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ABSTRACT
Modern recommender systems learn user representations from
historical interactions, which suffer from the problem of user feature
shifts, such as an income increase. Historical interactions will inject
out-of-date information into the representation in conflict with the
latest user feature, leading to improper recommendations. In this
work, we consider the Out-Of-Distribution (OOD) recommendation
problem in an OOD environment with user feature shifts. To pursue
high fidelity, we set additional objectives for representation learning
as: 1) strong OOD generalization and 2) fast OOD adaptation.

This work formulates and solves the problem from a causal view.
We formulate the user feature shift as an intervention and OOD
recommendation as post-intervention inference of the interaction
probability. Towards the learning objectives, we embrace causal
modeling of the generation procedure from user features to
interactions. However, the unobserved user features cannot be
ignored, which make the estimation of the interaction probability
intractable. We thus devise a new Variational Auto-Encoder for
causal modeling by incorporating an encoder to infer unobserved
user features from historical interactions. We further perform
counterfactual inference to mitigate the effect of out-of-date
interactions. Moreover, a decoder is used to model the interaction
generation procedure and perform post-intervention inference.
Fast adaptation is inherent owing to the reuse of partial user
representations. Lastly, we devise an extension to encode fine-
grained causal relationships from user features to preference.
Empirical results on three datasets validate the strong OOD
generalization and fast adaptation abilities of the proposed method.
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1 INTRODUCTION
Recommender systems have been widely deployed for personalized
information filtering to alleviate information explosion on the
Web [14, 27]. As the core of recommender models, learning
representation of user preference relies on historical interactions.
Existing approaches are mainly based on the Independent and
Identically Distributed (IID) assumption of the interactions between
training and testing periods. However, user feature shifts (e.g., an
income increase) are common in practice, which will affect the user
preference and behaviors. As such, the representations learned with
out-of-date interactions (e.g., purchases of cheap copies) will cause
improper recommendations (cf. Figure 1). We reveal that existing
recommender models encounter significant performance drop in
an OOD environment with user feature shifts (cf. Table 2), thus
hurting user experience and leading to notorious issues like the
unfairness across users. As such, it is essential to consider the OOD
recommendation problem.

OOD recommendation has received little scrutiny. Existing
approaches that have the potential to deal with user feature shifts
mainly fall into three categories. 1) Feature-based models [27],
which can be adapted to the OOD environment by model inference
with the latest user features. However, they still suffer from the
out-of-date interactions since they are unable to disentangle the
effects of user features and historical interactions. 2) Disentangled
recommendation [22] aims to learn factorized representations for
user preference, which can be more robust to distribution shifts.
Nevertheless, previous studies mostly ignore user features and
encode the out-of-date interactions in the representation [41]. 3)
Model re-training [28, 36] also facilitates adaptation, but faces a
dilemma between the re-training frequency and computation cost.
Moreover, it requires to collect new interactions after the feature
shifts, which means that inappropriate items are still recommended
until sufficient new interactions are collected.

To strengthen recommender systems, we require the representa-
tion learning of user preference to pursue two objectives: 1) strong
OOD generalization; and 2) fast adaptation. OOD generalization
means that the model can infer accurate user preference for the
latest user features, i.e., directly adapting to the OOD environment.
Once very few new interactions are collected from the OOD
environment, fast adaptation implies that the model can be quickly
and accurately updated. To achieve the two learning objectives, the
key lies in the abilities to: 1) figure out the mechanism to understand
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Figure 1: Examples of OOD recommendation.

how feature shifts affect user preference; 2) mitigate the effect of out-
of-date interactions on OOD recommendation; and 3) reuse partial
unchanged user representations to accelerate adaptation [32].

We resort to causal language and scrutinize the cause-effect
factors in the interaction generation procedure, which are
abstracted as a causal graph in Figure 2. The causal graph describes
the causal relationships from user features (𝐸1 and 𝐸2) to user
preference (𝑍1 and 𝑍2), and user interactions (𝐷). Note that we
split the user features into the observed group (𝐸1) and unobserved
group (𝐸2), and set two types of preference depending on whether
it is affected by the observed features (𝑍1) or not (𝑍2). Existing
methods construct the preference representation by encoding both
𝐸1 and 𝐷 , and thus suffer from the out-of-date interactions in the
OOD environment. From the causal view, OOD recommendation is
indeed the post-intervention inference of interaction probabilities
𝑃 (𝐷 |𝑑𝑜 (𝐸1 = 𝒆′1), 𝐸2), where the feature shift from 𝐸1 = 𝒆1 to
𝐸1 = 𝒆′1 is formulated as an intervention [25]. Furthermore, as
𝑑𝑜 (𝐸1 = 𝒆′1) only affects 𝑍1, we can facilitate fast adaptation by
reusing the unaffected part 𝑍2 [25, 32].

Towards this end, we propose a Causal OOD Recommendation
(COR) framework that models the interaction generation procedure
according to the causal graph. The challenge of this framework is to
deal with the unobserved features 𝐸2, which makes the estimation
of 𝑃 (𝐷 |𝑑𝑜 (𝐸1 = 𝒆′1), 𝐸2) intractable. To solve this challenge, we
resort to variational inference and design a new Variational Auto-
Encoder (VAE) with an encoder to infer the unobserved 𝐸2 from the
historical interactions 𝐷 and observed 𝐸1 by modeling 𝑃 (𝐸2 |𝐷, 𝐸1).
Besides, a decoder network is needed to estimate 𝑃 (𝐷 |𝐸1, 𝐸2).
Once learned, we can perform post-intervention inference by
feeding the latest user features 𝒆′1 to the VAE. Moreover, to prevent
potential impacts from out-of-date interactions in 𝐷 , we adopt
a counterfactual inference to block the harmful effect of 𝐷 . As
to fast adaptation with new interactions, we reuse 𝑍2 and only
update 𝑍1 via fine-tuning. Furthermore, we design an extension to
demonstrate that COR is able to capture more fine-grained causal
relationships between 𝐸1, 𝐸2, and 𝑍1. Extensive experiments on
a synthetic dataset and two real-world ones validate that COR
is able to achieve strong OOD generalization and fast adaptation
with comparable IID performance. We release the code and data at
https://github.com/Linxyhaha/COR.

To summarize, the main contributions of this work are as follows:
• We study a new OOD recommendation problem, formulating
and solving it from a causal view.

• We propose a Causal OOD Recommendation framework, which
performs causal modeling and inference to handle feature shifts.

• Extensive experiments on three datasets demonstrate the
superiority of COR on enhancing OOD generalization and fast
adaptation while maintaining the IID performance.
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Figure 2: Causal graph of the interaction generation process.

