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Sequential recommendation aims to predict the next item of interest for a user, based on her/his interaction history. In
conventional sequential recommenders, a common approach is to learn sequence representations based on ID embeddings
of items, which can be leveraged to predict the subsequent items of interest. Clearly, the sequence representations encode
user behavioral patterns, which are critical to recommendation. Inspired by recent success in empowering large language
models (LLMs) to understand diverse modality (e.g., image, audio), a compelling question arises: “Can LLMs understand and
utilize representations from conventional recommenders?”. To answer this, we propose RecInterpreter, which examines the
capacity of LLMs to decipher the representation space of pretrained recommenders. Specifically, with the multimodal pairs
(i.e., interaction sequence representations and text narrations), RecInterpreter first uses a lightweight projector to map the
representations into the token embedding space of the LLM, encouraging LLM to generate textual narrations for items within
the sequence. Furthermore, upon interpreting recommenders, LLM can enhance its recommendation capabilities through
fine-tuning with the projected representations, even without textual description of interaction sequences. Experiments
showecase that RecInterpreter enhances LLMs to understand hidden representations from ID-based sequential recommenders
and better accomplish recommendation task with the explicitly understanding of behavior patterns.

CCS Concepts: « Information systems — Recommender System.

Additional Key Words and Phrases: Recommendation, Large Language Models

1 INTRODUCTION

Sequential recommendation — predicting the next item of interest based on the historical interaction of a
user — has been a fundamental task in both academia and industry [8, 23, 31]. Scrutinizing leading sequential
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Fig. 1. lllustration of conventional sequential recommendation, LLM4Rec and Reclnterpreter. Specifically, conventional
sequential recommenders assign discrete IDs to items, learn sequence representations with sequences of item embeddings,
and predict the next item matches user interest. Recent approaches leveraging LLMs for recommendation (LLM4Rec)
mostly integrate the text description of user interaction sequence in the text prompt design and tuning the LLM for
recommendation. In contrast to these approaches, our RecInterpreter first interprets hidden representations of behavioral
patterns of conventional sequential recommenders with LLMs, then accomplishes recommendation task with the explicitly
interpretation of behavior patterns. Flame & denotes tunable modules, while snowflake ™ indicates frozen modules.

recommenders [5, 23, 31, 58, 73], we can summarize a typical pipeline: 1) assign discrete IDs to items and initialize
learnable vectors (aka. item embeddings) to represent items, 2) hidden representations (aka. sequence embeddings)
are learned from sequences of item embeddings to capture user behavioral patterns, and 3) predict the next items
that users are likely to consume based on the hidden representations, as Figure 1 (left subfigure) shows. Such
representations, derived from the ID-modeling paradigm, are able to encode the behavioral patterns of users,
thereby significantly enhancing next-item prediction in sequential recommendation.

With the meteoric rise of Large Language Models (LLMs) (e.g., GPT4 [48], LLaMA [60]), aligning diverse
modalities with text can empower LLM to understand and reason about other modalities [2, 14, 19, 20, 24, 45, 81].
Central to such an alignment is transforming the hidden representations from the modality-specific encoders
(e.g., images encoded by ViT [13] or Stable Diffusion [55]) into the text token embeddings of an LLM [19, 81].
This allows for the LLM to reason over the input modality and generate the textual responses correspondingly.
Although multi-modal comprehension is becoming a focal point of LLM, the capability to interpret hidden
representations from sequential recommenders remains mostly unexplored. This is largely due to the current
LLM-for-Recommendation (LLM4Rec) studies [1, 4, 15, 16, 18, 36, 38, 67, 74] predominantly focus on reformulating
user-item interactions as text prompts for LLM-based recommendation or reranking, as shown in Figure 1 (middle
subfigure). This approach, however, prevents LLMs from accessing or decoding the hidden representations within
recommender models, thus failing to fully realize the potential of LLMs in recommendation systems.

Naturally, an compelling research question arises:

Can LLM Understand and Utilize Representations from Conventional Recommenders?

To answer this, we propose a simple framework, RecInterpreter, which examines the capacity of open-source
LLM to decipher the representation space of sequential recommenders, and enhances recommendation perfor-
mance accordingly. In terms of sequential recommenders, we harness the representative models trained solely on
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item ID sequences, including GRU4Rec [23], Caser [58], and SASRec [31]. Having the LLM and recommender
frozen, the solution to bridge their gap is the alignment training [2, 47, 81] with the paired multimodal data (i.e.,
representations of item ID sequences and text narrations). Following the leading alignment strategies [14, 47, 81],
RecInterpreter employs two key designs: 1) train a lightweight projector to map the recommendation representa-
tions into the token embedding space of the LLM, and 2) inject these recommendation-specific tokens into a text
prompt and ask the LLM for a textual elucidation. Specifically, as a bridge, the adapter fuses the spaces of the LLM
and recommender into a joint token embedding space, wherein tokens represent both text and user behavioral
patterns. Moreover, we simply set it as a MLP-based projection layer to train, where the model parameters of the
recommenders and LLM are frozen. This lightweight design not only reaches convergence faster than training
from scratch, but also inherits the reasoning capabilities of the LLM.

Having the recommendation-specific tokens, we first propose a sequence-recovery prompting task, which
tries to explicitly recover the whole item sequence from the projected representations with text narrations. Here
is an example of the prompt in the movie recommendation scenario:

Sequence-Recovery Prompt Example

“A user has watched a series of movies, which can be represented as . What movies has the user
watched?”
where is the behavioral pattern representation encoded by a sequential recommender (e.g., the hidden

representation in Figure 1). While we empirically show that LLM could understand some interactions from
the hidden representation, it is hard to recover all the interactions, since the hidden representation is highly
compressed. To this end, we carefully craft a sequence-residual prompt tailored for sequential recommenders.
This prompt is designed to guide LLM in identifying the residual item by comparing the representations before
and after the sequence incorporates said residual.

Sequence-Residual Prompt Example

“A user has watched a series of movies, which can be represented as . After watching another
movie, the watching history can be represented as . What is the additional movie the user
watched?”

where and are the hidden representations before and after the sequence integrates with the
residual.

Surprisingly, our‘empirical evaluations show that LLM exhibits a significant aptitude for deciphering the
representations from sequential recommenders, especially following our instructions. Consequently, we may
safely reach the conclusion that LLMs could be inspired to understand the representation space of sequential
recommenders; which inherently encapsulate rich patterns of user behaviors. Moreover, since the linear projection
is the only tunable component, it is affordable for online service providers to interpret their own recommenders
with LLMs, which is flexible for them to investigate further how to utilize LLMs in their platforms.

To empower recommendation with RecInterpreter, we further tune LLM with LoRA [28] for recommendation,
while keeping the sequential recommenders and the projection layer frozen. This strategy allows us to adapt the
LLM’s behavior specifically for recommendation tasks without disturbing the carefully learned representations
from the sequential recommenders or the projection mechanisms. Note that we involve no textual narration of
interactions (such as title sequence used in [37, 79]), and only use the projected behavioral pattern representation
to describe user history. This streamlined approach represents a significant innovation in how we leverage
LLMs for recommendation tasks. By eliminating the need for explicit textual descriptions, we not only reduce
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the computational complexity but also create a more direct and efficient path between user behavior patterns
and recommendations. The projected representations serve as a sufficient and compact form of user history,
containing the necessary information for generating accurate recommendations. Superior recommendation
performance highlights the effectiveness of explicitly aligning sequential recommenders with LLM under the
RecInterpreter framework, demonstrating that our approach not only simplifies the recommendation process but
also enhances its effectiveness. This success validates our hypothesis that direct representation-based communi-
cation between recommender systems and LLMs can be more effective than approaches relying on intermediate
textual descriptions.
Our contributions can be summarized as follows:

e We demonstrate that LLMs could explicitly interpret the behavioral patterns encoded in the sequence
representations of pretrained sequential recommenders with our proposed sequence-recovery prompting
and sequence-residual prompting.

e We propose Reclnterpreter, which could not only understand the hidden representation of sequential
recommenders, but also boost the recommendation performance of LLM-based recommenders with the
explicitly understanding of behavior patterns.

e To examine the effectiveness of RecInterpreter, we conduct extensive experiments on four real-world
datasets to showcase its capability of interpretering the hidden space of sequential recommenders and its
potential to improve the performance of LLM-based recommenders.

e To show the impact of different components in Reclnterpreter, we conduct plenty of ablation studies,
including the efficiency analysis, projector layers, zero-shot performance and alignment strategies, which
could properly verify the necessity of different components.

2 RELATED WORK

This section reviews the work on large language models (LLMs) and large multimodal models (LMMs), and then
discusses the work on sequential recommendation, especially the integration of LLM.

2.1 Large Language Models and Large Multimodal Models

Over recent years, the field of language modeling has undergone intensive research focused on understanding
and generating human language, leading to significant breakthroughs in Language Models (LMs) [11, 52]. The
research community has subsequently explored the impact of scale by pushing boundaries in both model size
and training data volume - now reaching unprecedented scales of billions of parameters trained on trillion-token
datasets. This evolution has given rise to Large Language Models (LLMs), with examples such as GPT4 [48] and
LLaMA [60], which have not only achieved superior performance but also exhibited unexpected capabilities
including logical reasoning and the ability to follow instructions. The success of LLMs has extended to specialized
fields, with domain-specific models emerging in sectors such as finance [69] and healthcare [56], combining
field-specific expertise with the broader knowledge base of general-purpose LLMs. These developments have
motivated our investigation into the applicability of LLMs within the recommendation domain.

Meanwhile, different modalities (including vision, video, audio and etc.), have been evolving their models rapidly
to better accommodate different tasks [13, 32, 55]. With the rapid advancements of LLMs, it is promising to develop
large multimodal models by integrating the archetecture or techniques in LLMs. More recently, researchers find
that models of different modalities can be unified with LLM by making the hidden representations perceivable
for LLM, leading to a promising direction, multimodal language models [2, 19, 45, 68, 81]. Along this research
line, the pioneer work, Flamingao [2] demonstrates that the vision encoder NFNet [6] could be understood by
LLM through inserting tunable gated cross-attention dense blocks among the layers of LLM, which has been
proven effective in GPT-4Vision [49]. MiniGPT4 [81] further shows that a single linear layer is enough to make
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LLaMA [60] interpret hidden representations encoded by ViT [13]. Similarly, TANGO [19] suggests that the audio
backbone model HiFiGAN [32] can be unified by LLM. Besides, Video-ChatGPT [45] and VideoChat [34] imply
that video encoders are also perceivable for LLM.

2.2 Conventional Sequential Recommendation

Sequential recommendation aims at inferring users’ preferences based on their interaction sequences. Previous
work has explored encoding the interaction sequences with different model architectures. RNN-based approaches
like GRU4Rec [23] leverage recurrent structures to capture temporal dependencies, with gating mechanisms
helping to address the vanishing gradient problem while modeling long-term dependencies. CNN-based methods
such as Caser [58] employ convolutional operations to extract local and hierarchical patterns from interaction
sequences, effectively capturing both short-term preferences and transition patterns. Transformer-based models
like SASRec [31] utilize self-attention mechanisms to model complex item relationships and long-range de-
pendencies without sequential compression. Recent advances have introduced sophisticated auxiliary learning
objectives to enhance recommendation quality [51]. Causal inference frameworks [75, 78] attempt to disentangle
confounding factors and identify true user preferences, while contrastive learning approaches through data
augmentation [63, 72] help learn more robust and generalizable representations. Robust learning techniques [73]
aim to maintain model performance under noisy conditions.

