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CoLLM: Integrating Collaborative Embeddings Into
Large Language Models for Recommendation

Yang Zhang , Fuli Feng , Jizhi Zhang, Keqin Bao, Qifan Wang , and Xiangnan He , Senior Member, IEEE

Abstract—Leveraging Large Language Models as recom-
menders, referred to as LLMRec, is gaining traction and brings
novel dynamics for modeling user preferences, particularly for
cold-start users. However, existing LLMRec approaches primarily
focus on text semantics and overlook the crucial aspect of incor-
porating collaborative information from user-item interactions,
leading to potentially sub-optimal performance in warm-start sce-
narios. To ensure superior recommendations across both warm
and cold scenarios, we introduce CoLLM, an innovative LLMRec
approach that explicitly integrates collaborative information for
recommendations. CoLLM treats collaborative information as a
distinct modality, directly encoding it from well-established tra-
ditional collaborative models, and then tunes a mapping mod-
ule to align this collaborative information with the LLM’s input
text token space for recommendations. By externally integrating
traditional models, CoLLM ensures effective collaborative infor-
mation modeling without modifying the LLM itself, providing
the flexibility to adopt diverse collaborative information modeling
mechanisms. Extensive experimentation validates that CoLLM
adeptly integrates collaborative information into LLMs, resulting
in enhanced recommendation performance.

Index Terms—Recommender system, large language model,
collaborative information.

I. INTRODUCTION

LARGE Language Models (LLMs) like GPT3 [1], [2] and
LLaMA [3] have made rapid advancements, showcasing

remarkable capabilities in context comprehension, reasoning,
generalization, and modeling world knowledge, among oth-
ers [4]. These exceptional proficiencies have sparked intense
interest and enthusiasm for exploring and utilizing LLMs across
diverse fields and disciplines [5], [6], [7], [8]. Recommender
systems, as a core engine for personalized information filtering
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Fig. 1. A demonstration of LLMRec method (TALLRec [12]) performance
compared to conventional methods (MF [14]) in warm and cold scenarios on
Amazon-Book [15] data.

on the web, are also anticipated to reap significant benefits from
the development of LLMs. For instance, the world knowledge
and context comprehension abilities of LLMs could enhance
item understanding and user modeling, particularly for cold
items/users [9]. This anticipation opens up an exciting new
direction: leveraging LLMs as recommenders (LLMRec) [10],
[11], which exhibits the potential to become a transformative
paradigm for recommendation [10], [12], [13].

To leverage LLMs as recommenders, pioneering studies have
relied on In-Context Learning [2], which involves directly asking
LLMs to make recommendations by using natural language-
based prompts [16], [17], [18], [19]. However, most empirical
findings indicate that the original LLMs themselves struggle to
provide accurate recommendations, often due to a lack of spe-
cific recommendation task training [12], [20], [21]. To address
this challenge, increasing efforts have been devoted to further
fine-tuning LLMs using relevant recommendation data [12],
[19], [20], [21]. Nevertheless, despite incorporating tuning to
learn the recommendation task, these methods could still fall
short of surpassing well-trained conventional recommender
models, particularly for warm users/items, as demonstrated in
recent works [22] and Fig. 1.

We argue that the primary limitation of existing LLMRec
methods is their inadequate modeling of local collaborative in-
formation implied within the co-occurrence patterns in user-item
interactions. These methods represent users and items using text
tokens, relying predominantly on text semantics for recommen-
dations, which inherently fall short of capturing collaborative in-
formation. For example, two items with similar text descriptions
might possess distinct collaborative information if consumed
by different users, yet this difference often goes unaccounted
for due to the textual similarity. Nevertheless, collaborative
information between users and items often proves beneficial
for recommendations, especially for ones with rich interactions
(i.e., warm ones) [23]. Ignoring such information can lead to
suboptimal performance. Hence, we introduce a novel research

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 30,2025 at 04:03:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7863-5183
https://orcid.org/0000-0002-5828-9842
https://orcid.org/0000-0002-7570-5756
https://orcid.org/0000-0001-8472-7992
mailto:zyang1580@gmail.com
mailto:fulifeng93@gmail.com
mailto:cdzhangjizhi@mail.ustc.edu.cn
mailto:cdzhangjizhi@mail.ustc.edu.cn
mailto:baokq@mail.ustc.edu.cn
mailto:wqfcr618@gmail.com
mailto:xiangnanhe@gmail.com
https://github.com/zyang1580/CoLLM
https://github.com/zyang1580/CoLLM


2330 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 5, MAY 2025

problem: how can we efficiently integrate collaborative infor-
mation into LLMs to optimize their performance for both warm
and cold users/items?

To solve the issue, we propose explicitly modeling collabo-
rative information in LLMs. Drawing from the experience of
classic collaborative filtering with latent factor models (e.g.,
Matrix Factorization) [14], [24], [25], a straightforward solution
is introducing additional tokens and corresponding embeddings
in LLMs to represent users/items, akin to the roles played by
user/item embeddings in latent factor models. This enables the
possibility of encoding collaborative information when using
these embeddings to fit interaction data, similar to MF. However,
directly adding token embeddings would decrease scalability for
large-scale recommendations and increase LLMs’ tokenization
redundancy, resulting in a lower overall information compres-
sion rate [26]. This reduced compression rate is particularly sig-
nificant considering that collaborative information is typically
low-rank, and it could ultimately make prediction tasks (includ-
ing recommendation) more challenging for LLMs [26], [27].
Moreover, this method lacks the flexibility to incorporate more
advanced modeling mechanisms, such as explicitly capturing
high-order collaborative relationships like LightGCN [28].