2 RECOMMENDATION RE-FORMULATION
In this section, we inspect the interaction generation process and
formulate OOD recommendation from a causal view.
Causal View of User Interaction Generation In Figure 2, we
abstract the interaction generation process as a causal graph. We
explain its rationality as follows.
• 𝐸1, 𝐸2 represent observed user features (e.g., age and income) and
unobserved user features (e.g., conformity and social networks),
respectively. Most recommender systems access partial user
features due to privacy restriction and device limitation.

• 𝑍1, 𝑍2 represent the latent user preference, which is split into
two groups regarding whether it is affected by 𝐸1. 𝑍2 is separated
because there always exists user preference unaffected by 𝐸1.

• 𝐷 denotes user’s interaction status over items.
• (𝐸1, 𝐸2) → 𝑍1 and 𝐸2 → 𝑍2 denote that user preference is
determined by user features. For instance, income affects the
preference over price and brand.

• (𝑍1, 𝑍2) → 𝐷 means that user’s interaction status over items is
determined by user preference.

Formulation of OOD Recommendation We use 𝑢 ∈ {1, ...,𝑈 }
and 𝑖 ∈ {1, ..., 𝐼 } to index users and items, respectively. For a
user 𝑢, the recommender models aim to learn the user preference
representation [𝒛1, 𝒛2] from the observed features 𝐸1 = 𝒆1 and
historical interactions 𝐷 = 𝒅 ∈ {0, 1}𝐼 which is a multi-hot vector
with 𝑑𝑖 = 1 indicating an interaction between item 𝑖 and the user1.
Based on the representation [𝒛1, 𝒛2], the model then infers the
interaction probabilities over items to make recommendations. This
work studies an unexplored OOD recommendation problem,
where the user feature encounters a shift from 𝒆1 to 𝒆′1, such
as an increased income2. From a causal view, we term the
feature shift as an intervention [25], denoted as 𝑑𝑜 (𝐸1 = 𝒆′1).
Accordingly, the recommender model should be able to infer
the post-intervention distribution of 𝐷 . To evaluate the OOD
recommendation performance, we propose two specific tasks:
1) OOD generalization, which evaluates the generalization ability

of a model when the intervention 𝑑𝑜 (𝐸1 = 𝒆′1) is known but user
interactions after the intervention are unavailable.

2) Fast adaptation assumes that very few post-intervention user
interactions are collectable from the OOD environment, and
evaluates how quickly and accurately the model adapts to the
OOD environment.

1For notation brevity, we omit the subscript 𝑢 in 𝒆1 , 𝒅 , 𝒛1 , and 𝒛2 .
2As an initial attempt, we ignore shifts of unobserved 𝒆′2 , e.g., mood changes, which
are left to future work since the detection of such changes is still an open problem.
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3 CAUSAL OOD RECOMMENDATION
In this section, we first detail the causal modeling of the interaction
generation process via a VAE. Based on the VAE, we conduct causal
inference for OOD generalization and adopt a fine-tuning strategy
for fast adaptation. Lastly, we devise an extension to encode the
fine-grained causal graph into COR.

3.1 Causal Representation Learning
We consider the interaction generation process presented in Figure
2 to build the recommendermodels. Specifically, for each user𝑢 with
observed feature 𝒆1 and historical interactions 𝒅, let a 𝐾-dimension
latent vector 𝒆2 denote the unobserved feature, which is sampled
from a standard Gaussian prior [19]. From 𝒆1 and 𝒆2, we calculate
the distribution of the user preference and sample 𝒛1 and 𝒛2 to
produce the interaction probability over 𝐼 items. Inspired by prior
studies [19, 48], we assume the user preference and interaction
follow factorized Gaussian and multinomial priors, respectively.
Formally, 𝒆2, 𝒛1, 𝒛2, and 𝒅 are drawn from:

𝒆2 ∼ N(0, I𝐾 ),

𝒛1 ∼ N
(
𝝁𝜃1 (𝒆1, 𝒆2), diag{𝝈2

𝜃1
(𝒆1, 𝒆2)}

)
,

𝒛2 ∼ N
(
𝝁𝜃2 (𝒆2), diag{𝝈2

𝜃2
(𝒆2)}

)
,

𝒅 ∼ Mult
(
𝑁, 𝜋

(
𝑓𝜃3 (𝒛1, 𝒛2)

) )
.

(1)

• (𝐸1, 𝐸2) → 𝑍1: 𝝁𝜃1 (𝒆1, 𝒆2) denotes the mean of the Gaussian
distribution estimated from 𝒆1 and 𝒆2 by function 𝑓𝜃1 (𝒆1, 𝒆2)
parameterized by 𝜃1; diag{𝝈2

𝜃1
(𝒆1, 𝒆2)} denotes the diagonal

covariance3 of the Gaussian distribution.
• 𝐸2 → 𝑍2: similarly, 𝑓𝜃2 (𝒆2) calculates the mean and diagonal
covariance for the Gaussian distribution of 𝒛2.

• (𝑍1, 𝑍2) → 𝐷 : 𝒅 is drawn from the multinomial distribution
with the parameters of 𝑁 =

∑𝐼
𝑖=1 𝑑𝑖 and 𝜋

(
𝑓𝜃3 (𝒛1, 𝒛2)

)
. 𝑁 is the

number of interactions of user 𝑢, and 𝜋 (·) denotes the softmax
function to normalize the output of 𝑓𝜃3 (𝒛1, 𝒛2).
A default choice to optimize the model parameters 𝜃 =

{𝜃1, 𝜃2, 𝜃3} is through the reconstruction of interaction history 𝒅
based on the observed feature 𝒆1. Specifically, given a user 𝑢 with
𝒆1 and 𝒅, we maximize the log-likelihood log𝑝 (𝒅 |𝒆1). Formally,

log 𝑝 (𝒅 |𝒆1) = log
∫

𝑝 (𝒅, 𝒆2 |𝒆1)𝑑𝒆2 = log
∫

𝑝 (𝒅 |𝒆1, 𝒆2)𝑝 (𝒆2)𝑑𝒆2 .