Analysis of prominent sequential recommendation systems [5, 23, 31; 58, 65] reveals a common methodolog-
ical framework built on three key components. First, items are assigned unique discrete IDs and represented
through learnable vectors (aka. item embeddings), serving as the fundamental building blocks that capture item
characteristics in a continuous vector space. Second, the interaction sequence of item embeddings undergoes
architectural-specific processing to generate hidden representations (aka. sequence embeddings) that capture
complex temporal patterns, user preferences, and item transitions within the interaction history. Finally, these
hidden representations are utilized to forecast users’ future item interactions, typically through similarity compu-
tation or classification layers. This ID-based modeling approach has proven remarkably effective in encoding
user behavioral patterns, leading to substantial improvements in next-item prediction accuracy within sequential
recommendation. The behavioral patterns encoded in the sequence embeddings have emerged as the cornerstone
of conventional sequential recommenders, serving as compressed yet informative representations of user pref-
erences and interaction histories: Therefore, understanding and interpreting these patterns is crucial for both
improving model performance and providing transparent recommendations.

2.3 LLM-based Sequential Recommendation

Recent advances in Large Language Models (LLMs) have sparked significant interest in their application to
sequential recommendation. This integration has manifested in several distinct research directions, each offering
unique approaches to leveraging LLM capabilities. One stream of research focuses on enhancing conventional
recommendation systems using LLMs as auxiliary components. These studies primarily follow two strategies:
using LLMs to extract relevant features [7, 17, 57, 64, 66, 71, 74], or generating semantic representations [25, 40,
43, 53, 54, 80] for both users and items. While this integration successfully introduces rich contextual knowledge
into conventional recommendation frameworks, it falls short of fully utilizing LLMs’ sophisticated reasoning
capabilities. Another research direction explores the direct application of LLMs through in-context learning to
evaluate their recommendation performance or enhance traditional recommendations [22, 27, 42, 76]. Recognizing
LLMs’ potential limitations in recommendation-specific knowledge during pre-training, several studies have
proposed specialized tuning techniques to enhance their recommendation capabilities [4, 9, 12, 29, 35, 39, 39, 46,
77].
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6 + Zhengyi Yanget al.

A promising approach has emerged in the integration of pre-trained recommenders for tuning LLMs, demon-
strating effectiveness in enhancing LLM performance for recommendation tasks [36, 37, 79]. However, these
methods typically maintain a barrier between LLMs and the hidden representations from frozen recommender
models. This limitation leaves largely unexplored the potential of enabling LLMs to interpret and leverage these
hidden representations for improved recommendations. While recent work such as ELM [59] proposes compre-
hensive understanding of item embeddings with LLM, RecInterpreter takes a different approach by focusing on
improving LLM-based recommendation through better utilization of sequence embeddings from conventional
recommenders. This distinction is significant as sequence embeddings encode complex user sequential behavior
patterns, offering richer information than static item embeddings alone. The challenge of inspiring LLMs to
interpret these hidden representations from sequential recommenders and improve recommendations accordingly
remains largely unexplored, presenting an important research opportunity in the field.

2.4 Parameter-efficient Finetuning

Fine-tuning all parameters of pre-trained LLMs on task-specific data has traditionally been the primary approach
for adapting LLMs to new tasks and domains. This conventional method involves updating the entire parameter
space of the model during the adaptation process, which allows for comprehensive model optimization. However,
this full fine-tuning approach is extremely time and resource intensive, often requiring substantial computational
infrastructure and significant energy consumption, making it impractical for many real-world applications.

Therefore, plenty of parameter-efficient methods have been proposed to achieve comparable performance to
full fine-tuning while only training a small subset of parameters [10, 28, 44]. These methods aim to strike a balance
between adaptation effectiveness and computational efficiency by strategically updating only the most critical
parameters. Among such methods, Low-Rank Adaptation (LoRA) has gained significant attention [28]. LoRA
injects trainable low-rank decomposition matrices into each layer of the LLM’s Transformer architecture. This
technique is based on the observation that the parameter updates during fine-tuning often lie in a relatively low-
dimensional subspace, making it possible to capture these updates efficiently through low-rank approximations.
With far fewer trainable parameters than full fine-tuning, LoRA enables much faster training and smaller
downstream model sizes, while still achieving strong performance.

More precisely, given a prompt-response sample (X, Y), where X and Y are the input prompt and target response
respectively, the autoregressive language modeling objective is:

N
max 3 log P, (YX, YIH1) (1)
i=1

where N is the number of tokens in the target response Y, and Y represents the i** token in Y. The probability
P . is computed using both the frozen LLM parameters  and the low-rank adaptation matrices ().
The LoRA approach decomposes the weight updates into low-rank approximations. Specifically, for each

weight matrix W € R¥¥ in the original model, the update is expressed as:
W = AB, ()

where A € R¥" and B € R™* are the low-rank decomposition matrices, and r < min(d, k) is the rank. The
parameter set consists of these trainable LoRA matrices A and B for each weight matrix being adapted, while
keeping the vast majority of the original LLM parameters ( frozen.

The objective maximizes the log probability of generating each token in the target response, conditioned on

both the input prompt X and all previously generated tokens Y{=1,
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This user has watched Twelve Monkeys, Cat People, Cape Fear, Abyss, Candyman, Omen,
Nightmare on Elm Street, A, Shining, Empire Strikes Back, To Kill a Mockingbird inthe previous.

Fig. 2. lllustration of the sequence recovery framework. We provide the textual prompts and the hidden representation of
the interaction sequence projected by the projection layer, targeting at inspiring LLM to recover the interactions with a
textual response. Flame & denotes tunable modules, while snowflake “% indicates frozen modules.

3 RECINTERPRETER FRAMEWORK

In this section, we outline our RecInterpreter framework to harness the capabilities of LLMs for comprehending
conventional sequential recommenders. We first introduce a sequence-recovery prompting task, aiming to
empower LLM to explicitly reconstruct the items in an interaction sequence with textual narrations based
solely on its hidden representation. This task serves as a crucial step in transforming the ID-based sequence
representations typically used in recommender systems into human-readable, interpretable descriptions that
capture the underlying patterns and user preferences encoded in the sequence. Taking a step further, we propose
a novel sequence-residual task, which guides LLM to pinpoint the residual item by contrasting the hidden
representations before and. after integrating this residual into the existing sequence. This approach enables
the model to identify and understand the incremental changes in user preferences and behavioral patterns
when new interactions are added to the sequence. By analyzing these representational differences, the LLM
can better capture user behavior and the impact of individual items on the overall sequence representation.
Based on the sequence-recovery and sequence-residual prompting, we propose a novel scheme to tune LLM for
recommendation by leveraging the projected hidden representations, eliminating the need for explicit textual
descriptions of user interactions. Finally, we discuss the difference between RecInterpreter and some recent
studies.

3.1 Sequence-Recovery Prompting

To validate LLM’s capability in understanding sequential recommenders, we draw inspiration from prior multi-
modal alignment studies [2, 14, 34, 81] and propose a sequence recovery task. This task is designed to evaluate
whether LLMs can accurately reconstruct and describe interaction sequences using natural language, working
only with the hidden representations learned by conventional sequential recommenders. As illustrated in Figure
2, the process consists of several key components and steps:

ACM Trans. Inf. Syst.
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[ This user watched movie Twelve Monkeys in List2 but not in List1. ]

Fig. 3. lllustration of the sequence residual framework. We provide the task-specific textual prompts and the hidden
representations before and after the sequence incorporates a residual item. The two hidden representations are projected by
a shared projection Layer. Flame & denotes tunable modules, while snowflake % indicates frozen modules.

Sequence Encoding via Sequential Recommenders. For an interaction sequence s = [s1,5y,...,5y] that
involves the consumed items, we employ a well-trained sequential recommender, such as SASRec, to derive the
hidden representation of the sequence. Formally, the interaction sequence s is first fed into the sequence encoder,
and we can acquire the hidden representation through:

h, = Seq-Enc(E,), (3)

where Seq-Enc(-) is the sequence encoder of conventional sequential recommender, and hy € R? is the d-
dimentional representation of sequence s (e.g., d is set as 64 or 256 in SASRec).

Representation Adaptation via Lightweight Projector. We train a lightweight projector to project the hidden
representation hy into the text token embedding space of LLaMA. Here we implement the projector as an MLP
projection layer, whose design ensures that the input dimension aligns with d, while the output dimension
matches LLM’s token embedding size (i.e., 4096 for LLaMA). Thus the hidden representation is transformed as:

hg = Proj(hy). 4)

In this way, the projector serves as a bridge, integrating the spaces of LLM and the recommender system. This
leads to a unified token embedding space, where tokens can signify either textual content or user interactions.
The deeper exploration of such projectors, such as Q-former [33], is an avenue we plan to explore in future work.

Prompt Design for the Projector Training. Here we design the sequence-recovery prompts, which are
composed of text tokens interleaved with the projected sequence representation hs. Here is an example of the
sequence-recovery prompt in the movie recommendation scenario:

ACM Trans. Inf. Syst.
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Sequence-Recovery Prompt

A person has watched a series of movies. The watching list can

Input . . . .
be represented as: . Describe this watching history of the

Prompt . .
person in detail.
This user has watched

Target

R . .
esponse in the previous.
where is the projected hidden representation (i.e., hy).

It is worth noting that the prompt involves two key components: 1) the input prompt, which contains the
projected hidden representation of the sequence h; and 2) the target response, which offers the detailed textual
narration of h. Within the autoregressive framework of LLM, we calculate the training objective by regressing
the target prompt Y based on the condition of the input prompt X [60]:

N
max > log PY'[X, Y1), (5)

i=1
where 6 denotes the parameters of the projection layer Proj,(-), N is the number of tokens in the target prompt

and Y' is the i-th token in Y.

During the training, we provide both the input prompt and the target response with the objective of learning to
generate descriptions for the projected sequence embedding hs. During the inference, we only provide the input
prompt containing the projected sequence embedding hs, acquiring the output text as LLM’s understanding of hs.

3.2 Sequence-Residual Prompting

It is challenging for LLM to understand all items from a simple hidden representation of the interaction sequence,
since the datasets of recommendation are usually very sparse. Although we empirically show that LLaMA can
understand the interactions to a large extent under the sequence-recovery framework, we would also like to refine
the framework to encourage LLaMA to understand sequential recommender more delicately. Drawing inspiration
from Flamingo [2], which suggests that LLMs could better process images if the hidden representations of two
similar images are provided at the same time with their differences, we propose to inspire LLaMA to understand
sequential recommenders by identifying the residual item based on hidden representations before and after a
sequence integrates the residual, as illustrated in Figure 3. Then we elaborate on the sequence-residual prompting
step by step:

Sequence Encoding via Sequential recommenders. Given an interaction sequence s = [s1, Sy, . . ., Sm], We
could design a circumstance, that a user has interacted with [sy, s,, . . ., $;;—1] and then interacts with a residual
item s,,. The sequential recommender could encode s' = [s,s2,...,5,-1] and s* = [s1,ss,...,5,] as h! and h?
respectively:

hy = Seq-Enc(E') and hg = Seq-Enc(E?), (6)

where E! and E? are the vactorized sequence of s! and s?.

