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ABSTRACT
With the growing success of graph neural networks (GNNs), the
explainability of GNN is attracting considerable attention. Cur-
rent explainers mostly leverage feature attribution and selection
to explain a prediction. By tracing the importance of input fea-
tures, they select the salient subgraph as the explanation. However,
their explainability is at the granularity of input features only, and
cannot reveal the usefulness of hidden neurons. This inherent limi-
tation makes the explainers fail to scrutinize the model behavior
thoroughly, resulting in unfaithful explanations.

In this work, we explore the explainability of GNNs at the gran-
ularity of both input features and hidden neurons. To this end,
we propose an explainer-agnostic framework, Cooperative GNN
Explanation (CGE) to generate the explanatory subgraph and sub-
network simultaneously, which jointly explain how the GNNmodel
arrived at its prediction. Specifically, it first initializes the impor-
tance scores of input features and hidden neurons with masking
networks. Then it iteratively retrains the importance scores, refin-
ing the salient subgraph and subnetwork by discarding low-scored
features and neurons in each iteration. Through such cooperative
learning, CGE not only generates faithful and concise explanations,
but also exhibits how the salient information flows by activating
and deactivating neurons. We conduct extensive experiments on
both synthetic and real-world datasets, validating the superiority
of CGE over state-of-the-art approaches like GNNExplainer and
PGExplainer. Code is available at https://anonymous.4open.science/
r/CGE_demo-2AD0.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
Graph neural networks (GNNs) [7, 31] have achieved promising per-
formance in a variety of domains, where graph-structured data are
involved, such as biochemistry [18, 39], social networking [11, 16],
and e-commerce [14, 41]. The success comesmainly from the power-
ful expressiveness of GNNs, which incorporates the graph structure
into representation learning. However, it usually comes at the cost
of model opacity — that is, GNNs work as a black box, making the
decision-making process obscure and hard to interpret [23]. Hence,
researchers raised the question of post-hoc explainability: “What
knowledge does the GNN use to make a certain prediction?”.

Most prior studies [1, 15, 17, 32] realize post-hoc explainability
from answering “Which fractions of input graph are most influ-
ential to the GNN’s prediction?”, thus generating explanations at
the granularity of input features [3]. Scrutinizing the explainers
proposed in these studies, we summarize the common scheme of
feature attribution and selection. Specifically, given an input graph
and its prediction, an explainer distributes the prediction to the
input features, traces the importance of each feature, and selects
the salient subgraph (e.g., a subset of edges with top importance)
as the explanation of the input graph. For example, in the toxic-
ity classification of molecule graph, some functional groups (e.g.,
cyano group) contain rich saliency information related to the model
outcome and align well with human cognition. Such an explanatory
subgraph can be viewed as the prototypical knowledge memorized
by the GNN classifiers.

However, there are two intrinsic limitations in this scheme:
• The explainers focus solely on the explainability of input features,
while leaving the explainability of hidden neurons (or units)
[2, 38] unexplored. That is, they only highlight the contribution
of each feature to the prediction, without probing into the role
of each neuron in making the decision. Considering the GNN
classifier that predicts a molecule graph as toxic, even if the
explainer can latch on a cyano group as the explanatory subgraph
to toxicity, it is unable to answer “Which fractions of classifier
neurons are responsible for capturing the cyano group?”. Hence,
limiting the explanations to input features fails to scrutinize the
model behavior thoroughly.

• Most explainers suffer from the out-of-distribution (OOD) issue,
which is caused by the distribution shift between original input
graphs and explanatory subgraphs. As shown in recent works
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Figure 1: The framework ofCGE,which incorporates the LTH
with the criterion of MMI to achieve cooperative explanation.
Best viewed in color.

[19, 25, 30], OOD makes the post-hoc explanations less faithful
and reliable to reveal the decision-making process. Hence, these
works instead incorporate the feature attribution and selection
scheme into the GNNmodel, so as to make the model intrinsically
interpretable [25]. However, such intrinsic interpretability poses
hurdle to explainers from explaining the trained models.

In this work, we explore the explainability of GNN models at the
granularity of both input features and model neurons, aiming to
remedy the aforementioned limitations. To hit two birds with one
stone, we propose a new scheme, Cooperative GNN Explanation
(CGE), which incorporates the lottery ticket hypothesis (LTH) [8, 9]
with the criterion of maximum mutual information (MMI) [3, 32].
Intuitively, LTH strives to specify a sparse subnetwork from the
GNN via iterative pruning, which can be trained independently
to maintain the original performance; meanwhile, MMI refines a
subgraph from the original input, which maximizes the mutual
information between the subgraph and the label.

Targeting on the integration of LTH andMMI, we systemize CGE
as a combination of two components: subgraph detector and subnet-
work detector. The subgraph detector can be instantiated with one
of the current input-aware explainer (e.g., GNNExplainer [32], SA
[1], PGExplainer [17], Gem [15], GSAT [19]), while the subnetwork
detector can be implemented with the winning ticket [8, 9] of LTH.
They play a cooperative game and update iteratively, as shown in
Figure 1. Specifically, in each pruning iteration, the subgraph detec-
tor first identifies a subgraph based on MMI. Then, the subgraph
is fed into the target model to score the importance of neurons.
Hereafter, inspired by LTH, the subnetwork detector discards the
neurons with the lowest importance scores, and then selectively
rewinds them to the initial states to get the winning ticket (i.e.,
the subnetwork). In view of interdependent and iterative training
between two detectors, we exploit the Expectation-Maximization
(EM) algorithm [5, 10, 21] to guarantee convergence. This itera-
tive pruning leads to the cooperative explanations, which not only
exhibits how salient information flows in the GNN model by acti-
vating neurons, but also helps delineate the class-aware semantics
of neurons.