(2)
Undeniably, Eq. (2) is intractable due to the integral over unobserved
features 𝒆2 [51]. To tackle this optimization challenge, we resort
to variational inference [19], which introduces a variational
distribution 𝑞(𝒆2 |·) to produce the evidence lower bound (ELBO)
of Eq. (2). In particular,

log𝑝 (𝒅 |𝒆1) = log
∫

𝑝 (𝒅 |𝒆1, 𝒆2)𝑝 (𝒆2)
𝑞(𝒆2 |·)
𝑞(𝒆2 |·)

𝑑𝒆2 (3a)

≥ E𝑞 (𝒆2 | ·)

[
log 𝑝 (𝒅 |𝒆1, 𝒆2)𝑝 (𝒆2)

𝑞(𝒆2 |·)

]
(3b)

= E𝑞 (𝒆2 | ·) [log𝑝 (𝒅 |𝒆1, 𝒆2)] − KL(𝑞(𝒆2 |·)∥𝑝 (𝒆2)), (3c)

3The factors in 𝒛1 are conditionally independent given the parents 𝒆1 and 𝒆2 , which
follows the 𝑑-separation principle [25] and saves parameters [19, 48]
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Figure 3: Illustration of the encoder and decoder networks.

where the first term in Eq. (3c) is for reconstruction and the second
one regularizes the Kullback-Leibler (KL) divergence between
𝑞(𝒆2 |·) and the prior 𝑝 (𝒆2). The logic is that maximizing the ELBO
in Eq. (3c) will increase the log-likelihood in Eq. (2). Thereafter, to
calculate the ELBO, we adopt the encoder and decoder networks to
model 𝑞(𝒆2 |·) and 𝑝 (𝒅 |𝒆1, 𝒆2), respectively.

3.1.1 Encoder Network. We define 𝑞(𝒆2 |·) = 𝑞(𝒆2 |𝒅, 𝒆1), which
predicts 𝒆2 from 𝒅 and 𝒆1 (Figure 3(a)) because the historical
interactions and observed user features are likely to indicate
the unobserved user features [19]. For example, users’ purchase
behaviors and age can reflect user conformity. To pursue efficient
estimation of 𝑞(𝒆2 |𝒅, 𝒆1), we use amortized inference [13] and
incorporate an encoder network 𝑔𝜙 (·). Formally,

𝑞(𝒆2 |𝒅, 𝒆1) = N
(
𝒆2; 𝝁𝜙 (𝒅, 𝒆1), diag{𝝈2

𝜙
(𝒅, 𝒆1)}

)
, (4)

where 𝝁𝜙 (·) and 𝝈𝜙 (·) are obtained by the encoder 𝑔𝜙 (·), i.e.,
𝑔𝜙 (𝒅, 𝒆1) = [𝝁𝜙 (𝒅, 𝒆1),𝝈𝜙 (𝒅, 𝒆1)] ∈ R2𝐾 . In this work, we
implement 𝑔𝜙 (·) by a multi-layer perceptron (MLP), where the
number of layers and hidden units are hyper-parameters.

3.1.2 Decoder Network. As illustrated in Figure 3(b), we
factorize 𝑝 (𝒅 |𝒆1, 𝒆2) according to Eq. (1) and have

𝑝 (𝒅 |𝒆1, 𝒆2) =
∫ ∫

𝑝 (𝒛1 |𝒆1, 𝒆2)𝑝 (𝒛2 |𝒆2)𝑝 (𝒅 |𝒛1, 𝒛2)𝑑𝒛1𝑑𝒛2, (5)

where the parameters of 𝑝 (𝒛1 |𝒆1, 𝒆2) and 𝑝 (𝒛2 |𝒆2) are estimated
by 𝑓𝜃1 (𝒆1, 𝒆2) and 𝑓𝜃2 (𝒆2), respectively. In this work, we
implement them by two MLP models. Formally, 𝑓𝜃1 (𝒆1, 𝒆2) =

[𝝁𝜃1 (𝒆1, 𝒆2),𝝈𝜃1 (𝒆1, 𝒆2)] and 𝑓𝜃2 (𝒆2) = [𝝁𝜃2 (𝒆2),𝝈𝜃2 (𝒆2)].

•Approximation of 𝑝 (𝒅 |𝒆1, 𝒆2). Even if we obtain the estimations
of 𝑝 (𝒛1 |𝒆1, 𝒆2) and 𝑝 (𝒛2 |𝒆2), the calculation of 𝑝 (𝒅 |𝒆1, 𝒆2) is
challenging due to the costly integral over the latent variables
𝒛1 and 𝒛2. To pursue high efficiency, we resort to Monte Carlo (MC)
sampling, which samples 𝒛1 and 𝒛2 to approximate 𝑝 (𝒅 |𝒆1, 𝒆2)4.
Formally,

𝑝 (𝒅 |𝒆1, 𝒆2) ≈
1
𝐿

1
𝑀

𝐿∑︁
𝑎=1

𝑀∑︁
𝑏=1

𝑝

(
𝒅 |𝒛𝑎1 , 𝒛

𝑏
2

)
, (6)

where 𝐿 and 𝑀 are the sample numbers; 𝒛𝑎1 and 𝒛𝑏2 are drawn
from 𝑝 (𝒛1 |𝒆1, 𝒆2) and 𝑝 (𝒛2 |𝒆2), respectively. Nevertheless, Eq. (6)
is still computationally costly due to calculating the conditional
4We use MC sampling instead of variational inference to avoid unnecessary prior
hypothesis over the 𝝁 and 𝝈 of 𝒛1 and 𝒛2 in Eq. (1) (e.g., N(0, 1)).



Algorithm 1 Inference Pipeline of COR for OOD Generalization
Input: latest features 𝒆′1 and historical interactions 𝒅 of user 𝑢;

trained networks 𝑔𝜙 (·), 𝑓𝜃1 (·), 𝑓𝜃2 (·), and 𝑓𝜃3 (·).
1: Draw 𝒆2 via 𝑔𝜙 (𝒅, 𝒆′1).
2: Abduction: draw 𝒛2 via 𝑓𝜃2 (𝒆2).
3: Action: draw 𝒆′2 via 𝑔𝜙 (0, 𝒆′1) under 𝑑𝑜 (𝐷 = 0); then draw 𝒛′1

via 𝑓𝜃1 (𝒆′1, 𝒆
′
2).

4: Prediction: calculate 𝒅 ′ = 𝑓𝜃3 (𝒛′1, 𝒛2).
Output: the interaction probability 𝒅 ′ for user 𝑢.

probability many times (i.e., 𝐿 × 𝑀). We thus further conduct a
widely used approximation [11, 37], which is formulated as:

𝑝 (𝒅 |𝒆1, 𝒆2) ≈ 𝑝
(
𝒅

���� 1
𝐿

𝐿∑︁
𝑎=1

𝒛𝑎1 ,
1
𝑀

𝑀∑︁
𝑏=1

𝒛𝑏2

)
= 𝑝 (𝒅 |�̄�1, �̄�2), (7)

where the approximation error (i.e., Jensen gap [2]) can be well
bounded for most functions to calculate 𝑝 (𝒅 |𝒛1, 𝒛2) [11].

