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ABSTRACT
Graph anomaly detection (GAD) is a challenging binary classifi-
cation problem due to its different structural distribution between
anomalies and normal nodes — abnormal nodes are a minority,
therefore holding high heterophily and low homophily compared
to normal nodes. Furthermore, due to various time factors and the
annotation preferences of human experts, the heterophily and ho-
mophily can change across training and testing data, which is called
structural distribution shift (SDS) in this paper. The mainstream
methods are built on graph neural networks (GNNs), benefiting the
classification of normals from aggregating homophilous neighbors,
yet ignoring the SDS issue for anomalies and suffering from poor
generalization.

This work solves the problem from a feature view. We observe
that the degree of SDS varies between anomalies and normal nodes.
Hence to address the issue, the key lies in resisting high heterophily
for anomalies meanwhile benefiting the learning of normals from
homophily. Since different labels correspond to the difference of
critical anomaly features which make great contributions to the
GAD, we tease out the anomaly features on which we constrain
to mitigate the effect of heterophilous neighbors and make them
invariant. However, the prior distribution of anomaly features is
dynamic and hard to estimate, we thus devise a prototype vector to
infer and update this distribution during training. For normal nodes,
we constrain the remaining features to preserve the connectivity of
nodes and reinforce the influence of the homophilous neighborhood.
We term our proposed framework as Graph Decomposition Network
(GDN). Extensive experiments are conducted on two benchmark
datasets, and the proposed framework achieves a remarkable per-
formance boost in GAD, especially in an SDS environment where
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anomalies have largely different structural distribution across train-
ing and testing environments. Codes are open-sourced in https:
//github.com/blacksingular/wsdm_GDN.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
Anomalies (aka. fraudsters) delineate the abnormal objects that
deviate significantly from the normal (aka. benigns) [28]. Detecting
anomalies has attracted considerable attention in many real-world
domains, such as identifying spams in reviews [12], misinformation
in social networks [8], and frauds in financial transactions [25].
In general, abnormal and normal objects are interdependent with
rich relationships, which can be naturally organized as graphs [12].
Wherein, nodes represent these objects, and edges interpret their
relationships. On such structural data, leading methods [12, 25, 49]
frame the graph abnormal detection (GAD) problem as the semi-
supervised node classification task, where only a fraction of nodes
are labeled as the training data, and the remaining nodes form the
testing data. To distill the discriminative information for the hidden
anomalies, these methods mostly apply graph neural networks
(GNNs) [14, 21, 41] that propagate the label-aware signals along
with the graph structure.

Here we take a closer look at GAD, especially the structural
distribution w.r.t. heterophily and homophily. Specifically, het-
erophily [34] indicates the phenomenon that edges connect the
nodes from different classes (i.e., the anomaly and normal classes),
which contrasts with homophily that counts for edges between
the same-class nodes. Clearly, for a node, the distribution w.r.t. het-
erophily and homophily shows the label information within its
local neighborhood, as shown in Figure 1(a). The distribution dif-
ference between anomaly and normal nodes is amplified by GAD’s
class imbalance nature — that is, anomalies are in the minority
subgroups and submerged in the normal nodes, thus easily holding
higher heterophily than normals, as the comparison between Fig-
ures 1(a) and (d) shows. Hence, it is of importance to differentiate
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Figure 1: Illustration of SDS in GAD. Cells in the dotted line
mean that they are of no interest in the current environment
(training or test). The average homophily and heterophily
for anomalies and normals are presented.

the structural distributions of anomaly and normal nodes, so as to
refine the class-wise signals better.

Furthermore, we find that conducting GAD in a semi-supervised
manner naturally faces the challenge of structural distribution shift
(SDS) — that is, the structural distribution w.r.t. heterophily and
homophily can change across the training and testing datasets. For
example, as compared between Figures 1(b) and (c), heterophily of
anomalies is 0.67 and 0.29 in the training and testing environments,
respectively; in contrast, heterophily of normal nodes only is much
more stable across two different environments, as Figures 1(e) and
(f) show. Here we present several insights into SDS:
• SDS happens in the open environment, which usually includes
multiple, different distributions that are collected with various
time factors [46], annotation preferences [15]. Hence, robust-
ness to SDS is critical for deploying GAD models in real-world
scenarios.

• Distinguishing anomalies from the normal suffer from the shift
w.r.t. heterophily. Specifically, as most GNN-based GAD models
[12, 25, 49] blindly aggregate the neighborhood information, the
representations of testing anomalies absorb more information
from normal neighbors than that of training anomalies, thereby
inundating the crucial cues. Therefore, these GAD models will
generalize poorly in the testing anomalies.

• In contrast to anomalies, normals hold more stable distributions
across the training and testing sets. Thus, classifying normals can
benefit from the class-aware patterns of homophilous neighbors.
However, alleviating SDS in GAD remains largely unexplored,

but is the focus of our work. Specifically, most early studies [14,
21, 41] blindly employ GNNs to perform information propagation
among nodes, without inspecting the influence of different neigh-
bors. Some follow-up works [12, 25, 49] control the information
being propagated by discarding some edges based on the neighbor
similarity. Although these studies help mitigate the heterophily
gap between anomalies and normals, they leave the SDS issue un-
touched. Thus, they struggle to fit the testing anomalies with the
learned patterns from the training nodes.