In this light, to effectively enhance LLM with collaborative
information in a lightweight and flexible manner, we propose
CoLLM, a new method that treats collaborative information as
a separate modality and introduces it into LLM by directly
mapping it from a (well-trained) conventional collaborative
model using a Multilayer Perceptron (MLP). CoLLM employs
a two-step tuning procedure: first, fine-tuning LLM in the LoRA
manner using language information exclusively to learn the rec-
ommendation task, and then specially tuning the mapping mod-
ule to make the mapped collaborative information understand-
able and usable for LLM’s recommendation via considering
the information when fitting recommendation data. By aligning
knowledge from the conventional model with LLMs, CoLLM
effectively incorporates collaborative information into LLMs.
This approach maintains scalability comparable to the original
LLMs while also providing flexibility in implementing various
collaborative information modeling mechanisms by adapting the
choice of conventional models.

The main contributions are summarized as follows:
� We highlight the significance of incorporating collabora-

tive information modeling into LLMs for recommendation,
so as to make LLMRec perform well in both warm and cold
users/items.

� We introduce CoLLM, a novel method that effectively inte-
grates collaborative information into LLMs by harnessing
the capability of external traditional models to capture the
information.

� We conduct extensive experiments on two real-world
datasets. Extensive results demonstrate the effectiveness
of our proposal.

II. RELATED WORK

In this section, we first discuss the related work on LLM-
Rec. Subsequently, given our focus on integrating collaborative

information into LLMs as an additional modality, we would
briefly discuss the related work on multimodal LLM.

A. LLMRec

Recently, with the remarkable emergence of LLMs, there has
been a gradual exploration of integrating these sophisticated
models with recommender systems [10], [11], [29], [30]. Some
researchers employ the methodology of In-context Learning,
relying on the natural language comprehension and genera-
tion capabilities of LLMs for recommendation purposes [18].
Among them, Chat-Rec [18] facilitates the recommendation
process by harnessing the conversational capabilities of Chat-
GPT. Besides, researchers are also endeavoring to facilitate the
acquisition of recommendation capabilities in LLMs through
in-context learning approaches [17], [31]. However, because the
objective of LLM pre-training is not geared towards recommen-
dation, these methods often exhibit suboptimal performance. To
alleviate this issue, some researchers have employed instruc-
tion tuning using empirical recommendation data to enhance
the recommendation capabilities of the LLM [12], [21], and
achieved commendable performance. Additionally, [32], [33]
either employed fine-tuning techniques or utilized prompting
on the LLM to enable it to acquire proficiency in using diverse
tools for facilitating conversational recommendations.

Although the above works demonstrate the feasibility of
tuning LLMs using recommendation data, they still fall short
in certain settings compared to traditional models [22]. This can
be attributed to the fact that LLMs often heavily rely on semantic
priors and tend to overlook collaborative information [34]. To
our knowledge, BIGRec [20] is the only work that addresses
this issue beyond ours. However, BIGRec tackles the problem
by ensembling LLMs with collaborative models, rather than
integrating collaborative information into the LLM generation
process, which limits the full potential of LLMs. Besides, two
concurrent works [35], [36] explore the use of collaborative
embeddings; however, they focus on directly learning ID em-
beddings in the LLM space. In contrast, we focus on mapping
collaborative embeddings into the LLM space. When extending
to the field of language models (LMs) for recommendation, some
works have concentrated on combining LMs with collaborative
models [23], [37]. Typically, they use the LM’s semantic in-
formation as a feature for the collaborative model. However,
these approaches may face issues related to forgetting semantic
information. In contrast, our approach centers around LLM and
still relies on the LLM itself to seamlessly integrate semantic
and collaborative information, rather than the reverse.

B. Multimodal LLM

Among the progress in the field of LLM, the endeavors
that resonate most closely with our work involve the explo-
ration of multimodal LLMs [38], [39], [40], [41]. For instance,
MiniGPT4 [39] combines a frozen visual encoder with a frozen
advanced language model, revealing that aligning visual features
with large language models enables advanced multi-modal capa-
bilities like generating detailed image descriptions and creating
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websites from hand-drawn drafts. Palm-E [41] aims to inte-
grate real-world continuous sensor inputs into language models,
creating a connection between words and sensory information.
This integration enables the development of embodied language
models capable of addressing robotic challenges. These works
aim to leverage the robust generation and comprehension capa-
bilities of LLM to process textual data and map information from
other modalities such as vision and audio to the textual modality,
thereby achieving a large multimodal model with language as
its primary carrier, which is similar to our motivations.

III. PRELIMINARIES

To begin with, we briefly present the problem definition, the
basic concepts of LLMs, and the collaborative models used in
our framework.

Problem Definition: Let D denote the historical interaction
dataset. Each data point within D is represented as (u, i, y),
whereu and i correspond to a user and an item, respectively, with
y ∈ {1, 0} indicating the interaction label. Furthermore, there is
additional textual information available for items, primarily in
the form of item titles. In this study, we explore the utilization
of both the interaction data and textual information to fine-tune
an LLM for recommendation purposes. Our goal is to enable the
LLM to effectively leverage collaborative information beyond
text information, achieving superior performance in both warm
and cold recommendation scenarios.

Large Language Model: LLMs refer to a class of language
models equipped with at least several billion parameters and
trained on massive text datasets, showcasing remarkable emer-
gent capabilities [4]. LLMs demonstrate strong proficiency in
general natural language understanding and generation, as well
as various other aspects such as world knowledge modeling,
enabling them to excel at handling a wide range of complex
tasks as long as they can be described in language. Typically,
LLMs process input text through the following two key steps:
1) tokenization and embedding lookup: in this step, the input
text is transformed into meaningful lexical tokens, which are
then embedded into a vector space; 2) contextual modeling and
output generation (LLM Prediction): LLMs utilize their neural
networks, primarily based on a decoder-only transformer archi-
tecture, to process the token embeddings obtained in the previous
step, generating coherent and contextually relevant output. In
this work, we use Vicuna-7B [42] for recommendation.

