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ABSTRACT
Graph anomaly detection (GAD) suffers from heterophily — ab-
normal nodes are sparse so that they are connected to vast nor-
mal nodes. The current solutions upon Graph Neural Networks
(GNNs) blindly smooth the representation of neiboring nodes, thus
undermining the discriminative information of the anomalies. To
alleviate the issue, recent studies identify and discard inter-class
edges through estimating and comparing the node-level represen-
tation similarity. However, the representation of a single node can
be misleading when the prediction error is high, thus hindering the
performance of the edge indicator.

In graph signal processing, the smoothness index is a widely
adopted metric which plays the role of frequency in classical spec-
tral analysis. Considering the ground truth Y to be a signal on
graph, the smoothness index is equivalent to the value of the
heterophily ratio. From this perspective, we aim to address the
heterophily problem in the spectral domain. First, we point out
that heterophily is positively associated with the frequency of a
graph. Towards this end, we could prune inter-class edges by sim-
ply emphasizing and delineating the high-frequency components
of the graph. Recall that graph Laplacian is a high-pass filter, we
adopt it to measure the extent of 1-hop label changing of the cen-
ter node and indicate high-frequency components. As GAD can
be formulated as a semi-supervised binary classification problem,
only part of the nodes are labeled. As an alternative, we use the
prediction of the nodes to estimate it. Through our analysis, we
show that prediction errors are less likely to affect the identifica-
tion process. Extensive empirical evaluations on four benchmarks
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demonstrate the effectiveness of the indicator over popular ho-
mophilic, heterophilic, and tailored fraud detection methods. Our
proposed indicator can effectively reduce the heterophily degree of
the graph, thus boosting the overall GAD performance. Codes are
open-sourced in https://github.com/blacksingular/GHRN.
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1 INTRODUCTION
Anomaly detection is the task of identifying some rare objects (aka.
anomalies) that deviate significantly from the majority of the cor-
pus data (aka. normals) [27]. These objects carry vital information
to support the analysis of fraudsters’ behaviors. Hence anomaly
detection has attracted considerable attention, such as identifying
spam in reviews [12, 14, 15], misinformation in social networks [7],
and frauds in financial transactions [24]. In the Web era, rich rela-
tionships between abnormal and normal objects become ubiquitous,
which can be naturally organized as graphs [12]. Wherein, nodes
represent these objects, and edges interpret their relationships. On
such graphs, graph anomaly detection (GAD) is formulated as the
semi-supervised classification problem, i.e., transferring the discrim-
inative information learned from a fraction of labeled anomalies
to the vast remaining test data. As graph neural networks (GNNs)
are powerful tools to address this issue, there has been interest in
leveraging GNNs to solve GAD problems.

However, recent works [12, 24] realize that anomalies tend to
have a high edge heterophily degree. Heterophily [32] indicates
the phenomenon that edges connect the nodes from different classes
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Figure 1: The Frequency Component Visualization, where
the heatmap value indicates the probability of an anomaly
node. The amplitude of each frequency component (𝜆𝑘 ) is
measured by the corresponding Spectral Energy Distribution
introduced on Page 4.

(i.e., the anomaly and normal classes). Due to GAD’s class imbal-
ance nature, anomalies are always submerged in huge amounts of
the normal neighborhood. As the plain GNNs force the representa-
tion of neighboring nodes to be similar, they could undermine the
discriminative information of the anomalies. As shown in Figure
1(b), with the existence of inter-class edges, the decision boundary
between the two classes becomes closer after aggregation through
the plain GNNs (i.e., low-pass filter). We attribute this performance
degradation to the false mixing of nodes in different classes, which
makes the anomalies indistinguishable and inundates the crucial
cues from them. Hence it is of great importance to address the het-
erophily problem in GAD. Note that heterophily edges connect the
nodes in different classes, for the rest of the paper, we use inter-class
edges and heterophily edges interchangeably.