In this paper, we argue that the key to alleviating SDS is differen-
tiating structural patterns for anomalies and normals. We assume

that (partial) anomaly features are quite useful for GAD[7]. These
features have high variance across anomalies and normal nodes,
therefore in which dimensions nodes are more likely to absorb
noisy signals from heterophilous neighbors. This observation leads
us to the feature disentanglement. Inspired by variable decomposi-
tion in stable learning [13, 38], we devise a new framework, Graph
Decomposition Network (GDN). Specifically, for anomalies, it tries
to identify the anomaly pattern which is made invariant to SDS, so
as to reduce the negative influence of heterophily shift; meanwhile,
for normals, it attempts to extract the pattern retaining to benefit of
homophily. To achieve these two strategies, it resorts to constraints
on node features and divides them into two parts: class and sur-
rounding features. Class features are constrained to approach the
prior distribution of node features, so as to prevent anomalies from
absorbing noisy signals from the neighborhood and influences from
heterophily shift; meanwhile, surrounding features preserve the
connectivity of two neighboring nodes, to enhance the information
of homophilous neighbors. This allows us to identify anomaly fea-
tures invariant to heterophily shift and capture the local homophily
of normals, thus boosting the overall GAD performance.

2 PRELIMINARIES
In this section, we illustrate the task of GAD and the imbalanced
heterophily property.

Graph Anomaly Detection. Conventional anomaly detection
techniques always consider isolated data instances while ignoring
the relationship between instances which carries complementary
information [1]. Taking spam review for e-commerce as an exam-
ple, multiple relations can be established between reviews, e.g.,
reviews posted by the same user, so as those posted under the
same item. In this manner, we reorganize the anomalies and nor-
mals as an attributed multi-relation graph, which can be defined as
G = {V, {E𝑟 },X}. V denotes a set of anomaly and normal nodes;
E𝑟 stands for edges w.r.t. relation 𝑟 ∈ {1, 2, ..., 𝑅}, which can be
rules, interactions, or shared attributes between nodes [12]; X is
the attribute matrix, each row of which is a 𝑑-dimensional vector
representing the features of the corresponding node.

GAD has been addressed as a semi-supervised node classification
task. Most of the time, anomalies are regarded as positive with label
1, while normal nodes are seen as negative with label 0. The whole
graph contains two types of nodes, V𝑡𝑟𝑎𝑖𝑛 and V𝑡𝑒𝑠𝑡 . V𝑡𝑟𝑎𝑖𝑛 are
labeled with Y𝑡𝑟𝑎𝑖𝑛 , while the labels Y𝑡𝑒𝑠𝑡 are inaccessible during
training. Formally, leading solutions [12, 25, 49] employ GNN as the
predictive model 𝑓 to achieve small error on predicting the ground
truth Y𝑡𝑒𝑠𝑡 for unobserved nodesV𝑡𝑒𝑠𝑡

𝑓 (G,Y𝑡𝑟𝑎𝑖𝑛) → Ŷ𝑡𝑒𝑠𝑡 . (1)

Heterophily and homophily. Given a set of nodes along with
their labels, the heterophily of a node can be defined as the ratio of
the edges connecting the nodes in different classes (i.e., the anomaly
and normal classes). For each node, the sum of its heterophily and
homophily degree equals 1:

𝑋ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣) =
1

|N (𝑣) | |{𝑢 : 𝑢 ∈ N (𝑣), 𝑦𝑢 ≠ 𝑦𝑣}|,

𝑋ℎ𝑜𝑚𝑜 (𝑣) =
1

|N (𝑣) | |{𝑢 : 𝑢 ∈ N (𝑣), 𝑦𝑢 = 𝑦𝑣}|,
(2)
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Table 1: Heterophily and homophily in Amazon

Training Test
Homo Hetero Homo Hetero

Anomalies 0.113 0.887 0.043 0.957
Normal 0.979 0.021 0.976 0.024

whereN(·) stands for the neighborhood of a central node. In GAD,
enhanced by the imbalance nature, anomalies have high heterophily,
while normal nodes have relatively low heterophily. An example
on real dataset is shown in Table 1, from which we observe this
phenomenon, as well as the shift w.r.t. heterophily and homophily
across training and test environments.

3 METHODOLOGY
In this section, we present the details of the proposed framework
GDN. We will first introduce the Structural Distribution Shift (SDS)
problem in GAD. Then we elaborate on gradient-based invariant
feature extraction as well as two constraints that guide the pro-
cess, respectively. Finally, we present the overview of our proposed
model GDN.

3.1 Structural Distribution Shift in GAD
We next formulate the structural distribution shift problem and
figure out two major concerns: how will SDS affect the learning of
GNNs and what causes the problem?

3.1.1 Definition. SDS means the label distribution of the neighbor-
hood is different between 𝑝𝑡𝑟𝑎𝑖𝑛 and 𝑝𝑡𝑒𝑠𝑡 , which leads to different
homophily and heterophily degrees for each node 𝑣 :

𝑝𝑡𝑟𝑎𝑖𝑛 ( [𝑋ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣1), 𝑋ℎ𝑜𝑚𝑜 (𝑣1)]) ≠ 𝑝𝑡𝑒𝑠𝑡 ( [𝑋ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣2), 𝑋ℎ𝑜𝑚𝑜 (𝑣2)])
(3)

It is usually caused by human annotation: anomalies with more
intra-class edges are easier to be marked out. For easier expression,
we denote the joint probability distribution [𝑋ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣), 𝑋ℎ𝑜𝑚𝑜 (𝑣)]
as Ψ(𝑣), then the probability of an instance 𝑣 being labeled not only
depends the node feature 𝑥𝑣 but on Ψ(𝑣):