Conventional Collaborative Recommender: We mainly con-
sider the latent factor models, such as MF and LightGCN, for
encoding collaborative information. These approaches typically
represent users/items using latent factors, also known as embed-
dings. Subsequently, they form latent user/item representations
through various operations, e.g., neighborhood aggregation in
LightGCN, to better model collaborative information. Formally,
for each sample (u, i, y) ∈ D,

u = fψ(u;D); i = fψ(i;D), (1)

where u ∈ R1×d1 denotes the user’s representation with di-
mension d1, fψ(u;D) denotes the process used to obtain this
representation, similarly for i, and ψ denotes model parameters.

The user and item representations are then fed into an interaction
module to generate predictions. By minimizing the prediction
errors against the actual interaction labels, the latent represen-
tations would learn to encode collaborative information within
the interaction data.

IV. METHODOLOGY

Collaborative information can be viewed as a distinct infor-
mation modality, capturing user and item co-occurrence rela-
tionships in the interaction data. The LLM itself lacks a dedi-
cated mechanism to extract this modality beyond text modality.
To overcome the limitations, rather than modifying the LLMs
directly, we continue to extract collaborative information using
conventional models and then transform the extracted results
into a format that the LLM can comprehend and utilize for
recommendations, inspired by recent advancements in multi-
modal LLMs [5], [39]. This concept forms the foundation of
our CoLLM methods. In the following, we provide a detailed
overview of CoLLM, beginning with a description of the model
architecture designed to connect the conventional models and
LLM. We then outline the training strategy that enables the
effective integration of collaborative information into LLMs.

A. Model Architecture

Fig. 2 illustrates the model architecture of CoLLM, which
consists of three components: prompt construction, hybrid en-
coding, and LLM prediction. Similar to existing approaches,
CoLLM starts by converting recommendation data into language
prompts (prompt construction), which are then encoded and
inputted into an LLM to generate recommendations (hybrid
encoding and LLM prediction). Differently, our approach in-
troduces an innovative aspect by incorporating collaborative
information to enhance the LLMs’ recommendations. This is
achieved through the specific designs in the two former compo-
nents:
� When constructing prompts, we add user/item ID fields

in addition to text descriptions to represent collaborative
information.

� When encoding prompts, alongside the LLMs’ tokeniza-
tion and embedding look-up for encoding textual infor-
mation, we employ a conventional collaborative model to
generate user/item representations that capture collabora-
tive information, and map them into the token embedding
space of the LLM.

After representing textual and collaborative information
within the token embedding space, the LLM could leverage
both types of information to perform recommendations. Next,
we delve into the specific details of each component.

1) Prompt Construction: We utilize fixed prompt templates
for prompt generation. Similar to TALLRec [12], we describe
items using their titles and describe users by the item titles from
their historical interactions. Uniquely, in order to incorporate
collaborative information, we introduce additional user and item
ID-related fields that do not carry meaningful semantics but
serve as placeholders for the collaborative information within
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Fig. 2. Model architecture overview of CoLLM, comprising three key components: prompt construction, hybrid encoding, and LLM prediction. “Collab.” is
short for “collaborative”, “Rec.” for “recommendation”, and “Emb.” for “embedding”.

the prompt. Ultimately, our fixed prompt template is structured
as follows:

� Prompt template. #Question: A user has given
high ratings to the following items: 〈HisItemTitleList〉.
Additionally, we have information about the user’s preferen
ces encoded in the feature 〈UserID〉. Using all available
information, make a prediction about whether the
user would enjoy the item titled 〈TargetItemTitle〉
with the feature 〈TargetItemID〉? Answer with “Yes” or
“No”. #Answer:

In this template, “〈HisItemTitleList〉” represents a list of item
titles that a user has interacted with, ordered by their interac-
tion timestamps, serving as textual descriptions of the user’s
preferences. “〈TargetItemTitle〉” refers to the title of the target
item to be predicted. The “〈UserID〉” and “〈TargetItemID〉”
fields are utilized to incorporate user and item IDs, respectively,
for injecting collaborative information. To maintain semantic
coherence while integrating user/item IDs, we treat them as a
type of feature for users/items within the prompt, as indicated
by the underlined content in the template. For each recom-
mendation sample, we populate the four fields with the corre-
sponding values of the sample to construct the sample-specific
prompt.

2) Hybrid Encoding: The hybrid encoding component is
utilized to convert the input prompt into latent vectors, i.e.,
embeddings suitable for LLM processing. In general, we employ
a hybrid encoding approach. As shown in Fig. 2, for all textual
content, we make use of the LLM’s built-in tokenization and
embedding mechanism to convert it into tokens and subsequent
token embeddings. In contrast, when dealing with the “〈UserID
〉” and “〈 TargetItemID〉” fields, we leverage a Collaborative
Information Encoding (CIE) module built with a conventional
collaborative recommender, aiming at extracting collaborative
information for the LLM to utilize.