To alleviate the issue, the key lies in designing different strate-
gies for homophilic connections and heterophilic connections [34,
36] or pruning inter-class edges directly [12, 24]. Several models
[9, 12, 16, 23, 24, 34, 47] have been proposed, which can be roughly
categorized into spatial and spectral branches. In the spatial do-
main, GNN models adopt multifarious mechanisms to delete the
inter-class edges, including: graph attention mechanism [9, 23],
task-specific optimization objectives [16], edge prediction models
[16, 47], to name a few. However, most of the methods are based
on the node-level representation similarity and are not robust. For
example, in the case of adopting the Manhattan distance of two
predicted representations as the similarity measure, the prediction
error will be accumulated to the final result. Differently, from the
perspective of graph spectrum, spectral GNNs [3, 8, 36] design adap-
tive filters or band-pass filters, and identify connections to which

they assign different weights, regardless of the extent to which the
node labels are homophilic or heterophilic [8]. However, existing
works don’t explicitly exhibit the exact semantics of high-frequency
and low-frequency signals, which results in poor explainability and
generalization. In addition, we show that heterophilic connections
are useless even harmful in GAD, indicating denoising is better
than adapting in this task.

In graph signal processing, the Rayleigh quotient (i.e., X𝑇 LX
X𝑇 X ) de-

fined on the laplacian matrix L and the signal X is widely adopted
as the smoothness index which plays the role of frequency in clas-
sical spectral analysis [35]. As shown in Figure 1, we consider the
ground-truth Y to be a signal on the graph where the smooth index
equals to the heterophily ratio. In Figure 1(a), the anomalies are
submerged in normal nodes, leading to high heterophily and large
smoothness index. Since larger values of the smoothness index indi-
cate faster-changing signals (high-frequency signals), we bridge the
gap between the heterophilic connection and the vertex-frequency.
From this perspective, we seek to explore the opportunity to prune
inter-class edges with the spectral indication in a localized window
of the node, rather than the node itself.

In addition, one recent work [36] discovers the “right-shift” phe-
nomenon that the frequency content shifts to a higher frequency
when the anomaly degree becomes larger. In light of this observa-
tion, a natural question is “Shall heterophily be the implicit factor
bridging the frequency and anomaly degree – The higher the fraction
of the anomalies, the higher the heterophily, the higher the frequency
of the graph?" To validate the assumption, we explicitly represent
heterophily in the spectral domain with the help of the smoothness
index. Once the positive association of heterophily and frequency
is confirmed, we can delete inter-class edges by simply delineating
high-frequency components.

In this paper, we first take a closer look into the negative effect
of heterophily, empirically showing that the GNN performance
monotonically increases with the decrease of heterophily most of
the time. We thus conjecture that a high-frequency edge indicator
is quite useful when addressing heterophily for GAD. To support
this argument, we theoretically prove that heterophily is positively
associated with frequency, hence identifying inter-class edges re-
sorts to extracting high-frequency signals. Guided by this idea, we
propose Graph Heterophily Resistant Network (GHRN), which is
equipped with a label-aware high-frequency indicator. Specifically,
the indicator measures the extent of the 1-hop label changing of the
center node. Due to the inaccessibility of the test node label, without
loss of generality, our analysis of the indicator with the existence
of prediction error shows that it is less likely to be affected. On
four benchmarks, we test the indicator over popular homophilic,
heterophilic, and tailored fraud detection methods, all of which
show a great boost in the overall GAD performance. Our method
can either work in an end-to-end manner, or prune inter-class edges
given a set of reliable predictions and fix the input graph.

Our main contributions can be summarized as:

• We formulate the task of identifying edges between normal nodes
and anomalies for GAD. We find heterophily is useless even
harmful in class-imbalance problems like GAD.

• We explicitly fill the gap between the heterophily in the spatial
domain and the frequency in the spectral domain.
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• We devise a label-aware high-frequency component indicator,
and prove its robustness to prediction error. Extensive empirical
evaluation validates the effectiveness of the method in deleting
heterophilous edges.

2 PRELIMINARIES
In this section, we illustrate the task of GAD. Then we introduce
the heterophily property and graph Fourier transform.

Graph Anomaly Detection. Conventional anomaly detection
techniques always consider isolated data instances while ignoring
the relationship between instances which carries complementary
information [2]. Differently, GAD treats V𝑎 and V𝑛 as two sets
of abnormal and normal nodes respectively, and define the whole
network asG = {V, {E},X}.V is the union of anomaly and normal
nodes (i.e.,V = V𝑛 ∪V𝑎); E stands for edges that either belong to
the same relation or one of the multi-relations; X is the attribute
matrix, each row of which is a 𝑑-dimensional vector representing
the features of the corresponding node.