Representation Adaptaion via Lightweight Adapter. We also employ a linear projection layer as the light-
weight adapter, which could project hg: and hg to be hg and hg:

hg = Projy(hg) and hg = Proj,(hg), (7)
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A person has watched a m m m @
series of movies. The Please recommend the next

watching list can be Sequence of item IDs movie the person prefers.
represented as:
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Fig. 4. lllustration of leveraging Reclnterpreter for recommendation. We provide the textual prompts and the hidden
representation of the interaction sequence after projection, targeting at letting LLM predict the correct next item from
candidates in the prompt. Note that we only employ the projected hidden representation < to denote the user interaction
history in the prompt, instead of integrating the text description of userinteractions. Flame & denotes tunable modules,
while snowflake * indicates frozen modules.

where the parameters of linear layer are shared by hg and hg..

Prompt Design for the Adapter Training. Here we design more delicate sequence-residual prompts, which
inspire LLaMA to identify the residual item s, by comparing hg: and hg. Here is an example of the sequence-
residual prompt in the movie recommendation scenario:

Sequence-Residual Prompt

A person has watched a series of movies. The watching list can be

Input  “represented as List1: . After watching another movie, the

Prompt = watching list can further be represented as List2: . What
is the movie in List2 but not in List1?

Target

This user watched movie in List2 but not in List1.
Response

where and would be replaced with hg: and h, and is the residual item in the
example.

Similar to the sequence-recovery prompting, we provide both the input prompt and target response during the
training phase, and only the input prompt during the inference phase.
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3.3 Reclnterpreter for Recommendation

After training the projector, LLM is able to explicitly interpret the hidden representation of behavioral patterns
encoded by sequential recommenders. This capability enables the model to transform complex numerical ID
embeddings into comprehensible natural language descriptions, providing insights into how the recommender
system understands and represents user behavior patterns. Next, we demonstrate how the explicit projection could
benefit the recommendation task, with the key idea of leveraging the projected representation to describe user
behaviors and tuning LLM for recommendation. The framework of leveraging RecInterpreter for Recommendation
is illustrated in Figure 4.

Prompt Design for Recommendation. To empower LLM for recommendation after explicitly deciphering

sequential recommenders, we involve the projected representation hg in the prompt design for recommendation.

We employ the all-ranking setting adopted from BIGRec [3], which first performs instruction-tuning on the LLM

to restrict its output from language space to recommendation space. Then, it grounds the LLM’s outputs to actual

items by calculating the L2 distance between item embeddings and the embedding of the LLM’s generated output.
Here is an example of the prompt in the movie recommendation scenario:

Recommendation Prompt

Input A person has watched a series of movies. The watching list can be
P represented as: . Please suggest the next movie this person
Prompt . .
is likely to watch.
Target
Response
where is the projected hidden representation (i.e., hy), which can be acquired through either the sequence-
recovery prompting or the sequence-residual prompting.
It worth noting that we only employ the projected hidden representation to denote the user interaction

history in the prompt, instead of integrating the text description of user interactions like some other studies do
[37, 79]. This design choice represents a significant departure from conventional approaches and offers several
advantages. The projected representation serves as a compact yet informative encoding of user behavior patterns,
eliminating the need for verbose textual descriptions while maintaining the essential information needed for
recommendation tasks. The reason is that the projected hidden representation is supposed to contain the
behavioral patterns after the sequence-recovery prompting or sequence-residual prompting, which is informative
enough to represent user interaction for recommendation task. This approach is particularly effective because
the sequence-recovery and sequence-residual prompting processes have already trained the LLM to understand
and interpret these representations in a meaningful way. By leveraging these learned representations directly, we
can achieve more efficient and streamlined recommendation processing while maintaining the model’s ability to
capture complex user behaviors and preferences.
Then we adopt LoRA [28] to tune LLM for recommendation, the objective can be formulated as:

N
max Z log P (Yi X, Y[l:iﬂ]) , (8)

i=1
where ¢ and are parameters of LLM and parameters of low-rank matrics decomposition introduced by LoRA,
respectively. Note that only the parameters introduced by LoRA are tunable, and the sequential recommender,

the projection layer, and the LLM are frozen in the training process for recommendation task.
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3.4 Discussion

It is worth mentioning that several recent studies have proposed to integrate pre-trained recommenders into
LLM for recommendation, which has shown effectiveness in enhancing the performance of LLM in recom-
mendation tasks [36, 37, 79]. These approaches represent progress in combining the strengths of traditional
recommender systems with the powerful language understanding capabilities of LLMs. Nevertheless, these
studies directly train the projection layer with the objective of optimizing recommendation tasks. Besides, their
prompt designs typically contain both the hidden representation and textual information (e.g., title sequence) of
historical interactions to describe user history. This dual-input approach, while comprehensive, may introduce
redundancy and computational overhead into the recommendation process. More importantly, these methods
typically leverages item- or user-level alignment by directly projecting item or user embeddings into the token
embedding space of LLMs. Although these methods have achieved certain effectiveness, they have overlooked
the information encoded within sequential encoders that process user behavior sequences. This information is
crucial for understanding user behaviors and preferences in sequential recommendation.

In contrast, RecInterpreter explicitly inspires LLM to interpret hidden behavioral pattern representation with
textual narrations, as detailed in Section 3.1, which enables LLM to understand the hidden representations in the
first place. This step is crucial as it establishes a strong semantic connection between the sequence embeddings of
numerical ID representations and their meaning in natural language, creating a more robust basis for subsequent
recommendation tasks. In contrast to item- or user-level alignment, we adopt the sequence-level alignment,
where the sequence embeddings are generated by pretrained sequential recommenders. This step is crucial to
fully leverage the information of user behavior patterns learned by the sequential recommender. Our approach
ensures that the LLM develops a deep understanding of the behavioral patterns before being tasked with making
recommendations. More importantly, in the recommendation prompt of RecInterpreter, we only utilize the
projected hidden representation h, to describe user historical interactions, involving no textual information.
This streamlined approach demonstrates that once the LLM has been properly trained to understand these
representations, additional textual descriptions become unnecessary. The projected representations alone contain
sufficient information for generating accurate recommendations, leading to a more efficient and elegant solution.
These differences set RecInterpreter distinctly apart from prior studies, offering a novel paradigm that prioritizes
deep understanding of behavioral patterns while maintaining recommendation efficiency.

4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate and validate our proposed RecInterpreter framework.
The primary objective is to demonstrate how RecInterpreter explicitly enables LLMs to understand sequential rec-
ommenders through the interpretation of hidden representations. Furthermore, we investigate how this enhanced
understanding can be leveraged to improve overall recommendation performance through our framework. To
ensure a comprehensive evaluation, we employ three real-world datasets that represent diverse recommendation
scenarios and user behaviors. These datasets provide varied interaction patterns and item characteristics, allowing
us to assess the generalizability of our approach across different domains. We compare RecInterpreter against
several competitive baselines, including both traditional sequential recommenders and state-of-the-art methods,
to establish its effectiveness. For clarity, we present our experimental analysis by addressing the following
research questions:

e RQ1: How could LLM interpret the hidden space of conventional recommenders with the proposed
sequence-recovery prompting in RecInterpreter?

e RQ2: How could LLM interpret the hidden space of conventional recommenders with the proposed
sequence-residual prompting in RecInterpreter?
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Table 1. Statistics of datasets.

Dataset Movie Steam Book CD

#sequences 943 11,938 6,031 123,876
#items 1,682 3,581 4,500 89,370
#interactions 100,000 274,726 220,100 1,552,764

e RQ3: How does the recommendation performance of the proposed leveraging RecInterpreter for recom-
mendation compared to traditional and LLM-based recommenders?

Through addressing these research questions, we aim to provide a thorough understanding of RecInterpreter’s
capabilities in bridging the gap between sequential recommenders and language models, while demonstrating its
practical value in enhancing recommendation performance.

4.1 Experimental Setings

4.1.1 Datasets. We use four datasets from real-world recommendation scenarios: Movie, Steam, Book and CD.
The statistics of datasets are illustrated in Table 1.

e Movie! is a well-known dataset for movie recommendation, containing users’ rating history. We preserve
titles as the textual descriptions of movies. A notable characteristic of the MovieLens dataset is its
high-quality and reliable rating data, making it a well-adopted benchmark in recommendation system
research.

e Steam [31] dataset contains user reviews of video games on the Steam Store. The Steam dataset is unique
in that it reflects user interaction behaviors in the gaming domain. Game titles typically encode crucial
information about game genres and themes, providing valuable semantic cues for recommendation
systems.

e Book is collected from a social book cataloging website?, where users can search, rate, and provide reviews
of various books. The platform covers a diverse range of book categories, including fiction, biography,
science fiction, mystery, and more. These characteristics make the Book dataset particularly suitable for
evaluating recommendation algorithms in the literary domain.

e CD comes from the well-known Amazon Review Benchmark (2023, latest version) [26]. We select the
CDs_and_Vinyl (abbr. CD) dataset, which is of different category from the other datasets. From Table 1 we
can see that the scale of CD dataset is much larger than other datasets, containing millions of interactions.

Since tuning the projection layer requires backpropagation from LLaMA, the training phase is more time-
consuming than conventional recommenders, and the dataset size should not be too large. Based on this con-
sideration, we select the MovieLens100K version. This scale ensures sufficient interaction information while
keeping the training time manageable. Like previous studies, we maintain the standard practice of keeping users
with at least 20 reviews to ensure reliable user behavior patterns. We first apply an interaction threshold by
removing users who have fewer than 20 reviews, keeping consistent with the MovieLens preprocessing. Then, to
further reduce the computational burden, we randomly sample one third of the users and one third of the games
while preserving all interactions between these selected entities. This sampling strategy maintains the natural
density and distribution patterns of the original dataset while reducing its scale. For the Book dataset collected
from Goodreads, we implement similar density-based filtering by removing both users and books with fewer

Thttps://grouplens.org/datasets/movielens/
Zhttps://www.goodreads.com/
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than 20 interactions. This bilateral filtering ensures sufficient interaction data for both user and item representa-
tions, making the learned patterns more reliable and generalizable. For CD datasets, the pre-processing involves
implementing a 5-core filtering mechanism, which removed users and items having fewer than 5 interactions.

For all datasets, we first sort all sequences in chronological order based on the timestamp of the last interaction
in each sequence, and then split the data into training, validation, and testing data at the ratio of 8:1:1. This
temporal splitting approach ensures that no future interactions leak into the training set, which is crucial for
maintaining the integrity of the evaluation process as highlighted in literature [30]. When constructing instances
for different tasks, we employ the following strategies:

e For the sequence-recovery prompting task: Given a user interaction sequence, we ensure the sequence
length is at least 3 and at most 10 items (padding shorter sequences and truncating longer ones). We
then apply a sliding window approach to create multiple training instances from each sequence. For
example, from a sequence ‘ABCDEFGHI’, we can generate several training instances such as ‘ABC’,
‘ABCD’, ‘ABCDE’, and so on, with each subsequence and its corresponding text description forming a
training point.

o For the sequence-residual prompting task: We create pairs of consecutive subsequences from each sequence,
where each pair consists of a sequence and the same sequence with one additional item. For example,
from a sequence ‘ABCDEFGHI’, we create training pairs such as (‘AB’, ‘ABC’), ((ABC’, ‘ABCD’), and so on.
The model is trained to identify the residual item by comparing the representations of these pairs.

e For the recommendation task: We adopt the standard next-item prediction format, where for each
subsequence, the model predicts the next item. For instance, from a sequence ‘ABCDEFGHI’, we generate
training examples like ‘AB’—‘C’, ‘ABC’—‘D’, and so on, with a maximum sequence length of 10.