Formally, for a prompt corresponding to the sample (u, i, y) ∈
D, we initiate the process by using the LLM Tokenizer to
tokenize its textual content. The tokenization result is denoted as

P = [t1, t2, . . . , tk, u, tt+1, . . . , i, . . . , tK ], where tk represents
a text token, andu/i signifies the user/item (ID) placed within the
“〈UserID 〉”/ “〈 TargetItemID〉” field. We then further encode
the prompt into a sequence of embeddings E:

E =
[
et1 , . . . , etk , eu, etk+1

, . . . , ei, . . . , etK
]
, (2)

where etk ∈ R1×d2 denotes the token embedding for tk in the
LLM with dimension d2, obtained via embedding lookup, i.e.,
etk = EmbeddingLLM (tk); while eu/ei ∈ R1×d2 denotes the
collaborative information embeddings (i.e., collaborative em-
beddings) for the user u/item i, obtained via the following CIE
module.

CIE module: The CIE module consists of a conventional
collaborative model (fψ(·) in (1)) and a mapping layer gφ(·)
parameterized by φ, to extract collaborative information for
LLM usage. When provided with the user u and item i, the
conventional collaborative model generates user and item ID
representations (u and i) encoding collaborative information.
Subsequently, the mapping layer maps these representations to
the LLM token embedding space, creating the final latent col-
laborative embeddings (eu and ei) used by the LLM. Formally,
we have:

eu = gφ(u), u = fψ(u;D),

ei = gφ(i), i = fψ(i;D), (3)

where u = fψ(u;D) ∈ R1×d1 denotes the user representation
obtained by fψ following (1) for D, similarly for i. The col-
laborative model can be implemented as any conventional col-
laborative recommender as described in Section III. As for the
mapping layer, we implement it as a Multilayer Perceptron
(MLP), maintaining an input size equal to the dimension d1
of u/i and an output size equal to the LLM embedding size d2
(usually d1 < d2).

3) LLM Prediction: Once the inputted prompt has been con-
verted into a sequence of embeddings E (in (2)), the LLM can
utilize it to generate predictions. However, due to the absence of
specific recommendation training in LLM, instead of relying
solely on the LLM, we introduce an additional LoRA mod-
ule [43] to perform recommendation predictions, as depicted
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in Fig. 2. The LoRA module entails adding pairs of rank-
decomposition weight matrices to the original weights of the
LLM in a plug-in manner for specifically learning new tasks
(recommendation) while just introducing a few parameters.
Then, the prediction can be formulated as follows:

ŷ = hΘ̂+Θ′(E),

where Θ̂ denotes the fixed model parameters of the pre-trained
LLM h(·), and Θ′ denotes the learnable LoRA parameters for
the recommendation task. ŷ represents the prediction probability
for the label being 1, i.e., the likelihood of answering “Yes” for
LLM. The consideration of using LoRA here is that with the
plug-in approach, we only need to update the LoRA weights
to learn the recommendation task, enabling parameter-efficient
learning.

B. Tuning Method

We now consider how to train the model parameters. To
expedite the tuning process, we freeze the LLM, including
its embedding layer, and focus on tuning the plug-in LoRA
and CIE module. Functionality speaking, the CIE module is
responsible for extracting collaborative information and mak-
ing it usable for LLM in recommendation, while the LoRA
module assists the LLM in learning the recommendation task.
To tune them, one intuitive approach is to directly train
them simultaneously. However, because of the significant re-
liance on collaborative information, training them both from
scratch concurrently may negatively impact LLM recommen-
dations in cold scenarios. To address this, we propose a two-
step tuning approach, tuning each component separately as
follows:
� Step 1. Tuning the LoRA Module: To endow the cold-start

recommendation capabilities of LLM, our initial focus is on
fine-tuning the LoRA module to learn recommendation tasks
independently of collaborative information. During this step,
we exclude the collaborative information-related portions of
the prompt, which are denoted by the content with underlines
in the prompt template. Instead, we solely utilize the remain-
ing text-only segment of the prompt to generate predictions
and minimize prediction errors for tuning the LoRA module
to learning recommendation. Formally, this can be expressed
as:

Θ̂′ = argminΘ′
∑

(u,i,y)∈D
�
(
hΘ̂+Θ′(Et), y

)
, (4)

where Et represents the sequence of embeddings for the text-
only prompt, fully obtained through the tokenization and em-
bedding lookup in the LLM; � denotes the recommendation loss,
which is implemented as the binary cross-entropy (BCE) loss;
hΘ̂+Θ′(Et) represents the LLM’s prediction using Et. and Θ̂′

denotes the learned parameters for the LoRA module.
� Step 2. Tuning the CIE Module: In this step, we tune the

CIE module while keeping all other components frozen. The
objective of this tuning step is to enable the CIE module to learn
how to extract and map collaborative information effectively
for LLM usage in recommendations. To achieve this, we utilize

prompts containing collaborative information, which are con-
structed using the full template, to generate predictions and tune
the CIE model to minimize prediction errors. Formally, we solve
the following optimization problem:

min
Ω

∑

(u,i,y)∈D
�
(
hΘ̂+Θ̂′(E), y

)
, (5)

where E represents the sequence of embeddings for the full
prompt, obtained through both the CIE module and the LLM’s
embedding lookup as shown in Equation (2). Ω denotes the
model parameters of the CIE module that we aim to train, for
which, we consider two different choices:
� Ω = φ, implying that we only tune the mapping layer gφ

while utilizing a well-trained collaborative model fψ=ψ̂ in

the CIE, where ψ̂ represents pre-trained parameters for fψ
(with BCE).

� Ω = {φ, ψ}, meaning we train both the conventional col-
laborative model fψ and the mapping layer gφ within the
CIE module.

We believe both choices are viable. The first option may be
faster since it focuses solely on tuning the mapping function.
However, the second option has the potential to lead to better
performance as it can more seamlessly integrate collaborative
information into LLM with fewer constraints from the collabo-
rative model.

