
Estimation–Action–Reflection: Towards Deep Interaction
Between Conversational and Recommender Systems

Wenqiang Lei
1
, Xiangnan He

2∗
, Yisong Miao

1
, Qingyun Wu

3
, Richang Hong

4
, Min-Yen Kan

1
,

Tat-Seng Chua
1

1
National University of Singapore,

2
University of Science and Technology of China

3
University of Virginia,

4
Hefei University of Technology

wenqianglei@gmail.com,xiangnanhe@gmail.com,miaoyisong@gmail.com,qw2ky@virginia.edu

hongrc@hfut.edu.cn,kanmy@comp.nus.edu.sg,chuats@comp.nus.edu.sg

ABSTRACT
Recommender systems are embracing conversational technologies

to obtain user preferences dynamically, and to overcome inherent

limitations of their static models. A successful Conversational Rec-
ommender System (CRS) requires proper handling of interactions

between conversation and recommendation. We argue that three

fundamental problems need to be solved: 1) what questions to ask

regarding item attributes, 2) when to recommend items, and 3) how

to adapt to the users’ online feedback. To the best of our knowledge,

there lacks a unified framework that addresses these problems.

In this work, we fill this missing interaction framework gap

by proposing a new CRS framework named Estimation–Action–
Reflection, or EAR, which consists of three stages to better con-

verse with users. (1) Estimation, which builds predictive models

to estimate user preference on both items and item attributes; (2)

Action, which learns a dialogue policy to determine whether to

ask attributes or recommend items, based on Estimation stage and

conversation history; and (3) Reflection, which updates the recom-

mender model when a user rejects the recommendations made by

the Action stage. We present two conversation scenarios on binary

and enumerated questions, and conduct extensive experiments on

two datasets from Yelp and LastFM, for each scenario, respectively.

Our experiments demonstrate significant improvements over the

state-of-the-art method CRM [32], corresponding to fewer conver-

sation turns and a higher level of recommendation hits.

CCS CONCEPTS
• Information systems→Users and interactive retrieval;Rec-
ommender systems; Personalization; • Human-centered com-
puting → Interactive systems and tools.

KEYWORDS
Conversational Recommendation; Interactive Recommendation;

Recommender System; Dialogue System

∗
Xiangnan He is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371769

ACM Reference Format:
Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong,

Min-Yen Kan, Tat-Seng Chua. 2020. Estimation–Action–Reflection: Towards

Deep Interaction Between Conversational and Recommender Systems. In

The Thirteenth ACM International Conference onWeb Search and Data Mining
(WSDM’20), February 3–7, 2020, Houston, TX, USA. ACM, NY, NY, USA, 9

pages. https://doi.org/10.1145/3336191.3371769

1 INTRODUCTION
Recommender systems are emerging as an important means of fa-

cilitating users’ information seeking [6, 17, 20, 30]. However, much

of such prior work in the area solely leverages the offline histor-

ical data to build the recommender model (henceforth, the static
recommender system). This offline focus causes the recommender

to suffer from an inherent limitation in the optimization of offline

performance, which may not necessarily match online user behav-

ior. User preference can be diverse and often drift with time; and

as such, it is difficult to know the exact intent of a user when he

uses a service even when the training data is sufficient.

The rapid development of conversational techniques [19, 22, 23,

26, 35] brings an unprecedented opportunity that allows a recom-

mender system to dynamically obtain user preferences through

conversations with users. This possibility is envisioned as the con-
versational recommender system (CRS), for which the community

has started to expend effort in exploring its various settings. [40]

built a conversational search engine by focusing on document rep-

resentation. [23] developed a dialogue system to suggest movies

for cold start users, contributing to language understanding and

generation for the purpose of recommendation, but does not con-

sider modeling users’ interaction histories (e.g., clicks, ratings). In

contrast, [9] does considers user click history in recommending, but

their CRS only handles single-round recommendation. That is, their

model considers a scenario in which the CRS session terminates

after making a single recommendation, regardless of whether the

recommendation is satisfactory or not. While a significant advance,

we feel this scenario is unrealistic in actual deployments.

In particular, we believe CRS models should inherently adopt

a multi-round setting: a CRS converses with a user to recommend

items based on his click history (if any). At each round, the CRS is

allowed to choose two types of actions — either explicitly asking

whether a user likes a certain item attribute or recommending a

list of items. In a session, the CRS may alternate between these

actions multiple times, with the goal of finding desirable items

while minimizing the number of interactions. This multi-round

https://doi.org/10.1145/3336191.3371769


setting is more challenging than the single-round setting, as the

CRS needs to strategically plan its actions. The key in performing

such planning, from our perspective, lies in the interaction between

the conversational component (CC; responsible for interacting with

the user) and the recommender component (RC; responsible for

estimating user preference – e.g., generating the recommendation

list). We summarize three fundamental problems toward the deep

interaction between CC and RC as follows:

• What attributes to ask? A CRS needs to choose which attribute

to ask the user about. For example, in music recommendation, it

may ask “Would you like to listen to classical music?”, expecting a

binary yes/no response
1
. If the answer is “yes”, it can focus on items

containing the attribute, benefiting the RC by reducing uncertainty

in item ranking. However, if the answer is “no”, the CRS expends

a conversation turn with less gain to the RC. To achieve the goal

of hitting the right items in fewer turns, the CC must consider

whether the user will like the asked attribute. This is exactly the

job of the RC which scrutinizes the user’s historical behavior.

• When to recommend items? With sufficient certainty, the CC should

push the recommendations generated by the RC. A good timing to

push recommendations should be when 1) the candidate space is

small enough; when 2) asking additional questions is determined to

be less useful or helpful, from the perspective of either information

gain or user patience; and when 3) the RC is confident that the top

recommendations will be accepted by the user. Determining the

appropriate timing should take both the conversation history of

the CC and the preference estimation of the RC into account.

• How to adapt to users’ online feedback? After each turn, the user

gives feedback; i.e., “yes”/“no” to a queried attribute, or an “ac-

cept”/“reject” the recommended items. (1) For “yes” on the attribute,

both user profile and item candidates need to be updated to gener-

ate better recommendations; this requires the offline RC training

to take such updates into account. (2) For “no’, the CC needs to

adjust its strategy accordingly. (3) If the recommended items are

rejected, the RC model needs to be updated to incorporate such a

negative signal. Although adjustments seem only to impact either

the RC or the CC, we show that such actions impact both.