𝑝𝑡𝑟𝑎𝑖𝑛 (Ψ(𝑣), 𝑥𝑣, 𝑜) ≠ 𝑝 (𝑥𝑣, 𝑜) (4)

where 𝑝 is the real distribution of samples, 𝑜 denotes observed
training nodes. The extent of SDS can be defined as:

D[𝑝𝑡𝑟𝑎𝑖𝑛 (Ψ(𝑣), 𝑥𝑣, 𝑜), 𝑝 (𝑥𝑣, 𝑜)], (5)

where D(𝑝 (𝑥), 𝑔(𝑥)) =
∫
X 𝑝 (𝑥)𝜓 (

𝑔 (𝑥)
𝑝 (𝑥) )𝑑𝑥 is a distance function

in Csiszár family, which is set as 𝐾𝐿 divergence in this work.

3.1.2 Effects of Structural Distribution Shift on GAD. GNN-based
GAD methods capture the neighborhood pattern and transfer it to
unseen nodes, which do not consider the SDS. This distribution
inconsistency hinders the model from optimizing the ideal loss
function which could definitely harm the model’s performance
[48]:

E𝑣∼𝑝 [𝑙 (𝑔(Ψ(𝑣), 𝑥𝑣))] ≠ E(𝑣,𝑜)∼𝑝𝑡𝑟𝑎𝑖𝑛 [𝑙 (𝑔(Ψ(𝑣), 𝑥𝑣)) |𝑜 = 1] (6)
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Figure 2: Illustration of GDN. The feature separation module
separates the node feature into two sets. Two constraints
are leveraged to assist separation. Blank positions in node
representation mean they are zero when calculating losses.

where E𝑣 ∼ 𝑝 [𝑙 (𝑔(Ψ(𝑣), 𝑥𝑣))] is the expected value of the objective
function for GNN-based methods over the distribution of all exam-
ples, and the right-hand side expectation is the expected value of
loss solely on training (observed) set. For semi-supervised learning,
the right-hand side expectation is directly minimized since only
nodes with 𝑜 = 1 are available. In GAD, anomalies only occupy
the minority of nodes and hold vast normal neighbors, making it a
severe SDS environment. More specifically, anomalies, as the detec-
tion target, tend to have more anomaly neighbors in the training
set, while connecting with more normal nodes in the testing. In an
extreme case, all of the anomaly-anomaly edges are contained in
the training set, and the neighbor label distribution of anomalies is
totally skewed in the test set. Therefore, the ideal loss function can
not be directly optimized, GNN classifier fails to capture the real
underlying distribution of data samples.

3.1.3 A closer look in SDS. We present here an improved analysis
through a closer look at the cause of SDS. First, we need to make an
assumption about the probability distribution 𝑃 (𝑂𝑖 ), which denotes
whether the node is labeled, i.e., a node is labeled if𝑂𝑖 = 1, and𝑂𝑖 =

0 otherwise. Following [48], we adopt a biased selection method to
construct examples that have the SDS problem between training
and testing environments. As discussed above, for each node, the
probability of it being labeled is controlled by its neighborhood
label similarity:

𝑃 (𝑂𝑖 = 1) = |{ 𝑗 | 𝑗 ∈ N𝑖 , 𝑦𝑖 = 𝑦 𝑗 }|/|N𝑖 | (7)

In this manner, if the homophily between central node 𝑖 with its
neighborhood is larger, node 𝑖 will have a larger probability to ap-
pear in the training set. This setting is consistent with our cognition
of the real world: an anomaly surrounded by more anomalies is
easier to be identified.
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Figure 3: Visualization of SDS for different classes of nodes
on two real world datasets. On x-axis, left means higher ho-
mophily and right means higher heterophily.

Consider one-hop neighbor set N(𝑣𝑖 ) of a given central node
𝑣𝑖 , then for binary classification problem, label distribution of each
node 𝑣 𝑗 inN(𝑣) obeys y ∼ 𝐵𝑒𝑟𝑛(𝑝 𝑗 ), where 𝑝 𝑗 is the probability of
𝑣𝑖 and 𝑣 𝑗 have the same label. Then Ψ(𝑣), i.e., the label distribution
of N(𝑣), is a family of probability distributions whose domain is
bounded between 0 and 1, which leads us to Proposition 2.
Proposition 2 The label neighborhood distribution of a given node
should obey Y ∼ 𝐵𝑒 (𝛼, 𝛽).

With the above proposition, we split two real-world spam-review
detection datasets according to this assumption based on which
we conduct further analysis. The visualizations of Ψ(𝑣) on training
and test are presented in Figure 3. From the figure, we have two
observations. (1) Comparing 3a and 3b (3c and 3d), the structural
distribution shift on anomalies is apparent, while that on normals is
trivial, which indicates that different learning strategies should be
adopted for different class nodes. (2) The extent of SDS is positively
correlatedwith the extent of heterophily presented in Table 1, which
suggests that heterophily may be the cause of SDS.