This construction method ensures that our evaluation properly assesses the model’s ability to understand
sequential patterns while preventing data leakage between training and evaluation sets. Unlike approaches that
simply designate the last few items of each user’s sequence for evaluation, our strict temporal split maintains the
chronological integrity of the recommendation task and better reflects real-world application scenarios.

4.1.2 Baselines.

e GRU4Rec [23] an RNN-based sequential recommender, which leverages GRU to encode users’ interaction
sequences. This pioneering approach introduced the application of recurrent neural networks to sequential
recommendation, utilizing the GRU’s ability to capture temporal dependencies.

e Caser [58] is a CNN-based sequential recommender. We apply one vertical filter and 16 horizontal filters
with heights{2, 3, 4}. This model innovatively treats user-item interaction sequences as images and applies
convolutional operations to capture local features. The vertical and horizontal convolutional filters are
designed to capture point-level and union-level sequential patterns respectively.

e SASRec [31] a self-attention based sequential recommender that captures long-range dependencies in
user-item interactions. By leveraging the transformer architecture, this model effectively models the
relationships between items in a sequence, overcoming the distance limitations of traditional sequential
models. The self-attention mechanism allows the model to dynamically focus on relevant historical
interactions when making predictions.

e ChatRec is adapted from [16]. We preserve item titles and users’ interaction sequences as users’ profiles
to accommodate for the datasets and settings in our experiment. Besides, we select GPT4 as the backbone
LLM for ChatRec. This adaptation maintains the conversational nature of the original model while
optimizing it for our specific experimental context, leveraging the advanced capabilities of GPT4 for more
nuanced understanding of user preferences.
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e MoRec [74] enhances the conventional recommenders by encoding the item’s modality features (e.g., text
features). We adopt BERT as the text encoder and SASRec as the recommender backbone, consistent with
the officially provided implementation. This multi-modal approach combines the semantic understanding
capabilities of BERT with the sequential modeling power of SASRec, enabling richer item representations
and more informed recommendations.

e BIGRec [3] constructs recommendation corpus by transferring interaction sequences into textual prompts,
and tunes LLMs for recommendation with the corpus of specific domains. BIGRec grounds the LLM’s
outputs to actual items by calculating the L2 distance between item embeddings and the embedding of
the LLM’s generated output.

o LLaRA [37] integrates modality information learned by conventional recommenders-into the tuning
process of LLMs for recommendation. Besides, LLaRA develops a curriculum learning scheme to progres-
sively warm up the training complexity. This approach combines multi-modal information with adaptive
learning strategies, gradually increasing the difficulty of the training process to achieve better model
convergence and performance.

o CoLLM [79] directly encodes collaborative information from pretrained traditional collaborative models,
and then tunes a mapping module to align it with the LLM’s input text token space for recommendations.

e RecLora [82] incorporates a personalized LoRA module for each user and a long-short modality retriever
to retrieve history lengths for different modalities.

The compared methods we selected can be mainly categorized into the following two types:

¢ Conventional recommenders include GRU4Rec, Caser and SASRec. These are traditional recom-
menders that use historical interaction within specific domains to provide recommendations. These models
have established strong baselines in the recommendation field through their specialized architectures for
processing sequential user interactions.

e LLM-based recommenders can also be divided into several subcategories. We select ChatRec as the
representative in-context learning based method, BIGRec and RecLora as the representative prompt
tuning based method, LLaRA and CoLLM as the representative modality alignment based method.
These methods represent different strategies for incorporating the powerful language understanding
and generation capabilities of LLMs into recommendation. For all LLM-based recommenders and our
proposed RecInterpreter, we all utilize LLaMA2-7B [61] as the backbone LLM for fair comparison.

4.1.3 Implementation details. We implement all approaches with Python 3.10, PyTorch 2.0.0, and transformers
4.32.0 in Nvidia A40 GPU. We preserve the last 10 interactions as the historical sequence. For sequences with less
than 10 interactions, we would pad them to 10 with a padding token.

We first train the sequential recommenders (GRU4Rec [23], Caser [58], and SASRec [31]) on the training datasets.
These models are selected as they represent different architectural paradigms in sequential recommendation:
RNN-based, CNN-based, and Transformer-based approaches respectively. We use Adam optimizer due to its
adaptive learning rate properties and superior performance in deep learning tasks. The learning rate is tuned as
0.001 and the batch size is set as 256. We adopt L2 regularization for all models to prevent overfitting, with the
coefficient extensively searched in [1e-3, 1e-4, 1e-5, le-6, 1e-7]. The embedding size is searched in [16, 64, 256,
1024] to explore the trade-off between model capacity and computational efficiency. After training, the sequential
recommenders are frozen to provide consistent feature extraction for subsequent stages.

We would utilize the frozen encoders in the pre-trained sequential recommenders to obtain the hidden
representations of interaction sequences. Let L and D denote the length of the sequences and the dimension of
the item embeddings respectively. For Caser, the size of the hidden representation is 1 X (D + nf X s¢), where ng
and sy are the number and size of convolutional kernels respectively [58], we directly employ an MLP layer to
transfer the hidden representation to be the size of token embedding of LLaMA. For GRU4Rec and SASRec, they
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adopt sequence-to-sequence models (RNN or Transformer encoder) as sequence encoders, and the size of hidden
representations is L X D [23, 31]. Therefore, we first acquire the linear combination of the hidden representations
by employing a convolutional filter of size L X 1 to acquire a 1 X D representation, and then adopt the MLP
projector similar to Caser.

In the training phase of sequence-recovery prompting, we employ a linear projection MLP layer as the projector.
We defines two special tokens: ‘<Seq>’, ‘</Seq>" to wrap the projected embeddings to indicate the start and
end of interpretation. The training process uses AdamW optimizer with a carefully designed warmup schedule:
starting at 0.0001 for the 1st epoch, linearly increasing to 0.0005 by the 5th epoch, then maintaining this rate.
This schedule helps stabilize early training while allowing for effective optimization later. The L2 regularization
coefficient is searched in [1e-4, le-5, 1le-6] to prevent overfitting while maintaining model expressiveness. We
select LLaMA2-7B [61] as our base LLM, balancing model capacity with computational constraints. The maximum
generated token length is capped at 50 - this limit was empirically determined to accommodate multiple items
while preventing hallucination and redundant generation. The training times (2, 6, and 5 hours per epoch for
Movie, Steam, and Book datasets respectively) reflect the varying complexity of each domain. Through empirical
observation, 20 epochs typically achieve convergence while avoiding overfitting.

For the LoRA tuning phase, we employ AdamW optimizer with a comprehensive hyperparameter search:
learning rates in [le-4, 1e-5, 1e-6] and L2 coefficients in [1e-6, 1e-7, 1e-8]. The LoRA rank is set to 8, providing
a good balance between adaptation capacity and parameter efficiency. This configuration allows for effective
fine-tuning.

To ensure robust evaluation and statistical significance, all experiments are conducted 3 times with different
random seeds, and we report the averaged results.

4.1.4  Metrics. The evaluation of RecInterpreter includes the performance of interpreting sequential recom-
menders and recommendation performance:

o To evaluate whether LLM could interpret the interacted items encoded in the hidden representations, we
calculate the number of interacted items Reclnterpreter can correctly generate with text narrations after
the sequence-recovery prompting. Then we calculate the ratio of correct recovery among all interaction
sequences for sequence-recovery task. For the sequence-residual task, we compute prediction precision of
the residual item by comparing the model’s prediction with the actual residual item. This metric directly
measures how well the model can identify incremental changes in the sequence representation.

e To evaluate the recommendation performance, we adopt a all-ranking task following prior study [3].
Specifically, for each sequence, we rank all candidate items based on the model output. For LLM-based
recommender, the ranking is based on the L2 distance between item embeddings and the embedding
of the LLM’s generated output. As for the recommendation metrics, we adopt two widely-used top-K
recommendation metrics: Hit Ratio (HR) and Mean Reciprocal Rank (MRR) [70], where HR only considers
whether the ground-truth item in the top-K result, and MRR further takes the rank of the ground-truth
item in the top=K list.

4.2 Sequence-Recovery Result (RQ1)

The straightforward approach to show whether LLM could understand the hidden representations of sequential
recommenders is to let LLM recover the items encoded in the hidden representations with textual descriptions.
This approach serves as a direct evaluation of the LLM’s capability to decode and interpret the complex patterns
embedded within the ID-based sequence representations that sequential recommenders typically generate. By
requiring the LLM to produce natural language descriptions of the encoded items, we can assess both the accuracy
of its understanding and the quality of its interpretations. In the testing data, each interaction sequence contains
several movies, video games, or books, and the sequence recovery task is to recover these items based on the
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Fig. 5. The distribution of the number overed items on the Movie, Steam, Book and CD datasets, with GRU4Rec, Caser,

and SASRec as the sequen enders. ‘Pop’ denotes that the 10 most popular movies or games in the training data
are provided as the se ry results. The average number of items in the test sequences is 10.00 for the Movie
dataset, 8. ataset, 9.88 for the Book dataset, and 9.95 for the CD dataset.

hidden representations of the sequential recommenders. This setup creates a challenging environment where the
LLM must de strate its ability to understand abstract sequence representations back to specific items across
different entertainment domains. It is worth noting that sequence recovery is not a trivial task due to: 1) The large
number of possible items makes the recovery process particularly challenging, as the model must distinguish
between thousands of potential candidates; and 2) The sequence embeddings are highly compressed with several
concrete items encoded in one embedding representation, which means that the LLM must understand not only
individual items but also their relationships within the sequence. We illustrate the result in Figure 5, and we
present the observed cases in the inference phase in Figure 6. More cases on all the datasets are shown in Table
10 and Table 11 in Appendix B.

ACM Trans. Inf. Syst.



18

Zhengyi Yang et al.

From Figure 5 we can observe that:

o If we naively provide the most popular items in the training data as the recovery of interaction sequences,

they can hardly match the real interacted items. In the Movie dataset, among 74.74% of the test samples,
the popularity-based recovery strategy can not recover any items. Similarly, in the Steam dataset, the ratio
of recovering 0 items based on popularity is 58.56%. These results suggest that the sequence recovery task
is quite challenging, which a simple heuristic of popularity can hardly handle. This finding underscores
the complexity of the task and the need for more sophisticated approaches that can capture the nuanced
patterns in user interactions beyond simple popularity metrics, which can be better accomplished by our
proposed sequence-recovery prompting in RecInterpreter.

In general, with our designed sequence recovery framework, LLM shows the capability of understanding
hidden representations of sequential recommenders. Notably, in the Movie dataset, LLM could recover
more than 5 items from the hidden representations of Caser and SASRec for over 35% of all test samples,
and the percentage of recovering more than 3 items from the hidden representations could reach 80%.
Therefore, we could safely draw the conclusion that the hidden representations of interaction sequences
encoded by sequential recommender are also perceivable for LLM, just as the hidden representations
of images, audios, and videos. This finding establishes an important parallel between recommendation
systems and other modal domains, suggesting a universal capability of LLMs in‘understanding various
forms of encoded information including the behavioral patterns.in recommender systems.