Our main contributions can be summarized as:

• We highlight the importance of cooperative explanation at the
granularity of both input features and model neurons.

• We propose a general framework, CGE, which integrates LTH
and MMI to generate the explanatory subgraph and subnetwork
simultaneously.

• Extensive experiments showcase the superiority of CGE over
current explanation methods with better explainability.

2 PRELIMINARY AND RELATEDWORK
In this section, we first introduce the backgrounds of GNNs, and
then present the conventional formulation and existing methods of
GNN explainability w.r.t. input features.

2.1 Graph Neural Networks (GNNs)
Let G be a undirected input graph, which involves the node set V
and the edge set E. For node 𝑣𝑖 ∈ V , we denote its pre-existing
features by a𝑑-dimensional attribute vector x𝑖 ∈ R𝑑 , and collect the
features of all nodes into X ∈ R |V |×𝑑 . For the structural features
describing the graph topology, we define an adjacency matrix A ∈
R |V |×|V | , where 𝐴𝑖 𝑗 = 1 if the edge connecting nodes 𝑣𝑖 and 𝑣 𝑗
exists (i.e., (𝑣𝑖 , 𝑣 𝑗 ) ∈ E), otherwise 𝐴𝑖 𝑗 = 0. In a nutshell, G can be
alternatively represented as G = (A,X).

Upon the input graph, graph neural networks (GNNs) [7, 13, 27]
are excellent at incorporating the graph structure into the represen-
tation learning by propagating and aggregating neural information
along with the structure. Benefiting from high-quality representa-
tions, GNN models have achieved remarkable success in various
tasks, including node classification [26, 40], graph classification
[4, 37], and link prediction [33, 34]. In this work, we focus on
the scenario of graph classification. Formally, we can systematize
the GNN model 𝑓 as a combination of two modules: the GNN
encoder 𝑓1 and the classifier 𝑓2, i.e., 𝑓 = 𝑓2 ◦ 𝑓1. Typically, the
GNN encoder 𝑓1 : G → R𝑑

′
generates the graph representation

for the input graph G via three core stages: (1) recursively distill
the neural information from neighboring nodes (or edges), (2) ag-
gregate the information to update the representation of each ego
node, and (3) garner all node representations as the 𝑑 ′-dimensional
representation of the holistic graph. Subsequently, the classifier
𝑓2 : R𝑑

′ → R𝐶 maps the graph representation into the probability
contribution over 𝐶 classes. This process can be summarized as
𝑦 = 𝑓2 (𝑓1 (G)) = 𝑓 (G|Θ), where Θ is the set of model parameters
(i.e., neurons or units).

2.2 Post-hoc Explainability of GNNs
The scheme of feature attribution and selection [1, 17, 28, 29, 32]
prevails towards post-hoc explanations of GNN models. It focuses
on explainability w.r.t. input features, aiming to answer “Which
fractions of input graph contribute most to the model prediction?”.
Towards this end, it usually employs an additional explainer method
to trace contributions of individual features, and then selects the
salient part (e.g., a subset of nodes or edges with top contributions)
as the explanatory subgraph G𝑠 . We formulate the input-aware
explainer as 𝑠inp, which yields the explanatory subgraph G𝑠 , i.e.,
G𝑠 = 𝑠inp (G|Θ).

To obtain the subgraph that best supports the predictive label
Y, a prevailing criterion of maximum mutual information (MMI)
[3, 32] identifies the explanatory subgraph that solely maximizes
the information amount about Y. More formally, MMI is presented
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as:

max
G𝑠

𝐼 (Y,G𝑠 ) = 𝐻 (Y) − 𝐻 (Y|G𝑠 ), s.t. G𝑠 = 𝑠inp (G), (1)

where 𝐼 (·, ·) measures the mutual information between two vari-
ables. Following previous studies [1, 17, 28], we focus on the struc-
tural features (i.e., the presence of an edge and its nodes), leaving
the node features in future work.

Feature Attribution. The mainstream explainers to attribute the
prediction to input features can be roughly categorized into three
groups: gradient-, attnetion-, and perturbation-based research lines.
Specifically, gradient-based line [1, 22] backpropagates gradients
of the target prediction w.r.t. the input features. Such gradient-like
signals are viewed as the approximations of feature importance. For
example, SA [1] directly calculates the squared values of gradients
to represent the importance scores of nodes. Perturbation-based
line [15, 32, 36] studies the output variations in response to differ-
ent input perturbations. This line is inspired by the intuition that
the downstream predictions are likely to significantly change if
sensitive features are perturbed. For example, GNNExplainer [32]
adds soft masks to the input graph’s adjacency matrix and node
features, and trains them by maximizing the mutual information be-
tween the masked outcome and target prediction. Attention-based
line [17, 19, 29] focuses on training an attention function for edge
attribution according to input features. For example, GSAT (in its
post-hoc working mode) [19] trains a parameterized predictor to
generate the stochastic attention for each edge in the input graph.