3.2 Invariant Feature Extraction
In Section 3.1.3, we inspect the cause of SDS, and suppose that
imbalanced heterophily would exacerbate the problem. To alleviate
the negative effect of SDS, the key is to identify a pattern expected
to be invariant to SDS for anomalies. Intuitively, we want to reduce
the neighbor label influence for anomalies. However, in GNNs the
information is directly propagated through node features instead
of labels, hence we want to bridge the gap between label influence
and feature influence. Luckily, the recent method [43] theoretically
formulates the relationship between them, and shows the edge
weights which serve to aggregate node features also aggregate
node labels over its immediate neighbors. From this perspective,

we can mitigate the neighbor label influence for anomalies by re-
ducing feature influence. Furthermore, we assume that (partial)
features are useful for detection[7], i.e., the distinguishment of
anomalies. These features are quite different across different class
nodes, therefore they are more likely to absorb noisy signals from
heterophilous neighbors. This observation leads us to the invariant
feature extraction.

For anomalies, inspired by variable decomposition [13, 38], we
assume that node feature 𝑋 can be decomposed into class feature
𝐶 and surrounding feature 𝑆 . We hope 𝐶 inherits most of the node
informative characteristics which depict “what the anomaly proto-
type looks like regardless of heterophily”, this set of features will be
constrained by prototype (introduced in section 3.3) which prevent
the representation from deviating to heterophily neighbor signals.
Formally, for variable 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛 on training distribution 𝑝𝑡𝑟𝑎𝑖𝑛 :

E[𝑌𝑡𝑟𝑎𝑖𝑛 |Φ(𝑋𝑡𝑟𝑎𝑖𝑛)] = E[𝑌𝑡𝑟𝑎𝑖𝑛 |𝐶𝑡𝑟𝑎𝑖𝑛, 𝑆𝑡𝑟𝑎𝑖𝑛]
= E[𝑌𝑡𝑟𝑎𝑖𝑛 |𝐶𝑡𝑟𝑎𝑖𝑛] = E[𝑌 |𝐶],

(8)

where Φ(𝑋𝑡𝑟𝑎𝑖𝑛) is the neighbor feature distribution of training
nodes. Note that in GNNs, a node itself is always included in
Φ(𝑋𝑡𝑟𝑎𝑖𝑛) by adding self-loop, as 𝐶 inherits most of the node in-
formative characteristics, 𝑆 is independent to label 𝑌 given 𝐶 . Ac-
cording to the assumption, 𝐶 is a property of node and is invariant
to neighbors, it is unlikely affected by heterophily and SDS, i.e.,
E[𝑌𝑡𝑟𝑎𝑖𝑛 |𝐶𝑡𝑟𝑎𝑖𝑛] = E[𝑌 |𝐶].

For normals, since they have low heterophily and hence their
neighborhood information is more constant and cleaner, we expect
that they aggregate neighborhood information which assist their
own representation learning. We hope 𝑆 can capture local structure
near normal nodes and summarize “how normal nodes benefit
from the low heterophily”, a connectivity constraint(introduced
in section 3.3) is applied to ensure neighbors share similar 𝑆 . We
next introduce how to appropriately separate features to meet our
demand above.

Recall that we aim to extract the most informative 𝐶 , intuitively,
as the spirit of gradient descent, neural importance can be quan-
tified as its absolute score of gradient value w.r.t. prediction loss.
Following recent works [6, 32], which utilize Grad-CAM [36] or its
variants to obtain local contribution to classification, we formulate
the contribution of the 𝑘-th feature to the anomaly detection at
layer 𝑙 as:

𝛼
(𝑙,𝑐)
𝑘

=
1
𝑁
|
𝑁∑︁
𝑛=1

𝜕𝑦 (𝑐)

𝜕𝐻
(𝑙)
𝑘,𝑛

|, (9)

where 𝑦 (𝑐) is the predicted probability of ground truth 𝑐 , H is the
hidden layer feature representations and N is the total number of
samples. We design a feature selector on the basis of this gradi-
ent score, which adaptively teases out class feature 𝐶 using top-K
sampling, and leaves the rest as surrounding feature 𝑆 . During the
selection process, to ensure 𝐶 and 𝑆 meet expectations, we next
introduce two constraints on the learning objectives.

3.3 Constraints
Towards the goal of invariant feature extractions, we revise the
learning objective of GAD by enforcing: 1) class constraints: maxi-
mize the similarity of 𝐶 between two nodes if they belong to the
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same class, while minimizing it when they have the different la-
bels, and 2) connectivity constraints: maximize the similarity of 𝑆
between two nodes if they are neighbors, otherwise minimize it.
We term these two constraints as L𝑐𝑙𝑎 and L𝑠𝑢𝑟 , and introduce
them as follows:

L𝑐𝑙𝑎 (𝑣) = 𝐾𝐿(𝐶𝑣, 𝑝𝑟𝑜𝑡𝑜+) − 𝐾𝐿(𝐶𝑣, 𝑝𝑟𝑜𝑡𝑜−)

L𝑠𝑢𝑟 (𝑣) =
∑︁

𝑢∈N(𝑣)
𝐾𝐿(𝑆𝑢 , 𝑆𝑣) −

∑︁
𝑢∉N(𝑣)

𝐾𝐿(𝑆𝑢 , 𝑆𝑣)

L𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =
1
|𝑁 |

∑︁
𝑣:𝑦𝑣=1

L𝑐𝑙𝑎 (𝑣) + L𝑠𝑢𝑟 (𝑣),

(10)

where 𝑝𝑟𝑜𝑡𝑜+ and 𝑝𝑟𝑜𝑡𝑜− are prior distributions for anomalies and
normals respectively, and the distributions depict "what the proto-
type looks like" for each class; 𝐾𝐿 is the KL-divergence between
two distributions. L𝑠𝑢𝑟 is easy to handle, by randomly sampling
non-neighbors from the dataset and computing the distances be-
tween neighbors and non-neighbors respectively. Now we have
transformed the problem into distribution estimation. A prevalent
way is to learn a class-specific global context that gives a broad
overview of the given class, namely the prototype vector. In our
model, we acquire this prototype vector 𝑝𝑟𝑜𝑡𝑜 adaptively. In every
epoch, we register the current prototype 𝑝𝑟𝑜𝑡𝑜 (𝑒) , based on which
we calculate the similarity between each node and 𝑝𝑟𝑜𝑡𝑜 . Nodes that
deviated from 𝑝𝑟𝑜𝑡𝑜 from this epoch should have a lower weight
in the next update step [5]. Formally, for nodes in each class:

𝑠
(𝑒)
𝑣 = 𝑐𝑜𝑠𝑖𝑛𝑒 (ℎ (𝑒)𝑣 , 𝑝𝑟𝑜𝑡𝑜 (𝑒−1) ), 𝑤

(𝑒)
𝑣 =

𝑒𝑥𝑝 (𝑠 (𝑒)𝑣 /𝜏)∑𝑁
𝑢=1 𝑒𝑥𝑝 (𝑠

(𝑒)
𝑢 /𝜏)

𝑝𝑟𝑜𝑡𝑜 (𝑒) =
𝑁∑︁
𝑣=1

𝑤𝑣 · ℎ (𝑒)𝑣

(11)

where 𝜏 is the temperature parameter to control the smoothness
of weights. First, we compute the cosine similarity between each
node 𝑣 and previous prototype vector 𝑝𝑟𝑜𝑡𝑜 (𝑒−1) , whose softmax
output is served as weight𝑤 (𝑒)

𝑣 for each node. Then the prototype
𝑝𝑟𝑜𝑡𝑜 (𝑒) is updated by aggregating different nodes accordingly on
the basis of this contribution. In practice, we initialize 𝑝𝑟𝑜𝑡𝑜 (0) as
the average pooling of the vectors in the given class. The prototype
vector serves as a constraint to endow class feature𝐶 with resistance
to heterophily and SDS.

3.4 Final Loss Function
Figure 2 presents an overview of our proposed model GDN. Fol-
lowing leading solutions, we adopt RGCN [35] as our backbone.
For each node 𝑣 , we define its final embedding as the output of the
RGCN at the last layer 𝑧𝑣 = ℎ

(𝑙)
𝑣 . And we leverage our constraint

on cross-entropy as the final loss function for optimization:

L𝐺𝐷𝑁 =
∑︁
𝑣∈V

−𝑙𝑜𝑔(𝑦𝑣 · 𝜎 (𝑧𝑣)) + 𝜆𝑒𝑥𝑝 (L𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ) (12)

where 𝜆 is a hyper-parameter to control the balance between
two losses. Note that node vectors should locate closer to same-
class prototype than other-class one, thus L𝑐𝑙𝑎 is always negative;
likewise, 𝑆 of neighbor nodes should look more similar than those
of non-neighbor nodes, therefore, L𝑠𝑢𝑟 is less than zero; then the

Table 2: Statistics of Datasets

Dataset #Nodes #Edges Relation #Edges

YelpChi 45954 3846979
R-U-R 49315
R-S-R 3402743
R-T-R 573616

Amazon 11944 4398392
U-P-U 175608
U-S-U 3566479
U-V-U 1036737

sum of two terms L𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is negative, which we transform to
the exponential space for the sake of positivity of total loss.

4 EXPERIMENTS
In this section, we conduct experiments on real-world datasets and
report the results of our models as well as some state-of-the-art
baselines to show the effectiveness of our proposed model. Particu-
larly, we mainly aim to answer the following research questions:

• RQ1: How does our model GDN perform compared with SOTA
graph anomaly detection methods?

• RQ2: Can GDN alleviate the SDS problem on biased dataset?
• RQ3: Is the proposed model effective under different hyper-
parameter settings?

• RQ4: Is GDN framework flexible to various GNN backbones and
helpful in enhancing them?

4.1 Experimental Setup
4.1.1 Dataset. Following previous works, We use the Yelp dataset
[33] and Amazon dataset [29] to study GNN-based fraud detection
problem. The Yelp dataset includes hotel and restaurant reviews
filtered and recommended by Yelp. The Amazon dataset includes
product reviews under the Musical Instruments category. Similar
to [12], we label users with more than 80% helpful votes as benign
entities and users with less than 20% helpful votes as fraudulent
entities. Both of the datasets are attributed multi-relation graph.
Nodes in Yelpchi dataset have 32-dimension features and 3 relations,
and nodes in Amazon have 25-dimension features and 3 relations.
For exact definition of these relations, we refer the readers to [12,
25]. Table 2 shows the dataset statistics.

4.1.2 Baselines. We are not aware of any similar work addressing
SDS. As our focus is GAD, we choose some state-of-the-art methods
in the task, some of which utilize the same backbone as us.

• GCN [21]: GCN is a traditional graph convolutional network
in spectral space.

• Graph-SAGE [14]: Compared with GCN, Graph-SAGE sam-
ples and aggregates features from a node’s local neighbor-
hood, which can generalize to unseen nodes.

• GAT [41]: A method that leverages masked self-attentional
layers to address the shortcomings of prior graph convolu-
tion methods.

• GraphConsis [26]: GraphConsis is a heterogeneous graph
neural network focusing on tackling context inconsistency,
feature inconsistency and relation inconsistency problem.