Typically, anomalies are regarded as positive with label 1, while
normal nodes are negative with label 0 [12, 48]. GNN methods
always cast GAD as a semi-supervised task, that is, given the infor-
mation of the labeled nodesV𝑡𝑟𝑎𝑖𝑛 along with their labels Y𝑡𝑟𝑎𝑖𝑛 ,
the classifier assigns the class Ŷ𝑡𝑒𝑠𝑡 to the unlabeled nodesV𝑡𝑒𝑠𝑡 :

𝑓 (G,Y𝑡𝑟𝑎𝑖𝑛) → Ŷ𝑡𝑒𝑠𝑡 . (1)

Heterophilic Connections. Given a set of labeled nodes along
with the edges between them, the edge is called a heterophilic
connection if its source node and destination have distinct labels
(i.e., abnormal and normal), then the edge heterophily of a node 𝑣
and the graph G could be respectively defined as:

ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣) = 1
|N (𝑣) | |{𝑢 : 𝑢 ∈ N (𝑣), 𝑦𝑢 ≠ 𝑦𝑣}|

ℎ𝑒𝑡𝑒𝑟𝑜 (G) =
∑︁

(𝑖, 𝑗 ) ∈E
I{y𝑖 ≠ y𝑗 }/|E |,

(2)

where |E | is the total number of edges and I is an indicator function.
In GAD, anomalies have high heterophily and normal nodes have
relatively low heterophily thanks to the imbalance nature.

Graph Fourier Transform. Let A be the adjacency matrix, then
graph laplacian L can be expressed as D−A or as I−D−1/2AD−1/2

(symmetric normalized) or as I − D−1A (random walk normalized)
[26], where I is the identity matrix and D is the diagonal degree
matrix. Since L is positive semi-definite and symmetric, it has an
eigendecomposition L = UΛU𝑇 , where Λ = {𝜆1, · · · , 𝜆𝑁 } are eigen-
values and U = [u1, · · · , u𝑁 ] are corresponding unit eigenvectors
[36]. Assume X = [x1, · · · , x𝑁 ] is a graph signal, then we call spec-
trum U𝑇 X as the graph Fourier transform of signal X. In graph
signal processing (GSP), the frequency is associated with Λ [6], thus
the objective of spectral methods is to identify a response function
𝑔(·) on Λ to learn graph representation Z [5]:

Z = 𝑔(L)X = U[𝑔(Λ) ⊙ (U𝑇 X)] = U𝑔(Λ)U𝑇 X (3)

As L have eigenvalues ∈ [0, 2), and A = I − L with 𝑔(Λ) = I − Λ
have eigenvalues ∈ (−1, 1], A and L are treated as low-pass filters
and high-pass filters, respectively [41].

(a) YelpChi (b) T-Finance

Figure 2: GNN Performance w.r.t. Edge Heterophily.

3 METHODOLOGY
In this section, we present the theoretical and empirical support for
our proposed method. We first take a closer look into the influence
of heterophily, finding it is harmful and thus should be reduced.
Assisted by the smooth index defined on the graph Laplacian L and
the ground-truth Y, it is theoretically proved that heterophily is
positively associated with frequency.We emphasize that identifying
inter-class edges resorts to extracting high-frequency signals, in
light of this key finding, we devise a novel model equipped with a
label-aware high-frequency indicator, which measures the extent of
1-hop label changing of the center node. Since our method involves
the ground truth of nodes which is partially masked in the real-
world, as an alternative, we utilize the prediction of the model to
estimate it. Without loss of generality, we verify the effectiveness
of the indicator with the existence of prediction error.

3.1 Heterophily in Spectral Field
Most of GNNs aggregate neighborhood information based on the
inductive bias (aka. homophily assumption) – “connected nodes
tend to have similar labels", hence they are intrinsically low-pass fil-
ters [6, 41]. Apparently, this setting fails when the graph represents
high heterophily, where neighboring nodes have distinct labels.
This problem triggers the emergence of heterophily GNNs [3, 8, 50].
Among the branches, spectral GNNs [8, 36] adaptively learn filters
with appropriate response functions or adopt a band-pass filter to
absorb graph signals with different frequencies.

3.1.1 Influence of Heterophily. Heterophily is known to be harmful
to the aggregation process of GNNs [26] because blindly mixing
the features of nodes in different classes leads the nodes to be indis-
tinguishable. Beyond the GAD scenario, some works [26, 28] find
that the performance curves of GNNs are of “𝑣" shape w.r.t. het-
erophily, which means the performance of GNNs will first increase
then decrease when the heterophily ratio continues to increase.
Intuitively, the worst heterophily occurs around the reciprocal of
the number of classes, and we argue that the intrinsic reason is that
the neighborhood distributions of nodes in distinct classes are the
least distinguishable when their heterophily are similar.