Towards the deep interaction between CC and RC, we propose

a new solution named Estimation–Action–Reflection (EAR), which

consists of three stages. Note that the stages do not necessarily align

with each of the above problems. (a) Estimation, which builds pre-

dictive models offline to estimate user preference on items and item

attributes. Specifically, we train a factorization machine [29] (FM)

using user profiles and item attributes as input features. Our Esti-

mation stage builds in two novel advances: 1) the joint optimization

of FM on the two tasks of item prediction and attribute prediction,

and 2) the adaptive training of conversation data with online user

feedback on attributes. (b) Action, which learns the conversational

strategy that determines whether to ask or recommend, and what

attribute to ask. We train a policy network with reinforcement

1
Note that it is possible to compose questions eliciting an enumerated response; i.e.,

“Which music genre would you consider? I have pop, funk ...”. However, this is a

design choice depending on the domain requirements. In describing our method, we

consider the basic single-attribute case. However in experiments, we also justify the

effectiveness of EAR in asking such enumerated questions on Yelp. For the purpose

of exposition, we have chosen to avoid open questions that do not constrain user

response for now. Even interpreting user responses to such questions is considered a

challenging task [5].

Figure 1: The workflow of our multi-round conversational
recommendation scenario. The system may recommend
items multiple times, and the conversation ends only if the
user accepts the recommendation or chooses to quit.
learning, optimizing the reward of shorter turns and successful

recommendations based on the FM’s estimation of user preferred

items and attributes, and the dialogue history. (c) Reflection, which

adapts the CRS with user’s online feedback. Specifically, when a

user rejects the recommended items, we construct new training

triplets by treating the items as negative instances and update the

FM in an online manner. In summary, the main contributions of

this work are as follows:

• We comprehensively consider a multi-round CRS scenario that is

more realistic than previous work, highlighting the importance

of researching into the interactions between the RC and CC to

build an effective CRS.

• We propose a three-stage solution, EAR, integrating and revising

several RC and CC techniques to construct a solution that works

well for the conversational recommendation.

• We build two CRS datasets by simulating user conversations to

make the task suitable for offline academic research. We show

our method outperforms several state-of-the-art CRS methods

and provide insight on the task.

2 MULTI-ROUND CONVERSATIONAL
RECOMMENDATION SCENARIO

Following [9], we denote one trial of recommendation as a round.
This paper considers conversational recommendation as an inher-

ently multi-round scenario, where a CRS interacts with the user by

asking attributes and recommending items multiple times until the

task succeeds or the user leaves. To distinguish the two, we term the

setting single-round where the CRS only makes recommendations

once, ending the session regardless of the outcome, as in [9, 32].

We now introduce the notation used to formalize our setting.

Let u ∈ U denote a user u from the user setU and v ∈ V denote

an item v from the item set V . Each item v is associated with a

set of attributes Pv which describe its properties, such as music

genre “classical” or “jazz” for songs in LastFM, or tags such as

“nightlife”, “serving burgers”, or “serving wines” for businesses in

Yelp. We denote the set of all attributes as P and use p to denote a

specific attribute. Following [32, 40], a CRS session is started with

u’s specification of a preferred attribute p0, then the CRS filters

out candidate items that contain the preferred attribute p0. Then in



each turn t (t = 1, 2, ...,T ; T denotes the last turn of the session),

the CRS needs to choose an action: recommend or ask:
• If the action is recommend, we denote the recommended item

list Vt ⊂ V and the action as ar ec . Then the user examines

whetherVt
contains his desired item. If the feedback is positive,

this session succeeds and can be terminated. Otherwise, we mark

Vt
as rejected and move to the next round.

• If the action is ask (where the asked attribute is denoted as

pt ∈ P and the action as aask (p
t )), the user states whether he

prefers items that contain the attribute pt or not. If the feedback
is positive, we add pt into Pu to denote the preferred attributes

the user in the current session. Otherwise, we mark pt as rejected;
regardless of rejection or not, we move to the next turn.

This whole process naturally forms a interaction loop (Figure 1)

where the CRS may ask zero to many questions before making

recommendations. A session terminates if a user accepts the rec-

ommendations or leaves due to his impatience. We set the main

goal of the CRS as making desired recommendations within as few

rounds as possible.

3 PROPOSED METHODS
EAR consists of a recommendation and conversation component

(RC and CC) which interact intensively in the three–stage conver-

sational process. The system starts working at the estimation stage

where the RC ranks candidate items and item attributes for the user,

so as to support the action decision of the CC. After the estimation
stage, the system moves to the action stage where the CC decides

whether to choose an attribute to ask, or make a recommendation

according to the ranked candidates and attributes, and the dialogue

history. If the user likes the attribute asked by the RC, the CC feeds

this attribute back to the RC to make a new estimation again; oth-

erwise, the system stays at the action stage: updates the dialogue

history and chooses another action. Once a recommendation is

rejected by a user, the CC sends the rejected items back to RC,

triggering the reflection stage where the RC adjusts its estimations.

After that, the system enters the estimation stage again.

3.1 Estimation
As discussed before, the multi-round conversational scenario brings

in new challenges to the traditional RC. Specifically, the CC in-

teracts with a user u and accumulates evidence on his preferred

attributes, denoted as Pu = {p1,p2, ..,pn }
2
. Importantly, different

from traditional recommendation methods [17, 30], the RC here

needs to make full use of Pu aiming to accurately predict both

user’s the preferred items and preferred attributes. These two goals

exert positive influence on EAR, where the first directly contributes

to success rate of recommendation, and the second guides the CC

to choose better attributes to ask users so as to shorten the conver-

sation. In the following, we first introduce the basic form of the

recommendation method, followed by detail on how we adapt our

proposed method to achieve both goals simultaneously.

