from low-level raw data, such as images and audios
[13]. Existing works on DNNs for recommendation can be
divided into two types: 1) using DNNs for feature extraction
from auxiliary data, e.g., images and texts [38], [39], and 2)
using DNNs for learning the user-item scoring function [5],
[40], [41]. Sincewe focus onCF that leverages user-item inter-
actions only, the second type of work is more relevant to this
work. In [5], the authors formulated a general NCF frame-
work for performing CF with feed-forward neural networks
and devised three user-based CF models. Later on NCF is
extended to incorporate attributes and optimize a pairwise
ranking loss [18]. The neural factorization machine (NFM)
[40] is proposed to model higher-order and non-linear inter-
actions among features, which is suitable for information-
rich recommendation scenario, such as attribute-based and
context-aware recommendation. More recently, Wang et al.
[41] combines the strengths of embedding-based with tree-
basedmodels for explainable recommendation.

The work that is most similar to ours is the Attentive Col-
laborative Filtering (ACF) [16], which develops an attention
network for user-based CF. Our NAIS differs from ACF and
all previous works by tailoring the attention network for
item-based CF. We find that using the standard attention
network does not work well on user interaction histories,
due to the problematic softmax in dealing with the varying-
length histories. To address this, we propose to smooth the
denominator of the softmax function. This insight is particu-
larly useful for developing attention network for sequential
data that has a large variance its length, which to our knowl-
edge has never been explored before.

6 CONCLUSION

In this work, we developed neural network methods for
item-to-item collaborative filtering. Our key argument is

that the historical items of a user profile do not contribute
equally to predict the user’s preference on an item. To
address this point, we first revisited the FISM method from
the perspective of representation learning, and then devised
several attention mechanisms step by step to enhance its
representation ability. We found that the conventional
design of neural attention network [15], [16], [17], [19] did
not work well for item-based CF, due to the large variances
of the lengths of user histories. We proposed a simple yet
effective variant of softmax to address the large variance
issue on user behaviors. We conducted empirical studies to
validate the effectiveness of our NAIS methods. Experimen-
tal results show that NAIS significantly outperforms FISM,
achieving competitive performance for the item recommen-
dation task.

To our knowledge, this is the first work on designing neu-
ral network models for item-based CF, opening up new
research possibilities for future developments of neural rec-
ommender models. In future, we are particularly interested
in exploring deep architectures for NAIS methods. Cur-
rently, our design of NAIS considers the pairwise similari-
ties, i.e., second-order interactions between items only, due
to the consideration of keeping the model’s simpleness in
online personalization. This is primarily for the practical con-
cern of a recommendation method. For further improve-
ments on the recommendation accuracy, it is natural to
extend NAIS by placing fully connected layers or convolu-
tional layers above the embedding layer, which has been
shown to be helpful by modeling high-order and nonlinear
features interactions [40]. Technically speaking, another
interesting direction worth exploring is to combine deep
neural networks with graph-based methods [42], [43], which
have their unique strengths and have also been widely used
for ranking. Moreover, we are interested in exploring the
recent adversarial personalized ranking learning on item-
based CF to investigate the possible performance improve-
ments [37]. Lastly, we will investigate the explainability of
recommender systems, which is a promising direction
recently [28], [41], [44], [45] and can be facilitated by intro-
ducing attention networks on item-based CFmethods.

ACKNOWLEDGMENTS

NExT research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its
IRC@SG Funding Initiative. This work is partly supported
by the National Key Research and Development Program
of China under Grant 2017YFB1401304, by the National
Research Foundation Singapore under its AI Singapore Pro-
gramme, Linksure Network Holding Pte Ltd, and the Asia
Big Data Association (award No.: AISG-100E-2018-002).

REFERENCES

[1] S. Kabbur, X. Ning, and G. Karypis, “FISM: Factored item similar-
ity models for top-n recommender systems,” in Proc. 19th ACM
SIGKDD Conf. Knowl. Discovery Data Mining, 2013, pp. 659–667.