Feature Selection. In the process of feature selection, subgraph
candidates are guided by diverse constraints (e.g., sparsity con-
straints, connective constraints, information bottleneck constraints).
In more detail, sparsity constraints [28, 32] typically leverage the
𝑙1 norm to guarantee that the selected subgraph remains within a
prescribed size. As the determinant subgraphs are expected to be
connected, connective constraints [17, 36] are used to allocate more
selective probabilities to the edges, which connect with the part
selected already. More recently, information bottleneck constraints
[19] are proposed to squeeze the mutual information between the
selected subgraph and the input graph.

3 ANALYSIS ON POST-HOC EXPLAINABILITY
Aside the success of the post-hoc explainability, considerable atten-
tion has recently been paid to the inherent issues of this trajectory
[19, 30]. In this section, we first reveal the fundamental limitations
(i.e., OOD issue) of the post-hoc explainability; then we employ
EM framework [5, 21] to derive a novel shortcut to reveal this lim-
itation from the iterative optimization perspective. Furthermore,
we demonstrate the importance of cooperative explainability and
illustrate the advantages of the cooperative explainer.

3.1 Revealing the OOD Limitation
We first formalize the date distribution of target model as 𝑃 (G,Y).
To approximate MI between G and Y, the target model 𝑓 (·|Θ)
in function space: 𝑓 : G → R𝐶 is optimized via maximizing MI
between 𝑓 (G|Θ) and Y:

Θ := arg max
𝜃

𝐼 (𝑓 (G|𝜃 );Y) , (2)

Figure 2: Illustration of limitations of post-hoc explanation
methods. Best viewed in color.

where (G,Y) is independent and identically distributed (IID) from
𝑃 (G,Y). Now consider the latent distribution of subgraphs with
their labels formulated as 𝑃 (G𝑠 ,Y). Analogously, to approximate
MI between G𝑠 and Y, 𝑓 (·|Θ̂) is indispensable which conforms to:

Θ̂ := arg max
𝜃

𝐼 (𝑓 (G𝑠 |𝜃 );Y) , (3)

where (G𝑠 ,Y) is IID sampled from 𝑃 (G𝑠 ,Y).
As shown in recent works [19, 30], the distribution of full graphs

differs from that of subgraphs, which poses an out-of-distribution
(OOD) issue in the data space. Worse still, comparing Equations
(2) and (3), we argue that OOD between 𝑃 (G,Y) and 𝑃 (G𝑠 ,Y) in
the data space consequently leads to OOD between 𝑃 (𝑓 (·|Θ)) and
𝑃 (𝑓 (·|Θ̂)) in the function space, as shown in Figure 2. Therefore,
𝐼 (𝑓 (G𝑠 |Θ);Y) is not strictly proportional to 𝐼 (G𝑠 ;Y). As a result,
treating 𝑓 (·|Θ) as the proxy of 𝑓 (·|Θ̂) is an inherent limitation of
post-hoc explainability. That is, unaware of this limitation, most pre-
vious explainers [17, 19, 29, 32] simply feed subgraph 𝑓 (·|Θ) into the
original network Θ, rather than 𝑓 (·|Θ̂), and then use 𝐼 (𝑓 (G𝑠 |Θ);Y)
as the main part of the loss function to optimize the explainer.

3.2 Remedying the OOD limitation
According to Equation (3), the learning of explanatory subgraph G𝑠

and the approximation of 𝑓 (·|Θ̂) are mutually and interdependently
promoted. Hence, the conventional one-shot training stops short
for optimizing G𝑠 and Θ̂. To get around this dilemma, the existing
explainers take 𝑓 (·|Θ) as the proxy of 𝑓 (·|Θ̂), thereby suffering
from the OOD limitation and making the explanations less faithful.
In this work, we aim to confront the problem and employ the idea of
Expectation-Maximization (EM) [5, 10, 21] to alleviate it. Generally,
EM algorithm alternates between expectation step (E-step) and
maximization step (M-step):

• E-step: Estimate parameters from observed data and existing
models, then use this estimated parameter value to calculate the
conditional probability expectation.

• M-step: Find the corresponding parameter via maximizing the
likelihood function.

We then concrete these two steps to remedy the OOD limitation
of post-hoc explainability. Concisely, in E-step, we fix the parame-
ters 𝜃 and extract subgraph G𝑠 ; in M-step, we fix the subgraph G𝑠

and optimize the parameters 𝜃 . These two phases can be formulated
as following, where 𝑡 is the epoch of training:
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Figure 3: Comparison between existing explainers and cooperative explainer. The graph example from the BA-3motif dataset is
predicted as “Cycle” because of the insertion of cycle motif. The first line exhibits the forward propagation of input graph; The
second line demonstrates the latent process of existing explainer; The third line shows the process of cooperative explainer,
which follows the form of feature-neuron cooperative explanation. Best viewed in color.