3.1.1 Basic Recommendation Method. we choose the factorization
machine (FM) [29] as our predictive model due to its success and

wide usage in recommendation tasks. However, FM considers all

2
We detail how to obtain such data in experiments Section 4.1.2.

pairwise interactions between input features, which is costly and

may introduce undesired interactions that negatively affect our two

goals. Thus, we only keep the interactions that are useful to our

task and remove the others. Given useru, his preferred attributes in
the conversation Pu , and the target item v , we predict how likely

u will like v in the conversation session as:

ŷ(u,v,Pu ) = uT v +
∑

pi ∈Pu

vT pi,
(1)

where u and v denote the embedding for user u and item v , respec-
tively, and pi denotes the embedding for attribute pi ∈ Pu . Bias

terms are omitted for clarity. The first term uT v models the gen-

eral interest of the user on the target item, a common term in FM

model [17]. The second term

∑
vT pi models the affinity between

the target item and user preferred attributes. We have also tried to

include v’s attributes Pv into FM, but found it brings no benefits.

One possible reason is that the item embedding vmay have already

encoded its attribute information. Thus we also omit it.

To train the FM, we optimize the pairwise Bayesian Personalized

Ranking (BPR) [30] objective. Specifically, given a useru, it assumes

the interacted items (e.g., visited restaurants, listened music) should

be assigned higher scores than those not interacted with. The loss

function of traditional BPR is:

Lbpr =
∑

(u,v,v ′)∈D1

−lnσ (ŷ(u,v,Pu )− ŷ(u,v
′,Pu ))+λΘ ∥Θ∥

2
(2)

where D1 is the set of pairwise instances for BPR training, D1 :=

{(u,v,v ′) | v ′ ∈ V−u }, where v is the interacted item of the con-

versation session (i.e., the ground truth item of the session),V−u :=

V\V+u denotes the set of non-interacted items of user u andV+u
denotes the items interacted by u. σ is the sigmoid function, and

λΘ is the regularization parameter to prevent overfitting.

3.1.2 Attribute-aware BPR for Item Prediction. However, in our

scenario, the emphasis of CRS is to rank the items that contain the

user preferred attributes well. For example, if u specifies “Mexican

restaurant” as his preferred attribute, a good CRS needs to rank his

preferred restaurants among all available Mexican restaurants. To

capture this, we propose to sample two types of negative examples:

V−u := V\V+u , V̂
−
u := Vcand\V

+
u , (3)

whereV−u is the same negative samples as in the traditional BPR

setting, i.e., all non-interacted items ofu.Vcand denotes the current

candidate items satisfying the partially known preference Pu in

the conversation, and V̂−u is the subset ofVcand that excludes the

observed itemsV+u . The two types of pairwise training instances

is defined as:

D1 := {(u,v,v
′) | v ′ ∈ V−u }, D2 := {(u,v,v

′) | v ′ ∈ V̂−u }, (4)

We then train the FM model by optimizing both D1 and D2:

Litem =
∑

(u,v,v ′)∈D1

−lnσ (ŷ(u,v,Pu ) − ŷ(u,v
′,Pu ))

+
∑

(u,v,v ′)∈D2

−lnσ (ŷ(u,v,Pu ) − ŷ(u,v
′,Pu )) + λΘ ∥Θ∥

2 ,

(5)

where the first loss learns u’s general preference, and the second

loss learns u’s specific preference given the current candidates. It



is worth noting adding the second loss for training is critical for

the model ranking well on the current candidates. This is very

important for CRS since the candidate items dynamically change

with user feedback along the conversation. However, the state-of-

the-art method CRM [32] does not account for this factor, being

insufficient in considering the interaction between the CC and RC.

3.1.3 Attribute Preference Prediction. We formulate the task of the

second goal of accurate attribute prediction separately. This predic-

tion of attribute preference is mainly used in the CC to support the

action on which attribute to ask (c.f. Sec 3.2). As such, we take u’s
preferred attributes in the current session into account:

д̂(p |u,Pu ) = uT p +
∑

pi ∈Pu

pT pi , (6)

which estimates u’s preference on attribute p, given u’s current
preferred attributes Pu . To train the model, we also employ BPR

loss, and assume that the attributes of the ground truth item v (of

the session) should be ranked higher than other attributes:

Lattr =
∑

(u,p,p′)∈D3

−lnσ (д̂(p |u,Pu ) − д̂(p
′ |u,Pu )) + λΘ ∥Θ∥

2 ,

(7)

where the pairwise training data D3 is defined as:

D3 = {(u,p,p
′)|p ∈ Pv ,p

′ ∈ P\Pv }, (8)

where Pv denotes item v’s attributes.

3.1.4 Multi-task Training. We perform joint training on the two

tasks of item prediction and attribute prediction, which has the

potential of mutual benefits since their parameters are shared. The

multi-task training objective is:

L = Litem + Lattr . (9)

Specifically, we first train the model with Litem . After it converges,

we continue optimizing the model using Lattr . We iterate the two

steps until convergence under both losses. Empirically, 2-3 itera-

tions are sufficient for convergence.

3.2 Action
After the estimation stage, the action stage finds the best strategy for

when to recommend. We adopt reinforcement learning (RL) to tackle

this multi-round decision making problem, aiming to accomplish

successful recommendation in shorter number of turns. It is worth

noting that since our focus is on conversational recommendation

strategy, as opposed to fluent dialogue (the language part), we

use templates as wrappers to handle user utterances and system

response generation. That is to say, this work serves as an upper

bound study of real applications as we do not include the errors for

language understanding and generation.

3.2.1 State Vector. The state vector is a bridge for the interaction
between the CC and RC. We encode information from the RC and

dialogue history into a state vector, providing it to the CC to choose

actions. The state vector is a concatenation of four component

vectors that encode signal from different perspectives:

s = sent ⊕ spre ⊕ shis ⊕ slen . (10)

Each of the vector components captures an assumption on asking

which attribute could be most useful, or whether now is a good

time to push a recommendation. They are defined as follows:

• sent : This vector encodes the entropy information of each attribute

among the attributes of the current candidate itemsVcand . The

intuition is that asking attributes with large entropy helps to re-

duce the candidate space, thus benefits finding desired items in

fewer turns. Its size is the attribute space size |P |, where the i-th
dimension denotes the entropy of the attribute pi .
• spre : This vector encodesu’s preference on each attribute. It is also
of size |P |, where each dimension is evaluated by Equation (6) on

the corresponding attribute. The intuition is that the attribute with

high predicted preference is likely to receive positive feedback,

which also helps to reduce the candidate space.

• shis : This vector encodes the conversation history. Its size is the

number of maximum turnsT , where each dimension t encodes user
feedback at turn t . Specifically, we use -1 to represent recommen-

dation failure, 0 to represent asking an attribute that u disprefers,

and 1 to represent successfully asking about an attribute that u
desires. This state is useful to determine when to recommend items.