The above two steps are executed only once. It’s worth noting
that in step 2, we exclusively tune the CIE module without
fine-tuning the LoRA to utilize collaborative information. The
rationale behind this is as follows: after step 1, the LLM has
already acquired the capability to perform recommendation
tasks, i.e., inferring the matching between users and items within
the token embedding space. Collaborative information would
be also leveraged based on inferring the matching. Once it
is mapped into the token embedding space, we believe it can
be effectively used by the LLM for recommendations without
further tuning the LoRA module.

C. Discussion

Relation to Soft Prompt Tuning: When considering our
method without the LoRA module, it can be seen as a variant
of soft prompt tuning in recommendation systems, with col-
laborative embeddings serving as the soft prompts. However,
two distinct differences set our approach apart: 1) the soft
prompt utilized by the LLM retains a low-rank characteristic,
as it is derived from low-rank representations of conventional
collaborative models; and 2) the collaborative model can provide
valuable constraints and priors for learning the soft prompt,
offering additional guidance regarding the collaborative infor-
mation. These two factors enhance the efficacy of our method in
capturing collaborative information and encoding personalized
information more effectively.

Inference Efficiency: We acknowledge that a significant chal-
lenge for LLMRec, including our CoLLM, is its relatively high
computational cost, posing impediments to practical applica-
tions. However, a range of acceleration techniques tailored for
LLMs has emerged, showcasing promising outcomes, such as
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caching and reusing [44]. LLMRec, including our CoLLM,
could potentially benefit from these techniques to enhance their
inference efficiency. Given that our objective is to incorporate
collaborative information for the improvement of recommen-
dation quality, the exploration of acceleration methods is de-
ferred to future research. Additionally, it is noteworthy that, in
comparison to existing LLMRec methods (such as TALLRec),
our CoLLM just introduces the CIE module. The module is
much smaller when compared to LLMs, and its training does not
involve the updating of the LLM. Consequently, CoLLM would
not introduce excessive additional overhead in both training and
inference, as demonstrated in Section V-C3.

V. EXPERIMENTS

In this section, we perform experiments to answer two re-
search questions: RQ1: Can our proposed CoLLM effectively
augment LLMs with collaborative information to improve rec-
ommendation, in comparison to existing methods? RQ2: What
impact do our design choices have on the performance/efficiency
of the proposed method? How does the method perform on other
datasets and LLM backbones?

A. Experimental Settings

We conduct our experiments on two datasets:
� ML-1 M [45] refers to the well-known movie recommenda-

tion dataset — MovieLens-1M.1 This dataset contains user
ratings on movies, collected between 2000 and 2003, with
ratings on a scale of 1 to 5. We convert these ratings into
binary labels using a threshold [46] of 3. Ratings greater
than 3 are labeled as “positive” (y = 1), while the rest are
labeled as “negative” (y = 0).

� Amazon-Book [15] refers to a book recommendation
dataset, the “book” subset of the famous Amazon Product
Review dataset.2 It compiles user reviews of books from
Amazon, collected between 1996 and 2018, with review
scores ranging from 1 to 5. We transform these review
scores into binary labels using a threshold3 of 4.

To better simulate real-world recommendation scenarios and
prevent data leakage [47], [48], we split the dataset into training,
validation, and testing sets based on the interaction timestamp.
Specifically, for ML-1 M, we preserve the interactions from the
most recent twenty months, using the first 10 months for training,
the middle 5 months for validation, and the last 5 months for
testing. As for the Amazon-Book dataset, given its large scale,
we just preserve interactions from the year 2017 (including about
4 million interactions), allocating the first 11 months for training,
and the remaining two half months for validation and testing, re-
spectively. Given the sparse nature of the Amazon-Book dataset,
we filtered out users and items with fewer than 20 interactions
to ensure data quality for measuring warm-start performance.
The statistical information of the processed dataset is available
in Table I.

1https://grouplens.org/datasets/movielens/1m/
2https://cseweb.ucsd.edu/∼jmcauley/datasets.html#amazon_reviews
3A higher value is utilized to prevent significant imbalance between positive

and negative data.

TABLE I
STATISTICS OF THE EVALUATION DATASETS

1) Evaluation Metrics: We employ two commonly used met-
rics for explicit recommendation to assess the performance of
studied methods: AUC, UAUC [49] and NDCG [50]. AUC
is the area under the ROC curve that quantifyes the overall
prediction accuracy. UAUC is derived by first computing the
AUC individually for each user over the exposed items and
then averaging these results across all users. NDCG denotes
the Normalized Discounted Cumulative Gain metrics. AUC
evaluates the overall ranking quality. UAUC and NDCG provide
insights into user-level ranking quality.

2) Compared Methods: To fully evaluate the proposed
method CoLLM, we compare it with three types of meth-
ods: conventional collaborative methods, combining language
model and collaborative model methods, and LLMRec methods.
Specifically, we select the following methods as baselines:
� MF [14]: This refers to Matrix Factorization, one represen-

tative latent factor-based collaborative filtering method.
� LightGCN [28]: This is a representative graph-based col-

laborative filtering method, which utilizes a simplified
graph convolutional neural network to enhance user in-
terest modeling.

� SASRec [51]: This is a representative sequential recom-
mendation method, which uses the self-attention network
to encode sequential patterns for modeling user interest. It
could be thought of as a collaborative method considering
sequential information.

� DIN [52]: This is a representative collaborative CTR
model, which employs an attention mechanism to activate
the most relevant user behavior for adaptively learning user
interest with respect to a certain item.