Thereafter, we can estimate the parameters of 𝑝 (𝒅 |𝒛1, 𝒛2) by an
MLP 𝑓𝜃3 (·), which produces an interaction probability distribution
𝒅 ′ over 𝐼 items. Next, the reconstruction term log𝑝 (𝒅 |𝒆1, 𝒆2) in Eq.
(3c) is obtained by

log𝑝 (𝒅 |𝒛1, 𝒛2)
𝑐
=

𝐼∑︁
𝑖=1

𝑑𝑖 log𝜋𝑖
(
𝑓𝜃3 (𝒛1, 𝒛2)

)
, (8)

where 𝑑𝑖 denotes whether user 𝑢 interacts with item 𝑖 , and
𝜋𝑖

(
𝑓𝜃3 (·)

)
refers to the prediction score of item 𝑖 after the softmax

normalization 𝜋 (·) over the output of 𝑓𝜃3 (·). Intuitively, Eq. (8)
calculates the reconstruction probability of drawing 𝒅 from the
multinomial distribution by sampling 𝑁 times, where 𝑁 =

∑𝐼
𝑖=1 𝑑𝑖 .

3.1.3 COROptimization. To summarize, wemaximize the ELBO
in Eq. (3c) to optimize the parameters of COR (i.e., 𝜙 and 𝜃 =

{𝜃1, 𝜃2, 𝜃3}) through stochastic gradient descent. To enable the
back-propagation of gradients through the sampling operations,
we leverage the reparametrization trick [17, 19]. In addition,
following [19, 22], we also introduce the KL annealing [19] with a
hyper-parameter 𝛽 to restrict the regularization of KL divergence.
Formally, the ELBO objective for user 𝑢 is:
E𝑞𝜙 (𝒆2 |𝒅,𝒆1) [log𝑝𝜃 (𝒅 |𝒆1, 𝒆2)] − 𝛽 · KL(𝑞𝜙 (𝒆2 |𝒅, 𝒆1)∥𝑝 (𝒆2)) . (9)

During training, the overall objective is calculated by averaging the
ELBO over all users. In the inference stage, COR will rank items by
𝒅 ′ = 𝑓𝜃3 (𝒛1, 𝒛2) and recommend the top-ranked items.

3.2 Causal Inference for OOD Recommendation
We have introduced the VAE for causal modeling of the interaction
generation procedure. Next, we elaborate how to infer the post-
intervention interaction probability 𝑝 (𝒅 ′ |𝒆′1, 𝒆2) (i.e., 𝑃 (𝐷 |𝑑𝑜 (𝐸1 =

𝒆′1), 𝒆2)). A straightforward way is first feeding 𝒅 and 𝒆′1 into the
encoder 𝑔𝜙 (·) to sample 𝒆2; and then feeding 𝒆′1 and 𝒆2 to the
decoder to calculate 𝒅 ′.
• Counterfactual Inference. Nevertheless, the straightforward
solution faces the risk to bring in the bad effect of 𝒅 (i.e., impact
of out-of-date interactions) when inferring 𝒆2 because the encoder
takes historical interactions as inputs (i.e., 𝑔𝜙 (𝒅, 𝒆′1)). To avoid such
out-of-date information in conflict with the changed feature 𝒆′1, we
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Figure 4: Illustration of counterfactual inference.

cut off the bad effect from 𝒆2 to 𝒛1, while reserving the good effect
from 𝒆2 to 𝒛2 because 𝒛2 is not affected by 𝑑𝑜 (𝐸1 = 𝒆′1) according
to the causal graph and should be stable in the OOD environment.
Towards the goal, we propose a counterfactual inference strategy,
which imagines what the predicted user interactions 𝐷 would be if
𝑍1 were not affected by 𝒅. According to the three-step definition of
counterfactual inference (cf. Theorem 7.1.7 in [25]), we design the
inference strategy as:
• Abduction: estimate 𝒛2 based on the factual 𝐷 = 𝒅 as shown in
Figure 4(a), which reserves the good effect of 𝒅.

• Action: conduct𝑑𝑜 (𝐷 = 0) to estimate 𝒆′2 and 𝒛
′
1 as in Figure 4(b).

𝑑𝑜 (𝐷 = 0) means an empty interaction history5, and 𝒛′1 is thus
free from the impact of out-of-date interactions 𝒅.

• Prediction: use 𝒛′1 and 𝒛2 to compute the interaction probability
𝒅 ′ = 𝑓𝜃3 (𝒛′1, 𝒛2) as illustrated Figure 4(c).
We summarize the detailed inference process in Algorithm 1.

3.3 Fine-tuning for Fast Adaptation
We then consider the model adaptation once new user interactions
are collected from the OOD environment. Our key belief to pursue
fast adaptation is in reusing the unchanged user representations to
the greatest extent. According to the causal graph in Figure 2,𝑍2 will
not be affected by the shifts of 𝐸1. In this light, we reuse𝑍2 and only
fine-tune the VAE networks to update 𝑍1. Moreover, the functions
in the VAE are built upon causal relationships. As indicated by
previous research [32], these functions are inherently more stable
under the intervention and require less data to adjust the deviation
of the parameters from the IID to OOD environments [3, 32].

3.4 COR with Fine-grained Causal Graph
We additionally consider the situation that the fine-grained causal
graph between 𝐸1, 𝐸2, and 𝑍1 is available, for example, income
affects the user preference over price and brand rather than
size as shown in Figure 5(a). Although the fine-grained causal
graph is usually hard to acquire, it might be constructed by
expert experience [25]. Undoubtedly, such causal relationships
are beneficial for OOD generalization [32, 47]. In this light, we
further extend COR to incorporate them into the decoder when
estimating 𝑝 (𝒛1 |𝒆1, 𝒆2). In particular, we replace the MLP 𝑓𝜃1 (·)
with a Neural Causal Models (NCM) [47], which can encode the
fine-grained causal relationships.
5Note that counterfactual inference is not equal to totally discarding user interactions
because we use unchanged 𝒛2 . Besides, 𝑑𝑜 (𝐷 = 0) can be improved by keeping the
most recent interactions, which is left for future exploration.
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Figure 5: Illustration of fine-grained causal graph and NCM.

We assume that a factor in 𝒛1 aligns with the preference over
an item feature (e.g., price). As to one factor in 𝒛1, NCM takes the
sum of its parents’ representations based on the causal graph. As
shown in Figure 5(b), the representations of income, age, and 𝒆2 are
summed for the preference over price. We then feed the sum to an
MLP to predict𝑍1. Note that we don’t have explicit supervision over
the alignment between 𝒛1 and the preference over item features,
which is learned implicitly based on the fine-grained causal graph
during training. Besides, the MLP is shared across all factors in 𝒛1
to reduce the number of parameters. NCM can be injected into the
COR framework without altering other components.