[2] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, and D. Sampath, “The
youtube video recommendation system,” in Proc. 4th ACM Conf.
Recommender Syst., 2010, pp. 293–296.

[3] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender sys-
tem: Algorithms, business value, and innovation,” ACM Trans.
Manage. Inf. Syst., vol. 6, no. 4, pp. 13:1–13:19, 2015.

2364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

[4] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong,
J. Liu, and Y. Jing, “Related pins at pinterest: The evolution of a
real-world recommender system,” in Proc. 26th Int. Conf. World
Wide Web Companion, 2017, pp. 583–592.

[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web,
2017, pp. 173–182.

[6] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factori-
zation for online recommendation with implicit feedback,” in
Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2016,
pp. 549–558.

[7] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua,
“Discrete collaborative filtering,” in Proc. 39th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2016, pp. 325–334.

[8] I. Bayer, X. He, B. Kanagal, and S. Rendle, “A generic coordinate
descent framework for learning from implicit feedback,” in Proc.
26th Int. Conf. World Wide Web, 2017, pp. 1341–1350.

[9] B. Smith and G. Linden, “Two decades of recommender systems
at amazon.com,” IEEE Internet Comput., vol. 21, no. 3, pp. 12–18,
May 2017.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. 10th Int.
Conf. World Wide Web, 2001, pp. 285–295.

[11] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: Bayesian personalized ranking from implicit feedback,” in
Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 452–461.

[12] X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-n
recommender systems,” in Proc. IEEE 11th Int. Conf. Data Mining,
2011, pp. 497–506.

[13] B. Yoshua, C. Aaron, and V. Pascal, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[14] C. Luo, B. Ni, S. Yan, and M. Wang, “Image classification by selec-
tive regularized subspace learning,” IEEE Trans. Multimedia,
vol. 18, no. 1, pp. 40–50, Jan. 2016.

[15] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua,
“Attentional factorization machines: Learning the weight of fea-
ture interactions via attention networks,” in Proc. 26th Int. Joint
Conf. Artif. Intell., 2017, pp. 3119–3125.

[16] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua,
“Attentive collaborative filtering: Multimedia recommendation
with item- and component-level attention,” in Proc. 40th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 335–344.

[17] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in Proc. ACM Conf. Inf. Knowl.
Manage., 2017, pp. 1419–1428.

[18] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Recom-
mending items from information domains to social users,” in
Proc. 40th Int. ACM SIGIR Conf. Research Develop. Inf. Retrieval,
2017, pp. 185–194.

[19] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. ICLR, 2015,
https://arxiv.org/abs/1409.0473

[20] Z. Zhao, B. Gao, V. W. Zheng, D. Cai, X. He, and Y. Zhuang, “Link
prediction via ranking metric dual-level attention network learning,”
inProc. 26th Int. Joint Conf. Artif. Intell., 2017, pp. 3525–3531.

[21] A. P. Parikh, O. T€ackstr€om, D. Das, and J. Uszkoreit, “A decom-
posable attention model for natural language inference,” in Proc.
Conf. Empirical Methods Natural Lang. Process., 2016, pp. 2249–2255.

[22] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T. Chua,
“SCA-CNN: Spatial and channel-wise attention in convolutional
networks for image captioning,” in Proc. Comput. Vision Pattern
Recognit., 2017, pp. 6298–6306.

[23] M.Wang, X. Liu, and X.Wu, “Visual classification by l1-hypergraph
modeling,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 9, pp. 2564–
2574, Sep. 2015.

[24] M.Wang,W. Fu, S.Hao,H. Liu, andX.Wu, “Learning on big graph:
Label inference and regularization with anchor hierarchy,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 5, pp. 1101–1114,May 2017.

[25] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, no. Jul, pp. 2121–2159, 2011.

[26] Z. Zhao, H. Lu, D. Cai, X. He, and Y. Zhuang, “User preference
learning for online social recommendation,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 9, pp. 2522–2534, Sep. 2016.

[27] M. Deshpande and G. Karypis, “Item-based top-n recommenda-
tion algorithms,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177,
2004.