In the comparison of the Movie, Steam, Book and CD datasets, we can observe that LLM shows a better
understanding of the Movie data than the Steam, Book and CD data. One reason is that the item titles
in the Steam, Book and CD datasets are more complex than the movie titles in the Movie dataset. For
example, the movie titles in the Movie dataset are quite simple and clear containing only English words.
However, the game titles in the Steam dataset are more complicated, where plenty of the game titles
contain the version or provider information, such as “‘Swords and Sorcery - Underworld - Definitive Edition”.
Besides, some of the titles contain other languages than English, such as Chinese or Japanese. Another
possible reason is that the movie-related corpus (such as reviews and comments) might appears more in
the training data of LLM, which makes it easier for LLM to achieve the best recovery performance on
movie data.

In the comparison of different sequential recommenders, we can observe that LLM can better understand
Caser, and SASRec than GRU4Rec. The reason comes from their different model architectures. Specifically,
Caser adopts CNN to capture the sequential patterns, and CNN has displayed the impressive capability
of encoding the global information [21]. The Transformer encoder employed by SASRec is one of the
widely adopted sequence-to-sequence architectures [62], which is also the fundamental component in the
framework of LLM [60]: However, RNN may suffer from issues such as vanishing gradient and exploding
gradient [50], thus presenting obstacles for LLM to well understand its hidden representations. These
architectural differences and their impact on model performance highlight the importance of choosing
appropriate sequential modeling approaches for recommendation systems that need to interface with
LLMs.

Position Order Analysis. To further evaluate the LLM’s capability in understanding not only the items but also
their sequential relationships, we analyze whether the correctly recovered items maintain their relative position
order as in the original sequence. For each pair of correctly recovered items, we check if their relative order is
consistent with the original sequence, and compute the accuracy across all such pairs. As shown in Table 2, the
position order accuracy ranges from 71.43% to 82.17% across different datasets and recommenders, indicating that
LLM not only recognizes individual items but also largely preserves their sequential arrangement. This suggests
that the hidden representations encode not just item identities but also meaningful sequential patterns that LLM
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Table 2. Position order analysis of correctly recovered items with different pretrained recommenders

Dataset | GRU4Rec , Caser , SASRec

Movie 78.65% 82.17% | 81.93%
Steam 74.28% 77.36% | 79.82%
Book 71.43% 75.89% | 76.52%
CDh 72.09% 74.62% | 75.38%

Table 3. Distribution of correctly recovered items across sequence positions. Values represent the percentage of correctly
recovered items falling within each position range.

GRU4Rec Caser SASRec
Early Middle Late | Early Middle Late | Early Middle Late
(1-3)  (4-6) (7-10) | (1-3)  (4-6) (7-10) | (1-3)  (4-6) (7-10)

Movie 224% 31.8% 45.8% | 33.2% 32.5% 34.3% | 31.5%  34.8%  33.7%
Steam 19.1% 253% 55.6% | 34.7% 30.9% 34.4% | 33.4% 32.1% 34.5%
Book 24.7% 32.4% 42.9% | 32.8% 33.6% 33.6% | 30.8% 34.9% 34.3%
CD 16.8% 24.2% 59.0% | 31.4% 34.8% 33.8% | 32.9% 33.2% 33.9%

Dataset

can interpret. Notably, Caser and SASRec consistently outperform GRU4Rec in maintaining position accuracy,
further confirming their superior capability in representing sequential information in a way that is interpretable
to LLMs.

Table 4. Popularity bias in failed recovery cases'with different pretrained recommenders

Dataset | GRU4Rec , Caser , SASRec

Movie 63.82% 58.45% | 61.29%
Steam 62.56% 59.31% | 60.18%
Book 65.14% 61.53% | 63.67%
CDh 64.39% 60.28% | 56.95%

Position-aware Recovery Pattern Analysis. To provide deeper insights into the position accuracy patterns, we
conduct a comprehensive analysis of correctly recovered items across different sequence positions. We categorize
sequence positions into three groups: early positions (1-3), middle positions (4-6), and late positions (7-10), and
examine the distribution of correctly recovered items across these position ranges. The result is shown in Table 3.

The results reveal distinct architectural-specific patterns that provide insights into how different sequential
recommenders encode temporal information. GRU4Rec exhibits a distinctive “recency bias” where over 42%
of correctly recovered items come from late positions (7-10) across all datasets, while only 16-25% come from
early positions (1-3). This pattern aligns with the inherent characteristics of recurrent neural networks, where
the hidden state primarily captures recent information due to the vanishing gradient problem. The sequential
processing nature of RNNs means that earlier items in the sequence have weaker influence on the final hidden
representation, making them less likely to be correctly recovered by the LLM. In contrast, both Caser and
SASRec demonstrate more balanced recovery distributions across all positions. This balanced pattern reflects
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the architectural advantages of their respective designs. Caser’s sliding window approach of CNNs can capture
patterns across different temporal scales uniformly, resulting in more consistent position coverage in the recovered
sequences. Similarly, SASRec benefits from the self-attention mechanism that can directly model relationships
between all positions without the sequential bottleneck inherent in RNNGs.

While quantifying item types proves challenging due to the subjective nature of categorization, several potential
factors may influence position maintenance patterns. Item popularity likely plays a role, as well-known items
may benefit from richer semantic associations in the LLM’s pre-training corpus, potentially leading to more
stable positional encoding. Additionally, items within similar semantic categories may exhibit different position
recovery behaviors, though systematic quantification of these effects remains difficult without domain-specific
taxonomies.

These position-sensitive patterns have important implications for applications where sequential order matters.
In e-commerce scenarios, product browsing sequences where early items indicate initial intent while later
items reflect refined preferences require architecture-specific consideration for temporal weighting. Content
consumption platforms such as video streaming with episode dependencies, educational systems with prerequisite
relationships, and social media platforms where temporal dynamics influence engagement all benefit from
understanding these architectural biases. The position recovery analysis demonstrates that RecInterpreter not
only recovers items but also preserves meaningful temporal relationships, making it particularly valuable for
applications requiring position-aware recommendations where the choice between RNN-based recency weighting
versus balanced temporal coverage becomes crucial for system design.

Failure Analysis. To better understand the limitations of our approach, we conducted a detailed analysis of
failure cases in the sequence recovery task. As shown in Table 4, popularity bias emerges as the primary cause of
recovery errors. Approximately 60% of incorrectly recovered items across all datasets are among the top 10%
most popular items in the training set. This suggests that when LLM is uncertain about which item to recover, it
tends to default to popular items that appeared frequently during training. The effect is most pronounced with
GRU4Rec, which shows the highest popularity bias across all datasets, particularly in the Book dataset (65.14%).

Beyond popularity bias, we observed other error patterns that are less amenable to quantitative analysis. Some
errors stem from semantic similarity between items, such as confusing different installments within the same
series. For example, in the Book dataset, the model occasionally mixes up different volumes in the Harry Potter
series or other sequential works. Similarly, in the Movie dataset, sequels or films with similar themes or actors
are sometimes interchanged. These errors suggest that while LLM can broadly understand the domain and genre
encoded in the hidden representations, it may struggle with fine-grained distinctions between semantically
similar items. Such cases are difficult to systematically categorize and quantify, hence we do not present statistical
results for these observations:

4.3 Sequence-Residual Result (RQ2)

We have shown that LLM could understand the interactions from the hidden representation, but it is hard to
recover all items, since the number of candidates is very large and the hidden representation is highly compressed.
Therefore, we design the sequence-residual prompting framework, i.e., inspiring LLM to identify the residual
item by comparing the representations before and after the sequence incorporates the said residual. Instead
of attempting to recover all items simultaneously, it focuses on identifying the incremental change in the
representation caused by a single item addition. This targeted approach reduces the complexity of the task
significantly. Moreover, by comparing representations before and after the incorporation of a residual item, the
model can learn to detect subtle patterns and changes that characterize specific items’ impact on the sequence
representation.
We illustrate the result in Table 5, from which we can observe:

ACM Trans. Inf. Syst.



Large Language Model Can Interpret Latent Space of Sequential Recommender «+ 21

Movie

A person has watched a series of movies. The watching list can / -
be represented as: <SeqH>. Describe this watching history of
the person in detail.

This person has watched Air Force One, Saint, Conspiracy
Theory, Murder at 1600, Cop Land, Liar Liar,
Peacemaker, Kiss the Girls, Scream, Devil‘s Advocate.

Steam

A person has played a series of video games on Steam. The -
playing list can be represented as: <SeqH>. \What games do
you think the person has played before?

This person has played Mark of the Ninja, Brothers - A Tale
of Two Sons, The Walking Dead: Season 2, The Witcher 2:
Assassins of Kings Enhanced Edition, The Evil Within, The
Last of Us, Far Cry 3, The Darkness II, Hotline Miami.

Fig. 6. Two cases of the sequence recovery task in Movie and Steam datasets. denotes the hidden representation of
the interaction sequence after the projection layer. The in the response denotes the correctly recovered movies and
games only from the hidden representation.

e Among the conventional recommenders evaluated on the sequence-residual task, Caser and SASRec
demonstrate superior accuracy in residual item identification compared to GRU4Rec. This performance
difference aligns with our observations from the sequence-recovery framework and can be attributed to
their more sophisticated architectural designs. Specifically, Caser leverages convolutional neural networks
(CNN) while SASRec employs a Transformer encoder architecture, both of which prove more effective at
capturing sequential patterns compared to the recurrent neural network (RNN) structure used in GRU4Rec.
These findings highlight the importance of architectural design in sequential recommendation systems
and demonstrate how proper architectures can lead to better representation learning, ultimately resulting
in improved performance in identifying the residual item with LLMs.
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Table 5. The result of sequence residual on the Movie, Steam, Book and CD datasets. Note that GRU4Rec, Caser, and SASRec
denote that we leverage them as the conventional sequential recommender and employ the sequence-residual prompting on
top of them. We calculate the accuracy of correctly identifying the residual item in the test data as the evaluation metrics.

Dataset GRU4Rec Caser SASRec

Movie 54.71%  80.23% 94.58%
Steam 18.23% 55.67% 54.50%
Book 15.05%  47.24% 50.47%

CD 16.50%  47.36% 52.20%

e LLaMA also understands the Movie dataset better than the Steam, Book and CD datas w.r.t. the sequence-
residual task. The reason also comes from that the titles of video games are more complicated than the
titles of movies. Besides, another potential reason can be that the movie-related corpus exists more in the
training data of LLM, which LLM achieves better performance on Movie data.

e Overall, RecInterpreter demonstrates remarkable comprehension capabilities in the sequence-residual
task across all datasets, particularly excelling in identifying items that deviate from the primary sequential
patterns. This strong performance indicates that our framework not only captures the main sequential
dependencies but also exhibits sophisticated understanding of subtle variations and anomalies within
user interaction sequences. Such capability is crucial for real-world recommendation scenarios where
user behaviors often contain both consistent patterns and occasional deviations, further validating the
effectiveness of our approach in modeling complex sequential dynamics.