• E-step: Use the estimated function 𝑓 (·|𝜃 (𝑡 ) ) and label Y to cal-
culate the conditional probability expectation of subgraph G𝑠

(𝑡 ) :

𝑃

(
G (𝑡 )
𝑠 | Y, 𝜃 (𝑡 )

)
→ 𝐸G (𝑡 )

𝑠 |Y,𝜃 (𝑡 ) [log 𝑃 (G (𝑡 )
𝑠 ,Y | 𝜃 )] . (4)

• M-step: Find the corresponding 𝑓 (·|𝜃 (𝑡+1) ) when the likelihood
function 𝑃 (G (𝑡 )

𝑠 ,Y|𝜃 (𝑡 ) ) is maximized:

𝜃 (𝑡+1) := arg max
𝜃

𝐸G (𝑡 )
𝑠 |Y,𝜃 (𝑡 ) [log 𝑃 (G (𝑡 )

𝑠 ,Y | 𝜃 )] . (5)

By alternating between these two phases, we can explanatory sub-
graphG𝑠 and target function 𝑓 (·|Θ̂) can be gained in a finite number
of iterations.

3.3 Advantages of Cooperative Explainability
Besides the distribution shifts in function space, limiting the ex-
planations to input features solely is another issue of the current
post-hoc explainers. Distinct from prior studies, cooperative ex-
plainability performs explanation on both subgraph and subnet-
work. Scrutinizing “Which fractions of input features and model
neurons are most influential to the target prediction?” allows us
to interpret the input-neuron relationships during the decision-
making process. Moreover, different groups of neurons might be
activated for different explanatory subgraphs, especially in distinct
predictive classes, thus working as experts [2, 38] to latch on the
class-wise knowledge. Finding such meaningful abstractions (i.e.,
the pair of subgraph and subnetwork) is one of the main goals of
explainability.

Cooperative explainability can also boost the accuracy of post-
hoc explainers. Since explanation methods focus on interpreting a
certain graph merely, generating explanation on the full network
inevitably extracts various class-wise features, which introduces
noise into explanations (See Figure 3). As cooperative explainability
is able to outscore the salient neurons that focus on the certain
class-wise pattern, it strongly squeezes the tightness of input edges
and model neurons and shields the negative influence from the
irrelevant or redundant neurons. In conclusion, cooperative ex-
plainability can not only endow the post-hoc explainers with better

performance but also delineates the class-aware semantics of neu-
rons. We will verify these advantages in Section 5.

4 COOPERATIVE GNN EXPLANATION
In this section, we first introduce the tractable objective for EM
framework in Section 4.1; then we detail the implementation of
Cooperative GNN Explanation (CGE), where the EM framework is
concreted via combining MMI and LTH (Section 4.2 and Section
4.3). Moreover, we show how the CGE exhibits information flow
through the model in Section 4.4.

4.1 A Tractable Objective for EM framework
Following Section 3, Our CGE aims to: (1) search explanatory sub-
graph G𝑠 and latent function 𝑓 (·|Θ̂) to remedy the OOD limitation
and (2) extract explanatory subnetwork to erasure the noisy features
in explanations. To kill two birds with one stone and accelerate con-
vergence, CGE constraints the initial states and searching domain
of 𝑓 (·|Θ̂) to the original network 𝑓 (·|Θ) and the set of subnetwork
of 𝑓 (·|Θ). CGE then employs two cooperative players to implement
E-step and M-step alternately: (1) the subgraph detector 𝑠1, which
functions similarly to the feature-aware explainer (cf. Equation (1))
and extracts the sparse but critical subgraph from the full input
graph; and (2) the subnetwork detector 𝑠2, which captures the cru-
cial neurons activated by the explanatory subgraph. These two
detectors have the shared goal of recovering the target prediction,
so as to exhibit the input-neuron-output relationships inherent in
the model, as shown in Figure 1.

Since the conditional probability expectation in Equation (2) and
Equation (3) is intractable, cooperative MMI is introduced to make
the computation traversing from probability estimation to mutual
information. More specially, we formulate cooperative MMI as:

max
G𝑠 ,Θ𝑠

𝐼 (Y; G𝑠 ,Θ𝑠 ) = 𝐻 (Y) − 𝐻 (Y|G𝑠 ,Θ𝑠 ),

s.t. G𝑠 = 𝑠1 (G), Θ𝑠 = 𝑠2 (Θ), (6)

where Θ𝑠 is the parameters of explanatory subnetwork that takes
the explanatory subgraph G𝑠 as the input and yields the prediction
𝑓 (G𝑠 |Θ𝑠 ); 𝐻 (Y|G,Θ𝑠 ) is the cross entropy between the recovered

4



Cooperative Explanations of Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

prediction 𝑓 (G𝑠 |Θ𝑠 ) and the labelY. Both subgraph and subnetwork
detectors are forced to select the edge set and neuron set with
predefined sizes or sparsity levels. When observing the explanatory
subgraph, the subnetwork detector decides which neurons will be
activated or deactivated to maintain the target prediction.

These detectors essentially indicate contributions to the input
edges and model neurons. Hence, it seeks to find two masks, M1
andM2, and frames Equation (6) as:

max
M1,M2

𝐼 (Y;M1 ⊙ A,M2 ⊙ Θ), (7)

whereM1 andM2 are the masks with the sparsity constraint, which
have identical shapes to the adjacency matrix A and the parameter
set Θ, respectively; ⊙ is the element-wise product.

