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Abstract—Generating recommendations based on user-item interactions and user-user social relations is a common use case in
web-based systems. These connections can be naturally represented as graph-structured data and thus utilizing graph neural
networks (GNNs) for social recommendation has become a promising research direction. However, existing graph-based methods fails
to consider the bias offsets of users (items). For example, a low rating from a fastidious user may not imply a negative attitude toward
this item because the user tends to assign low ratings in common cases. Such statistics should be considered into the graph modeling
procedure. While some past work considers the biases, we argue that these proposed methods only treat them as scalars and can not
capture the complete bias information hidden in data. Besides, social connections between users should also be differentiable so that
users with similar item preference would have more influence on each other. To this end, we propose Graph-Based Decentralized
Collaborative Filtering for Social Recommendation (GDSRec). GDSRec treats the biases as vectors and fuses them into the process of
learning user and item representations. The statistical bias offsets are captured by decentralized neighborhood aggregation while the
social connection strength is defined according to the preference similarity and then incorporated into the model design. We conduct
extensive experiments on two benchmark datasets to verify the effectiveness of the proposed model. Experimental results show that
the proposed GDSRec achieves superior performance compared with state-of-the-art related baselines. Our implementations are
available in https://github.com/MEICRS/GDSRec.
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1 INTRODUCTION

IN the face of a huge number of web users and information
explosion, recommender systems are of vital importance

which can alleviate information overload and provide users
with more efficient and high-quality services. An effective
recommender system can benefit both users by acquiring
their preferred contents (e.g. movies, music, merchandise)
from a large amount of information, and service providers
by reducing promotional costs. As a result, recommender
systems have attracted widespread interests in recent years.
Meanwhile, exploiting social relations to improve the per-
formance of recommendation has also become increasingly
popular with the growth of social media [1], [2], [3]. In social
networks, there is a flow of information among connected
friends. A user’s preference is similar to or influenced by the
people around him/her, which has been proved by social
correlation theories [4], [5].

Recently, deep learning has shown strong capability to
achieve good performance due to its high expressiveness
and model fidelity. Graph neural networks (GNNs) utilize
the advances of deep learning for graph-structured data and
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have been applied for various fields such as geo-location
[6], [7] and bio-informatic [8], [9]. For the domain of social
recommendation, the user-item interactions and user-user
friendship can be naturally represented as graphs, in which
users and items are the nodes while interactions (friendship)
are the edges. Based on such observations, utilizing the
recent advance of GNNs for social recommendation has
become a promising research direction.

However, almost GNN-based recommendation methods
are learned from the original interaction graph with little
attention paid to the statistical information of the graphs,
which could result into misunderstanding of the real user
preference. For example, from the user perspective, a fastid-
ious user may tend to give a low rating to every movie he
has watched, then a rating of 3 out of 5 may actually denote
a positive preference of this user. From the item perspective,
a rating 4 of 5 could also represent a negative attitude if the
average rating for this item can achieve a high score (e.g.,
4.5). This is a bias hidden in the data that would mislead
the training for users and items representations. The author
in [10] has introduced similar considerations. Based on this
insight, FunkSVD and SVD++ have been proposed, which
model these user and item biases as scalars in rating pre-
dictions. However, we argue that these methods are simple
but do not capture the true bias hidden in practice. Firstly,
we consider that using scalar is not enough to completely
model the real biases of users and items. Secondly, existing
methods do not explicitly construct the biases in data, but
use original data to learn. It also lead to an inability to learn
the bias well. Besides, the social connection strength should
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also be differentiable. In [11], it demonstrates that users
with strong connections are more likely to share similar
tastes than those with weak connections and thus treating
all social relations equally would also lead to sub-optimal
solutions.

In this paper, we design a new GNN-based model to
address the above problems for social recommendation.
More precisely, we treat the biases as vectors and fuse them
into user/item representations in the proposed model. This
design could help us to learn the representations well. To
this end, we design a decentralized interaction graph to
consider the statistical bias offsets of users (items). This
graph is constructed by extracting bias information explic-
itly and helps the model learn better representations. Be-
sides, we re-weight the user-user connections according to
the preference similarity, which can help the model focus on
useful friendship connections while denoise the redundant
aggregation. Our major contributions are summarized as
follows:
• We treat the rating biases as vectors and fuse them into

the process of learning user and item representations. To
this end, we introduce a new perspective to process the
original graph to a decentralized graph and learn the user
and item representations from it. The decentralized graph
is acquired through exploiting the statistical information
of the original data, thus the bias information is extracted
explicitly on the graph.

• A simple yet effective explicit strength of the social con-
nection is given, which can be then incorporated into the
final prediction rule and helps to improve the recommen-
dation performance.

• We propose a new GNN-based collaborative filtering
model (GDSRec) for social recommendation, which are
learned on the decentralized graph with explicit differ-
entiable social connection strengths.

• We conduct experiments on two real-world datasets to
verify the effectiveness of the proposed model. Experi-
mental results show that GDSRec outperforms the com-
pared state-of-the-art baselines.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background including related
works and some notations. The proposed framework is
detailed in Section 3. In Section 4, experiments on two
real-world datasets are conducted to validate the proposed
approach. Finally, we give a conclusion of this paper in
Section 5.