But in GAD, normal nodes naturally have links between each
other, while anomalies are sparse and connected to many normal
nodes. This nature makes both normals and anomalies submerged
in the normal nodes, hence their neighborhood label distributions
tend to be the same. As a result, heterophily is quite harmful for the
detection of anomalies, and the GNN performance should decrease
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with the increase of the edge heterophily. The empirical results
shown in Figure 2 support our argument. We analyze the GNN
performance with different heterophily edge deleting ratios (i.e.,
from 0 to 1). Yelp and T-Finance are two real-world datasets with
heterophily 0.23 and 0.03, respectively. This observation empirically
shows that deleting heterophily edges could achieve an absolute
boost in the overall GAD performance.

3.1.2 Heterophily and Frequency. Previous analysis shows the ne-
cessity to remove inter-class edges. Unfortunately, the ground-truth
labels of test nodes are inaccessible, which limits our capability of
directly deleting inter-class edges. Furthermore, the node-level pre-
diction becomes unreliable when the prediction error is large. Con-
sidering the Manhattan distance of two predicted representations as
the similarity measure, the prediction error will be accumulated to
the final result. Recall that graph Laplacian denotes the local differ-
ence approximation of nodes, based on which the smoothness index
is defined in the form of Rayleigh quotient (i.e., X𝑇 LX

X𝑇 X ). Considering
the one-hot ground-truth Y to be a signal on the graph, the smooth-
ness index is equivalent to the rate of change of the labels, that is,
the value of the heterophily ratio. Hence intuitively, there should
be a relationship between the heterophily in the spatial domain and
the frequency in the spectral domain. Towards this end, we aim to
explore heterophily filtering in the spectral field. To bridge the gap,
we need to efficiently capture the main frequency component of the
ground-truth signal 𝑌 . Here we quantify the frequency distribution
of the signal by introducing the metric below:

Definition 1 (Spectral Energy Distribution [36]) Given the spec-
trum 𝛼 = {𝛼1, 𝛼2, . . . , 𝛼𝑁 }𝑇 of an input signal Y, the spectral energy
distribution at 𝜆𝑘 is:

𝑓𝑘 (Y, L) = 𝛼2
𝑘
/∑𝑁

𝑛=1 𝛼
2
𝑖
, (4)

where 𝑓 is a probability distribution with
∑𝑁
𝑘=1 𝑓𝑘 = 1, L is the

Laplacian matrix of the graph. Since 𝛼𝑘 = u𝑇
𝑘

Y, 𝑓𝑘 (Y, L) measures
the weight of u𝑘 in Y, and a larger 𝑓𝑘 indicates that the spectral
energy concentrates more on 𝜆𝑘 .

Proposition 2 For a binary classification problem, given graph Lapla-
cian L = D − A, and a one-hot input signal Y, the expectation of
spectral energy distribution E[𝑓 (Y, L)] is monotonically increasing
with the heterophily degree of the graph, and also affected by the total
number of edges and nodes in the graph:

E[𝑓 (y, L)] = |E | · ℎ𝑒𝑡𝑒𝑟𝑜 (G)
𝑁

, (5)

where |E | is the total number of edges. The proof based on the
smooth index can be found in Appendix A. In Proposition 2, we
explicitly represent heterophily in the spectral domain. We know
the frequency of the label is positively associated with the graph
heterophily. This interesting finding verifies our conjecture, and
is also consistent with the previous work [6]: a low-pass filter is
empirically obtained for a homophilic graph, while a high-pass filter
should be assigned if the graph is heterophilic. Also, a recent work
[36] finds that 𝑓 shifts following the degree of anomaly, which
is called “right-shift". We further validate the phenomenon and
claim that heterophily is the implicit factor that bridges 𝑓 and the
anomaly degree.

3.2 Heterophily Edge Denoising
3.2.1 Post-aggregation (PA) score. The analysis in Section 3.1.2
shows that a high-pass filter is of importance to detect heterophily
edges. Recall that the eigenvalues 𝜆𝑖 of L exhibits high frequency
of a graph, the 𝑘-th power of the normalized graph Laplacian is
a commonly used high-pass filter. Note that the heterophily of a
node is defined within the 1-hop neighborhood, we then employ
the aggregation of 1-hop neighborhood label distribution as:

S = L̂Y, (6)

where 𝑖-th row of S is called Post-aggregation (PA) similarity score
for node 𝑖 [26]. L̂ is the random walk normalized graph Laplacian
(self-loop added), i.e., L̂ = I − D̃−1Ã, which can be written as:

©­­­­­­«

𝑑1
𝑑1+1 − 1

𝑑1+1 · · · − 1
𝑑1+1

− 1
𝑑2+1

𝑑2
𝑑2+1 · · · − 1

𝑑2+1
.
.
.