For example, if the system has asked about a number of attributes

for which u approves, it may be a good time to recommend.

• slen : This vector encodes the length of the current candidate list.

The intuition is that if the candidate list is short enough, EAR

should turn to recommending to avoid wasting more turns. We

divide the length |Vcand | into ten categorical (binary) features to

facilitate the RL training.

It is worth noting that besides shis , the other three vectors are

all derived from the RC component. We claim that this is a key

difference from existing conversational systems [9, 23, 26, 32, 40];

i.e., the CC needs to take information from the RC to decide the

dialogue action. In contrast to EAR, the recent conversational rec-

ommendation method CRM [32] makes decisions based only on the

belief tracker that records the preferred attributes of the user, which

makes it less informative. As such, CRM is less effective especially

when the number of attributes is large (their experiments only deal

with 5 attributes, which is insufficient for real-world applications).

3.2.2 Policy Network and Rewards. The conversation action is cho-

sen by a policy network in our CC. In order to demonstrate the

efficacy of our designed state vector, we purposely choose a simple

policy network — a two-layer multi-layer perceptron, which can

be optimized with the standard policy gradient method. It contains

two fully-connected layers and maps the state vector s into the

action space. The output layer is normalized to be a probability dis-

tribution over all actions by so f tmax . In terms of the action space,

we follow the previous method [32], which includes all attributes P

and a dedicated action for recommendation. To be specific, we de-

fine the action space asA = {ar ec ∪ {aask (p)|p ∈ P}}, which is of

size |P |+1. After the CC takes an action at each turn, it will receive

an immediate reward from the user (or user simulator). This will

guide the CC to learn the optimal policy that optimizes long-term

reward. In EAR, we design four kinds of rewards, namely: (1) rsuc ,
a strongly positive reward when the recommendation is successful,

(2) rask , a positive reward when the user gives positive feedback

on the asked attribute, (3) rquit , a strongly negative reward if the

user quits the conversation, (4) rprev , a slightly negative reward



on every turn to discourage overly lengthy conversations. The in-

termediate reward rt at turn t is the sum of the above four rewards,

rt = rsuc + rask + rquit + rprev .

We denote the policy network as π (at | st ), which returns the

probability of taking action at given the state st . Here at ∈ A and

st denote the action to take and the state vector of the t-th turn,

respectively. To optimize the policy network, we use the standard

policy gradient method [33], formulated as follows:

θ ← θ − α ▽ logπθ (a
t | st )Rt , (11)

where θ denotes the parameter of the policy network, α denotes

the learning rate of the policy network, and Rt is the total reward

accumulating from turn t to the final turn T : Rt =
∑T
t ′=t γ

T−t ′rt ′ ,
where γ is a discount factor which discounts future rewards over

immediate reward.

3.3 Reflection
This stage also implements the interaction between the CC and

RC. It is triggered when the CC pushes the recommended items

Vt
to the user but gets rejected, so as to update the RC model for

better recommendations in future turns. In the traditional static

recommender system training scenario [17, 30], one issue is the

absence of true negative samples, since users do not explicitly

indicate what they dislike. In our conversational case, the rejection

feedback is an explicit signal on user dislikes which are highly

valuable to utilize; moreover, it indicates that the offline learned

FM model improperly assigns high scores to the rejected items. To

leverage on this source of feedback, we treat the rejected items

Vt
as negative samples, constructing more training examples to

refresh the FM model. Following the offline training process, we

also optimize the BPR loss:

Lr ef =
∑

(u,v,v ′)∈D4

−lnσ (ŷ(u,v,Pu )−ŷ(u,v
′,Pu ))+λΘ ∥Θ∥

2
(12)

whereD4 := {(u,v,v
′) | v ∈ V+u ∧v

′ ∈ Vt }. Note that this stage is

performed in an online fashion, where we do not have access to the

ground truth positive item. Thus, we treat the historically interacted

itemsV+u as the positive items to pair with the rejected items. We

put all examples in D4 into a batch and perform batch gradient

descent. Empirically, it takes 3-5 epochs to converge, sufficiently

efficient for online use.

Note that although it sounds reasonable to also update the policy

network of the CC (since the rejection feedback implies that it is

not an appropriate timing to push recommendation), we currently

do not perform this due to high difficulty of online updating RL

agent and leave it for future work.

4 EXPERIMENTS
EAR

3
is built based on the guiding ideology of interaction between

the CC and RC. To validate this ideology, we first evaluate the

whole system to examine the overall effect brought by the inter-

action. Then, we perform ablation study to investigate the effect

of interaction on each individual component. Specifically, we have

3
Datasets, source code and demos at our project homepage: https://ear-conv-

rec.github.io

Table 1: Dataset statistics.

Dataset #users #items #interactions #attributes
Yelp 27,675 70,311 1,368,606 590

LastFM 1,801 7,432 76,693 33

the following research questions (RQ) to guide experiments on two

datasets.

• RQ1. How is the overall performance of EAR comparing with

existing conversational recommendation methods?

• RQ2. How do the attribute-aware BPR and multi-task training

of the estimation stage contribute to the RC?

• RQ3. Is the state vector designed for the CC in the action stage

appropriate?

• RQ4. Is the online model update of the reflection stage useful in

obtaining better recommendation?

4.1 Settings
4.1.1 Datasets. We conduct experiments on two datasets: Yelp

4
for

business recommendation and LastFM
5
for music artist recommen-

dation. First, we follow the common setting of recommendation

evaluation [17, 30] that reduces the data sparsity by pruning the

users that have less than 10 reviews. We split the user–item interac-

tions in the ratio of 7:2:1 for training, validation and testing. Table 1

summarizes the statistics of the datasets.