2 BACKGROUND

2.1 Related Work

For the general recommendation task, there are two main
types of algorithms: content-based algorithms [12] and col-
laborative filtering algorithms [13], [14]. Among these meth-
ods, collaborative filtering has been widely used because
of its effectiveness and scalability. Matrix factorization [15],
[16], [17], one of the most important collaborative filtering
methods, has achieved great success in various scenarios
[18], [19]. It maps users and items to a shared latent factor
space, and interactions between users and items are mod-
eled by the inner product of their latent factors. In [10],

SVD++ considers user and item biases that extends matrix
factorization model. Besides, explorations of social networks
for recommendation have been proved to be effective. In
[20], the authors found that users with following relations
are more likely to share similar interests in topics than two
randomly chosen users. Therefore, the social relations play
a significant role to help the users filter information. Based
on such observation, many social-based recommendation
algorithms have been presented [1], [21], [22], [23], [24],
[25]. In [21], a factorization approach was proposed to solve
the rating prediction problem by employing both the users’
social network information and rating records. TrustMF [23]
was introduced by using the matrix factorization of the trust
network between the users in social interactions for the rat-
ing prediction. TrustSVD [26] exploits trust information that
extends SVD++. The authors in [24], [25] utilized Jaccard’s
coefficient to compute the strength of the social relations,
but did not take the ratings into account. Furthermore,
some other works utilized side information to improve the
recommendation quality, e.g. [27], [28]. Recently, SREPS [29]
learns the user’s multiple preference in different scenarios.

Deep learning models have also been exploited to en-
hance the model expressiveness for recommendation. Due
to the fact that the recommendation data can be naturally
organised as graphs, research about exploiting GNNs [30],
[31], [32], [33] for recommendation have also been con-
ducted. The key insight of GNNs is to learn the repre-
sentations of the nodes by aggregating feature information
from neighborhoods. This conforms the nature of collabo-
rative filtering. In [34], the authors proposed a graph auto-
encoder framework called graph convolution matrix com-
pletion (GCMC) based on differentiable message passing
on the user-item interaction graph without using the social
relations. Neural graph collaborative filtering (NGCF) [35]
was proposed to integrate the user-item interactions into the
embedding process.Knowledge graph attention network for
recommendation (KGAT) [36] was introduced to explicitly
model the high-order connectivities in knowledge graph.
DiffNet [37] was proposed by using a layer-wise influence
diffusion part to model how users’ latent preferences are
recursively influenced by trusted users. A GNN-based social
recommendation algorithm, GraphRec, was introduced in
[38]. It provides an approach to jointly capture the in-
teractions and the ratings for learning the representations
of the users and the items. Further, the social network
information is employed in GraphRec for learning better
representations of the users. DANSER [39] proposes two
dual graph attention networks to learn deep representations
for social effects in recommender systems. Diffnet++ [40]
promotes the user and item representations by injecting
both the higher-order user latent interest reflected in the
user-item graph and higher-order user influence reflected in
the user-user graph. LightGCN [41] simplifies NGCF with
removing nonlinear activation and feature transformation in
graph convolution networks and promotes the performance
of recommendation. ESRF [42] develops a deep adversar-
ial framework based on graph convolution networks to
address the challenges of social recommendation. FBNE
[43] explores the implicit higher-order user-user relations
though folding a user-item bipartite graph to improve the
performance of social recommendation. HOSR [44] is to
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Fig. 1. (a) The user-item rating matrix; (b) the interactions of the user
u1.

generate user embedding by performing embedding propa-
gation along high-order social neighbors. However, most of
these methods fail to consider the statistic offsets existing in
the graph data while also lack an effective yet simple design
for the strength of social relations.

2.2 Notations

Let O be the set of observed ratings (i.e., rij ̸= 0). R(vj)
is the set of users who have interacted with the item
vj and R(ui) is the set of items which the user ui has
interacted with. Let N(ui) be the set of users whom the
user ui connects within the social network directly. The
vector pui

∈ RD denotes the embedding of user ui, and
qvj ∈ RD represents the embedding of item vj , where D is
the embedding size. E(ui) and E(vj) denote the average
ratings of the user ui and the item vj , respectively. ⌈·⌉
and | · | are the integer-valued function and the absolute-
valued function, respectively. ⊕ denotes the concatenation
operation between two vectors. ⟨·⟩ is used to obtain the
number of entries in a dataset.

3 THE PROPOSED FRAMEWORK

We first give the problem formulation, then introduce the
decentralized graph and the proposed framework. Later, we
detail how to get a predicted rating and learn the user/item
latent factor offsets from the proposed model. Finally, we
explain how to train the model.