• Care-GNN [12]: Care-GNN is a camouflage-resistant graph
neural network that adaptively samples neighbors according
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to feature similarity, and the optimal sampling ratio is found
through an RL module.

• FRAUDRE [49]: This method wants to be dual-resistant
to graph inconsistency and imbalance. An additional graph
convolution module is leveraged to magnify the difference
between normals and anomalies.

• PC-GNN [25]: This method consists of two modules “pick”
and “choose”, andmaintain a balanced label frequency around
fraudsters by downsampling and upsampling.

4.1.3 Metrics. Since Graph anomaly detection is always a class-
imbalanced classification problem, accuracy is not a proper evalua-
tion metric as a high accuracy is still achieved when all of the nodes
are classified as normal. Therefore, similar to previous works, we
adopt three widely used measures for fair comparison: F1-macro,
AUC and GMean.

F1-macro calculates F1-score for every class and finds their un-
weighted mean. F1-score is the harmonic mean of precision and
recall. AUC is the area under the ROC Curve, which depicts the
relationship between False Positive Rate (FPR) and True Positive
Rate (TPR). Points on the ROC curve with higher AUC scores tend
to locate nearer to top-left, thus having lower FPR and higher TPR.
GMean is the geometric mean of True Positive Rate (TPR) and True
Negative Rate (TNR). For all of the three metrics, the higher scores
indicate the higher performance of the approaches.

4.1.4 Implementation Details. The average with standard devia-
tions of 5 runs is reported for all experiments. The backbone of the
proposed method is RGCNwhose hidden dimension is set to 64. Fol-
lowing previous work, our data splitting ratio is 40%, 20%, and 40%
for training, validation, and test set. All of the hyper-parameters
are tuned based on the validation set. 𝜆 is ranged from {0.01, 0.1, 0.5,
1}, 𝑘 for yelp is chosen from {6, 12, 18, 24}, while that for amazon is
chosen from {5, 10, 15, 20}.

4.2 Comparison Results
To answer RQ1, we evaluate the performance of baselines and the
proposed method, and the comparison results are reported in Table
3. We implement GCN and Graph-SAGE on our own in Pytorch,
and for GraphConsis, CARE-GNN, FRAUDRE, and PC-GNN, we
use their provided open-source code to implement them. All of the
hyperparameters are set to those reported in their paper if available.
We have the following observations:

First of all, CARE-GNN, FRAUDRE, and PC-GNN are three well-
designed models for GAD. They are built upon a multi-relation
graph, and utilize RGCN as the backbone model as we do. They
focus on modifying adjacency matrix to prune noise edges or main-
tain a balanced neighborhood label frequency, while different from
them, we are aiming at learning a powerful and expressive node
presentation, which can avoid the high risk of information loss
when deleting edges. These three methods are the most competitive
baselines so far, and experimental results show that the proposed
method consistently outperforms them on all the metrics across
two datasets. FRAUDRE performs poorly compared to PC-GNN
and CARE-GNN, we think the reason behind this is that FRAUDER
deals with the minority class at the end of the topology as a sepa-
rate module, which may not effectively contribute to the learning
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Figure 4: Performance comparison under normal setting and
biased setting, the measure is AUC.

process of GNNs. And PC-GNN outperforms CARE-GNN, which is
consistent with the conclusion in the paper of PC-GNN.

Secondly, Graph-SAGE is an inductive graph learning method,
as it samples a subset of nodes and substantially decreases the diffi-
culty in training on graph for its memory efficiency. However, this
sampling technique may also face a high risk for loss of information
which leads to performance drop, especially in high imbalanced-
heterophily datasets. Therefore, there exists a huge gap between
the proposed method GDN and them.

Thirdly, general graph learning methods are evaluated on single-
relation graphwhere all edges aremerged. As seen in the table, GAD
methods which are built upon multi-relation graph have obvious
advantages over GCN, Graph-SAGE and GAT. It demonstrates the
effectiveness of treating different relations differently. We think the
reason behind is that edges in this manner have a more specific
semantic information.

4.3 Out-of-Distribution Evaluation
To answer RQ2, we split datasets according to Equation (7). The
train-valid-test split ratio remains the same with the normal setting,
and note that we treat both train nodes and validation nodes as
observed, i.e., their neighborhood distributions are the same. We
suppose this processing could simulate the real-world better, and
help with fair comparison when doing hyper-parameter tuning. We
conduct experiments on the proposed method and baselines. From
the result reported in Figure 4, we can observe that:

The proposedmethod outperforms all of the baselines under both
biased and normal settings, which again demonstrates the effec-
tiveness of our model. In addition, multi-relation methods marked
by triangles perform much better than single-relation methods
marked by “X”. Next, as compared between Figures 4 (a) and (b), it
is obvious that SDS (indicated by the distance from points to the
dashed blue line 𝑦 = 𝑥) is more severe on Amazon than that on
YelpChi, we attribute this difference to the difference in heterophily
of anomalies. From Figure 3, we can see the heterophily degree
is higher on Amazon than that on Yelp. This finding is consistent
with our assumption that SDS is exaggerated by heterophily. Since
GDN’s performance gap between biased setting and normal setting
on both benchmarks is small compared with other GAD methods,
our model has the promising ability to alleviate SDS.

6



Alleviating Structural Distribution Shift in
Graph Anomaly Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3: Performance Results. Best results of all methods are indicated in bold face, and second best results are underlined.