For the item attributes, we preprocess the original attributes of

the datasets by merging synonyms and eliminating low frequency

attributes, resulting in 590 attributes in Yelp and 33 attributes in

LastFM. In real applications, asking about attributes in a large

attribute space (e.g., on Yelp dataset) causes overly lengthy con-

versation. We therefore consider both the binary question setting

(on LastFM) and enumerated question (on Yelp). To enable the enu-

merated question setting, we build a two-level taxonomy on the

attributes of the Yelp data. For example, the parent attribute of

{“wine", “beer", “whiskey”} is “alcohol”. We create 29 such parent

attributes on the top of the 590 attributes, such as “nightlife”, “event

planning services”, “dessert types” etc. In the enumerated question

setting, the system choose one parent attribute to ask. This is to

say, we change the size of the output space of the policy network

to be 29 + 1 = 30. At the same time, it also displays all its child

attributes and ask the user to choose from them (the user can reply

with multiple child attributes). Note that choosing what kinds of

questions to ask is an engineering design choice by participants,

here we evaluate our model on both settings.

4.1.2 User Simulator For Multi-round Scenario. Because the conver-
sational recommendation is a dynamic process, we follow [32, 40])

to create a user simulator to enable the CRS training and evaluation.

We simulate a conversation session for each observed interaction

between users and items. Specifically, given an observed user–item

interaction (u,v), we treat the v as the ground truth item to seek

for and its attributes Pv as the oracle set of attributes preferred

by the user in this session. At the beginning, we randomly choose

an attribute from the oracle set as the user’s initialization to the

4
https://www.yelp.com/dataset/

5
https://grouplens.org/datasets/hetrec-2011/



session. Then the session goes in the loop of the “model acts – sim-

ulator response" process as introduced in Section 2. We set the max

turn T of a session to 15 and standardize the recommendation list

lengthVt
as 10.

4.1.3 Training Details. Following CRM [32], the training process is

divided into offline and online stages. The offline training is to build

the RC (i.e., FM) and initialize the policy network (PN) by letting

them optimize performance with the offline dialogue history. Due

to the scarcity of the conversational recommendation dialogue his-

tory, we follow CRM [32] to simulate dialogue history by building

a rule-based CRS to interact with the simulator introduced in Sec-

tion 4.1.2. Specifically, the strategy for determining which attribute

to ask about is to choose the attribute with the maximum entropy.

Each turn, the system chooses the recommendation action with

probability 10/max(|V|, 10) whereV is the current candidate set.

The intuition is that the confidence of recommendation grows when

the candidate size is smaller. We train the RC to give the ground-

truth item and oracle attributes higher ranks given the attribute

confirmed by users in dialogue histories, while training the policy

to mimic the rule-based strategy on the history. Afterwards, we

conduct online training, optimizing the PN by letting EAR interact

with the user simulator through reinforcement learning.

We tuned all hyper-parameters on the validation set, and empir-

ically set them as followed: The embedding size of FM is set as 64.

We employ the multi-task training mechanism to optimize FM as

described in Section 3.1.4, using SGD with a regularization strength

of 0.001. The learning rate for the first task (item prediction) and

second task (attribute prediction) is set to 0.01 and 0.001, respec-

tively. The size of the two hidden layers in the PN is set as 64. When

the pre-trained model is initialized, we use the REINFORCE algo-

rithm to train the PN. The four rewards are set as: rsuc=1, rask=0.1,
rquit=-0.3, and rprev=-0.1, and the learning rate α is set as 0.001.

The discount factor γ is set to be 0.7.

4.1.4 Baselines. As our multi-round conversational recommenda-

tion scenario is new, there are few suitable baselines. We compare

our overall performance with the following three:

• Max Entropy. This method follows the rule we used to generate

the conversation history in Section 4.1.2. Each turn it asks the

attribute that has themaximum entropy among the candidate items.

It is claimed in [12] that maximum entropy is the best strategy

when language understanding is precise. It’s worth noting that,

in enumerated question setting, the entropy of an attribute is

calculated as the sum of its child attributes in the taxonomy (similar

approach for attribute preference calculation).

• Abs Greedy [10]. This method recommends items in every turn

without asking any question. Once the recommendation is rejected,

it updates the model by treating the rejected items as negative

examples. According to [10], this method achieves equivalent or

better performance than popular bandit algorithms like Upper

Confidence Bounds [1] and Thompson Sampling [4].

• CRM [32]. This is a state-of-the-art CRS. Similar to EAR, it inte-

grates a CC and RC by feeding the belief tracker results to FM for

item prediction, without considering much interactions between

them. It is originally designed for single-round recommendation.

Table 2: SR@15 and AT of comparedmethods. ∗ denotes that
improvement of EAR over other methods is statistically sig-
nificant for p < 0.01 (RQ1).

LastFM Yelp
SR@15 AT SR@15 AT

Abs Greedy 0.209 13.63 0.271 12.26

Max Entropy 0.290 13.61 0.919 5.77

CRM 0.325 13.43 0.923 5.33

EAR 0.429* 12.45* 0.971* 4.71*

To achieve a fair comparison, we adapt it to the multi-round setting

by following the same offline and online training of EAR.

It is worth noting that although there are other recent conversa-

tional recommendation methods [10, 23, 26, 40], they are ill-suited

for comparison due to their different task settings. For example,

[40] focuses on document representation which is unnecessary in

our case. It also lacks the conversation policy component to de-

cide when to make what action. [23] focuses more on language

understanding and generation. We summarize the settings of these

methods in Table 6 and discuss differences in Section 5.

4.1.5 Evaluation Metrics. We use the success rate (SR@t) [32] to

measure the ratio of successful conversations, i.e., recommend the

ground truth item by turn t . We also report the average turns (AT)

needed to end the session. Larger SR denotes better recommenda-

tion and smaller AT denotes more efficient conversation. When

studying RC model of offline training, we use the AUC score which

is a surrogate of the BPR objective [30]. We conduct one-sample

paired t-test to judge statistical significance.

4.2 Performance Comparison (RQ1)

Figure 2: Success Rate* of compared methods at different
conversation turns on Yelp and LastFM (RQ1).

Figure 2 shows the recommendation Success Rate* (SR*) @t at

different turns (t = 1 to 15), SR* denotes the comparison of each

method against the strongest baseline CRM, indicated as y = 0 in

the figure. Table 2 shows the scores of the final success rate and the

average turns. As can be clearly seen, our EAR model significantly

outperforms other methods. This validates our hypothesis that

considering extensive interactions between the CC and RC is an

effective strategy to build conversational a recommender system.