� CTRL (DIN) [23]; This is a state-of-the-art (SOTA) method
for combining language and collaborative models through
knowledge distillation. We utilize a DIN [52] as the col-
laborative model.

� ICL [17]: This is a LLMRec method based on the In-
Context Learning ability of LLM. It directly queries the
original LLM for recommendations using prompts.

� Prompt4NR (Vicuna) [53]: This is a SOTA method that
uses both fixed and soft prompts to utilize traditional
Language Models (LM), such as BERT [54], for recom-
mendation purposes. We extend this method to the LLM
Vicuna-7B for a fair comparison and tune the LLM with
LoRA to manage computational costs.

� TALLRec [12]: This is a state-of-the-art LLMRec method
that aligns LLM with recommendations through instruc-
tion tuning. We implement it on Vicuna-7B.

Apart from CTRL, there are other language model-based
recommender models such as P5 [55] and CTR-BERT [37].
However, these models have demonstrated weaker performance
when compared to CTRL [23]. Therefore, we have chosen
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TABLE II
OVERALL PERFORMANCE COMPARISON

not to include them in our comparative analysis. Regarding
BIGRec [20], it is not suitable for comparison in our setting, as
it does not optimize prediction accuracy and would yield poor
performance in our setting4 Regarding our own methods, we
have implemented them across all four types of collaborative
models, denoted as CoLLM-MF, CoLLM-LightGCN, CoLLM-
SASRec, and CoLLM-DIN, respectively. Specifically, for col-
laborative models (SASRec and DIN) that incorporate historical
sequences, we incorporate their sequence representation as a part
of the user representation within our CIE module (u in (3)).

3) Implementation Details: We implement all the compared
methods using PyTorch 2.0. When not specified by the original
paper, we employ Binary Cross-Entropy (BCE) as the optimiza-
tion loss for all methods. For (large) language models, we use
the AdamW optimizer, and for other methods, we use the Adam
optimizer [56]. Regarding hyperparameter tuning, we explore
the learning rate within the range of [1e-2, 1e-3, 1e-4] for all
methods, and the (recommendation) embedding size within the
range of [64, 128, 256]. Regarding weight decay, we set it to 1e-3
for all LLM-based methods, while we tune it in the range of [1e-
2, 1e-3, . . . , 1e-7] for all other smaller models. For SASRec, we
establish the maximum length of historical interaction sequences
in accordance with the average user interaction count in the
training data, as specified in the original paper. We adopt TALL-
Rec’s [12] practice of setting the maximum sequence length to
10 for all other methods. For DIN and CTRL (DIN), we conduct
additional tuning for the dropout ratio within the range of [0.2,
0.5, 0.8]. We also adjust their hidden layer size, which varies
between [200×80×1] and [256×128× 64×1], corresponding
to the two settings described in the CTRL and DIN papers.
Regarding other specific parameters of the baseline models, we
adhere to the configurations outlined in their original papers.
For CoLLM, we set the hidden layer size of the MLP in the CIE
module as ten times larger than the input size. For the LoRA
module, we follow the same configuration as in the TALLRec

4For instance, BIGRec’s highest AUC on ML-1 M is only 0.56, whereas
TALLRec surpasses 0.70.

paper, setting r, alpha, dropout, and target_modules, to 8, 16,
0.05, and “[q_proj, v_proj]”, respectively.

B. Performance Comparison (RQ1)

In this section, we study the recommendation performance of
CoLLM over all users as well as in different subgroups.

1) Overall Performance: The overall performance compar-
ison between CoLLM and baselines is summarized in Table II
(where the CoLLM-DIN results on ML-1 M are obtained by
tuning the whole CIE). From the table, we have the following
observations:
� When compared to baselines, the best version of CoLLM

outperforms them in both metrics on the two datasets. The
results confirm the excellence of our approach.

� In comparison between the best LLMRec baseline (TALL-
Rec) and collaborative models, it outperforms MF, Light-
GCN, and SASRec but falls short of beating DIN. However,
after introducing collaborative information into LLMRec
using CoLLM, LLM consistently achieves performance
improvements (except for UAUC/NDCG for SASRec on
Amazon-Book) and surpasses the corresponding collabo-
rative baselines. This demonstrates the necessity of incor-
porating collaborative information.

� When focusing on LLMRec methods, the ICL method con-
sistently produces the weakest results, in line with previous
findings [12]. This underscores LLM’s inherent limitation
in recommendation and emphasizes the importance of tun-
ing LLM for recommendation tasks. Interestingly, when
we scrutinize Prompt4NR (Vicuna), it not only fine-tunes
LLM itself but also incorporates some adaptable prompts,
bearing resemblances to CoLLM. Nevertheless, it not only
falls short of matching CoLLM’s performance but even
lags behind TALLRec, which exclusively fine-tunes LLM.
This suggests that the improvements in CoLLM stem from
its collaborative information modeling mechanism rather
than only relying on adaptively updatable prompts.

� Regarding the CTRL approach, which integrates LM and
collaborative models, it exhibits the capability to enhance
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TABLE III
ENSEMBLE RESULTS ON THE AUC METRIC

one metric while adversely affecting another across both
datasets. This implies its capability to effectively harness
both the LM’s strengths and collaborative information for
enhanced recommendations is limited. The operation of
CTRL involves initially distilling LM information into
DIN and subsequently fine-tuning DIN to incorporate col-
laborative information. This operation faces an inherent
challenge in terms of the forgetting problem, resulting in
the loss of language model information. Additionally, it
continues to depend on DIN for recommendations, lacking
the utilization of the LM model’s inherent capabilities, such
as reasoning. Our CoLLM aligns collaborative information
with LLMs while still relying on the LLM for predictions,
effectively mitigating these limitations and consistently
improving performance.