Cooperative MMI criterion can identify the explanatory sub-
graph and subnetwork that collaborates together and maximizes
the predictive performance. In this case, we reframe E-step (i.e.,
subgraph detector) and M-step (i.e., subnetwork detector) as:

E-step: Given estimated function 𝑓 (·|𝜃 (𝑡 ) ) and label Y, extracting
explanatory subgraph G (𝑡 )

𝑠 via maximizing the mutual information
between output and Y:

G (𝑡 )
𝑠 := arg max

G𝑠

𝐼 (𝑓 (G𝑠 | 𝜃 (𝑡 ) );Y) . (8)

M-step: Taking subgraph G (𝑡 )
𝑠 as input to extract explanatory

subnetwork 𝑓 (·|𝜃 (𝑡+1) ) via maximizing the mutual information
between output and Y:

𝜃 (𝑡+1) := arg max
𝜃

𝐼 (𝑓 (G (𝑡 )
𝑠 | 𝜃 );Y). (9)

Note that according to the properties of Maximum Likelihood
Estimation (MLE) and Jensen’s inequality, EM algorithm is proved
to be deterministically convergent [5, 21]. Similarly, while merging
MLE and Jensen’s inequality into information theory, CGE can be
proved to be convergent in a finite number of iterations.

4.2 Implementation of Subgraph Detector
To extract the subgraph following Equation (8), CGE generalizes
current feature-aware explainers ℎ to the subgraph detector. Given
graph G𝑠 and network 𝑓 (·|Θ𝑠 ), explainer ℎ first attributes the pre-
diction 𝑓 (G𝑠 |Θ𝑠 ) to the features in G𝑠 to extract an explanatory
subgraph; then ℎ yields the mask M1 according to the explanatory
subgraph. Specially, for the edges selected by the explainers ℎ, we
set their masks in M1 to 1; for the edges unselected, we set their
masks in M1 to 0. We formulate this procedure as:

M(𝑡 )
1 = ℎ(M(𝑡−1)

1 ⊙ A, 𝑓 (· | M(𝑡 )
2 ⊙ Θ)), (10)

where 𝑡 is the cycle of iteration. Note that this procedure is explainer-
agnostic, namely we can subsume arbitrary explainers under sub-
graph detector in CGE.

4.3 Implementation of Subnetwork Detector
Although studies [17, 28, 32] have been extensively conducted on
identifying the salient subgraph, network dissection of GNNs re-
mains largely unexplored. To this end, we exploit the idea of LTH
[8]. Specifically, LTH strives to specify a highly-spare subnetwork
from the dense model via iterative pruning, such that independently

training the subnetwork can achieve the matching performance to
the dense model. Coincidentally, this idea is consistent with our
aim for explanatory subnetwork. Hence, we incorporate LTH with
MMI to implement subnetwork detector (cf. Equation 9), which
consists of three key steps during one iteration: (1) distinguishable
initialization of masks, (2) iterative selection of neurons, and (3)
selective rewinding. We next elaborate these steps one by one.

4.3.1 Distinguishable Initialization. To learn the masks M2, a
straightforward solution is to randomly initialize them and opti-
mize them via Equation (7). To understand the role of neurons, we
go beyond the random initialization of M2 and leverage the magni-
tudes of neurons to guide the optimization ofM2. Intuitively, larger
magnitudes indicate that the neurons are more crucial during mak-
ing decisions, and vice versa. This distinguished initialization at the
beginning of each iteration is able to accelerate the convergence of
optimization and improve the identification of salient subnetwork.
Formally, we summarize it as:

M(0)
2 = R + 𝜎 (Θ/Θ̄), M(𝑡 )

2 = M(𝑡−1)
2 (R + 𝜎 (Θ/Θ̄)), (11)

where R is the randomly initialized scores; 𝑡 is the cycle of iteration;
𝜎 is the sigmoid function that maps the scores to [0, 1];Θ represents
the magnitudes of neurons, with Θ̄ as its median magnitude.

4.3.2 Iterative Selection. Having established the modeling of
neuron importance, we now optimizeM2. Specifically, our goal is
to narrow the gap between the target prediction and the prediction
upon the cooperative explanations. As such, we reframe Equation
(7) as minimizing the following objective function:

LCGE = 𝑙 (Y, 𝑓 (M(𝑡 )
1 ⊙ A | M(𝑡 )

2 ⊙ Θ)) + 𝛾 | |M(𝑡 )
2 | |1, (12)

where 𝑙 measures the prediction gap; 𝛾 is the hyperparameter to
control the 𝑙1 sparsity ofM2. In each iteration, subnetwork detector
first receivesM1 from subgraph detector and distinguished initial-
ize M2. When the training stage of M2 is over, we can rank all
neurons based on M2, and then select the crucial neurons with top
importance scores. To be more specific, neurons with large scores
are garnered to separately compose subnetwork 𝑓 (·|Θ𝑠 ), while the
rest are not invited to take part in the following procedures.

4.3.3 Selective Rewinding. At the end of each iteration, we
rewind the importance scores of neurons and transformM(𝑡 )

2 to a
binarization matrix as following:

• For the selected neurons, we rewind their masks inM(𝑡 )
2 to 1;

• For the unselected neurons, we isolate them from the following
procedures and rewind their masks to 0.
CGE alternates between the phase of two detectors until the

selection ratio reaches the prescribed threshold. The inessential
correlations between edges and neurons are gradually eliminated
during these iterations. After training, the final selections are con-
sidered as the most significant parts which contribute most to the
target prediction. The achievement of CGE can be summarized as:
(1) explanatory subgraph G𝑠 extracted by CGE contains the set of
most label-relevant features and few noisy features; (2) explanatory
subnetwork 𝑓 (·|Θ𝑠 ) extracted by CGE can not only delineate the
class-aware semantics of neurons, but also be the optimal approxi-
mation of latent function 𝑓 (·|Θ̂). In conclusion, CGE can unleash
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the full potential of post-hoc explainers by remedying their inherent
limitations and achieve cooperative explanation simultaneously.