.

.

.
. . .

.

.

.

− 1
𝑑𝑁 +1 − 1

𝑑𝑁 +1 · · · 𝑑𝑁
𝑑𝑁 +1

ª®®®®®®¬
where the diagonal elements are L̂𝑖𝑖 =

𝑑𝑖
𝑑𝑖+1 , while non-diagonal

elements are L̂𝑖 𝑗 = − 1
𝑑𝑖+1 if there is an edge between node 𝑖 and

node 𝑗 else 0. Then PA score (i.e., H𝑖 ) can be expressed as:

S𝑖 = 𝑆𝐼𝐺𝑁 ∗ [ 𝑑𝑖

𝑑𝑖 + 1
ℎ𝑒𝑡𝑒𝑟𝑜 (𝑖),− 𝑑𝑖

𝑑𝑖 + 1
ℎ𝑒𝑡𝑒𝑟𝑜 (𝑖)] (7)

where 𝑆𝐼𝐺𝑁 equals 1 and -1 for the normal nodes and anomalies re-
spectively. Inspecting these equations, we have some observations:
(1) The result is proportional to the node heterophily ℎ𝑒𝑡𝑒𝑟𝑜 (𝑖),
which supports the opinion that the high-pass filter emphasizes
node heterophily. (2) Anomalies and the normal nodes have exactly
opposite directions after label aggregation so that the inner product
could reveal the difference between them. (3) The inner product is
proportional to the multiplication of the heterophily of two nodes.
As analyzed before, anomalies have high heterophily while nor-
mal nodes have low heterophily, hence the value rank of the inner
product of the PA score is:

S𝑣∈V𝑎
· S𝑣∈V𝑎

> S𝑣∈V𝑛
· S𝑣∈V𝑛

> 0 > S𝑣∈V𝑎
· S𝑣∈V𝑛

, (8)

from empirical results in Figure 3, we can observe this phenomenon.
We randomly choose 7 nodes from YelpChi and T-Finance datasets
and present their PA score: the row and column mean the node
index, and the heatmap value is the PA score. For a more detailed
version of the heatmap, please refer the Appendix B. This finding
is valuable since we are unlikely to delete anomaly-anomaly edges
when deleting edges with the least similarity scores. Besides, the
heterophily for YelpChi and T-Finance is 0.23 and 0.03, respectively.
As a result, the values of YelpChi are larger than that of T-Finance,
which is consistent with the result in Equation (7).

3.2.2 Under Prediction Error. Typically, in real-world applications,
only part of the labels are available to train the model. In this
case, the PA score cannot be derived directly, since it requires the
ground-truth label of the nodes. As an alternative, we utilize the
prediction of the nodes to estimate it. In this section, we analyze
the influence of prediction error on the similarity score. First, to
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(a) YelpChi PA Score (b) YelpChi Ground Truth (c) T-Finance PA Score (d) T-Finance Ground Truth

Figure 3: Illustration of the ground-truth indicator and the ground-truth label. Considering S𝑖 as the PA score, the rank of the
edge values is S𝑣∈V𝑎

· S𝑣∈V𝑎
> S𝑣∈V𝑛

· S𝑣∈V𝑛
> 0 > S𝑣∈V𝑎

· S𝑣∈V𝑛
.

unify the prediction error to be positive, we define the predicted
label matrix Ŷ under prediction error as:

Ŷ𝑣 =

{[1 − △𝑣, △𝑣], 𝑦𝑣 = 0,
[△𝑣, 1 − △𝑣], 𝑦𝑣 = 1,

(9)

where we denote △𝑣 as the prediction error of node 𝑣 . For easier
expression, we denote PA score S𝑖 and S𝑗 as [𝑆𝑖0, 𝑆𝑖1] and [𝑆 𝑗0, 𝑆 𝑗1]
for the 𝑖-th normal node and the 𝑗-th anomaly, respectively. Fur-
thermore, we denote the expectation of prediction error for each
class as E𝑘 , 𝑘 ∈ {0, 1}. On top of that:

𝑆𝑖0 =
𝑑𝑖

𝑑𝑖 + 1
(1 − △𝑖 ) −

1
𝑑𝑖 + 1

∑︁
𝑗 :𝑦𝑖=𝑦 𝑗 ,𝑖≠𝑗

(1 − △𝑗 ) −
1

𝑑𝑖 + 1

∑︁
𝑘 :𝑦𝑖≠𝑦𝑘

△𝑘

=
𝑑𝑖

𝑑𝑖 + 1
(1 − △𝑖 ) −

𝑑𝑖 (1 − ℎ𝑖 )
𝑑𝑖 + 1

(1 − E0) −
𝑑𝑖ℎ𝑖

𝑑𝑖 + 1
E1

=
𝑑𝑖ℎ𝑖

𝑑𝑖 + 1
(1 − E0 − E1 +

E0 − △𝑖
ℎ𝑖

),
(10)

𝑆𝑖1 = − 1
𝑑𝑖 + 1

∑︁
𝑗 :𝑦𝑖≠𝑦 𝑗

(1 − △𝑗 ) −
1

𝑑𝑖 + 1

∑︁
𝑗 :𝑦𝑖=𝑦𝑘 ,𝑖≠𝑘

△𝑘 + 𝑑𝑖

𝑑𝑖 + 1
△𝑖

= − 𝑑𝑖ℎ𝑖

𝑑𝑖 + 1
(1 − E1) −

𝑑𝑖 (1 − ℎ𝑖 )
𝑑𝑖 + 1

E0 +
𝑑𝑖

𝑑𝑖 + 1
△𝑖

=
𝑑𝑖ℎ𝑖

𝑑𝑖 + 1
(−1 + E1 + E0 −

E0 − △𝑖
ℎ𝑖

),
(11)

where ℎ𝑖 is the node heterophily of node 𝑖 (i.e., ℎ𝑒𝑡𝑒𝑟𝑜 (𝑖)). Similarly,
for anomalies:

𝑆 𝑗0 =
𝑑 𝑗ℎ 𝑗

𝑑 𝑗 + 1
(−1 + E1 + E0 −

E1 − △𝑗

ℎ 𝑗
),

𝑆 𝑗1 =
𝑑 𝑗ℎ 𝑗

𝑑 𝑗 + 1
(1 − E0 − E1 +

E1 − △𝑗

ℎ 𝑗
),

(12)

for a qualified classifier, the sum of average prediction errors should
be less than 1. From the analysis above, we observe: (1) If the pre-
diction error △𝑖 is less than the same class average prediction error,
the signs of PA score should be unaffected. (2) For abnormal nodes,
due to their high heterophily, they are less likely to be affected by
the prediction error. By aggregating the 1-hop neighborhood label
with a high-pass filter, we alleviate the effect of prediction error. To-
wards this end, the inner product between inter-class nodes should
be negative, while that between intra-class nodes is positive.

GNN Pred ෡𝒀𝟏G Indicator E B

𝑮𝒑

⨀ A

GNN

Update

Pred ෡𝒀𝟐Y
Loss

Figure 4: The architecture of the proposed model Graph Het-
erophily Resistance Network (GHRN).

3.2.3 Heterophily Resistant Network. The overall framework is il-
lustrated in Figure 4. GNN encoder encodes the node representation
of the input graph G and gets prediction 𝑌1, according to which the
high-frequency indicator gives edge score E:

E = LŶŶ𝑇 L𝑇 , (13)

From the previous analysis, we know the E value of the heterophilous
edges is larger than that of homophilous edges, which paves the
way for our pruning. We tease out the edges with top-K sampling
and binarize the edge score E to B, based on which we purify the
graph into 𝐺𝑝 :

𝐺𝑝 = {V,B ⊙ A,X}, (14)

𝐺𝑃 shares the same nodes and features with the original 𝐺 , but a
different adjacency matrix. The GNN encoder is then updated with
a new input graph 𝐺𝑃 through cross-entropy loss:

L =
∑︁
𝑣∈V

−𝑙𝑜𝑔(𝑦𝑣 · 𝜎 (𝑦𝑣)). (15)

4 EXPERIMENTS
In this section, we conduct experiments on real-world datasets and
report the results of our models as well as some state-of-the-art
baselines to show the effectiveness of our proposed model. Particu-
larly, we mainly aim to answer the following research questions:

• RQ1: How does the proposed model perform compared to the
homophilous, heterophilous, and SOTA GAD methods?

• RQ2: How does GHRN performs compared to alternative edge
pruning methods? Can it successfully reduce heterophily?