4.4 Recommendation Result (RQ3)

In this section, we compare the recommendation performance of RecInterpreter with several baseline methods,
including: 1) Representative traditional sequential recommenders: GRU4Rec [23], Caser [58], and SASRec [31].
2) Recent LLM-based recommenders: ChatRec [16], MoRec [74], BIGRec [3], LLaRA [37], CoLLM [79], and
RecLora [82]. These baselines represent the evolution of sequential recommendation methods, from traditional
neural architectures to modern LLM-based approaches, providing a comprehensive evaluation framework for our
proposed RecInterpreter model.

The results are shown'in Table 6, from which we can observe that:

o Generally, RecInterpreter achieves the best recommendation performance compared to all baselines, under
both the sequence-recovery and sequence-residual promptings. The performance gains are consistent
across different datasets, highlighting the effectiveness of our approach. This notable improvement in
performance can be attributed to RecInterpreter’s novel design that explicitly guides the large language
model to interpret hidden behavioral pattern representations through textual descriptions using our
carefully designed sequence-recovery prompting. Unlike previous approaches that either rely solely on
traditional sequential modeling or use language models in a more general way, our method creates a
direct bridge between the sequential patterns learned by recommendation models and the linguistic
understanding capabilities of LLMs. Through this explicit prompting mechanism, the language model
develops a comprehensive understanding of the behavioral patterns that sequential recommenders have
encoded. This synergistic combination of explicit pattern interpretation and efficient parameter tuning
sets RecInterpreter apart from existing methods and explains its consistent performance advantages
across different experimental settings.
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Table 6. Recommendation performance comparison between Reclnterpreter and baselines on four datasets. Bold indicates
the best performance and the underline indicates the best among baselines. Recy, Rec., and Rec; denote Recinterpreter with
GRU4Rec, Caser, and SASRec as sequential recommenders respectively. We adopt a all-ranking task following prior study [3].
Experiments are conducted 3 times and the average is reported.

Movie Steam Book CD

MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20

GRU4Rec 0.0614 0.1533 0.0441 0.1104 0.0433 0.1082 0.0141 0.0352
Conventional Caser 0.0627 0.1392 0.0477 0.1193 0.0454 0.1136 0.0147 0.0368
SASRec 0.0450 0.1125 0.0436 0.1091 0.0423 0.1059 0.0144 0.0361

ChatRec 0.0301 0.0753 0.0379 0.0947 0.0409 0.1022 0.0095 0.0238
MoRec 0.0431 0.1078 0.0415 0.1036 0.0371 0.0927 0.0103 0.0257
BIGRec 0.0630 0.1387 0.0492 0.1232 0.0511 0.1278 0.0148 0.0371

LLM-based

LLaRA 0.0716 0.1679 0.0525 0.1313 0.0537 0.1341 0.0156 0.0392

CoLLM 0.0703 0.1663 0.0513 0.1298 0.0526 0.1329 0.0145 0.0377

RecLora 0.0683 0.1549 0.0511 0.1279 0.0527 0.1317 0.0152 0.0379

Recg 0.0889 0.2222 0.0590 0.1475 0.0571 0.1428 0.0168 0.0421

Seq-Recovery Rec, 0.0944 0.2360 0.0601 0.1504 0.0547 0.1368 0.0173 0.0432
Recg 0.0933 0.2333 0.0576 0.1441 0.0583 0.1457 0.0177 0.0441

Recy 0.0927 0.2319 0.0592 0.1479 0.0576 0.1441 0.0171 0.0428

Seq-Residual Rec, 0.0940 0.2350 0.0606 0.1515 0.0565 0.1413 0.0179 0.0447
Rec; 0.0932 0.2331 0.0578 0.1445 0.0558 0.1395 0.0175 0.0438

e When combined with different sequential recommenders, RecInterpreter displays different recommenda-
tion performances: Our experimental results show that RecInterpreter achieves superior performance
when integrated with Caser and SASRec compared to its combination with GRU4Rec. This performance
pattern mirrors what we observed in the sequence recovery task, and can be attributed to the architectural
advantages of these models, i.e., Caser and SASRec employ more advanced model architectures than
GRU4Rec. Therefore, Caser and SASRec could better encode the behavioral patterns of users in their
learning process.

e Among the LLM-based recommendation approaches, our experimental results reveal several key in-
sights regarding their performance characteristics. In-context learning approaches demonstrate limited
effectiveness in recommendation tasks, primarily due to the nature of LLM pre-training. As noted in
previous studies [3, 37, 79, 82], the pre-training process of large language models typically includes
minimal exposure to recommendation-specific tasks or relevant corpus. Therefore, it is challenging for
LLM to perform recommendation tasks without fine-tuning. MoRec’s performance falls somewhat short
of expectations in our experiments. This can be attributed to our experimental setup where only item titles
are used for constructing representations to ensure fair comparison across all approaches. As suggested
in the original MoRec paper [74], the model’s full potential may require additional modality information,
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such as user profiles and item images, to leverage its multimodal architecture effectively. Furthermore,
LLaRA’s superior performance over BIGRec suggests that integrating conventional recommenders can
further improve LLM’s performance for recommendation tasks. In summary, more powerful backbone
models, additional modality data, and integration of supplementary behavioral patterns seem to boost the
performance of LLM-based recommenders.

Comparing the approaches that utilize parameter tuning (BIGRec, LLaRA, CoLLM, RecLoRA and RecIn-
terpreter), our experiments demonstrate RecInterpreter’s superior performance. An analysis of their
methodological differences provides insights into the sources of this performance advantage. BIGRec
adopts a straightforward approach by utilizing only textual information, specifically the sequence of
item titles, to describe user historical behavior in its prompt design. While this method leverages the
language model’s natural text processing capabilities, it may not fully capture the complex patterns in
user behavior sequences. LLaRA advances this approach by incorporating both textual information and
mapped hidden representations obtained from sequential recommenders in its prompt design. However,
LLaRA’s integration of hidden representations with the language model remains implicit, as it optimizes
only the recommendation objective as shown in Equation 8. This implicit integration may limit the
model’s ability to fully leverage the behavioral patterns encoded in these representations. RecInterpreter
introduces a different approach by explicitly teaching the language model to understand hidden represen-
tations through the proposed sequence-recovery prompting. This novel mechanism enables the model to
operate directly with projected hidden representations when describing user behavior history, effectively
discarding the need for raw textual information. By establishing this explicit bridge between behavioral
patterns and language understanding, RecInterpreter achieves a more comprehensive interpretation of
user preferences. The significant performance improvements observed in our experiments validate both
the theoretical rationale behind this approach and its practical superiority in recommendation tasks.

4.5 Efficiency analysis

In this section, we analyze the computational efficiency of RecInterpreter compared to baseline methods. Table 7
presents the training time in GPU hours for all methods across four datasets (We exclude ChatRec since ChatRec
utilizes in-context learning and does not require training the model). Several key observations can be made from
these results:

e Conventional sequential recommenders (GRU4Rec, Caser, and SASRec) are extremely efficient, requiring

only 1-3 GPU hours for training across all datasets. This efficiency stems from their relatively small
parameter size and specialized architectures optimized for sequential recommendation tasks. However,
as shown in Table 6, these models achieve significantly lower performance compared to LLM-based
approaches. As LLM-enhanced recommender, MoRec also has low training time as it primarily focuses on
modality enhancement without extensive LLM tuning.

e Among LLM-based recommenders, BIGRec demonstrates moderate efficiency with training times approx-

imately half of other LLM-tuning methods. LLaRA and CoLLM exhibit higher computational demands,
mainly because they directly input embeddings into the LLM for fine-tuning without the interpretable
projection mechanism that RecInterpreter employs. This direct input approach not only increases compu-
tational cost but also results in lower performance compared to our method, as shown in Table 6.

Our Reclnterpreter framework involves a two-phase training procedure: (1) training the projector layer (ei-
ther Sequence-Recovery or Sequence-Residual) and (2) recommendation fine-tuning. While this two-phase
approach results in longer total training times compared to other LLM-based methods (approximately 1-2
times longer), it brings substantial performance improvements. The computational investment is justified
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Table 7. Training efficiency comparison between Reclnterpreter and baselines on four datasets. All times are reported in GPU
hours. Recy, Rec, and Rec; denote Reclnterpreter with GRU4Rec, Caser, and SASRec as sequential recommenders respectively.
For Reclnterpreter, we report the time for both training phases: projector training and recommendation fine-tuning.

Training Time (GPU Hours)

Movie Steam Book CD

GRU4Rec 1.2 1.8 1.6 2.5
Conventional Caser 1.3 2.0 1.8 2.7
SASRec 1.4 2.1 1.9 2.8
MoRec 1.8 2.5 2.3 3.2
BIGRec 15.4 43.2 31.8 1953
LLM-based LLaRA 29.8 83.5 614 376.5
CoLLM 25.6 72.1 53.2 3257
RecLora 249 70.4 51.8 317.2
Rec, (Projector) 35.1 158.6. 92.8 629.6
Rec. (Projector) 40.2 <~ 181.5 106.2 720.6
Rec; (Projector) 37.8 ..170.8 99.5 677.7

Seq-Recovery
Recy (Recommendation). 7.0 31.7 186 1259

Rec. (Recommendation) 8.0 36.3 21.3 1442
Recs (Recommendation) 7.6 341  20.0 1354

Recy (Projector) 26.5 102.7 65.7 468.2
Rec, (Projector) 303 1175 75.1 535.8
Rec; (Projector) 28.4 110.1 704 503.6

Seq-Residual
Rec, (Recommendation) 9.3 39.5 23.1 153.6

Rec, (Recommendation)  10.1 415 35.0 177.2
Rec; (Recommendation) 9.7 38.1 241  160.7

by the significant gains in recommendation quality, with RecInterpreter consistently outperforming all
baselines across all datasets.

e When comparing our two prompting strategies, we observe an interesting time-performance trade-off.
The Sequence-Recovery approach requires more GPU hours in the first phase (projector training) but less
time in the recommendation fine-tuning phase compared to Sequence-Residual. This is because the more
comprehensive understanding of user behavior patterns learned during Sequence-Recovery prompting
allows for more efficient adaptation during the recommendation phase. Conversely, Sequence-Residual
requires less time for projector training but more time for recommendation fine-tuning, as the model
needs to compensate for the more focused nature of the residual understanding.
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Impact of Projector Size on Recinterpreter - SASRec
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Fig. 7. Impact of projector architecture on RecInterpreter (SASRec) performance across four datasets. The figure shows both
HR@20 (blue, left y-axis) and MRR@20 (red, right y-axis) metrics for different projector sizes ranging from single-layer to
four-layer MLPs. Top row shows results with Sequence-Recovery prompting, while bottom row shows results with Sequence-
Residual prompting. Performance generally peaks with simpler architectures (1-2 layers) and gradually declines with more
complex architectures (3-4 layers), suggesting that one-layer lightweight projector is sufficient for effective latent space
interpretation.

Overall, while RecInterpreter demands higher computational resources than conventional recommenders,
the investment yields substantial performance gains. Compared to other LLM-based methods, RecInterpreter’s
two-phase approach offers a favorable balance between computational efficiency and recommendation quality.
The explicit interpretation mechanism not only improves performance but also enhances explainability, providing
valuable insights into user preferences that are absent in other approaches.

4.6 In-depth Analysis

To investigate the impact of different components in RecInterpreter and to shed light on the reasons why the
proposed RecInterpreter outperforms baselines, we conduct in-depth analysis with experiments in this section,
including the projector size; other alignment strategy, and the cold-start ability.