3.1 Problem Formulation

Suppose that there are N users U = {u1, u2, · · · , uN} and
M items V = {v1, v2, · · · , vM}. As illustrated in Fig. 1(a),
each user rates some items. If the rating can be observed,
the rating score is greater than 0, otherwise there are
missing values. The user-item rating matrix is denoted by
R ∈ RN×M . The task is to predict the unobserved ratings in
R and then return a ranked list of items for recommenda-
tion. To this end, the rating history and social relationships
of users are employed to solve this problem. For example,
we assume that the items v2 and v4 are rated by the user
u1 in Fig. 1(a), and the user u1 has social relationships with
the users u2 and u4 directly, as illustrated in Fig. 1(b). The
left part of Fig. 1(b) containing the interactions between the
users and the items is called user-item graph, and the right
part containing the interactions between the users is called
social graph. For the value in the edge of user-item graph,
it represents the user ui’s rating rij on the item vj . For the
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Fig. 2. The original bipartite graph can be processed as a decentralized
graph.
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Fig. 3. The overview of the proposed framework. It contains four com-
ponents: user modeling, item modeling, social modeling and preference
rating prediction.

value in the social graph, we define it as the relationship
coefficient between the users ui and uj , i.e.,

Tij = 1 +
∑

vk∈{R(ui)∩R(uj)}

I (|rik − rjk| ≤ δ) , (1)

where I(x) = 1 when x is satisfied and zero otherwise, δ is
the threshold for evaluating two users whether they like the
same one item. The relationship coefficient Tij represents
the explicit relationship strength between the users, and
denotes how much the user ui is similar to the socially
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connected user uj . The higher the relationship coefficient is,
there are more common items the two users like or dislike, in
other words, the two users are more similar with each other.
In order to predict the ratings of the user u1 on the items v1,
v3, we use the data described in Fig. 1(b) and the predicted
ratings can be obtained by employing the GDSRec.

3.2 General Framework

Generally, the original data (e.g. Fig. 1) can be treated
as a bipartite graph, as the left side in Fig. 2, in which
users have relations with other users and interactions with
items. However, directly learning from such graphs may
lead to the misunderstanding of the real user preference.
Considering that a low rating from a fastidious user may
not denote a negative attitude on this item because the user
tends to assign low ratings to all items. Such phenomenon
is not uncommon. If we only use the original data to learn
the representations of users and items, this bias may lead
to sub-optimal solution. To alleviate the above issue due to
these user behaviors, we believe the statistical information
can be utilized to address the bias offsets of users and items.
Motivated by this idea, the original bipartite graph can be
processed as a decentralized graph, as shown on the right
side of Fig. 2. For each user-item interaction, we subtract it
from the centralized mean average. Then, the decentralized
graph is utilized to train our model. We will give more
details in the follow.

In Fig. 3, we show an overview of the proposed model.
This model includes four components: user modeling, item
modeling, social modeling and preference rating prediction.
For the user modeling, its aim is to learn the latent factor
offsets of the users. The function of the social modeling is
similar to that of the user modeling. The difference between
two modelings is that the user modeling only models one
user while the social modeling needs to integrate the learn-
ing for the social relations of the user simultaneously. The
item modeling is used to learn the latent factors of the items.

As mentioned before, we solve the rating prediction
problem by exploiting the decentralized graph data con-
sisting of the decentralized user-item graph and the social
graph. It is intuitive to obtain the final predicted rating
r̂ij between the user ui and the item vj , including three
components: the average rating E(ui) of the user ui, the
average rating E(vj) of the item vj , and the final preference
rating between the user ui and the item vj , i.e.,

r̂ij =
1

2
[E(ui) + E(vj)] + f(ui, vj), (2)

where E(ui) and E(vj) set the benchmark for the predic-
tion, f(ui, vj) computes the final preference rating between
the user ui and the item vj . The function f(ui, vj) can be
expressed as

f(ui, vj) =
1

2

rpij +
∑

uk∈N(ui)

λikr
p
kj

 , (3)

with

λik =
Tik∑

uk∈N(ui)

Tik
, (4)

where rpij is the preference rating between the user ui

and the item vj . The final predicted preference rating can
be understood to consist of the user’s own opinions and
references of his socially connected users’ ratings. Since it
is easy to obtain E(ui) and E(vj) from the original data,
the key problem is how to derive the preference rating
rpij between the user ui and the item vj . To this end, we
utilize the decentralized user-item graph to learn the repre-
sentations of the users and the items. These representations
are called latent factor offsets, because the proposed model
maps the users and the items into a latent factor space by
exploiting the decentralized graph data. In order to obtain
the latent factor offsets of the users and the items, different
data are employed to accomplish different goals. With the
example in Fig. 1, the items interacted with the user (i.e.,
item aggregation of v2 and v4) are utilized for learning
the latent factor offset of the user u1. For the latent factor
offset of item v4, it is learned from the users whom the item
interacts with (i.e., user aggregation of u1 and u2). The social
offsets of u1 is learned by performing social aggregation
between the users that u1 is socially connected with (i.e.,
u2 and u4). The preference rating prediction component is
to learn the model parameters via prediction by integrating
the user, item and social modeling components. It should be
noted that if there is a new user or item without interaction
records, the average rating of this user or item can be
replaced by the global average value. The details of these
model components are discussed as follows.

3.3 User Modeling
In this subsection, we detail how to model the latent factor
offset (denoted as hui

∈ RD) of the user ui from item
aggregation.

It can be seen that the decentralized user-item graph
contains the interactions history between the users and the
items, and the users’ ratings on these items. In [38], the
authors provided an approach to capture the interactions
and the ratings for learning the latent factor of the user
ui. However, this approach does not reflect the statistical
difference between ui and other users. As a result, instead
of using the rating directly, we exploit the rating difference
r̄ij in the user modeling, i.e.,

r̄ij = ⌈|rij − E(vj)|⌉. (5)

We create an embedding lookup table to map each dif-
ference r̄ij into the table and one can easily obtain the
difference representation sr̄ij in this table. The reason that
we do not use rij−E(vj) directly is that it is not convenient
to use the embedding method in codes due to decimals. We
believe quantitative methods can be utilized to tackle this
problem and we leave it for future works.