� When implementing CoLLM’s CIE module with various
collaborative models, it consistently yields improvements
compared to both the respective collaborative method base-
lines and LLMRec baselines in almost all cases. This show-
cases CoLLM’s flexibility in incorporating different col-
laborative modeling mechanisms. Furthermore, it’s worth
highlighting that CoLLM’s performance is roughly posi-
tively correlated with the performance of the corresponding
collaborative model. This suggests that introducing better
collaborative modeling mechanisms could contribute to
enhancing the performance of CoLLM.

Ensemble: We have not included the ensemble method as our
baseline above, as it could also be applied to our approach. Here,
we conduct a detailed study. To do so, we employ ensemble
averaging [57] to combine the MF and TALLRec models, and
then compare the results with our CoLLM-MF approach. Fur-
thermore, we investigate whether ensembling CoLLM-MF with
MF can achieve further improvements through ensemble averag-
ing. The performance of these methodologies is summarized in
Table III. The table indicates that combining MF and TALLRec
via ensemble averaging consistently yields inferior results com-
pared to CoLLM-MF. However, applying ensemble averaging to
CoLLM-MF still leads to some marginal improvements. These
findings underscore the superiority of CoLLM’s mechanism for
integrating collaborative information with LLMs, surpassing
mere ensemble techniques and facilitating the full utilization
of LLMs’ capabilities.

2) Performance in Warm and Cold Scenarios: Previous re-
search has demonstrated that LLMRec excels in cold-start sce-
narios [12], while collaborative information is advantageous
for modeling user interests when rich data is available [22],
[58]. CoLLM seeks to incorporate collaborative information into
LLMRec, aiming to make it perform well in both warm and
cold scenarios. To assess the success of this goal, we conduct
a detailed examination of the methods’ performance in warm

and cold scenarios. In particular, we divide the testing set into
warm and cold subsets: the warm subset comprises interactions
between users and items that have appeared at least three times in
the training dataset, while the cold subset includes the remaining
interactions. Notably, our cold-start scenario is not strictly cold,
as it allows users/items to have a few interactions. Without
losing generality, we primarily compare MF, TALLRec, and
CoLLM in terms of their performance using these two subsets.
Our findings are presented in Fig. 3, from which we make three
observations:
� In the warm scenario, across two datasets, TALLRec ex-

hibits a lower AUC score compared to MF, and MF in
turn is outperformed by CoLLM. In terms of UAUC, MF
falls short of TALLRec, which lags behind CoLLM. These
results suggest that, at the very least, in the overall eval-
uation (AUC) context, existing LLMRec (TALLRec) has
shortcomings in warm scenarios. However, the introduc-
tion of collaborative information can lead to improvements
in warm scenarios.

� In the cold scenario, both TALLRec and CoLLM clearly
outperform MF. This highlights the advantages of LLMRec
methods in cold scenarios, while collaborative methods
lack the proficiency to handle cold scenarios. Meanwhile,
CoLLM broadly maintains comparability with TALLRec,
performing better in AUC and slightly worse in UAUC.
These imply that CoLLM can still effectively leverage the
strengths of LLMRec in cold scenarios.

Overall, CoLLM has demonstrated remarkable improvements
over TALLRec in warm scenarios while maintaining its profi-
ciency in cold scenarios. This underscores CoLLM’s successful
integration of collaborative information to achieve the goal of
enabling LLMRec to perform effectively in both cold and warm
scenarios.

C. In-Depth Analysis (RQ2)

In this subsection, we conduct experiments to study the influ-
ence of different design choices on the CoLLM.

1) The Effect of CIE Module: We begin by investigating the
impact of model architecture designs. The central element of
our designs is the introduction of the CIE module to extract
collaborative information for LLMs. To assess its influence
on CoLLM’s performance, we compare CoLLM-MF with two
variants: 1) the variant that directly omits the CIE module
(referred to as “w/o CIE”); and 2) the variant that excludes the
CIE module but instead directly introduces tokens and token
embeddings to represent users and items in the LLM (referred
to as “w/ UI-token”). The first variant is equal to TALLRec.
The second variant follows the straightforward approach for
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Fig. 3. Performance comparison in warm (left) and cold (right) scenarios on ML-1 M and Amazon-Book.

TABLE IV
RESULTS OF THE ABLATION STUDIES OVER COLLM WITH RESPECT TO THE

CIE MODULE

modeling collaborative information described in Section I. The
comparison results are summarized in Table IV.

According to the figure, the “w/o CIE” variant falls short of
the original CoLLM. This result underscores the core role of the
CIE module in CoLLM to enhance the performance. The “w/
UI-token” variant also yields inferior performance compared
to CoLLM and even performs worse than the variant lacking
collaborative information modeling (i.e., “w/o CIE”). This ob-
servation confirms that directly introducing tokens for users
and items in the LLM cannot effectively capture collaborative
information for it. The rationale behind this could be that incor-
porating tokens (along with token embeddings) for encoding col-
laborative information increases tokenization redundancy within
the LLM and subsequently diminishes the model’s compression
efficiency, leading to a reduction in predictive capabilities, as
discussed in [26]. In contrast, our method employs a traditional
collaborative model for encoding, effectively maintaining the
modeled collaborative information in a low-rank state to reduce
redundancy.