We also make the following observations:

Comparing with Abs Greedy, the three attribute-based meth-

ods (EAR, Max Entropy and CRM) have nearly zero success rate

at the beginning of a conversation (t < 2). This is because these

methods tend to ask questions at the very beginning. As the conver-

sation goes, Abs Greedy (which only recommends items) gradually



falls behind the attribute-based methods, demonstrating the effi-

cacy of asking attributes in the conversational recommendation

scenario. Note that Abs Greedy has much weaker performance on

Yelp compared to LastFM. The key reason is the setting of Yelp

is to ask enumerated question, and user’s response with multiple

finer-grained attributes sharply shrinks the candidate items.

CRM generally underperforms our EAR methods. One of the key

reasons is that its state vector cannot help CC to learn sophisticated

strategy to ask and recommend, especially in a much larger action

space, i.e., the number of attributes (nearly 30 in our experiments

versus 5 in theirs [32]). This result suggests that in a more complex

multi-round scenario where the CC needs to make a comprehensive

utilization of both the CC (e.g., considering dialogue histories) and

RC (considering statistics like attribute preference estimation) when

formulating a recommendation strategy.

Interestingly, Figure 2 indicates that in Yelp, EAR’s gain over

CRM enlarges in Turns 1–3, shrinks in Turns 4–6 and widens again

afterwards. However, in LastFM it has a steadily increasing gain.

This interesting phenomenon reveals that our EAR system can learn

different strategies in different settings. In the Yelp dataset, the CRS

asks enumerated questions where the user can choose finer-grained

attributes, resulting a sharp reduction in the candidate space. The

strategy that the EAR system learns is more aggressive: it attempts

to ask attributes that can sharply shrink the candidate space and

make decisive recommendation at the beginning turns when it

feels confident. If this aggressive strategy fails, it changes to a more

patient strategy to ask more questions without recommendations,

causing less success in the medial turns (e.g., Turns 5–7). However,

this strategy pays off in the long term, making recommendation

more successful in the latter half of conversations (e.g., after Turn 7).

At the same time, CRM is only able to follow the strategy of trying to

ask more attributes at the beginning and making recommendations

later. In the LastFM dataset, the setting is limited to binary attributes,

leading to less efficiency in reducing candidate space. Both EAR

and CRM adapt and ask more questions at the outset before making

recommendations. However, as EAR incorporates better CC and

RC to model better interaction, it significantly outperforms CRM.

4.3 Effectiveness of Estimation Designs (RQ2)
There are two key designs in the estimation stage that trains the

recommendation model FM offline: the attribute-aware BPR that

samples negatives with attribute matching considered, and the

multi-task training that jointly optimizes item prediction and at-

tribute prediction tasks. Table 3 shows offline AUC scores on the

two tasks of three methods: FM, FM with attribute-aware BPR

(FM+A), and FM+A with multi-task training (FM+A+MT).

As can be seen, the attribute-aware BPR significantly boosts the

performance of item ranking, being highly beneficial to rank the

ground truth item high. Interestingly, it harms the performance of

attribute prediction, e.g. on lastFM, FM+A has a much lower AUC

score (0.629) than FM (0.727). The reason might be that the attribute-

aware BPR loss guides the model to specifically fit to item ranking

in the candidate list. Without an even optimization enforced for

the attribute prediction task, it may suffer from poor performance.

This implies the necessity of explicitly optimizing the attribute

prediction task. As expected, the best performance is achieved when

Table 3: Offline AUC score of FM, FM with attribute-aware
BPR (FM+A) and with multi-task training for item recom-
mendation and attribute prediction (FM+A+MT). ∗ denotes
that improvement of FM+A+MT over FM and FM+A is statis-
tically significant for p < 0.01 (RQ2).

LastFM Yelp
Item Attribute Item Attribute

FM 0.521 0.727 0.834 0.654

FM+A 0.724 0.629 0.866 0.638

FM+A+MT 0.742* 0.760* 0.870* 0.896*

Table 4: Performance of removing one component of the
state vector (Equation 10) from our EAR. ∗ denotes that im-
provement of EAR over model with removed component is
statistically significant for p < 0.01 (RQ 3).

Yelp LastFM
SR@5 SR@10 SR@15 AT SR@5 SR@10 SR@15 AT

−sent 0.614 0.895 0.969 4.81 0.051 0.190 0.346 12.82

−spre 0.596 0.857 0.959 5.06 0.024 0.231 0.407 12.55

−shis 0.624 0.894 0.949 4.79 0.021 0.236 0.424 12.50

−slen 0.550 0.846 0.952 5.44 0.013 0.230 0.416 12.56

EAR 0.629* 0.907* 0.971* 4.71* 0.020 0.243* 0.429* 12.45*

we add multi-task training on. FM+A+MT significantly enhances

the performance of both tasks, validating the effectiveness and

rationality of our multi-task training design.

4.4 Ablation Studies on State Vector (RQ3)
What information helps in decision making? Let us examine the

effects of the the four forms of information included in EAR state

vector s (Equation 10), by ablating each information type from the

feature vector (Table 4).

Comparing the performance drop of each method, we uncover

differences that corroborate the intrinsic difference between the two

conversational settings. The most important factor is question type:

i.e., sent for LastFM (binary question) and slen for Yelp (enumerated

question). The entropy(sent ) information is crucial for LastFM, it is

in line with the claim in [12] that the maximum entropy is the best

strategy when language understanding is precise. If we ablate sent
on LastFM, although it reaches 0.051 in SR@5, future SR greatly

suffers, due to the system’s over-agressiveness to recommend items

before obtaining sufficient relevant attribute evidence. As for the

enumerated question setting (Yelp), the candidate list length (slen )
is most important, because the candidate item list shrinks more

sharply and slen is helpful when deciding when to recommend.

Apart from entropy and candidate list length, the remaining

two factors – i.e., attribute preference, conversation history – both

contribute positively. Their impact is sensitive to datasets and met-

rics. For example, the attribute preference (spre ) strongly affect

SR@5 and SR@10 on Yelp, but does not show significant impacts

for SR@15. This inconsistency provides an evidence for the intrinsic

difficulty of decision making in the conversational recommendation

scenario, which however has yet to be extensively studied.

4.5 Investigation on Reflection (RQ4)
To understand the impact of online update in the reflection stage,

we start from the ablation study. Table 5 shows the variant of EAR



Table 5: Performance after removing the online updatemod-
ule in the reflection stage. ∗ denotes that improvement of
EAR over removing update module is statistically signifi-
cant for p < 0.01 (RQ4).