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following research questions:
• RQ1: How does COR perform in the OOD generalization task as
compared to baselines?

• RQ2: How effective is the fine-tuning of COR on fast adaptation?
• RQ3: How do the different components (e.g., counterfactual
inference and fine-grained causal graph) affect the performance?

4.1 Experimental Settings
Datasets.We conduct experiments on one synthetic dataset and
two real-world ones. As shown in Figure 6, we construct the
synthetic dataset by following the user interaction generation
process in the real world. Specifically,
1) User/item feature sampling: we assume 1,000 users and 1,000

items, where each user has an observed feature (i.e., income) and
ten unobserved ones while each item has eight observed features
(i.e., type (2), brand (4), and price(2)) and two unobserved ones.
The unobserved user/item features are drawn from the standard
GaussianN(0, 1) [19] while user income is drawn fromN(−1, 1).
As to observed item features, type (shoe and phone), brand (Nike
and Apple), and price (high and low) are discrete variables in
{0, 1} and sampled from Bernoulli distributions based on some
causal relationships between item features. For example, Apple
and phone easily lead to high price.

2) User preference estimation: after the sampling of user features,
we assume the fine-grained causal relationships from user
features to preference based on prior knowledge [25], such as a
positive effect of income on the preference over high price. We
have two types of relationships: positive and negative ones. They
take the sum of user features by positive/negative weights to
calculate user preference, where a sigmoid function is used after
the sum to increase the non-linear complexity in the relationships.

Table 1: Statistics of the three datasets. Note that “int.”
denotes “interactions”.
Dataset #User #Item #IID int. #OOD int. Density
Synthetic data 1,000 1,000 145,270 112,371 0.257641
Meituan 2,145 7,189 11,400 6,944 0.001189
Yelp 7,975 74,722 305,128 99,525 0.000679
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Sample fromBern(0.7)

Item feature
Figure 6: Illustration of constructing synthetic data.

Given user features, we then sample the ten-dimension user
preference, i.e., the preference over eight item features (8) and
unknown preference (2).

3) User interaction sampling: once we obtain user preference 𝒛
and item features 𝒊, we can calculate user-item relevance 𝑟 by
𝑟 = 𝑆 (𝒛𝑇 𝒊) where 𝑆 (·) is the sigmoid function. Next, we sample
the interaction data from a Bernoulli distribution 𝐵𝑒𝑟𝑛(𝑟 ) [30].

4) OOD data collection: to collect user interactions in the OOD
environment, we re-sample the income fromN(1, 1) for each user,
which significantly differs from the original income. Thereafter,
we keep item features fixed and repeat the previous step 2 and 3
to sample new user interactions.
More details on the synthetic dataset are available in Appendix

A.1. Besides, we also use two real-world datasets.
• Meituan is a public food recommendation dataset6 with rich
user/item features, such as user consumption level and food
price. We consider the shifts of average consumption levels
from weekdays to weekends as the drifted user feature, where
many users have a higher/lower consumption in weekends than
that of weekdays. Thus the user interactions (i.e., purchases)
in weekdays and weekends are regarded as IID and OOD
interactions, respectively.

• Yelp is a popular restaurant recommendation dataset7 where we
treat the user location as the shifted feature. We first select the
users with shifted locations (e.g., state changes from Florida to
Michigan). We then sort user ratings by timestamps, and divide
them into two parts based on the changed state feature, where
the two parts are used as IID and OOD interactions, respectively.
We only treat the interactions with ratings ≥ 4 as positive

samples [38, 45]. For the IID or OOD interactions in each dataset,
we separately split them into IID/OOD training, validation, and test
sets by the ratio of 80%, 10%, and 10%. The fine-grained causal graph
between 𝐸1, 𝐸2, and 𝑍1 is available in the synthetic data while it is
unknown in the two real-world datasets. The statistics of the three
datasets are shown in Table 1.
6https://www.biendata.xyz/competition/smp2021_2/.
7https://www.yelp.com/dataset.

https://www.biendata.xyz/competition/smp2021_2/.
https://www.yelp.com/dataset.


Table 2: The comparison of OOD generalization performance between the baselines and COR on the three datasets. %improve.
represents the relative improvement achieved by COR over the best results of the baselines. The best results are highlighted in
bold while the second best ones are underlined.

Dataset Synthetic Data Meituan Yelp
IID/OOD tests IID OOD IID OOD IID OOD
Metric R@20 R@10 R@20 N@10 N@20 R@50 R@50 R@100 N@50 N@100 R@50 R@50 R@100 N@50 N@100
FM 0.3666 0.0572 0.1074 0.0604 0.0792 0.0846 0.0121 0.0205 0.0043 0.0057 0.1228 0.0964 0.1389 0.0313 0.0385
NFM 0.3629 0.0405 0.0761 0.0438 0.0560 0.0825 0.0233 0.0354 0.0066 0.0085 0.1222 0.0829 0.1276 0.0241 0.0316
MultiVAE 0.3693 0.0208 0.0408 0.0172 0.0257 0.1054 0.0238 0.0368 0.0069 0.0091 0.1399 0.0365 0.0582 0.0118 0.0154
MacridVAE 0.3573 0.0231 0.0392 0.0192 0.0262 0.1163 0.0219 0.0364 0.0067 0.0090 0.1526 0.0408 0.0634 0.0135 0.0174
MacridVAE+FM 0.3648 0.0463 0.0836 0.0513 0.0643 0.1219 0.0233 0.0364 0.0066 0.0087 0.1536 0.0407 0.0626 0.0140 0.0178
COR 0.3628 0.0767 0.1443 0.0804 0.1056 0.1159 0.0368 0.0578 0.0101 0.0135 0.1539 0.1416 0.1986 0.0500 0.0595
%Improve. -0.57% 34.09% 34.36% 33.11% 33.33% -4.92% 54.62% 57.07% 46.38% 48.35% 0.20% 46.89% 42.98% 59.74% 54.55%

Baselines.We compare COR with several competitive methods:
• FM [27] andNFM [14] are themost representative feature-based
recommender models, which can use the shifted user features
for OOD recommendation.

• MultiVAE [19]. We adopt the VAE-based method, MultiVAE,
which also considers the interaction generation procedure but
ignores causal relationships (𝐸1, 𝐸2) → (𝑍1, 𝑍2) → 𝐷 .

• MacridVAE. This is a representative method of disentangled rec-
ommendation, which learns the hierarchical user representations
from historical interactions.