To get the latent factor offset hui for the user ui mathe-
matically, we use the following function as

hui
= Tanh (W ·GI({xil,∀vl ∈ R(ui)}) + b) , (6)

where xil is the representation vector denoting the rating-
difference-aware interaction between the user ui and the
item vl, GI is the item aggregation function, W and b
are the weight and bias of a neural network, respectively.
The purpose of the rating-difference-aware interaction is to
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capture the users’ preference differences, which can help us
to model the users’ latent factor offsets. This is different
from directly obtaining users’ preferences in the past [34],
[38]. For the interaction between the user ui and the item
vl with the rating difference r̄il, we model this interaction
representation xil as

xil = LU ([qvl ⊕ sr̄il ]), (7)

where LU is a Multi-Layer Perceptron (MLP). As mentioned
in the introduction, this method treats the bias as a vector
and fuses it into the process of learning the user represen-
tation. In this way, we could better capture bias hidden in
user interaction records.

Consider that each interaction between one user and the
interacted items contributes differently to the user’s latent
factor offset. Inspired by the attention mechanisms [45], [46],
we define the item aggregation function GI as

GI({xil,∀vl ∈ R(ui)}) =
∑

vl∈R(ui)

ηilxil, (8)

where ηil is the attention weight of the interaction between
the user ui and the item vl. In this way, the model can better
capture the differences in the users’ preferences. The core
problem is how to get the attention weight. We take the
following attention network to solve it.

Attention Network
The input of this network is the interaction representation
xil and the user ui’s embedding vector pui . According to
[38], we exploit a two-layer neural network,

η̇il = wT
2 · ReLU (W1 · [xil ⊕ pui

] + b1) + b2, (9)

where ReLU is rectified linear unit. The attention weight
ηil is obtained by normalizing above attentive scores with
Softmax function, i.e.,

ηil =
exp(η̇il)∑

vl∈R(ui)

exp(η̇il)
. (10)

Finally, the latent factor offset hui for the user ui can be
written as

hui
= Tanh(W ·

 ∑
vl∈R(ui)

ηilxil

+ b). (11)

3.4 Item Modeling
This part aims to learn the latent factor offset hvj of the
item vj from the user aggregation in the decentralized user-
item graph. The user aggregation contains all users who
interact with the item vj , as well as users’ ratings on vj .
Different users may express different attitudes towards the
same item. This can help us to characterize the item to some
extent. In order to describe the different characteristics of
the item on different users, we modify the way of using the
rating utilized in the user modeling. A new rating difference
r̄ij between the user ui and the item vj is defined as

r̃ij = ⌈|rij − E(ui)|⌉. (12)

Exploiting this type of rating difference, we use the model to
learn the latent factor offset of one item from different users.

The following whole process is similar to the user modeling.
For the interaction between the user uk and the item vj with
the rating difference r̃kj , we present a rating-difference-
aware interaction representation yjk composed by the user
embedding puk

and the rating difference embedding sr̃kj
,

i.e.,
yjk = LI([puk

⊕ sr̃kj
]), (13)

where LI is a MLP same as LU and the method for getting
sr̃kj

is the same as for sr̄ij in the user modeling. For learning
the latent factor offset hvj , we introduce the function

hvj
= Tanh(W ·GU ({yjk,∀uk ∈ R(vj)}) + b), (14)

where GU is the user aggregation function. After introduc-
ing the attention mechanism for differentiating the contri-
butions of users’ interactions to yjk, we have

GU ({yjk,∀uk ∈ R(vj)}) =
∑

uk∈R(vj)

ξjkyjk, (15)

where ξjk is the attention weight obtained by using a two-
layer neural attention network taking yjk and qvj as the
input. It can be written as

ξjk =
exp(ξ̇jk)∑

uk∈R(vj)

exp(ξ̇jk)
, (16)

with

ξ̇jk = wT
2 · ReLU(W1 · [yjk ⊕ qvj ] + b1) + b2. (17)

Similar to hui
, hvj can be expressed as

hvj = Tanh(W ·

 ∑
uk∈R(vj)

ξjkyjk

+ b). (18)

3.5 Social Modeling

The function of the social modeling is similar to that of
the user modeling. When the user modeling learns the
latent factor offset of the user ui, this social modeling aims
to learn the latent factor offsets of ui’s socially connected
users. For example, in Fig. 3, when the user modeling learns
the latent factor offset of the user u1, the social modeling
learns the latent factor offsets of u2 and u4 in the way the
user modeling does, respectively. Hence, we can directly
obtain {huk

,∀uk ∈ N(ui)}. It should be noted that in this
module, data is still the decentralized graph data. The main
purpose of this module is to help target users calibrate
their ratings through their social users. When calculating the
rating between a user and an item, the preference of socially
connected users of this user is an important reference. It can
help the model get more accurate ratings.