Yelp LastFM
SR@5 SR@10 SR@15 AT SR@5 SR@10 SR@15 AT

-update 0.629 0.905 0.970 4.72 0.020 0.217 0.393 12.67

EAR 0.629 0.907 0.971 4.71 0.020 0.243* 0.429* 12.45*

Figure 3: Percentage of bad updates w.r.t. the offlinemodel’s
AUC on the users on Yelp (RQ4).

that removes online update. We find that the trends do not converge

on two datasets: the updating strategy helps a lot on LastFM but

has very minor effect on the Yelp dataset.

Questioning this interesting phenomenon, we examine the indi-

vidual items on Yelp. We find that the updating does not always help

ranking, especially when the offline model already ranks the ground

truth item high (but not at top 10). In this case, doing updates is

highly likely to pull down the ranking position of the ground truth

item. To gain statistical evidence for this observation, we term such

updates as bad updates, and show the percentage of bad updates

with respect to the offline model’s AUC on the users. As seen from

Figure 3, there is a clear positive correlation between bad updates

and AUC score. For example, ∼3.5% of the bad updates come from

users with an offline AUC of 0.9.

This explains why online update works well for LastFM, but not

for Yelp: our recommendation model has a better performance on

Yelp than LastFM (0.870 v.s. 0.742 in AUC as shown in Table 3). This

means the items on Yelp are more likely to get higher AUC, result-

ing in worse updates. More such observations and analyses will

help further the community understanding the efficacy of online

updates. Although bandit algorithms have devoted to exploring this

question [11, 14, 21, 24, 37], the issue has largely been unaddressed

in the context of conversational recommender system.

5 RELATEDWORK
The offline static recommendation task is formulated as estimat-

ing the affinity score between a user and an item [17]. This is usually

achieved by learning user preferences through the historical user-

item interactions such as clicking and purchasing. The representa-

tive methods are Matrix Factorization (MF) [20] and Factorization

Machine (FM) [29]. Neural FM [16] and DeepFM [15] have improved

FM’s representation ability with deep neural networks. [3, 13, 18]

utilize user’s implicit feedback, commonly optimizing BPR loss [30].

[7, 8] exploits user’s reviews and image information. However, such

static recommendation methods suffer from the intrinsic limitation

of not being able to capture user dynamic preferences.

This intrinsic limitation motivates online recommendation.
Its target is to adapt the recommendation results with the user’s

online actions [25]. Many model it as a multi-arm bandit prob-

lem [34, 36, 37] , strategically demonstrating items to users for

useful feedback. [39] makes the preliminary effort to extend the

bandit framework to query attributes. While achieving remarkable

progress, the bandit-based solutions are still insufficient: 1) Such

methods focus on exploration–exploitation trade-off in cold start

settings. However, in warm start scenario, capturing the user dy-

namic preference is critical as preference drift is common; 2) The

mathematical formation of multi-arm bandit problem limits such

method only recommend one item each time. This constraint limits

its application, as we usually need to recommend a list of items.

Conversational recommender systems provide a new possi-

bility for capturing dynamic feedback as they enable a system to

interact with users using natural language. However, they also pose

challenges to researchers, leading to various settings and problem

formulations [2, 9, 10, 23, 26–28, 31, 32, 38–40]. Table 6 summarizes

these works’ key aspects. Generally, prior work considers conversa-

tional recommendation only under simplified settings. For example,

[10, 38] only allow the CRS to recommend items without asking the

user about their preferred attributes. The Q&R work [9] proposes to

jointly optimize the two tasks of attribute and item prediction, but

restricts the whole conversation to two turns: one turn for asking,

one turn for recommending. CRM [32] extends the conversation to

multi-turns but still follows the single-round setting. MMN [40] fo-

cuses on document representation, aiming to learn better matching

function for attributes and products description under a conversa-

tion setting. Unfortunately, it does not build a dialogue policy to

decide when to ask or make recommendations. In contrast, situa-

tions for various real applications are complex: the CRS needs to

strategically ask attributes and make recommendations in multi-

ple rounds, achieving successful recommendations in the fewest

turns. In recent work, only [23] considers this multi-round scenario,

but it focuses on language understanding and generation, without

attending to explicitly model the conversational strategy.

6 CONCLUSION AND FUTUREWORK
In this work, we redefine the conversational recommendation task

where the RC and CC closely support each other so as to achieve

the goal of accurate recommendation in fewer turns. We decompose

the task into three key problems, namely, what to ask, when to

recommend, and how to adapt with user feedback. We then pro-

pose EAR – a new three-stage solution accounting for the three

problems in a unified framework. For each stage, we design our

method to carefully account for the interactions between RC and

CC. Through extensive experiments on two datasets, we justify

the effectiveness of EAR, providing additional insights into the

conversational strategy and online updates.

Our work represents the first step towards exploring how the CC

and RC can collaborate closely to provide quality recommendation

service in this multi-round scenario. Naturally, there are thus a

few loose ends for further investigation, especially with respect

to incorporating user feedback. In the future, we will consider



Table 6: Recent conversational recommender summary: 1) whether it asks about attributes, 2) question space, 3) any explicit
strategy w.r.t. recommendation timing, 4) whether it considers multi-round recommendations, and 5) its main focus.

1. Q? 2. Question Space 3. Explicit 4. Multi-round 5. Main Focus
Online bandits [10, 36,

37]

× N.A. × ✓ Exploration-exploitation trade-off in item selection

REDIAL (NIPS’18) [23] ✓ Free texts × ✓ End-to-end generation of natural language response

KMD (MM’18) [26] ✓ Free texts × ✓ End-to-end generation of text and image response

Q&R (KDD’18) [9] ✓ Attributes × × Question asking and single-round recommendation

MMN (CIKM’18) [40] ✓ Attributes × ✓ Attribute-product match in conversational search

CRM (SIGIR’18) [32] ✓ Attributes ✓ × Shallow combination between CC and RC

VDARIS (KDD’19) [38] × N.A. × ✓ User’s click and comment on recommended items

EAR (our method) ✓ Attributes ✓ ✓ Deep interaction between CC and RC

refreshing the policy network to make better actions. We will also

extend EAR to consider explore–exploit balance which is the key

problem for traditional interactive recommendation system. Lastly,

we will deploy our system to online applications that interact with

real users to gain more insights for further improvements.