• MacridVAE+FM. Since MacridVAE neglects the user features,
we enhance it by linearly combining the prediction scores of
MacridVAE and FM in a late-fusion manner for re-ranking.

Evaluation. For a fair comparison, we tune the hyper-parameters
of COR and baselines via the IID validation data in the task of OOD
generalization because user interactions in OOD environments
are unavailable; while for fast adaptation, OOD validation data is
applied. The details on the hyper-parameter tuning are presented in
Appendix A.3. To compare the performance, we adopt two popular
metrics, Recall@𝐾 (R@𝐾) and NDCG@𝐾 (N@𝐾) [46]. They are
used under the all-ranking protocol [41], which evaluates the top-𝐾
items selected from all items that are not interacted by the users.
For the synthetic data, 𝐾 is set as 10 and 20 while 𝐾 is reported as
50 and 100 in Meituan and Yelp due to the large amount of items.

4.2 Overall Performance (RQ1 & RQ2)
4.2.1 OOD Generalization. We train the baselines and COR on
IID interactions and evaluate their performance on both IID and
OOD tests, whose results on the three datasets are reported in Table
2. We omit more results on the IID tests with similar trends due to
space limitation. From Table 2, we have the following observations:
• The performance drops sharply from the IID test to OOD test
on the three datasets, which is due to the significant distribution
shifts in OOD environments. Besides, the results of different
methods are very close on the IID test while the variance is large
under the OOD test. This indicates that the recommender models
have comparable representation capability in IID environments,
but the OOD generalization abilities are quite different.

• COR consistently yields superior performance on the three OOD
tests with comparable or slightly better performance on the IID
test. Table 2 shows that the relative improvements of COR over
the best baseline on OOD settings are higher than 30% across

the three datasets. The high OOD performance validates the
strong generalization ability of COR under user feature shifts.
This makes sense because COR resorts to causal modeling of
the interaction generation procedure and estimates the post-
intervention interaction probability. Besides, COR is unaffected
by the out-of-date interactions due to counterfactual inference.

• FM and NFM outperform VAE-based methods w.r.t. OOD
performance on the synthetic data and Yelp while having inferior
OOD performance on Meituan. The reason is that the feature
shifts are more significant on the synthetic data (i.e., income) and
Yelp (i.e., location) while the changes of user consumption levels
on Meituan are smaller. As such, feature-based baselines (i.e., FM
and NFM) have larger advantages on the datasets with notable
feature shifts. In contrast, MultiVAE and MacridVAE perform
better when there exist little feature shifts due to the superiority
of modeling the interaction generation procedure [22].

• MacridVAE surpasses MultiVAE in most cases, especially on the
OOD tests with large feature shifts, which is consistent with
the claims in [22]. This observation justifies the rationality of
learning disentangled representations: if a user feature changes,
only partial representations need to be updated. In addition,
the OOD performance of MacridVAE+FM is usually between
MacridVAE and FM, illustrating that the simple fusion of multiple
recommender models cannot effectively enhance the OOD
generalization ability.

4.2.2 Fast Adaptation. To evaluate the ability of fast adaptation,
we assume that the OOD validation set and a small proportion
of OOD training data are available during training. As such, we
fine-tune the well-trained models by partial OOD training data and
select the best model for OOD tests via OOD validation data. For
COR, we reuse 𝑍2 and only optimize the VAE parameters to update
𝑍1. The results w.r.t. the interaction proportion varying from 0%
to 30% are provided in Figure 7. The performance on Meituan is
similar to that of Yelp, which is moved to Appendix A.2.

By comparing the performance, we observe the followings.
1) COR achieves better OOD performance by using less user
interactions, especially on the sparse real-world datasets, which
verifies the effectiveness of causal modeling and reusing 𝑍2 on fast
adaptation. 2) The performance difference among different methods
is gradually decreasing as the proportion increases, particularly
on the dense synthetic data (cf. Table 1). This is rational because
more user interactions will make the OOD environment become
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Figure 7: Fine-tuning performance of the baselines and COR w.r.t. different proportions of new user interactions collected from
the OOD environment. We omit the performance of MacridVAE+FM because it is between the results of MacridVAE and FM.

Table 3: OOD performance of COR with (w/) and without
(w/o) counterfactual inference on the three datasets.

OOD test Variants R@10 R@20 N@10 N@20
Synthetic

Data
w/o CI 0.0401 0.0757 0.0416 0.0536
w/ CI 0.0767 0.1443 0.0804 0.1056

OOD test Variants R@50 R@100 N@50 N@100

Meituan w/o CI 0.0294 0.0545 0.0080 0.0121
w/ CI 0.0368 0.0578 0.0101 0.0135

Yelp w/o CI 0.1383 0.1960 0.0489 0.0585
w/ CI 0.1416 0.1986 0.0500 0.0595

Table 4: Effect of the fine-grained causal graph (FGCG).
Variants R@10 R@20 N@10 N@20

IID test w/o FGCG 0.2192 0.3494 0.3688 0.3649
w/ FGCG 0.2318 0.3628 0.3976 0.3856

OOD test w/o FGCG 0.0587 0.1114 0.0687 0.0874
w/ FGCG 0.0767 0.1443 0.0804 0.1056

a new IID environment and the representation capacity of these
methods in IID environments is comparable, which is consistent
with the findings in Table 2. Besides, the quicker increase on
the synthetic data is because this dataset is more dense and its
interaction pattern is clearer. 3) MacridVAE and MultiVAE have the
sharper performance rise than FM and NFM on Meituan and Yelp.
This is attributed to that FM and NFM are user-based recommender
models [14], and thus their embeddings are more affected by the
out-of-date interactions.

4.3 In-depth Analysis (RQ3)
To further explore COR, we design ablation experiments, case
studies, and the visualization of user and item representations.

4.3.1 Ablation Study. We conduct ablation studies to analyze the
effects of counterfactual inference and fine-grained causal graph.
•Ablation of Counterfactual Inference.We disable the strategy
of counterfactual inference by using 𝐷 = 𝒅 instead of 𝐷 = 0 to
estimate 𝑍1 during the inference stage. The results of COR with
counterfactual inference (i.e., w/ CI) and without it (i.e., w/o CI) are
summarized in Table 3. From the table, we can find that the OOD
performance consistently decreases when counterfactual inference
is disabled, which is possibly due to counterfactual inference
blocking the effect of out-of-date interactions 𝒅 on 𝑍1, and thus
preventing COR from recommending inappropriate items.