2) The Influence of Tuning Choices: We now delve into
the impact of training choices on CoLLM’s performance. Our
default approach involves a two-step tuning strategy. Initially,
we exclusively take textual information to train the LoRA

TABLE V
OVERALL PERFORMANCE OF COLLM WITH DIFFERENT TUNING STRATEGIES

module for recommendation task learning. Subsequently, we
tune the mapping layer of the CIE module while keeping the
collaborative model fixed as pre-trained (i.e., tuning Ω = φ
while retainingψ = ψ̂ after step 1). In this subsection, we further
explore the following tuning strategies:
� T1, aligning with our default two-step tuning but tunes

the entire CIE model (Ω = {φ, ψ}) with the collaborative
model (ψ) initialized to the pre-trained one (ψ̂) in the
second step.

� T2, following the default two-step tuning approach but
tunes the entire CIE model (Ω = {φ, ψ}) from scratch in
the second step.

� T3, employing a one-step tuning approach, directly tuning
the LoRA module and the CIE’s mapping layer simultane-
ously while fixing the pre-trained collaborative model.

We compare these methods in terms of their overall perfor-
mance, as shown in Table V, as well as their performance in
warm and cold scenarios, as indicated in Fig. 4. Please note that
in the figure, we have omitted the results on the Amazon-book,
as they exhibit similar phenomena to those on the ML-1 M, to
save space.

Based on the figure and table, we observe that within our
two-step update framework, the additional tuning of the col-
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Fig. 4. Performance of different tuning strategies for CoLLM on ML-1 M in warm and cold scenarios.

TABLE VI
TRAINING AND TOTAL INFERENCE TIME COMPARISON: TALLREC VS.

COLLM-MF

laborative model in CIE (i.e., T1 and T2) can yield additional
performance improvements in most cases, as expected. The addi-
tional tuning allows the captured collaborative information to be
seamlessly integrated by LLMs. However, it does introduce extra
computational overhead and slower convergence rates, e.g.,
requiring at least five times the training effort in ML-1 M. As a
result, we opt for more efficient approaches. Furthermore, when
comparing the single-step tuning method, T3, with the other two-
step methods, we notice that it usually exhibits relatively inferior
results, particularly in cold scenarios, where its performance
decline is quite noticeable. This underscores the significance
of the first step in our two-step training, which uses text-only
data to learn recommendation tasks, to ensure recommendation
performance in cold start scenarios.

3) Efficiency: Efficiency challenges pose a significant im-
pediment to the application of the LLMRec. We next investigate
how our design, which incorporates collaborative information,
influences the training and inference efficiency of LLMRec. In
terms of training, the primary additional cost in our approach
arises from the training of the CIE module in our two-step tuning.
Fortunately, the pre-training of the collaborative module (i.e.,
fψ=ψ̂ ) in the CIE alleviates the need for extensive additional
training in CoLLM when compared to the representative LLM-
Rec method TALLRec. Table VI illustrates that, under identical
resource conditions,5 the training time of CoLLM increases by
only approximately 15.5%, averaged across the two datasets,
compared to the baseline TALLRec.

Concerning inference, the cost associated with the CIE mod-
ule is anticipated to be negligible due to its significantly smaller

5Training utilizes two Nvidia A100 80G GPUs, while testing is performed on
a single GPU of the same type.

TABLE VII
PERFORMANCE COMPARISON ON QWEN2-1.5B BACKBONE ACROSS ML-1 M

AND AMAZON-BOOK DATASETS

scale compared to the LLM. The primary additional cost in
our method arises from the extra tokens required to describe
collaborative information in our prompt template (as indicated
in the underlined part) in Section IV-A1. These additional tokens
constitute only a small proportion of the total prompts. Con-
sequently, the supplementary inference cost is expected to be
relatively modest. As demonstrated in Table VI, CoLLM incurs
only a 12.5% increase in total inference cost on average across
the two datasets.

4) Method Generalization: This section investigates whether
our method can effectively apply to other datasets and LLM
backbones.

Other LLM Backbone: To further validate the effectiveness
of our approach on different LLM backbones, we implement
CoLLM-MF and the top-performing LLMRec baseline, TALL-
Rec, using the Qwen2-1.5B [59] backbone to compare their
performance. The results, summarized in Table VII, show that
CoLLM consistently outperforms both TALLRec and MF. This
demonstrates the general applicability of our method across
different LLM backbones.

Other Dataset: To further validate the effectiveness of our
approach across different datasets, we have included two ad-
ditional datasets: Video Games and CDs & Vinyl from the
Amazon dataset. We take CoLLM-MF as the study example and
compare it with the most related baselines MF and TALLRec.
The results demonstrate that our method could still effectively
enhance LLMRec by incorporating collaborative information.
Specifically, on the Video Games dataset, the AUC values for
MF, TALLRec, and CoLLM-MF are 0.6161, 0.7356, and 0.7440,
respectively. Similarly, on the CDs & Vinyl dataset, the AUC val-
ues are 0.6957, 0.6607, and 0.7237, respectively. The consistent
superior performance of the proposed method across different
datasets indicates its general effectiveness.
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VI. CONCLUSION

In this study, we underscore the significance of collabora-
tive information modeling in enhancing recommendation per-
formance for LLMRec, particularly in warm scenarios. We
introduce CoLLM, a novel approach tailored to incorporating
collaborative information for LLMRec. By externalizing tradi-
tional collaborative models for LLMs, CoLLM not only ensures
effective collaborative information modeling but also provides
flexibility in adjusting the modeling mechanism. Extensive
experimental results illustrate the effectiveness and adaptabil-
ity of CoLLM, successfully enabling LLM to excel in both
warm and cold recommendation scenarios. Currently, our ex-
periments have been exclusively conducted on Vicuna-7B. In
the future, we will explore other LLMs. Moreover, considering
the evolving nature of collaborative information in the actual
world, we intend to investigate CoLLM’s incremental learning
capabilities.
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