Acknowledgement: This research is part of NExT++ research

and also supported by the National Natural Science Foundation of

China (61972372). NExT++ is supported by the National Research

Foundation, Prime Minister’s Office, Singapore under its IRC@SG

Funding Initiative. We would like to thank the anonymous review-

ers for their valuable reviews.

REFERENCES
[1] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.

Journal of Machine Learning Research 3, Nov (2002), 397–422.

[2] MS Ayundhita, ZKA Baizal, and Y Sibaroni. 2019. Ontology-based conversational

recommender system for recommending laptop. In Journal of Physics: Conference
Series, Vol. 1192. IOP Publishing, 012020.

[3] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A

generic coordinate descent framework for learning from implicit feedback. In

WWW. 1341–1350.

[4] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson

sampling. In NeurIPS. 2249–2257.
[5] Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yihong Eric Zhao, and Dawei Yin.

2018. Hierarchical Variational Memory Network for Dialogue Generation. In

WWW. 1653–1662.

[6] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation

with Item- and Component-Level Attention. In SIGIR. 335–344.
[7] Zhiyong Cheng, Xiaojun Chang, Lei Zhu, Rose C Kanjirathinkal, and Mohan

Kankanhalli. 2019. MMALFM: Explainable recommendation by leveraging re-

views and images. TOIS 37, 2 (2019), 16.
[8] Zhiyong Cheng, Ying Ding, Lei Zhu, andMohan Kankanhalli. 2018. Aspect-aware

latent factor model: Rating prediction with ratings and reviews. In Proceedings of
the 2018 World Wide Web Conference. International World Wide Web Conferences

Steering Committee, 639–648.

[9] Konstantina Christakopoulou, Alex Beutel, Rui Li, Sagar Jain, and Ed H Chi. 2018.

Q&R: A Two-Stage Approach toward Interactive Recommendation. In SIGKDD.
139–148.

[10] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards

conversational recommender systems. In SIGKDD. 815–824.
[11] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-

dits with linear payoff functions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 208–214.

[12] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal

Ahmed, and Li Deng. 2017. Towards End-to-End Reinforcement Learning of

Dialogue Agents for Information Access. In ACL. 484–495.
[13] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for

Recommendation Systems. In SIGIR. 515–524.
[14] Claudio Gentile, Shuai Li, and Giovanni Zappella. 2014. Online clustering of

bandits. In ICML. 757–765.
[15] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

Deepfm: a factorization-machine based neural network for ctr prediction. In

IJCAI.
[16] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse

predictive analytics. In SIGIR. 355–364.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[18] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast

matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[19] Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen Chen, Shangsong Liang,

Yihong Zhao, and Dawei Yin. 2018. Explicit State Tracking with Semi-

Supervisionfor Neural Dialogue Generation. In CIKM. ACM, 1403–1412.

[20] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. IEEE Computer 42, 8 (2009), 30–37.
[21] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit

problems. arXiv preprint arXiv:1402.6028 (2014).
[22] Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei

Yin. 2018. Sequicity: Simplifying Task-oriented Dialogue Systems with Single

Sequence-to-Sequence Architectures. In ACL. 1437–1447.
[23] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent

Charlin, and Chris Pal. 2018. Towards Deep Conversational Recommendations.

In NeurIPS. 9748–9758.
[24] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative

filtering bandits. In SIGIR. 539–548.
[25] Seth Siyuan Li and Elena Karahanna. 2015. Online recommendation systems

in a B2C E-commerce context: a review and future directions. Journal of the
Association for Information Systems 16, 2 (2015), 72.

[26] Lizi Liao, Yunshan Ma, Xiangnan He, Richang Hong, and Tat-Seng Chua. 2018.

Knowledge-aware Multimodal Dialogue Systems. In ACM MM. 801–809.

[27] Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, and Tat-

Seng Chua. 2019. Deep Conversational Recommender in Travel. arXiv preprint
arXiv:1907.00710 (2019).

[28] Bilih Priyogi. 2019. Preference Elicitation Strategy for Conversational Recom-

mender System. In WSDM. ACM, 824–825.

[29] Steffen Rendle. 2010. Factorization machines. In ICDM. IEEE, 995–1000.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.
[31] Nicola Sardella, Claudio Biancalana, Alessandro Micarelli, and Giuseppe San-

sonetti. 2019. An Approach to Conversational Recommendation of Restaurants.

In ICHCI. Springer, 123–130.
[32] Yueming Sun and Yi Zhang. 2018. Conversational Recommender System. In

SIGIR. 235–244.
[33] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.

Policy gradient methods for reinforcement learning with function approximation.

In NeurIPS. 1057–1063.
[34] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization Bandits

for Interactive Recommendation.. In AAAI. 2695–2702.
[35] Wenjie Wang, Minlie Huang, Xin-Shun Xu, Fumin Shen, and Liqiang Nie. 2018.

Chat More: Deepening and Widening the Chatting Topic via A Deep Model. In

SIGIR. 255–264.
[36] Qingyun Wu, Naveen Iyer, and Hongning Wang. 2018. Learning Contextual

Bandits in a Non-stationary Environment. In SIGIR. 495–504.
[37] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. 2016. Con-

textual bandits in a collaborative environment. In SIGIR. ACM, 529–538.

[38] Tong Yu, Yilin Shen, and Hongxia Jin. 2019. An Visual Dialog Augmented

Interactive Recommender System. In SIGKDD. ACM, 157–165.

[39] Xiaoying Zhang, Hong Xie, Hang Li, and John Lui. 2019. Toward Building

Conversational Recommender Systems: A Contextual Bandit Approach. arXiv
preprint arXiv:1906.01219 (2019).

[40] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. 2018.

Towards conversational search and recommendation: System ask, user respond.

In CIKM. 177–186.


	Abstract
	1 Introduction
	2 Multi-round Conversational Recommendation Scenario
	3 Proposed Methods
	3.1 Estimation
	3.2 Action
	3.3 Reflection

	4 Experiments
	4.1 Settings
	4.2 Performance Comparison (RQ1)
	4.3 Effectiveness of Estimation Designs (RQ2)
	4.4 Ablation Studies on State Vector (RQ3)
	4.5 Investigation on Reflection (RQ4)

	5 Related Work
	6 Conclusion and Future Work
	References