3.6 Rating Prediction

After acquiring the latent factor offsets hui , hvj and
{huk

, uk ∈ N(ui)} of the user ui, the item vj and ui’s
social-connected users, respectively, the preference rating
can be obtained using a three-layer neural network. For the
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preference rating rpij , we use the following process to obtain
it,

z1 = Tanh(W1 · [hui
⊕ hvj ] + b2), (19)

z2 = Tanh(W2 · z1 + b2), (20)

rpij = wT · z2. (21)

For ui’s social users, their preference ratings {rpkj ,∀uk ∈
N(ui)} are derived in the same way. Then using the ex-
pressions in (2)–(4), we can obtain the final rating prediction
between the user ui and the item vj . It should be noted that
in the testing stage, the average ratings of users and items
are consistent with that in the training stage.

3.7 Model Training
We evaluate our proposed model from two perspectives
including rating prediction and ranking prediction. For the
task of rating prediction, there is a commonly used objective
function

L1 =
1

2⟨O⟩
∑

(ui,vj)∈O

(r̂ij − rij)
2, (22)

where rij is a ground truth rating rated by user ui on item
vj .

Learning to rank focuses on providing the end-user a
ranked list of items [47] and is widespread in different kinds
of recommendation scenarios, e.g., top-k recommendation,
sequential recommendation [48], [49]. In this task, for each
user, the interacted items are labeled as 1 (i.e., positive
samples) if the rating is equal to or greater than F , or 0
(i.e., negative samples) if not. This is to say, the users would
like to click on or browse the items with a rating equal to
or greater than F . As the two datasets in our experiment
contain ratings from 1 to 5, we set up two cases including
F = 3 and F = 4 in our experiments. The output prediction
scores of all models is adjusted using the sigmoid function.
For the ranking task, we choose the binary cross-entropy
loss as the objective function

L2 =
∑

(ui,vj)∈O

yij log(ŷij) + (1− yij) log(1− ŷij), (23)

where yij is a ground truth label of a sample and ŷij is a
value between (0, 1) as predicted by the model.

In the optimization of the objective functions, we adopt
the RMSprop [50] as the optimizer. It randomly selects a
training instance, and updates each model parameter along
the negative gradient direction. All the embedding vectors
are initialized randomly and learned during the stage of
training. For the rating difference embedding, it depends
on the rating scale. In our experiment, each rating is in
{1, 2, 3, 4, 5}. Hence one can set the input dimension of the
embedding to be 5.

To reduce the influence of overfitting and improve gen-
eralization performance, we apply the dropout strategy [51].
In particular, we introduce a node dropout strategy.

Node dropout
In the decentralized user-item graph and the social graph,
each user or item has a different number of interactions.
For example, one user may have interacted with a dozen
items, but another may have only interacted with a few

TABLE 1

Statistics of the two datasets

Feature Ciao Epinions

Users 7,317 18,088

Items 10,4975 261,649

Ratings 283,319 764,352

Social Relations 111,781 355,813

items. In order to prevent the overfitting impact of too
many interactions on the representation learning, we need
to reduce some interactions in the training stage. Based on
the above ideas, node dropout is presented. In [34], the
authors introduced a way of dropping out nodes with a
probability. However, this approach was detrimental to the
nodes with few interaction records. Hence, in the process
of learning the latent factor offsets for the users and the
items, we reserve up to K interaction nodes for each node
randomly, such that we can protect the node where the
learning resources are few.

In the next section, we validate the performance of the
proposed model on two real-world datasets.

3.8 Time Complexity

As described in the section 3.1, there are N users, M items
and ⟨O⟩ training samples. We use node dropout and reserve
up to K interaction nodes for each node. At each module,
we need to calculate two MLPs with small layers (e.g., two-
layers). Thus the time cost for three modeling modules is
about O((N + M)KD). For the rating prediction module,
the time cost is about O(⟨O⟩D). Therefore, the total time
cost is about O(((N +M)K + ⟨O⟩)D). In practice, as K ≪
{N,M}, thus the total time complexity is acceptable.

4 EXPERIMENT

In this section, we conduct experiments to verify the effec-
tiveness of the proposed GDSRec. We aim to answer the
following research questions:

RQ1: How does GDSRec perform compared with ex-
isting methods, regarding both rating prediction and item
ranking?

RQ2: How does the specific design of GDSRec affect the
model performance? (i.e., ablation study)

RQ3: How does the node dropout strategy affect the
model performance?

RQ4: How do the threshold δ affects the model perfor-
mance?

4.1 Dataset

We evaluate our model on two benckmark datasets Ciao and
Epinions1. They are taken from popular social networking
websites. These two datasets contain users, items, ratings
and social relations. The ratings are from 1 to 5. The statistics
of Ciao and Epinions are shown in Table 1.