[28] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware
explainable recommendation by modeling aspects,” in Proc. 24th
ACM Int. Conf. Inf. Knowl. Manage., 2015, pp. 1661–1670.

[29] X. He, M. Gao, M.-Y. Kan, and D. Wang, “Birank: Towards rank-
ing on bipartite graphs,” IEEE Trans. Knowl. Data Eng., vol. 29,
no. 1, pp. 57–71, Jan. 2017.

[30] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proc. 14th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2008, pp. 426–434.

[31] Y. Zhang, M. Zhang, Y. Liu, S. Ma, and S. Feng, “Localized matrix
factorization for recommendation based on matrix block diagonal
forms,” in Proc. 22nd Int. Conf.WorldWideWeb, 2013, pp. 1511–1520.

[32] S. Wang, J. Tang, Y. Wang, and H. Liu, “Exploring implicit hierar-
chical structures for recommender systems,” in Proc. 24th Int.
Conf. Artif. Intell., 2015, pp. 1813–1819.

[33] D. Cao, X. He, L. Nie, X. Wei, X. Hu, S. Wu, and T.-S. Chua, “Cross-
platform app recommendation by jointly modeling ratings and
texts,”ACMTrans. Inf. Syst., vol. 35, no. 4, pp. 37:1–37:27, 2017.

[34] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in Proc. 4th
ACM Conf. Recommender Syst., 2010, pp. 39–46.

[35] M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-
supervised learning by efficient anchor graph regularization,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1864–1877, Jul. 2016.

[36] X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin, “Personalized
key frame recommendation,” in Proc. 40th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2017, pp. 315–324.

[37] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized
ranking for recommendation,” in Proc. 41th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2018.

[38] X. Geng, H. Zhang, J. Bian, and T.-S. Chua, “Learning image and
user features for recommendation in social networks,” in Proc.
IEEE Int. Conf. Comput. Vision, 2015, pp. 4274–4282.

[39] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu,
“What your images reveal: Exploiting visual contents for point-
of-interest recommendation,” in Proc. 26th Int. Conf. World Wide
Web, 2017, pp. 391–400.

[40] X. He and T.-S. Chua, “Neural factorization machines for sparse
predictive analytics,” in Proc. 40th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2017, pp. 355–364.

[41] X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, “TEM: Tree-
enhanced embedding model for explainable recommendation,” in
Proc. World Wide Web Conf., 2018, pp. 1543–1552.

[42] R. Hong, C. He, Y. Ge, M. Wang, and X. Wu, “User vitality rank-
ing and prediction in social networking services: A dynamic net-
work perspective,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 6,
pp. 1343–1356, Jun. 2017.

[43] F. Feng, X. He, Y. Liu, L. Nie, and T.-S. Chua, “Learning on par-
tial-order hypergraphs,” in Proc. World Wide Web Conf., 2018,
pp. 1523–1532.

[44] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit
factor models for explainable recommendation based on phrase-
level sentiment analysis,” in Proc. 37th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2014, pp. 83–92.

[45] Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke, “Social collabora-
tive viewpoint regression with explainable recommendations,” in
Proc. 10th ACM Int. Conf. Web Search DataMining, 2017, pp. 485–494.

Xiangnan He received the PhD degree in com-
puter science from the School of Computing,
National University of Singapore. He is currently
a senior research fellow with the School of Com-
puting, National University of Singapore. His
research interests include recommender system,
information retrieval, and multi-media processing.
He has more than 20 publications appeared in
several top conferences such as SIGIR, WWW,
MM, CIKM, and IJCAI, and journals including the
IEEE Transactions on Knowledge and Data Engi-

neering, the ACM Transactions on Information Systems, and TMM. His
work on recommender system has received the Best Paper Award Hon-
orable Mention of ACM SIGIR 2016. Moreover, he has served as the PC
member for the prestigious conferences including SIGIR, WWW, MM,
AAAI, IJCAI, WSDM, CIKM, and EMNLP, and the regular reviewer for
prestigious journals including the IEEE Transactions on Knowledge and
Data Engineering, the ACM Transactions on Information Systems, the
ACM Transactions on Knowledge Discovery from Data, TMM, etc.