4.4 Exhibiting Information Flow via CGE
Besides the boosting accuracy of post-hoc explainers and achieving
cooperative explanations, CGE can also exhibit how the salient
subgraph is passed forward by activating and deactivating neurons.
Specially, through inspection on the cooperative explanations (i.e.,
the pair of explanatory subgraph and subnetwork), we observe that
such abstractions somehow delineate the class-aware semantics:

• Difference among different classes. For input graphs belonging to
different classes, a tiny ratio (about 30%) of neurons are activated
simultaneously in their explanatory subnetworks. That is, the
model parameters can be split into multiple experts [2, 38], each
of which holds a class-wise view.

• Consistency within identical classes. A couple of input graphs
from the same class activate a high ratio (more than 80%) of
neurons simultaneously, indicating that the class-aware proto-
typical patterns are carried by similar explanatory subgraphs
and memorized by shared subnetworks.

We present such neurons as the class-aware information flow. For-
mally, for class 𝑐 , we first build a subsetD𝑐 to collect graphs labeled
with 𝑐 , and hire CGE to generate the cooperative subgraph and sub-
network per graph. Then we set an enumerator T, which has the
identical shapes to Θ, to traverse the subnetworks collectively and
count the activated frequency of each neuron. Frequently activated
neurons explicitly show how the class-specific information flows
in the model and arrives at the target prediction.

5 EXPERIMENT
We present empirical results to demonstrate the effectiveness of our
proposed CGE. The experiments aim to investigate the following
research questions:

• RQ1: Can CGE boost the performance of existing methods when
explainability is focused on input features solely?

• RQ2:How does the CGE performwhile input features andmodel
neurons are explained simultaneously?

• RQ3: Can CGE exhibit the information flow and delineate the
class-aware semantics of neurons?

5.1 Experimental Settings
Datasets and Target GNNs. To evaluate the effectiveness of CGE,
we adopt three benchmark datasets: BA3-motif [32], Mutagenicity
[12], and MNIST [6], which are publicly accessible and vary in
terms of domain, size, and sparsity. Three popular GNN models
are trained to perform graph classification. Table 1 summarizes the
statistics of datasets and the configurations of GNN models.

• Motif graph classification. We construct a synthetic dataset:
BA-3motifs which contains 3,000 graphs. Following previous
works [17, 32], we adopt the Barabasi-Albert (BA) graphs as the
base and attach each graph with one of three motif types: house,
cycle, and grid.

Table 1: Statistics of the datasets and GNN models.
BA3-motif MNIST Mutagenicity

Graphs# 3,000 70,000 4,337
Classes# 3 10 2

Avg.Nodes# 31.44 66.87 30.32
Avg.Edges# 31.24 725.39 30.77

Target GNNs ASAP GCN GIN
Layers# 2 6 2

Testing Accuracy 0.942 0.886 0.823

• Molecule graph classification.We consider a real-world dataset,
Mutagenicity [12, 24], where 4,337 molecule graphs are catego-
rized into two classes based on their mutagenic effect on the
Gram-negative bacterium.

• Handwriting graph classification. We use the MNIST super-
pixel dataset [20], which contains 70,000 graphs labeled as one
of ten digit classes. In this dataset, the original MNIST images
[6] are converted to graphs using super-pixels, which represent
small regions of homogeneous intensity in images.

Evaluation Metrics. It is challenging to quantitatively evaluate
the quality of explanations since human evaluations are highly
dependent on their subjective understanding. Prior studies have
proposed some metrics to quantitatively assess the explanations[7,
35], we select the following metrics:
• Predictive Accuracy (ACC@𝑝) [3]. This metric measures the
performance of the explanatory subgraphs by feeding it solely
into the target model and auditing howwell it recovers the target
prediction. Where, 𝑝 is the selection ratio; 𝑝 · ∥A∥0 is the size
of explanatory subgraph and 𝑝 · ∥Θ∥0 is the size of explanatory
subnetwork. We report the ACC-AUC as the area under the ACC
curve over different selection ratios.

• Precision@𝑁 [32]. This metric measures the consistency be-
tween the explanatory subgraph and ground-truths subgraph.
Specifically, the edges within the ground-truth subgraph are pos-
itive in an explanatory subgraph, while the remains are negative.
In this case, precision can be adopted as the evaluation protocol.
More formally:

Precision@𝑁 = EG

[
|G𝑠

⋂G∗ |
|G∗ |

]
(13)

where G𝑠 is composed of the top-𝑁 edges and G∗ is the ground-
truth subgraph.

• Fidelity@𝑝 [35]. The Fidelitymetric studies the prediction change
by removing important input features identified by explanation
methods. Formally, fidelity can be defined as:

Fidelity @𝑝 = EG
[
𝑓 (G)𝑦 − 𝑓 (G − G𝑠 )𝑦

]
(14)

where 𝑦 is the original prediction of G; G𝑠 is composed of the
top 𝑝 · ∥A∥0 edges; G − G𝑠 is the subgraph created by removing
G𝑠 from G.