1. https://www.cse.msu.edu/%7etangjili/trust.html
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TABLE 2

Performance comparison of different recommender models

Training Metrics PMF FunkSVD TrustMF NeuMF DeepSoR GCMC GCMC+SN LightGCN GraphRec Diffnet++ GDSRec

Ciao(60%)
MAE 0.9520 0.8462 0.7681 0.8251 0.7813 0.8157 0.7697 0.7715 0.7540 0.7459 0.7328

RMSE 1.1967 1.0513 1.0543 1.0824 1.0437 1.0527 1.0225 1.0203 1.0093 0.9987 0.9846

Ciao(80%)
MAE 0.9021 0.8301 0.7690 0.8062 0.7739 0.8001 0.7526 0.7562 0.7387 0.7398 0.7323

RMSE 1.1238 1.0515 1.0479 1.0617 1.0316 1.0323 0.9931 0.9963 0.9794 0.9774 0.9740

Epinions(60%)
MAE 1.0211 0.9036 0.8550 0.9097 0.8520 0.8915 0.8602 0.8717 0.8441 0.8435 0.8157

RMSE 1.2739 1.1431 1.1505 1.1645 1.1135 1.1258 1.1004 1.1103 1.0878 1.0795 1.0685

Epinions(80%)
MAE 0.9952 0.8874 0.8410 0.9072 0.8383 0.8736 0.8590 0.8677 0.8168 0.8201 0.8047

RMSE 1.2128 1.1422 1.1395 1.1476 1.0972 1.1052 1.0711 1.0801 1.0631 1.0635 1.0566

4.2 Evaluation Metrics

For evaluating the performance of the rating prediction of
the proposed model, we adopt two well-known metrics,
namely mean absolute error (MAE) and root mean square
error (RMSE), to evaluate the predictive accuracy of the
recommendation algorithms. The two metrics are defined
as

MAE =
1

⟨T ⟩
∑

ui,vj∈T
|r̂ij − rij |, (24)

RMSE =

√√√√ 1

⟨T ⟩
∑

ui,vj∈T
(r̂ij − rij)2, (25)

where T is the dataset of testing. Smaller values of MAE
and RMSE indicate higher predictive accuracy.

In order to further validate the performance of the rating
prediction, we extend it to item ranking evaluation. The
testing set contains both positive (i.e., items whose score
≥ F ) and negative samples (items whose score < F ).
A ranked list of items in the testing set is assessed by
using Recall and Normalized Discounted Cumulative Gain
(NDCG) [35], [52]. We compute Recall@5 by counting the
number of positive samples contained in the top-5 positions
of a ranked list. NDCG is a weighted version of Recall
which assigns higher importance to the top positions in
a list. Higher values of Recall and NDCG indicate better
ranking performance. It should be noted that we only use
the observed data to evaluate and do not rank all items in
the item ranking evaluation. All the reported results are the
average of five tests.

4.3 Baselines

For comparison purposes, the following approaches are
considered. We select four groups of representative methods
including:
• Traditional recommendation algorithms: PMF [53], it only

uses rating information; FunkSVD [10], it considers user
and item biases based on matrix factorization methods;

• Traditional social recommendation algorithm: TrustMF
[23], which exploit social information on the basis of rating
information;

• Deep neural network based recommendation algorithms:
NeuMF [52], DeepSoR [54], which are classical deep and
deep social recommendation, respectively.

• Graph neural network based recommendation algo-
rithms: GCMC, GCMC+SN [34], GraphRec [38], Light-
GCN [41] and Diffnet++ [40].

4.4 Parameter Settings
Our proposed model is implemented on the basis of Py-
torch2. For two datasets, we select 80% or 60% as a training
set to learn the parameters, and the rest are divided into a
validation set and a testing set on average. This data split is
consistent with [38]. The validation set is used to tune hyper-
parameters and the testing set is for the final performance
comparisons. The threshold δ can be selected in {0, 1, 2, 3}.
We test the values of the embedding size D in {16, 32, 64,
128, 256, 512}, and the interaction node reservation K in
{5, 10, 15, 20} on Ciao and {15, 20, 25, 30} on Epinions.
The learning rate and the batch size are searched in {10−6,
10−5, 10−4, 5 × 10−4} and {64, 128, 256}, respectively. We
stop the training if the sum of MAE and RMSE increases 10
successive epochs on the validation set. Model parameters
and all the embedding vectors are initialized in default
with a uniform distribution in Pytorch. For LightGCN [41]
and Diffnet++ [40], we adopt a setting of two-layer graph
convolution. The hyper-parameters for these methods are
tuned by grid search.

4.5 Performance Comparison (RQ1)

4.5.1 Rating prediction
Table 2 shows the performance comparison between differ-
ent models for the task of rating prediction. Part of results

2. http://pytorch.org/
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of the compared methods are taken from [38]. The values
with underlines indicate the best performance between the
baselines, to the best of our knowledge. It can be seen from
the table that FunkSVD outperforms PMF, which indicates
that the user and item biases exist in practice. We can
see that the traditional method TrustMF outperforms PMF
and FunkSVD. When PMF and FunkSVD only use rating
information, the traditional social recommender algorithm
shows that the combination of rating and social information
can effectively improve the recommendation performance.
These results support that social network information can
be leveraged when we solve the rating prediction problem
using deep neural networks.

NeuMF exploits neural network architecture to solve the
problem, and it performs better than PMF. This shows the
power of the neural network model in recommender algo-
rithms. DeepSoR combines social information on the basis
of the neural network, and performs better than NeuMF.
In addition, comparing GCMC and GCMC+SN, the impor-
tance of social information also can be observed. LightGCN
is the sate-of-the-art recommendation GNN-based model
with implicit feedback, which models high-order user-item
interaction but without exploiting social information. Gener-
ally, it outperforms GCMC but not as strong as GCMC+SN.
Both GraphRec and Diffnet++ take advantage of GNNs
and combine them with the social network information for
recommendations. These two approaches show that GNNs
have good learning capabilities for representations.