4.6.1 Ablation.on the Projector Size. The projector, which maps sequence representations from recommender
systemsinto the LLM token embedding space, is a critical component in our framework. We investigate how
different projector sizes influence RecInterpreter’s performance. Figure 7 presents the results of experiments
with increasingly complex MLP sizes (1-layer: A simple linear projection [1024 — 4096]; 2-layer: [1024 —
2048 — 4096]; 3-layer: [1024 — 2048 — 2072 — 4096]; 4-layer: [1024 — 1024 — 2048 — 2072 — 4096]). All
configurations use GELU activation between layers. We evaluate these architectures across four datasets (Movie,
Steam, Book, and CD) for both sequence-recovery and sequence-residual prompting strategies.

The results reveal a consistent pattern: simpler projector architectures (1-2 layers) consistently outperform
more complex ones across all datasets. For instance, in the Movie dataset with Sequence-Recovery prompting,
the 1-layer projector achieves an HR@20 of 0.2333, while performance gradually decreases with 2-layer (0.2321),
3-layer (0.2210), and 4-layer (0.1942) architectures. Similar trends are observed in MRR@20 metrics and across all
datasets. This finding is particularly interesting considering that deeper neural networks typically have greater

ACM Trans. Inf. Syst.



Large Language Model Can Interpret Latent Space of Sequential Recommender « 27

Table 8. Zero-shot recommendation performance without second-stage SFT.

Movie Steam Book CD

MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20

Baseline 0.0148 0.0370 0.0116 0.0290 0.0133 0.0333 0.0035 0.0088

Recy 0.0262 0.0655 0.0194 0.0485 0.0211 0.0528 0.0064 0.0161
Seq-Recovery Rec, 0.0348 0.0870 0.0231 0.0578 0.0215 0.0538 0.0069 0.0173
Recs 0.0336 0.0840 0.0241 0.0603 0.0236 0.0590 0.0074 0.0186

Recy 0.0250 0.0626 0.0183 0.0459 0.0194 0.0485 0.0062 0.0155
Seq-Residual  Rec, 0.0325 0.0812 0.0225 0.0563 0.0205 0.0514 0.0067 0.0167
Rec; 0.0316 0.0790 0.0232 0.0581 0.0224 0.0561 0.0072 0.0179

representational capacity. The performance degradation with deeper projectors can be attributed to several factors.
First, overfitting becomes more likely with increased parameter count, especially given the relatively limited size
of recommendation datasets. Second, information can be lost through multiple transformation layers, potentially
diluting the essential behavioral patterns encoded in the sequence representations. Third, deeper networks face
optimization challenges that may prevent them from learning optimal mappings between representation spaces.

Based on these comprehensive results, we adopt the 1-layer projector [1024 — 4096] in our main experiments,
as it offers the best balance between performance and computational efficiency. This finding aligns with recent
research in multimodal LLMs [41, 81], where simpler projection mechanisms have been found to be effective for
aligning different representation spaces with token embeddings of language models.

4.6.2 Zero-shot Performance without the Second-stage SFT. To further investigate the effectiveness of our pro-
posed RecInterpreter framework, we conduct a zero-shot evaluation experiment where we only implement
the sequence representation interpretation phase (either Sequence-Recovery or Sequence-Residual) without
performing the second-stage supervised fine-tuning for recommendation. This experiment aims to verify whether
the enhanced understanding of user behavior patterns through our interpretation mechanisms alone can improve
recommendation performance; even without explicit optimization for the recommendation objective.

In this zero-shot setting, we directly use the trained projector to map sequence representations into the LLM’s
token embedding space, and then prompt the LLM to generate recommendations based only on its understanding
of these projected representations. As a baseline, we compare against a straightforward approach where LLaMA2-
7B is prompted with the raw textual titles of the user’s historical interaction sequence, which is a common practice
in prompt-based recommendation methods.Table 8 presents the performance comparison between our zero-shot
Reclnterpreter variants and the baseline approach across four datasets. The results reveal several interesting
findings:

e Reclnterpreter variants significantly outperform the title-based prompting baseline across all datasets.
This substantial improvement demonstrates that the understanding of hidden behavioral patterns encoded
in sequence representations is indeed more effective than directly leveraging raw textual descriptions of
items for recommendation tasks.

e We observe that Sequence-Recovery consistently outperforms Sequence-Residual in the zero-shot setting.
This suggests that the more comprehensive understanding of user preferences gained through recovering
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Table 9. Performance comparison of different alignment strategies using SASRec as the sequential recommender.

Movie Steam Book CD

MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20

Title-based 0.0630 0.1387 0.0492 0.1232 0.0511 0.1278 0.0148 0.0371
Item-level 0.0552 0.1210 0.0448 0.1102 0.0472 0.1156 0.0130 0.0325
Sequence-level 0.0933 0.2333 0.0576 0.1441 0.0583 0.1457 0.0177 0.0441

entire interaction sequences provides a stronger foundation for recommendation tasks compared to the
more focused residual item identification approach. This finding aligns with our intuition that a holistic
understanding of user behavior is particularly valuable when no explicit recommendation fine-tuning is
performed.

The zero-shot performance is, as expected, substantially lower than our fully-trained RecInterpreter variants
presented in Table 6. The substantial performance gap between zero-shot (HR@20: 0.0840 on Movie dataset) and
fully-trained versions (HR@20: 0.2333) is expected and reasonable, given that the latter undergoes dedicated
recommendation task fine-tuning while the former relies solely on interpretation capabilities without task-specific
adaptation.

The true value of this zero-shot experiment lies in its validation purpose: compared to the baseline title-based
prompting approach, our method demonstrates significant improvements across all datasets, providing compelling
evidence that the sequence interpretation capabilities developed in the alignment phase are indeed effective. This
validates the core contribution of our sequence-level alignment strategy - that LLMs can meaningfully understand
hidden behavioral patterns encoded by sequential recommenders. The complete RecInterpreter framework
combines this interpretation capability with subsequent recommendation task fine-tuning, which explains the
substantial performance gains shown in our main results. This two-stage design ensures both interpretability and
recommendation effectiveness, with the zero-shot results confirming that the first stage successfully bridges the
representation gap between sequential recommenders and LLMs.

4.6.3 Alignment Strategies for Sequence Recovery. A critical design choice in RecInterpreter is our sequence-level
alignment approach, which differs from conventional alignment strategies in LLM-based recommendation. To
validate the effectiveness of this approach, we conduct an ablation study comparing three different alignment
strategies:

o Title-based: Directly using item titles as textual prompts for the LLM without embedding alignment,
which is BIGRec [3].

o Item-level: Aligning individual item embeddings to the LLM’s token space, then using these aligned
embeddings for recommendation.

o Sequence-level(Ours): Aligning entire sequence embeddings to the LLM’s token space through sequence
recovery.

As shown in Table 9, sequence-level alignment significantly outperforms both title-based and item-level
alignment strategies across all datasets. These results highlight a limitation in existing LLM-based recommendation
methods. Conventional approaches typically leverage item- or user-level alignment by directly projecting item
or user embeddings into the token embedding space of LLMs. Although these methods have achieved certain
effectiveness, they have overlooked the critical information encoded within sequential encoders that process user

ACM Trans. Inf. Syst.



Large Language Model Can Interpret Latent Space of Sequential Recommender « 29

behavior sequences. This information is crucial for understanding user behaviors and preferences in sequential
recommendation.

The inferior performance of item-level alignment compared to even title-based alignment is particularly
revealing. It suggests that naively projecting individual item embeddings into the LLM’s token space may actually
disrupt the semantic coherence that exists in plain text descriptions. This finding challenges the assumption
that embedding projection alone is sufficient for effective recommendation. Therefore, Studies such as LLaRA
[37] and CoLLM [79] incorporates both item title and embedding in the prompts to achieve better performance
than naively item title. In contrast, RecInterpreter first explicitly inspires LLM to interpret hidden behavioral
pattern representations with textual narrations, as detailed in Section 3.1, which enables the LLM to understand
the hidden representations in the first place. This foundational step is crucial as it establishes a.strong semantic
connection between the sequence embeddings of numerical ID representations and their meaning in natural
language, creating a more robust basis for subsequent recommendation tasks. Unlike item- or user-level alignment,
our sequence-level alignment leverages sequence embeddings generated by pretrained sequential recommenders.
This approach is crucial to fully capture the rich information of user behavior patterns learned by specialized
sequential models. By aligning at the sequence level, we preserve the temporal dynamics, item relationships, and
evolving user preferences that are encoded in these representations.

The consistent performance gains across diverse datasets demonstrate that sequence-level alignment represents
a more effective paradigm for bridging sequential recommenders and large language models. This alignment
strategy allows RecInterpreter to combine the strengths of both worlds: the specialized sequential pattern
recognition capabilities of traditional recommenders and the rich semantic understanding of LLMs.

5 CONCLUSION AND FUTURE WORK

We present RecInterpreter, a novel framework designed to enable LLMs to comprehend and interpret conven-
tional sequential recommenders. Our approach is inspired by recent breakthroughs in multi-modal language
models, which demonstrate that LLMs can effectively perceive hidden representations from modality-specific
encoders through straightforward projection mechanisms. Building on this insight, RecInterpreter introduces
sequence-recovery prompting and sequence-residual prompting that facilitate LLMs’ understanding of sequential
recommenders’ hidden representations. The sequence-recovery prompting enables LLMs to reconstruct user
interaction sequences from hidden representations, while the sequence-residual prompting further challenges
LLMs to identify residual items in incomplete sequences. Furthermore, we develop an innovative method for
fine-tuning LLMs for recommendation tasks, leveraging the insights gained through these prompting techniques.
Notably, after successful interpretation of sequential recommenders, RecInterpreter enables LLMs to enhance
recommendation performance even without requiring textual descriptions of interaction sequences, suggesting
that the projected representations serve as a sufficient and compact form of user history, containing the necessary
information for generating accurate recommendations.

Despite its demonstrated effectiveness, RecInterpreter has certain limitations that warrant acknowledgment.
First, our current implementation employs simple MLP layer for projection, which may not fully capture the
complexity of the representation space. Second, the maximum sequence length is limited to 10 items due to
computational constraints, which may not reflect real-world scenarios where users have extensive interaction
histories. If computational resources allow, future work should explore longer sequence handling through
strategies such as hierarchical representation learning, sliding window approaches, or attention-based sequence
compression techniques. Third, the scale of datasets used in our experiments, while sufficient for validation,
could benefit from expansion to better demonstrate the framework’s capabilities. We anticipate that these
limitations can be addressed in future research through the incorporation of more sophisticated adaptation
mechanisms, such as Q-former [33], and the utilization of larger-scale datasets. As an effort to enable explicit LLM
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understanding of recommendation modality, RecInterpreter opens up numerous promising research directions.
Online service providers could implement RecInterpreter within their existing recommendation systems, exploring
new applications of LLMs in this context. Additionally, the research community can investigate alternative

frameworks beyond sequence-recovery to enhance LLMs’ comprehension of recommendation modality. This
initial work serves as a foundation for future innovations in combining language models with recommendation
systems.
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A PROMPTS
A.1 Sequence Recovery Prompts

1. A user has viewed/played/read/listened to several movies/video games/books/music albums. Their viewing/gam-
ing/reading /listening history-can be represented as: <Seq><SeqHere></Seq>. Could you list all the movies/video
games/books/music albums this user has watched/played/read/listened to?