Method Dataset YelpChi Amazon
Metric F1-macro AUC GMean F1-macro AUC GMean

General GNNs
GCN 0.5171±0.0097 0.5689±0.0157 0.4541±0.0946 0.6054±0.0883 0.8667±0.0027 0.7638±0.0343

GraphSAGE 0.4184±0.0620 0.5400±0.0043 0.3207±0.1560 0.5835±0.0088 0.7535±0.0059 0.7037±0.0076
GAT 0.5164±0.0986 0.7403±0.0242 0.6227±0.0549 0.6426±0.0359 0.8499±0.0014 0.6268±0.1265

GAD models

GraphConsis 0.6577±0.0012 0.7853±0.0033 0.6779±0.0165 0.7894±0.0448 0.9516±0.0005 0.8787±0.0025
FRAUDRE 0.5765±0.0482 0.7683±0.0176 0.6978±0.0195 0.8682±0.0300 0.9299±0.0035 0.8768±0.0185
CARE-GNN 0.6433±0.0094 0.7925±0.0292 0.7094±0.0359 0.8988±0.0073 0.9491±0.1115 0.8908±0.0018
PC-GNN 0.6933±0.0253 0.8512±0.0015 0.7720±0.014 0.8658±0.0074 0.9614±0.0014 0.8978±0.0044

Ours GDN 0.7605±0.006 0.9034±0.008 0.8084±0.0009 0.9068±0.0042 0.9709±0.0016 0.9078±0.0011

Improvement 9.69% 6.13% 4.72% 0.89% 0.98% 1.11%

Table 4: LR and LP prediction results with different feature
combinations. The measure is AUC.

𝐶 𝐶
′

𝐶 + 𝑆 (𝐶 + 𝑆)′

LR Amazon 0.9069 0.9047 0.9084 0.9062
Yelp 0.7314 0.7432 0.7545 0.7694

LP Amazon 0.9277 0.9289 0.9293 0.9298
Yelp 0.7285 0.7377 0.7418 0.7447

4.4 Feature Separation Analysis
In this section, we will verify the effectiveness of our feature separa-
tion module from both the data perspective and model perspective.
Inspired by [19], we first visualize the frequency distributions of
class features𝐶 on 5 different random seeds. Results are reported in
Figure 5. In Figure 5(a), we adopt kernel density estimation (KDE)
and fit the shape of distribution with Gaussian Kernel; in Figure
5(b), a detailed index constitution of class feature for each seed is
displayed. From the figure, we observe that the frequency of se-
lected features on different seeds is around 5, which indicates that
the framework always selects the same feature dimension, and our
separation process is stable and constant. From model perspective,
we aim to verify the assumption that 𝐶 inherits most of the sam-
ples’ informative characteristics, and 𝑆 improves the performance
of graph-based methods. Towards this end, we measure the perfor-
mance of different feature combinations on simple linear classifiers
and graph-based classifiers, because we suppose that the simpler
the classifier, the better it reflects the feature quality. We train Lo-
gistic Regression classifiers and Label Propagation classifiers on
original class features (𝐶), regularized class features (𝐶

′
), original

features (𝐶 + 𝑆), and regularized features ((𝐶 + 𝑆)′ ), respectively.
Note that LP algorithm reconstructs the graph according to nodes’
similarity and is trained on the new graph instead of the original
graph. Therefore, LP is less likely to suffer from class heterophily,
whose performance is a good measurement of nodes’ ability to
represent their local structure. Results are displayed in Table 4, and
from the table, we have some observations:

Comparing Table 4 with Table 3, the linear model (LR) achieves
better performance than general GNN-based methods like GAT,
GraphSAGE and GCN. It is consistent with previous work and
our assumption that graph-based methods suffer from imbalanced
heterophily problem in GAD. Secondly, 𝐶 has little performance
drop on LR compared with 𝐶 + 𝑆 , suggesting that 𝐶 has the ability
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Figure 5: Feature Separation Stability Analysis.

to represent most information contained in the whole feature set.
What’s more, 𝐶 + 𝑆 outperforms 𝐶 on LP, indicating that including
𝑆 in the feature set is conducive to the performance of graph-based
methods. In addition,𝐶

′
and (𝐶 +𝑆)′ achieves better or comparable

performance to 𝐶 and 𝐶 + 𝑆 , which demonstrates the effectiveness
of our regularization terms.

4.5 Hyper-parameter Sensitivity Analysis
To answer RQ3, we want to explore the model’s sensitivity to the
most important parameters 𝜆 and 𝑘 , which control the integration
of two losses and the dimensions of 𝐶 and 𝑆 when conducting
feature separation. The results of three metrics with different 𝜆 and
𝑘 are shown in Figure 6, respectively. We observe that (1) Generally,
when 𝜆 continues to increase, the performance will first increase
then decrease. We suppose a small 𝜆 has an inadequate influence
on the classification while the classifier may be dominant by the
auxiliary regularization when it is too large. (2) Similarly, with the
increase of 𝑘 , the performance tends to first increase then decrease.
(3) The performance is stable over a quite large range.

4.6 Flexibility Analysis
To further verify the flexibility of GDN and answer RQ4, we lever-
age feature separation module and regularization terms on several
representative GNNs and observe large improvement on both of
the datasets. Experiment results are reported in Table 5. From table
5, we can conclude that our proposed method can be easily adapted
to general models and enhance their performance.
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Figure 6: Model performance with different hyper-pamameters on Yelp and Amazon Dataset. Since three metrics are different
in scales, we display the charts in a dual-Y style. The left y axis represents AUC, while the right one represents Gmean and F1.