HE ET AL.: NAIS: NEURAL ATTENTIVE ITEM SIMILARITY MODEL FOR RECOMMENDATION 2365

https://arxiv.org/abs/1409.0473

Zhankui He is working toward the graduate degree
at Fudan University, China, and is an exchange
student at the National University of Singapore
(NUS). He is a research assistant with the Lab of
Media Search and NExT Research Center, NUS.
He has been awarded the 2016 Shanghai Scholar-
ship, the 2016 Fudan Excellent Student Award,
and the 2017 Oriental CJ Scholarship. His
research interest includes recommendation sys-
tem and computer vision.

Jingkuan Song received the PhD degree in infor-
mation technology from The University of Queens-
land (UQ), Australia, in 2014. He is currently a
professor with the University of Electronic Science
and Technology of China. He joined Columbia Uni-
versity as a postdoctoral research scientist (2016-
2017), and the University of Trento as a research
fellow (2014-2016). His research interest includes
large-scale multimedia retrieval, image/video seg-
mentation and image/video annotation using hash-
ing, graph learning, and deep learning techniques.

Zhenguang Liu received the BEandPhD degrees
fromShandongUniversity and ZhejiangUniversity,
China, in 2010 and 2015, respectively. He is
currently a research fellow with the Singapopre
Agency for Science, Technology, and Research
(A* STAR). He was a research fellow with the
National University of Singapore from 2015 to May
2017. His research interests include multimedia
data analysis and data mining. Various parts of his
work have been published in first-tier venues
including TIP, AAAI, MM, TMM, and TOMM. He

has served as a technical program committee member for conferences
such as ACMMM and MMM, and a reviewer for the IEEE Transactions on
Visualization and Computer Graphics, ACM MM, the IEEE Transactions
onMultimedia, Multimedia Tools and Applications, etc.

Yu-Gang Jiang received the PhD degree in com-
puter science from the City University of Hong
Kong and spent three yearsworkingwith Columbia
University before joining Fudan, in 2011. He is a
professor of computer science and the director
with the Shanghai Engineering Research Center
for Video Technology and System, Fudan Univer-
sity, China. His Lab for Big Video Data Analytics
conducts research on all aspects of extracting
high-level information from big video data, such as
video event recognition, object/scene recognition,

and large-scale visual search. He is the lead architect of a few best-per-
forming video analytic systems in worldwide competitions such as the
annual U.S. NIST TRECVID evaluation. His work has led tomany awards,
including the inaugural ACM China Rising Star Award, the 2015 ACM
SIGMMRising Star Award, and the research award for outstanding young
researchers from NSF China. He was also selected into China’s National
Ten-Thousand Talents Program and the Chang Jiang Scholars Program
of China Ministry of Education. He is currently an associate editor of ACM
TOMM,Machine Vision and Applications (MVA), andNeurocomputing.

Tat-Seng Chua received the PhD degree from
the University of Leeds, United Kingdom. He is
the KITHCT chair professor with the School of
Computing, National University of Singapore. He
was the acting and founding dean of the school
from 1998-2000. His main research interests
include multimedia information retrieval and
social media analytics. In particular, his research
focuses on the extraction, retrieval, and question-
answering (QA) of text and rich media arising
from the Web and multiple social networks. He is

the co-director of NExT, a joint center between NUS and Tsinghua Uni-
versity to develop technologies for live social media search. He is the
2015 winner of the prestigious ACM SIGMM award for Outstanding
Technical Contributions to Multimedia Computing, Communications,
and Applications. He is the chair of steering committee of the ACM Inter-
national Conference on Multimedia Retrieval (ICMR) and Multimedia
Modeling (MMM) conference series. He is also the general co-chair of
ACM Multimedia 2005, ACM CIVR (now ACM ICMR) 2005, ACM SIGIR
2008, and ACMWeb Science 2015. He serves on the editorial boards of
four international journals. He is the co-founder of two technology startup
companies in Singapore.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 12, DECEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