0.22
0.11 0.12 0.1

0.78
0.89 0.88 0.9

0.77

0.47

0.12

0.81

0.23

0.53

0.88

0.19

0
0.2
0.4
0.6
0.8
1

IID OOD IID OOD IID OOD IID OOD
Ra

tio
Test Set FM MacridVAE COR

High Price Low Price

Figure 8: Visualization of the recommendations changed
from IID to OOD environments.

• Ablation of Fine-grained Causal Graph (FGCG). We assume
that the fine-grained causal graph between 𝐸1, 𝐸2, and 𝑍2 is
unavailable on the synthetic dataset to analyze its effect. From
the results in Table 4, we observe that: 1) the performance drops
on both IID and OOD tests if FGCG is removed, which verifies its
effectiveness. An explanation is that FGCG provides fine-grained
effects of user features, leading tomore accurate preference learning.
2) As compared to the IID test, the relative performance decrease
is larger on the OOD test, partly validating the superiority of
using causal relationships on OOD generalization. 3) The OOD
performance without FGCG still surpasses the best baseline in Table
2, highlighting that the significant improvement on the synthetic
dataset is not just attributed to FGCG. Instead of NCM, the MLP
𝑓𝜃1 (·) also shows promising OOD generalization ability.

4.3.2 Case Study. To illustrate how COR achieves notable OOD
performance, we analyze the recommendation results of different
methods for some users on the synthetic dataset. Specifically,
we select 477 low-income users who have an income increase
larger than a threshold (i.e., 2) in the OOD environment. We then
separately collect their positive items in the IID/OOD tests and the
recommended top-20 items by representative FM, MacridVAE, and
COR to visualize the item distribution over different prices.

From Figure 8, we find a dramatic preference increase over the
high-price items from IID to OOD tests. As to the results of FM,
MacridVAE, and COR, the observations are as follows. 1) All of
them recommend a large proportion of low-price items to these
low-income users in the IID environment, which explains the
excellent performance on the IID test. 2) For OOD recommendation,
MacridVAE has the same recommendations as the IID one because



Figure 9: Visualization of user representations varying from
IID to OOD environments. Best view in color.

it does not utilize the shifted user feature. FM recommends more
high-price items by using user features but still suffers from the out-
of-date interactions, causing many recommendations of low-price
items. In contrast, the proportion of high-price items recommended
by COR is the most similar to that of the OOD test. This highlights
that COR not only captures the invariant causal relationships from
income to the preference over price, but also mitigates the effect of
out-of-date interactions.

For further analysis, we visualize the user/item representations of
COR by t-SNE [34] in Figure 9. We take the weights in the last layer
of 𝑓𝜃3 (·) as the item representations, and treat the vector obtained
from 𝒛1 and 𝒛2 via a fully-connected layer as user representation.
Three low-income users who have significant income increases
in the OOD environment are randomly selected for visualization.
From Figure 9, we find that: 1) high-price and low-price item
representations are well disentangled, and 2) user representations
move closer to high-price items in the OOD environment, which
intuitively explains the superior OOD performance of COR.

5 RELATEDWORK
Causal Recommendation. Data-driven recommender systems
have achieved great success in alleviating the issue of information
overload [8, 21]. However, they usually assume the IID assumption
and amplify the bias in training data [5, 39], which might
induce unfairness [1, 7], cause filter bubbles [12], and decrease
the generalization ability in OOD environments [32]. So far,
many researchers have tried to incorporate causality into deep
learning [9, 10, 52]. As to causal recommender models [4, 58], they
are mainly based on two causal frameworks: potential outcome
framework [29] and structural causal models [25]. For the potential
outcome framework, twomost representative techniques are inverse
propensity scoring [30] and doubly robust [42], which are widely
used to debias explicit [31] and implicit feedback [54] for unbiased
recommendation. As to structural causal models, existing work
usually scrutinizes the causal relationships via causal graph and
utilizes intervention [39, 55] or counterfactual inference [40, 44,
53, 58] to estimate causal effect [26] for debiasing, fairness, and
explanation. Nevertheless, previous causal methods ignore the
OOD recommendation issue of data-driven models, leading to poor
generalization in the OOD environments.

Disentangled Recommendation. Existing work on disentangled
recommendation learns factorized user/item representations to
capture the complex factors behind user-item interactions [6,
22], where disentangled representations are more robust to
distribution shifts. In particular, previous studies either utilize
the VAE framework for disentanglement [22, 24, 35] or encourage
the independence of multiple user representations in traditional
recommender models [15, 23, 41, 43]. For example, MacridVAE [22]
learns hierarchical representations from historical interactions:
high-level user intention and low-level user preference. However,
these studies neglect causality and heavily depend on the anti-
causal modeling from 𝐷 to (𝑍1, 𝑍2) for representation learning,
thus suffering from the issue of out-of-date interactions.

Model Adaptation in Recommendation. Distribution shifts
widely exist in the recommendation scenarios. The popular solution
is model re-training [28] while it needs sufficient new interactions
and training time [56]. To tackle this, model adaption has been
proposed to improve the adaptation ability by using less data in
the tasks of cross-domain recommendation [57] and cold-start
problem [50]. Technically, model adaption is usually implemented
by parameter patch [33, 50], feature transformation [20], and
meta learning [18, 49]. However, different from cross-domain
recommendations, OOD recommendation in this work focuses
on the items in a single domain with user feature shifts in OOD
environments. Besides, only partial user features and preference
are changed, which differs from the cold-start problem with new
users/items. Therefore, how to improve the OOD generalization and
fast adaption abilities of recommender models under user feature
shifts is still untapped to date.

6 CONCLUSION AND FUTUREWORK
In this work, we formulated the OOD recommendation problem
from a causal view, where user feature shifts are formulated
as intervention and OOD recommendation aims to estimate
the post-intervention interaction probability. Furthermore, we
developed two objectives for OOD recommendation: strong OOD
generalization and fast adaptation. To this end, we inspected the
generation procedure from features to interactions and proposed a
novel COR framework to perform causal modeling of the procedure.
Based on the COR framework, we conducted post-intervention
inference and utilized counterfactual inference to mitigate the
effect of out-of-date interactions. Moreover, a fine-tuning strategy is
applied for fast adaptation. Extensive experiments on three datasets
validate the effectiveness and rationality of incorporating causal
representation learning for OOD generalization and fast adaptation.