Table 5: Enhancement for othermodels. Themeasure is AUC.

GCN GCN+GDN SAGE SAGE+GDN
Amazon 0.8667 0.8904 0.7535 0.8216
Yelp 0.5689 0.5832 0.5400 0.7467

5 RELATEDWORK
In this section, we introduce some representative previous works
on graph-based anomaly detection and out-of-distribution learning.

5.1 Graph Anomaly Detection
Graph anomaly detection (GAD) is a task focusing on identify-
ing individual nodes which are obviously deviated from others.
Researchers in this area tend to categorize the problem into two
branches based on whether the graph data is time-invariant [1, 28].
Hence, we summarize existing GAD works from these two views.

On static attributed graphs, auto-encoder (AE) based methods
can not handle the graph data directly. DONE [2] trains two AEs
by minimizing the reconstruction error while preserving the ho-
mophily between connected nodes. With the advances of GNNs,
GNN-based methods [10, 23, 50] have been of focus. GraphRfi [50]
explores the possibility of combining anomaly detection with down-
stream graph tasks. GraphUCB [11] adopts contextual multi-armed
bandit technology, and transform graph anomaly detection to a
decision-making problem. DCI [45] decouples representation learn-
ing and classification with the self-supervised learning task. In
real-world, time-variant dynamic graphs are more common. Be-
sides structural information and node attributes, they also contain
temporal signals which represent the evolving process of an event.
F-FADE [4] uses frequency-factorization tomodel the time-evolving
distributions of frequencies of interactions between node-pairs.

Recent methods realize the importance of incorporating multiple
relationships into graph learning [12, 24–26, 42, 44]. FdGars [44]
and GraphConsis [26] construct a single homo-graph with multiple
relations and leverage GNNs to aggregate neighborhood informa-
tion. Similarly but differently, Semi-GNN [42], CARE-GNN [12],
and PC-GNN [25] construct multiple homo-graphs based on node
relation. Semi-GNN and IHGAT [24] employ hierarchical attention
mechanism for interpretable prediction, while based on camou-
flage behaviors and imbalanced problem, CARE-GNN and PC-GNN
prune edges adaptively according to neighbor distribution.

5.2 Learning under Out-of-Distribution
In OOD problem, i.i.d assumption is violated, hence the classic
supervised learning methods cannot be directly applied. Existing al-
gorithms for OOD generalization can be divided into unsupervised
representation learning and supervised model learning [39].

Unsupervised representation learning methods are mainly based
on VAE. 𝛽-VAE [17] introduces an learnable hyperparameter 𝛽 , bal-
ancing latent channel capacity and independence constraints. Fac-
torVAE [20] improves 𝛽-VAE by adding a total correlation penalty,
and disentangles by encouraging the representation distribution to
be factorial and independent. Similarly, some recent works learn
variables in a causal graph in an unsupervised fashion. CausalVAE
[47] leverages a causal layer that transforms independent exoge-
nous factors into causal endogenous ones. Evidence lower bound
is introduced to make the model training easier. DEAR [37] uses a
structural causal model (SCM) as the prior for a bidirectional gen-
erative model, and a suitable GAN loss is introduced as supervision
to train a generator and an encoder jointly with the prior.

Supervisedmodel learningwants to learn a robust model that can
be generalized to the unseen target domain. CIAN [22] leverages
deep neural network to learn domain-invariance representation
with respect to the joint distribution of representation learning
function and feature. Graph-DVD [38] decorrelates the stable fea-
ture from unstable variables, which is then used for classification.
Some works [9, 16, 30, 31] want to connect invariance to causality.
These methods are based on ICP [30], which performs a statistical
test on whether the invariance assumption is met.

The methods mentioned above tackle the problem well in the
euclidean space. However, the OOD problem is under-explored in
graph-structured data. SR-GNN [51] and an IRM-based method
[46] notices OOD problems in node feature distribution, and a PAC-
Bayesian analysis [27] demonstrates non-IID data can affect the
performance of subgroups. In this work, we suppose that neighbor-
hood information also suffers from SDS.

the recent study [18] theoretically shows that a node’s informa-
tion gained from the surrounding neighbors is positively correlated
to its feature smoothness. Thus removing edges according to fea-
ture similarity is at high risk for the loss of the most important
neighborhood information.
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6 CONCLUSION AND FUTUREWORK
In this work, we explain a novel problem structural distribution
shift in graph anomaly detection task. To alleviate SDS, we propose
a novel method GDN. GDN separates node features into two parts:
one ascertain an invariant pattern for anomalies to describe the
anomaly portrait, while the other endows with the ability to ab-
sorb rich neighborhood information and benefit from aggregation
mechanism under low heterophily for normals.

The method takes the first step to address structural distribution
shift in GAD. For future work, there are some research directions
worth studying: 1) Integration of feature constraint and edge prun-
ing. Noisy edges are truly harmful, an OOD-guided edge pruning
method deserves our attention. Also a mechanism to integrate both
algorithms is helpful. 2) Better regularizer. The discovery of a better
distance function for regularization terms, such as 𝑓 -divergence and
Wasserstein distance, since 𝐾𝐿-divergence has some limitations. 3)
Spectral domain. Some GAD works [3, 40] recently published find
that anomaly nodes can incur high frequency, addressing SDS in
spectral domain is another future direction.
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