Alternative Baseline Approaches. To evaluate the quality of
explanatory subgraphs, we compare our method with the state-
of-the-art methods, covering the gradient-based methods (SA [1]),
perturbation-based methods (GNNExplainer [32], Gem [15], Sub-
graphX [36]) and attention-basedmethods (PGExplainer [17], GSAT
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Table 2: Quantitative analyses for explanation methods w.r.t. accuracy, fidelity and precious metrics. The best performing
methods are bold with blue line, and the strongest baselines are underlined.

Mutagenicity BA3-motif MNIST
ACC-AUC Fidelity@0.5 ACC-AUC Fidelity@0.5 Precision@5 ACC-AUC Fidelity@0.5 Precision@10

SA 0.742 0.313 0.489 0.202 0.301 0.524 0.282 0.578
+CGE 0.757±0.026 0.342±0.015 0.524±0.021 0.241±0.010 0.321±0.017 0.563±0.029 0.288±0.007 0.591±0.012

GNNExplainer 0.845±0.082 0.504±0.046 0.579±0.045 0.414±0.061 0.550±0.035 0.527±0.057 0.277±0.018 0.615±0.066
+CGE 0.875±0.057 0.530±0.038 0.592±0.028 0.429±0.031 0.589±0.020 0.542±0.044 0.296±0.018 0.623±0.056

PGExplainer 0.862±0.056 0.557±0.029 0.568±0.040 0.400±0.031 0.675±0.052 0.494±0.037 0.297±0.014 0.513±0.022
+CGE 0.881±0.046 0.576±0.029 0.577±0.030 0.413±0.023 0.684±0.036 0.524±0.020 0.312±0.013 0.547±0.010

Gem 0.890±0.027 0.569±0.019 0.591±0.014 0.512±0.023 0.724±0.030 0.616±0.026 0.331±0.016 0.564±0.025
+CGE 0.892±0.037 0.581±0.011 0.606±0.032 0.525±0.025 0.727±0.033 0.631±0.049 0.339±0.013 0.611±0.062

SubgraphX 0.902±0.087 0.599±0.064 0.603±0.050 0.469±0.037 0.702±0.049 0.602±0.071 0.312±0.023 0.526±0.031
+CGE 0.913±0.077 0.612±0.019 0.621±0.022 0.490±0.062 0.725±0.030 0.623±0.041 0.334±0.015 0.566±0.027

GSAT 0.877±0.043 0.581±0.025 0.614±0.037 0.478±0.019 0.713±0.034 0.547±0.024 0.342±0.018 0.550±0.066
+CGE 0.890±0.046 0.605±0.027 0.624±0.034 0.482±0.019 0.731±0.031 0.569±0.017 0.353±0.030 0.602±0.052

Relative Impro. 4.7% 6.8% 4.6% 6.1% 5.2% 5.5% 7.2% 8.0%

Table 3: Aveage ACC-AUC for cooperative explanations. The
best performing methods are bold with blue line, and the
strongest baselines are underlined.

BA3-motif MNIST Mutagenicity
Random+LTH 0.364±0.094 0.146±0.083 0.589±0.76
SA+LTH 0.428±0.013 0.263±0.019 0.621±0.043
SA+CGE 0.468±0.018 0.292±0.031 0.632±0.036
GNNExplainer+LTH 0.459±0.058 0.306±0.035 0.667±0.082
GNNExplainer+CGE 0.491±0.029 0.328±0.054 0.752±0.050
PGExplainer+LTH 0.504±0.030 0.284±0.040 0.645±0.071
PGExplainer+CGE 0.562±0.033 0.320±0.029 0.704±0.039
Gem+LTH 0.491±0.053 0.315±0.077 0.701±0.044
Gem+CGE 0.545±0.019 0.352±0.065 0.738±0.049
SubgraphX+LTH 0.533±0.026 0.323±0.048 0.679±0.057
SubgraphX+CGE 0.572±0.023 0.350±0.073 0.714±0.060
GSAT+LTH 0.541±0.045 0.295±0.072 0.704±0.095
GSAT+CGE 0.584±0.035 0.344±0.088 0.743±0.056
Relative Inpro. 7.3% 11.4% 9.7%

in its post-hoc working mode[19]). Note that since IB regulariza-
tion used in GSAT can not beforehand assign the certain sparsity
tailored for numbers of iterations, for fair comparison, we employ
𝑙1 sparsity to replace it in experiments.

5.2 Evaluation of Explanatory Subgraph (RQ1)
Qualitative evaluation. Table 2 shows the accuracy, fidelity and
precision of different post-hoc explanation methods. For simplicity,
the baseline explainers enhanced by CGE are named as “explainers
+ CGE”. According to Table 2 we find that:
• The current explainers enhanced by CGE outperform themselves
in all cases. To be more specific, CGE achieves significant im-
provements over the strongest baselinesw.r.t. fidelity by 6.8% and
7.2% in MNIST and BA3-motif, respectively. It demonstrates the
effectiveness and universality of CGE, and verifies that CGE can
be leveraged to boost the accuracy of post-hoc explainers. We
attribute these improvements to the implementation of LTH and

EM framework: (1) LTH allows CGE to filter the irrelevant and
redundant information in model neurons by iteratively selecting
and rewinding, which baseline explainers can not distinguish.
(2) EM framework alternately propels meticulous selection to
remedy the OOD limitation, which forces CGE to focus on the la-
tent important features and leave obviously inessential features
out in the early training stage.