This work makes the initial attempt to explore OOD
recommendation by causal representation learning, leaving many
promising directions to future work. Specifically, 1) it is non-trivial
to study the shifts of unobserved user features, and hence the
performance of COR on unobserved shifts should be explored. 2)
This work ignores the causal relationships among user features and
the relationships among different user preference. How to uncover
these fine-grained causal relationships for better recommendation
is valuable. 3) An effective way of incorporating item features into
COR is worth studying because they might help to capture user
preference over item categories.
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A APPENDIX
A.1 Synthetic Data Construction
In this section, we detail the construction of the synthetic dataset,
which covers four steps: 1) user/item feature sampling, 2) user
preference estimation, 3) user interaction sampling, and 4) OOD
data collection. Before explaining the construction algorithm, we
introduce some concepts and notations. Specifically,
• 𝑈 and 𝐼 are the numbers of users and items, respectively.
• 𝒆1 ∈ R𝐻1 and 𝒆2 ∈ R𝐻2 denote the observed and unobserved
features of user 𝑢, respectively.

• 𝒊1 ∈ R𝐻3 and 𝒊2 ∈ R𝐻4 denote the observed and unobserved
features of item 𝑖 , respectively.

• 𝒛1 ∈ R𝐻3 and 𝒛2 ∈ R𝐻4 represent the preference of user𝑢, where
[𝒛1, 𝒛2] aligns with [ 𝒊1, 𝒊2].

• 𝝀 ∈ R𝐻3 denotes the parameters of the Bernoulli distribution for
𝒊1, which has some correlations defined by prior knowledge. For
example, some brands are easy to produce high-price items.

• 𝜇1 (𝒆1, 𝒆2) is a structural function to calculate the mean of 𝒛1
based on the causal relationships from 𝒆1 and 𝒆2 to 𝒛1. Similarly,
we have 𝜇2 (𝒆2) for 𝒛2.

Thereafter, we present the construction algorithm in Algorithm 2.
The implementation details on the hyper-parameters and structural
functions can be found in the released code.

Algorithm 2 Synthetic Data Construction
Input: 𝑈 , 𝐼 ; the dimension hyper-parameters 𝐻1, 𝐻2, 𝐻3, and 𝐻4;

parameter 𝝀; structural functions 𝜇1 (·) and 𝜇2 (·).
1: for each user 𝑢 in {1, 2, ...,𝑈 } do ⊲ User feature sampling
2: draw 𝒆1 from N(−1, I𝐻1 );
3: draw 𝒆2 from N(0, I𝐻2 );
4: end for
5: for each item 𝑖 in {1, 2, ..., 𝐼 } do ⊲ Item feature sampling
6: draw 𝒊1 ∈ R𝐻3 from Bern(𝝀);
7: draw 𝒊2 from N(0, I𝐻4 );
8: end for
9: for each user 𝑢 in {1, 2, ...,𝑈 } do ⊲ User preference estimation
10: draw 𝒛1 ∈ R𝐻3 from N(𝜇1 (𝒆1, 𝒆2), diag{0.05});
11: draw 𝒛2 ∈ R𝐻4 from N(𝜇2 (𝒆2), diag{0.05});
12: end for
13: for each user 𝑢 in {1, 2, ...,𝑈 } do ⊲ User interaction sampling
14: obtain 𝒛 = [𝒛1, 𝒛2];
15: for each item 𝑖 in {1, 2, ..., 𝐼 } do
16: obtain 𝒊 = [ 𝒊1, 𝒊2];
17: calculate 𝑟 = 𝑆 (𝒛𝑇 𝒊); ⊲ 𝑆 (·) is a sigmoid function
18: sample the interaction (i.e., 0/1) from Bern(𝑟 );
19: end for
20: end for
21: collect the interaction matrix over all users and items 𝑹.
22: for each user 𝑢 in {1, 2, ...,𝑈 } do ⊲ OOD data collection
23: sample 𝒆1 from N(1, I𝐻1 );
24: end for
25: keep 𝒆2, 𝒊1, and 𝒊2 fixed and repeat line 9-21 to collect the

interaction matrix 𝑹 ′.
Output: Interaction matrices 𝑹 and 𝑹 ′.

A.2 Fine-tuning on Meituan
We present the fine-tuning results of different methods on Meituan
in Figure 10, from which we have the findings similar to Yelp.
Furthermore, we see that: 1) VAE-based methods are more sensitive
to OOD training data, especially regarding NDCG. This reflects that
they can quickly adapt to the OOD environments by using less data.
2) FM shows inferior performance on Meituan, possibly because
the causal relationships from user features to preference are more
complex so that simple linear models cannot fit them well.
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Figure 10: Fine-tuning performance on Meituan.

A.3 Hyper-Parameter Settings
Based on the default settings of baselines, we enlarge their hyper-
parameter search scope and tune hyper-parameters as follows:
• FM [27]/NFM [14]. We tune the learning rate and normalization
coefficient in {0.005, 0.01, 0.05} and {0, 0.1, 0.2}, respectively. The
hidden size is searched in {32, 64, 128, 512, 1024}. The negative
sample number for each positive one is chosen from {1, 10, 30, 50}.

• MultiVAE [19]. We follow the default settings, and additionally
search the learning rate, weight decay, dropout ratio, hidden size,
regularization parameter 𝛽 in {0.0001, 0.001, 0.01}, {0, 0.01, 0.05},
{0.4, 0.5, 0.6}, {[200 → 600 → 200], [500 → 800 →
500], [1000 → 1200 → 1000], [2000 → 5000 → 2000]}, and
{0.1, 0.2, ..., 1.0}, respectively.

• MacridVAE. In addition to the hyper-parameter searched in
MultiVAE, we choose the number of macro factors and the scaling
coefficient 𝜏 in {2, 10, 20} and {0.05, 0.1, 0.2}, respectively.

• MacridVAE+FM. The linear hyper-parameter for fusion is tuned
in {0.1, 0.2, ..., 0.9}.
As to the implementation of COR, we implement it by PyTorch

and utilize Adam [16] with the early stopping strategy [55] for
optimization. The learning rate is set as 0.001 and the batch size is
500. Besides, the weight decay, dropout ratio, KL coefficient 𝛽 , and
sample number 𝐿/𝑀 are searched in {0, 0.01, 0.05}, {0.4, 0.5, 0.6},
{0.1, 0.15, ..., 1.0}, and {1, 3, 5, 10}, respectively. Furthermore, the
𝐸2 size is chosen from {20, 100, 400, 1000} while the sizes of 𝑍1
and 𝑍2 are tuned in {10, 20, 100, 300}. The MLP network 𝑔𝜙 (·)
is tuned in {[1000], [2000] ..., [5000], [1200, 1000]}. Besides, 𝑓𝜃1 (·),
𝑓𝜃2 (·), and 𝑓𝜃3 (·) are implemented by the fully-connected layer to
save parameters, whose sizes are determined by the dimensions of
𝐸1, 𝐸2, 𝑍1, and 𝑍2. More details are available in the released code.
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