From Table 2 we can see that our model GDSRec outper-
forms all other baseline methods. Compared to GraphRec
and Diffnet++, our model exploits the users and items
statistics, which helps to obtain the rating prediction bench-
marks. The preference rating prediction is then sought by
learning the latent factor offsets of the users and the items.
In addition, unlike GraphRec and Diffnet++ which use the
social network information to learn the user representations,
our model uses the social network information as a method
of correcting the final rating prediction. When the training
set accounts for 60% of the dataset, it can be seen that our
model has an average performance improvement of 1.75%
over Diffnet++. When the training data is 80% of the dataset,
our model can obtain more performance improvements. Al-
though the percentage of relative improvements are small,
Koren has pointed out in [55] that even small improvements
in MAE and RMSE may lead to significant differences of
recommendations in practice.

4.5.2 Item ranking
In this part, we evaluate the performance of item ranking
for the proposed model. For comparison purpose, we select
the traditional algorithm PMF and FunkSVD, the classi-
cal deep algorithm NeuMF, GNN-based models including
LightGCN, GraphRec and Diffnet++ to compare with our
GDSRec. The results are shown in Fig. 4 and 5. From the
figures we can see that the four models show similar and
high performance on the Recall evaluation metric. This is
because the positive label takes up a large proportion in the
two datasets. The models’ predictions are naturally biased
and give positive results with high probabilities for negative
samples. This makes it difficult to judge the performance of

the models on the Recall. In contrast, the performance of
the models on the NDCG is different. This demonstrates
a difference in the ranking ability of the four models. In
sum, the GDSRec performs better than other counterparts
in terms of NDCG. It further demonstrates that our model
is more effective to push the positive items to high ranking
positions.

4.6 Ablation Study (RQ2)
In this subsection, we further investigate the impact of the
model components of the proposed GDSRec.

4.6.1 Effect of Social Network and User Ratings
The effectiveness of the proposed model is presented in
this subsection. Our model incorporates three factors: 1)
the addition of the relationship coefficient for the social
relations; 2) using the social relations to adjust the rating
prediction; 3) learning the latent factor offsets by employing
the statistics of the users and the items. To better understand
the proposed model, we make several variants of the model
and compare the performance between them. These variants
are defined as:
• GDSRec-RC: The relationship coefficients of the social

relations are removed from the proposed framework. This
variant implies that all social relationships are equal and
undifferentiated. In other words, all relationship coeffi-
cients are 1.

• GDSRec-SN: The social network information of the
GDSRec is removed. This variant ignores the preference
rating prediction of the social relations, and only uses hui

and hvj to obtain f(ui, vj), i.e., f(ui, vj) = rpij .
• GDSRec-RD: The latent factor offsets are learned from

the rating difference in our proposed framework. This
variant means that the latent factor offsets are learned
with original rating data, rather than the rating difference.
In other words, the rating difference (r̄ij , r̃ij) defined in
(5) and (12) is replaced by rij .

For simplicity, we conclude these variants in Table 3. In the
following, we compare the performance of these variants
with that of the GDSRec.

TABLE 3

Modification of GDSRec

Modification

GDSRec-RC Eq. (4) ⇒ λik = 1
⟨N(ui)⟩

GDSRec-SN Eq. (3) ⇒ f(ui, vj) = rpij

GDSRec-RD Eq. (5) and (12) ⇒ r̄ij , r̃ij = rij

The performance comparisons among the GDSRec and
three variants regarding rating prediction are given in Fig.
6. The hyper-parameters in these models are set to be the
same. From the results shown in the figure, we can conclude
that:
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Fig. 4. Performance of ranking on Ciao and Epinions datasets for F = 3.
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Fig. 5. Performance of ranking on Ciao and Epinions datasets for F = 4.
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Fig. 6. Effect of social network and user ratings on Ciao and Epinions datasets.

• Impact of the Social Network: We now analyze the impact
of the social network on the recommendation perfor-
mance. First of all, we can see that the performance of the
GDSRec-RC is slightly weaker than that of the GDSRec
from the Fig. 6. Although the RMSE of the GDSRec-RC is
similar to that of the GDSRec on Ciao, the MAE is 0.9%
higher than that of the GDSRec. For the dataset Epinions,
it can be observed that while the MAE of the GDSRec-RC
is close to that of the GDSRec, the RMSE of the GDSRec-
RC is higher than that of the GDSRec. This verifies that
the relationship coefficient is beneficial for the model. On
the other hand, the RMSE of the GDSRec-SN is 0.79%
higher than that of the GDSRec while the MAE results
of two models are close. This is to say, the social network
is important for the recommendation performance.

• Impact of the Rating Difference: When we use the original
rating data instead of the rating difference for training the
latent factor offsets, we can see from Fig. 6 that both MAE
and RMSE of the GDSRec-RD on two datasets are much
higher than that of the GDSRec. So the performance of
the GDSRec-RD is much worse than that of the GDSRec.
It validates that our core idea, processing on the original
rating data, is very efficient, which helps to improve the
performance of recommendation. We believe it can be

applied directly to other models and lead to performance
improvements, and we leave it for future works.