• RQ3: Can the proposed model work well with prediction instead
of the gold label? What’s the effect of prediction error?

• RQ4: Is GHRN sensitive to the hyperparameter deleting ratio r?
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Table 1: Performance Results. The best results of all methods are indicated in boldface, and the best results of each category
(i.e., homophilous, heterophilous, and GAD) are underlined. The T-Social dataset consists of 5 million nodes and up to 100
million edges and is a relatively large dataset. H2GCN needs to operate on the adjacency matrix, leading to the memory issue.
T-finance and T-social only have one single relation, so they are treated as homo. The Hetero and Homo in BWGNN stand for
heterogenous and homogenous respectively.

Method Dataset YelpChi Amazon T-finance T-Social
Metric F1-Macro AUC F1-Macro AUC F1-Macro AUC F1-Macro AUC

Homophilous GNNs

MLP 0.4614 0.7366 0.9010 0.9082 0.4883 0.8609 0.4406 0.4923
GCN [18] 0.5157 0.5413 0.5098 0.5083 0.5254 0.8203 0.6550 0.7012
GAT [37] 0.4614 0.5459 0.5675 0.7731 0.8816 0.9388 0.4921 0.4923
JKNet [44] 0.5805 0.7736 0.8270 0.8970 0.8971 0.9554 0.4923 0.7226

JK-GHRN (Ours) 0.6145 0.7765 0.8756 0.9206 0.9015 0.9559 0.4923 0.7016

GAD Models
CARE-GNN [12] 0.5015 0.7300 0.6313 0.8832 0.6115 0.8731 0.4868 0.7939
PC-GNN [24] 0.6925 0.8118 0.8367 0.9555 0.5322 0.9182 0.4536 0.8917

PC-GHRN (Ours) 0.7082 0.8230 0.8855 0.9519 0.6177 0.9238 0.6218 0.9035

Heterophilious GNNs

H2GCN [50] 0.6575 0.8406 0.9213 0.9693 0.8824 0.9553 - -
MixHop [1] 0.6534 0.8796 0.8093 0.9723 0.4880 0.9569 0.6471 0.9597
GPRGNN [8] 0.6423 0.8355 0.8059 0.9358 0.8507 0.9642 0.5976 0.9722

BWGNN(Homo) [36] 0.6935 0.8255 0.9194 0.9395 0.8899 0.9599 0.9145 0.9630
BHomo-GHRN (Ours) 0.7532 0.8631 0.9203 0.9609 0.8975 0.9609 0.9118 0.9637
BWGNN(Hetero) [36] 0.7568 0.8967 0.9204 0.9706 - - - -
BHetero-GHRN (Ours) 0.7789 0.9073 0.9282 0.9728 - - - -

4.1 Experimental Setup
4.1.1 Baselines. Our baselines can be categorized into three groups.
The first group considers some homophilous methods, including
GCN [18], GAT [37] and JKNet [44]. Note that MLP can be regarded
as an all-pass filter with all of the eigenvalues being 1. As our
focus is GAD, the second group considers tailored GAD methods
such as CARE-GNN [12] and PC-GNN [24]. The third group is
heterophilous methods, most of which are designed in the spectral
domain. They are H2GCN [50] and BWGNN [36]. More details are
shown in Appendix C.4.

4.1.2 Metrics. Since GAD is always a class-imbalanced classifica-
tion problem, we adopt two widely used measures for a fair com-
parison, namely F1-macro and AUC. F1-macro calculates F1-score
for every class and finds their unweighted mean. AUC is the area
under the ROC Curve, which depicts the relationship between the
False Positive Rate (FPR) and the True Positive Rate (TPR). For both
of the two metrics, the higher scores indicate a higher performance.

4.2 Main Comparison Results
To answer RQ1, we evaluate the performance of baselines and the
proposed method, and the comparison results are reported in Table
1. Note that we don’t adjust the threshold to achieve F1-Macro as
previous works do, since we think AUC can reflect this performance.
We suppose with a threshold 0.5 we can analyze more information
such as model confidence. We have the following observations:

First of all, heterophilous GNNs consistently outperform ho-
mophilous GNNs. We ascribe this large performance gap to the
harmfulness of heterophily. We report the heterophily degree for

each dataset in Appendix C.2. Joining Table 1 and Table 4, we ob-
serve the gap is more huge when the heterophily for the dataset
is extremely high. Especially on the Amazon dataset, where the
anomaly heterophily is 0.9254, MLP outperforms most of the ho-
mophilous GNNs. Additionally, JKNet has the most competitive
performance among the homophilous GNNs. We suppose the most
possible reason is that it inherits the original information through
max-pooling operation, hence is more robust to false mixing. All of
these observations suggest that we need to address the heterophily
problem carefully and properly in GAD. Another interesting obser-
vation is that on T-Finance and T-Social, methods could achieve
a high AUC while maintaining a quite low F1-Macro (even lower
than 0.5). The model can distinguish two classes but the prediction
is skewed, which we suppose is unhealthy and unstable.