• Compared with the performance in BA3-motif and Mutagenic-
ity, CGE consistently performs better in MNIST across diverse
metrics and baseline explainers. These improvements verify the
theoretical analysis in Section 3.3. Specially, since cooperative
explainability is able to outscore the salient neurons that focus
on the certain class-wise pattern, CGE can shield the negative
influence from the irrelevant or redundant neurons. As the conse-
quence, CGE can achieve more significant enhancements while
the number of classes in dataset D is large.

• CGE provides much stabler explanation than the baselines as
for the much smaller variance. More specially, STD of CGE out-
performs baseline by a larger margin (24.5% ↓) on average. This
phenomenon verifies that CGE can remedy the limitations of
over-reliance on the quality of the target model.

Qualitative evaluation.We randomly choose the graph instances
from class house, cycle, and grid in the synthetic BA3-motif dataset
and present visual inspections of their explanatory subgraphs given
by different explainers in Figure 4. For each explainer, we highlight
the edges which have the top-𝐾 importance scores by red lines,
where 𝐾=6. The ground-truth nodes are highlighted in green, while
the turbulence nodes w.r.t. nodes in BA-motif are distinguished in
blue. According to Figure 4 we can observe that:

• The important edges selected by the CGE framework largely
conform to the ground-truth of their graphs, which might result
from the class-wise patterns captured by the explanatory sub-
network. On the other hand, some edges not belonging to the
ground-truth are selected by the baseline explainers.

• Compared with subgraphs selected by baseline explainers, sub-
graphs generated by CGE have better connectivity. We attribute
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Figure 4: Selected explanations in BA3-motif, where the top-6 of directed edges are highlighted by red lines. The ground-truth
nodes are highlighted in green while the turbulence nodes are distinguished in blue. Best viewed in color.

these differences to the alternately and iterative selecting, which
baseline explainers can not carry out.

• For blue nodes in BA motif, some nodes connecting to the green
nodes might cause interference to the procedure of generating
explanations. Our CGE can avoid these traps, while the sub-
graphs generated by baseline methods contain these turbulence
nodes. This demonstrates the robustness and the reliability of
the CGE.

5.3 Evaluation of Cooperative Explanation
(RQ2)

We now focus on the explanations provided by CGE, and quali-
tative evaluation whether the CGE performs while input feature
and model neurons are explained simultaneously. For fair compar-
ison, we employ baseline explainers and the scheme of LTH to
achieve one-shot explanations at the granularity of input features
and neurons. The average ACC-AUC in different network sparsity
are presented in Table 3. We find that:

• The subgraphs and subnetworks generated by the framework of
CGE get the highest accuracy on the original graph classifica-
tion task. Specifically, CGE achieves significant improvements
over the strongest baselines w.r.t. ACC-AUC by 9.7% and 11.4%
in Mutagenicity and MNIST, respectively. These improvements
verify the reliability and effectiveness of the CGE. Since all base-
line explainers employ the form of cooperative explanation and
the LTH, we contribute these improvements mainly to the ad-
vantages of alternately extraction. Specifically, by leveraging
alternative extraction, CGE iteratively filters the irrelevant and

redundant mutual information between model neurons and tar-
get predictions, and generates faithful and concise cooperative
explanations.

• Similar to the task in Section 5.2 w.r.t explainability of input fea-
tures solely, CGE achieves more significant improvements while
the number of classes in dataset D is large. This phenomenon
further verifies the theoretical analysis in Section 3.3.

5.4 Exhibition of Information Flow (RQ3)
We now focus on the class-specific information flow generated by
CGE according to Section 4.4. Taking BA3-motif as an example,
each layer in the relevant model w.r.t ASAP is divided into four
parts according to explanatory subnetworks. The visual inspection
of information flow is exhibited in Figure 5, where the numbers in
network represent the ratios of neurons which class-wise inputs
flow through to all neurons. To verify the fidelity and the robustness
of information flow, we feed the class-specific subset D𝑐 into the
relevant neurons (i.e., class-specific information flow) and show the
predictive accuracy in Figure 5.

We can find that for each class in BA3-motif, the accuracy of
relevant information flow is not less than 84%. While the informa-
tion flow is exhibited, CGE explicitly shows how the class-specific
information put forward in the model by activating different neu-
rons. Meanwhile, these abstractions also somehow delineate the
class-aware semantics of neurons.

6 CONCLUSION
In this paper, we explored the cooperative explainability of graph
neural networks, and proposed a general framework, Cooperative
GNN Explanation (CGE), which incorporates LTH and MMI to gen-
erate the explanatory subgraph and subnetwork simultaneously.
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Figure 5: Class-specific Information Flow in ASAP model.
Best viewed in color.

Focusing on cooperative explanations allows CGE to endow the
conventional feature-based methods with better explainability, and
exhibits how the salient information flows by activating and deacti-
vating neurons. Extensive experiments in three datasets show that
our method indeed improves the quality of explanatory subgraphs
and subnetworks. This work represents an initial attempt to exploit
cooperative explainability in GNN’s explanations. In the future, we
would like to consider more fine-grained relevancy between input
features and model neurons, to analyze the key features which
make predictions different.
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