TABLE 4

Effect of attention network on Ciao and Epinions datasets.

Training Metrics GDSRec-avg GDSRec-max GDSRec

Ciao(60%) MAE 0.7326 0.7388 0.7328

RMSE 0.9871 0.9884 0.9846

Epinions(60%) MAE 0.8155 0.8183 0.8157

RMSE 1.0704 1.0706 1.0685

4.6.2 Effect of Attention Network
In this subsection, the effectiveness of the attention network
is evaluated. The proposed GDSRec use softmax to normal-
ize the attention scores. Here, we design two variants of the
attention weights. One variant is to rewrite (10) and (16) as{

ηil =
1

⟨R(ui)⟩ ,

ξjk = 1
⟨R(vj)⟩ ,

(26)
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respectively. The other is,


ηil = max

vl∈R(ui)

(
exp(η̇il)∑

vl∈R(ui)

exp(η̇il)

)
,

ξjk = max
uk∈R(vj)

 exp(ξ̇jk)∑
uk∈R(vj)

exp(ξ̇jk)

 .

(27)

We use GDSRec-avg and GDSRec-max to denote these two
variants respectively. Note that there is no another variant
similar to the GDSRec-max which replaces maximum of (27)
with minimum. This is because it may result in the output
of the attention network very small if there is a attention
weight is close to zero.

The performance comparison regarding rating predic-
tion is shown in Table 4. We can observe that the GDSRec-
avg achieves the same performance with the GDSRec on
the MAE. The performance of the GDSRec-max is always
the worst. We can put the GDSRec-avg and GDSRec-max
in the same category as these two variants both have the
same output weight for different input attention scores.
We believe that the GDSRec-avg performs better than the
GDSRec-max as the adjustment of the GDSRec-avg is more
gentle. In summary, the GDSRec assigns different weights
to users or items when learning the representations and
therefore has better performance.

TABLE 5

Effect of the threshold δ on Ciao and Epinions datasets.

Training Metrics δ = 0 δ = 1 δ = 2 δ = 3

Ciao(60%)
MAE 0.7327 0.7328 0.7441 0.7446

RMSE 0.9874 0.9846 0.9856 0.9879

Epinions(60%)
MAE 0.8242 0.8157 0.8252 0.8271

RMSE 1.0709 1.0685 1.0696 1.0726

4.6.3 Effect of Average Rating

According to (2), the final prediction depends on the average
ratings (i.e., E(ui) and E(vj)). Here we discuss what the
performance will be if the average ratings are changed.
Toward this end, we change the weight of the average
ratings in the final prediction, the expression (2) is rewritten
as

r̂ij =
α

2
[E(ui) + E(vj)] + f(ui, vj), (28)

where α is a hyper-parameter.
We test the values of α in {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2,

1.4, 1.6} and give the results in Fig. 7. From the figure we
can see that the performance degrades significantly as α
decreases from 1 to 0. It’s easy to explain that the model can
be thought of as fitting the decentralized training data. Thus,
once the average ratings changed, the final prediction loses
this information directly. It inevitably leads to performance
degradation. As α goes large, the performance relatively
deteriorates. These results indicate the importance of users’
personalized preferences in predicting.

4.7 Effect of Node Dropout (RQ3)

Now, we analyze the effect of the node dropout on the per-
formance of recommendation. The node dropout is used to
avoid overfitting problems caused by too many interactions
for nodes. For a limited number K of interaction nodes, we
show the results in Fig. 8, where the training set accounts for
60% of the dataset and D = 256. On the dataset Ciao, the
GDSRec achieves the best performance at K = 10 when K
increases from 5 to 20. For the dataset Epinions, the results
are somewhat different. As K goes from 15 to 30, we can
clearly see that both MAE and RMSE are minimal at K = 25.
It verifies that the interaction nodes number K effects the
performance of the proposed model. For a new dataset, a
limited number of interaction nodes K needs to be tested
experimentally.

4.8 Effect of the Threshold δ (RQ4)

In Table 5, we give the results of the MAE and RMSE on two
datasets for different δ thresholds. Generally, when δ is 1, the
performance on Ciao and Epinions is the best. As δ = 0, the
data of the social relation is very sparse. Therefore, it can
not help the model to learn better. And as δ becomes larger
than 1, it may introduce some noise into the social relation
data and causes poor performance.
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Fig. 8. Effect of node dropout on Ciao and Epinions datasets.

5 CONCLUSIONS

In this paper, we have proposed a novel framework GDSRec
for the rating prediction problem in social recommenda-
tions. GDSRec treats rating biases as vectors and fuses them
into the process of learning user and item representations.
To the end, we have dealt with the original graph into the
decentralized graph by utilizing the statistical information,
and extracted bias information explicitly on the graph. It
provides a decentralized perspective on learning the latent
factor offsets for the users and the items. And the statis-
tical information provides important benchmarks for the
rating predictions. In addition, we have differentiated the
explicit strengths of social relations for the users and added
these strengths to the final predictions. Experiments on two
real-world datasets have been conducted. The results have
shown that our new method has better rating prediction
performance than its counterparts. In addition, we have
conducted experiments to verify the ability of ranking for
the proposed model. To conclude, the proposed model
achieves better performance on both rating prediction and
item ranking.
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