2. A person has watched/played/read/listened to a series of movies/video games/books/music albums. The watch-
ing/gaming /reading/listening list can be represented as: <Seq><SeqHere></Seq>. Describe this watching/gaming/read-
ing/listening history-of the person in detail.

3. A person has watched/played/read/listened to a series of movies/video games/books/music albums. The watch-
ing/gaming /reading/listening list can be represented as: <Seq><SeqHere></Seq>. Please provide a detailed description
of this watching/gaming/reading/listening history of the person.

4. A user has a movie watching/video game playing/book reading/music album listening history that
can be represented as: <Seq><SeqHere></Seq>. What movies/video games/books/music albums has this person
watched/played/read/listened to based on this representation?

5. The following representation <Seq><SeqHere></Seq> describes a person’s movie watching/video game play-
ing/book reading/music album listening history. Please enumerate all the movies/video games/books/music albums
they have watched/played/read/listened to.

6. A viewer’s/gamer’s/reader’s/listener’s movie/video game/book/music album history is encoded as: <Seq><Se-
qHere></Seq>. Please decode this representation and list all the movies/video games/books/music albums they have
watched/played/read/listened to.
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7. The sequence <Seq><SeqHere></Seq> represents a person’s movie watching/video game playing/book read-
ing/music album listening history. Can you translate this into a list of movie/game/book/album titles they’ve
watched/played/read/listened to?

8. A cinephile’s/gaming enthusiast’s/bibliophile’s/music enthusiast’s watching/playing/reading/listening history is
represented by <Seq><SeqHere></Seq>. Please identify all the movies/video games/books/music albums this person
has watched/played/read/listened to.

9. I have a representation of someone’s movie watching/video game playing/book reading/music album listening
history: <Seq><SeqHere></Seq>. Please convert this into a complete list of the movies/video games/books/music albums
they’ve watched/played/read/listened to.

10.The encoded movie/gaming/reading/listening history <Seq><SeqHere></Seq> represents all films/video
games/books/music albums watched/played/read/enjoyed by a person. Please decode this and detail their complete
viewing/playing/reading/listening history.

A.2  Sequence Residual Prompts

1. A person has watched/played/read/listened to a series of movies/video games/books/music albums. The watch-
ing/gaming /reading/listening list can be represented as List1l: <Seq1><SeqHerel></Seq1>. After watching/play-
ing/reading/listening to another movie/video game/book/music album, the watching/gaming/reading/listening list
can further be represented as List2: <Seq2><SeqHere2></Seq2>. What is the movie/video game/book/music album in
List2 but not in List1?

2. A person has watched/played/read/listened to a series of movies/video games/books/music albums. The
watching/gaming/reading/listening list can be represented as List1: <Seql><SeqHerel></Seq1>. Then the person
watched/played/read /listened to one more movie/video game/book/music album, and the watching/gaming/reading/lis-
tening list can further be represented as List2: <Seq2><SeqHere2></Seq2>. What is the movie/video game/book/music
album in List2 but not in List1?

3. A user’s movie/video game/book/music album history can be represented as List1: <Seq1><SeqHerel></Seq1>.
Later, after watching/playing/reading/listening to an additional movie/video game/book/music album, their history
is represented as List2: <Seq2><SeqHere2></Seq2>. Please identify the movie/video game/book/music album that was
added.

4. Initially, a person’s movie watching/video game playing/book reading/music album listening history is encoded as
List1: <Seq1><SeqHere1></Seq1>. After some time, their updated history is encoded as List2: <Seq2><SeqHere2></Seq2>.
Which movie/video game/book/music album was added to their history?

5. The representation List1: <Seq1><SeqHerel></Seq1> shows a user’s movie/video game/book/music album history.
The representation List2: <Seq2><SeqHere2></Seq2> shows their updated history after watching/playing/reading/lis-
tening to one more movie/video game/book/music album. What is this new addition?

6. A viewer’s/gamer’s/reader’s/listener’s history changed from List1: <Seq1><SeqHere1></Seq1> to List2: <Seq2><Se-
qHere2> </Seq2> after they watched/played/read/listened to another movie/video game/book/music album. Can you
determine which movie/video game/book/music album was added?

7. Compare these two representations of a person’s movie watching/video game playing/book reading/music album
listening history: List1: <Seq1><SeqHere1></Seq1> and List2: <Seq2><SeqHere2></Seq2>. List2 includes one additional
movie/video game/book/music album. What is it?

8. A cinephile/gaming enthusiast/bibliophile/music enthusiast expanded their collection from List1: <Seq1><Se-
qHerel></Seq1> to List2: <Seq2><SeqHere2></Seq2>. Which movie/video game/book/music album was newly added
to their collection?
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9. I have two representations of someone’s movie/video game/book/music album history: Listl: <Seq1><Se-
qHere1></Seq1> and an updated List2: <Seq2><SeqHere2></Seq2>. Please identify the movie/video game/book/music
album that appears in List2 but not in List1.

10. The encoded history List1: <Seq1><SeqHerel></Seq1> was updated to List2: <Seq2><SeqHere2></Seq2> after
a person watched/played/read/listened to an additional movie/video game/book/music album. What is this new
movie/video game/book/music album they’ve experienced?

A.3 Recommendation Prompts

1. A person has watched/played/read/listened to a series of movies/video games/books/music albums. The watch-
ing/gaming /reading/listening list can be represented as: <SeqH>. Please suggest the next movie/video game/book/music
album this person is likely to watch/play/read/listen to.

2. Based on this representation of a person’s movie watching/video game playing/book reading/music album
listening history: <SeqH>, what would be the most suitable next movie/video game/book/music album to recommend?

3. A user’s movie/video game/book/music album preferences can be encoded as: <SeqH>. What movie/video
game/book/music album would you recommend they watch/play/read/listen to next?

4. I have a representation <SeqH> of someone’s movie/video game/book/music album history: Could you recommend
one movie/video game/book/music album they might enjoy watching/playing/reading/listening to next?

5. The following representation <SeqH> describes a viewer’s/gamer’s/reader’s/listener’s history. What movie/video
game/book/music album do you think would be their ideal next choice?

6. Given this encoded pattern of a person’s movie watching/video game playing/book reading/music album listening
behavior: <SeqH>, what would be your top recommendation for their next movie/video game/book/music album?

7. A cinephile’s/gaming enthusiast’s/bibliophile’s/music enthusiast’s taste can be represented as: <SeqH>. Based on
this, what movie/video game/book/music album should they experience next?

8. The sequence <SeqH> represents a person’s movie/video game/book/music album preferences. What would be
the most appropriate next movie/video game/book/music album to recommend to them?

9. Looking at this user’s movie/video game/book/music album history representation: <SeqH>, which movie/video
game/book/music album would complement their taste and be a good next recommendation?

10. A person with this movie watching/video game playing/book reading/music album listening pattern <SeqH> is
looking for their next movie/video game/book/music album. What would you suggest they watch/play/read/listen to
next?
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SEQUENCE RECOVERY CASES

Table 10. Examples of sequence recovery cases on Movie and Steam datasets.

Input Prompt

Target Response

A person has watched a series of movies. The watch-
ing list can be represented as: (SeqH). Describe this
watching history of the person in detail.

This user has watched Fargo, Jerry Maguire, An-
tonia’s Line, Secrets and Lies, Swingers, Leaving
Las Vegas, Emma, Donnie Brasco, Cold Comfort
Farm.

A user has viewed several movies. Their viewing
history can be represented as: (SeqH). Could you
list all the movies this user has watched?

This user has watched Peacemaker, Conspiracy
Theory, Picture Perfect, Mimic, Air Force One,
Devil’s Own, Murder at 1600, Hoodlum, Beauti-
cian and the Beast, Kull the Conqueror.

The sequence (SeqH) represents a person’s movie
watching history. Can you translate this into a list
of movie titles they’ve watched?

This user has watched Abyss, Alien 3, Cat Peo-
ple, Nightmare on Elm Street, Cape Fear, Body
Snatchers, Omen, Jaws, Shining,.

A person has played a series of video games. The
gaming list can be represented as: (SeqH). Describe
this gaming history of the person in detail.

This user has played Don’t Starve Together, Half-
Life, The Binding of Isaac: Rebirth, LEGO The
Hobbit, ShellShock Live, Unturned, Left 4 Dead,
Fallout 3: Game of the Year Edition, Fallout 4.

A user has played several video games. Their gam-
ing history can be represented as: (SeqH). Could
you list all the games this user has played?

This user has played Grand Theft Auto IV, Source
Filmmaker, WAD Creator, Brawlhalla, Block-
world E2, AdVenture Capitalist, Garry’s Mod,
Robocraft, Trove.

The sequence (SeqH) represents a person’s video
game playing history. Can you translate this into a
list of game titles they’ve played?

This user has played Getting Over It with Ben-
nett Foddy, Unturned, Goliath, Trove, America’s
Army: Proving Grounds, The Elder Scrolls V:
Skyrim Special Edition, AdVenture Capitalist,
DARK SOULS III, Paladins.
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Table 11. Examples of sequence recovery cases on Book and CD datasets.

Input Prompt

Target Response

A person has read a series of books. The reading
list can be represented as: (SeqH). Describe this
reading history of the person in detail.

This user has read Six of Crows, The Dream
Thieves, Heir of Fire, Queen of Shadows, Blue
Lily, Lily Blue, Crooked Kingdom, The Raven
King, Empire of Storms, A Court of Mist and
Fury.

A user has read several books. Their reading history
can be represented as: (SeqH). Could you list all
the books this user has read?

This user has read City of Glass, Inheritance, The
Power of Six, Brisingr, Babe: Pig in the City, Er-
agon, The Grand Inquisitor, The Buccaneer, Corn-
wall.

The sequence (SeqH) represents a person’s book
reading history. Can you translate this into a list of
book titles they’ve read?

This user has read City of Fallen Angels, City
of Lost Souls, City of Heavenly Fire, The Fault
in Our Stars, Lady Midnight, Beautiful Creatures,
Clockwork Angel, Throne of Glass, Mockingjay.

A person has listened to a series of music albums.
The listening list can be represented as: (SeqH). De-
scribe this listening history of the person in detail.

This user has listened to Essential Borodin,
Prokofiev: Symphony No. 6, Mahler: Sym-
phony No. 7, Mozart: Complete Piano Sonatas,
Vivaldi: Concertos, Shostakovich: Symphonies
Nos. 4 & 10, Beethoven: The Complete Symphony
Collection, Abbey Road Anniversary Deluxe.

A user has listened to several music albums. Their
listening history can be represented as: (SeqH).
Could you list all the albums this user has listened
to?

This user has listened to Keep on Smiling / Dixie
Rock, Led Zeppelin IV, The Byrds: Original Al-
bum Classics, Best Of Johnny Winter, The
Doors: Greatest Hits, Blues Breakers With Eric
Clapton, The Rolling Stones: Hot Rocks.

The sequence (SeqH) represents a person’s music
album listening history. Can you translate this into
a list of album titles they’ve listened to?

This user has listened to Haydn: Complete Sym-
phonies, Beethoven: Symphony No. 9, Mahler:
Symphony No. 5, Mahler: Symphony No.
9, Brahms: The Complete Symphonies, Mahler:
Symphony No. 10, Leonard Slatkin conducts
Vaughan Williams, Tchaikovsky: The Sym-
phonies.
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