Secondly, CARE-GNN and PC-GNN are two tailored GAD clas-
sifiers built upon a multi-relation graph. They utilize RGCN as the
backbone model and focus on modifying the adjacency matrix to
prune noise edges. Our motivations are similar, yet different from
them, we are aiming at distinguishing 1-hop label distribution differ-
ence instead of calculating node-level similarity, which can alleviate
the effects of prediction error when deleting edges. Experimental
results show that the proposed method consistently outperforms
these two popular GAD methods on all the metrics across two
datasets, which demonstrates the effectiveness of the proposed
edge indicator. PC-GNN performs better than CARE-GNN, we at-
tribute this improvement to its attempt of maintaining a balanced
neighborhood label distribution before pruning.

Heterophilous methods including H2GCN, Mixhop, GPRGNN
and BWGNN discover the harmfulness of inter-class edges. Hence,
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(a) YelpChi PA Score (b) YelpChi Ground Truth (c) T-Finance PA Score (d) T-Finance Ground Truth

Figure 5: Illustration of the prediction indicator and the gold label.

Table 2: Performance comparison with alternative edge prun-
ing methods. The threshold for F1-macro is 0.5.

T-Finance T-Social

F1-Macro AUC F1-Macro AUC

DropEdge 0.8417 0.9240 0.6553 0.8495

AdaEdge(Drop) 0.8843 0.9298 0.6419 0.8407

GHRN (Ours) 0.8975 0.9609 0.9118 0.9637

Improvement 1.49% 3.34% 42.14% 14.63%

they aim to extract and deal with heterophily and homophily infor-
mation separately. However, as stated in Section 3.1, heterophily
could be treated as high-frequency noises in GAD. Instead of design-
ing a proper response function to identify the signal, we suppose
delineating is more straightforward and better. The result in the
table supports our argument.

4.3 Effectiveness of the Indicator
To answer RQ2, we compare GHRN with several popular alterna-
tive edge pruning methods. DropEdge [33] randomly drops out a
certain rate of edges of the input graph; AdaEdge [4] add and drop
edges according to the similarity of two nodes and the confidence of
the prediction, here we adapt it to the only-drop version; G-Aug [47]
is another popular graph structure learning method, however, we
don’t adopt it as our baseline due to the high time complexity and
space complexity of GVAE used in G-Aug. Pruning edge methods on
graphs with higher density are more reasonable, in light of which
we test three methods on two large-scale benchmarks: T-Finance
and T-Social. As shown in Table 2, the performances of DropEdge
and AdaEdge are similar, suggesting that node-level similarity can
be unreliable and even misleading in GAD. The proposed method
shows great superiority from this perspective. In addition, we seek
to answer the question that “Can edge indicator successfully reduce
the heterophily degree?" We plot the heterophily degree with a dif-
ferent deleting ratio for both the anomalies and the normal nodes in
four benchmarks. As presented in Figure 6, the heterophily degree
decreases with the increase of deleting ratio.

4.4 The Role of Prediction Error
In real-world applications, not all of the ground-truth of nodes
are seen. As an alternate, our pruning operations are based on the

(a) Abnormal Heterophily (b) Normal Heterophily

Figure 6: Illustration of the heterophily change when part of
the edges are deleted.

prediction. Towards this end, to answer RQ3, we measure the label-
aware edge indicator with the existence of prediction error. Com-
paring Figure 3 and Figure 5, we observe the same phenomenon as
discussed in Section 3.1. That is, the value rank of the inner product
is 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 · 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 > 𝑛𝑜𝑟𝑚𝑎𝑙 · 𝑛𝑜𝑟𝑚𝑎𝑙 > 0 > 𝑛𝑜𝑟𝑚𝑎𝑙 · 𝑎𝑛𝑜𝑚𝑎𝑙𝑦.
However, in rare cases, the algorithm may fail. For instance, the
6th node in YelpChi behaves as an anomaly – the self-loop value is
large (0.055), and some related inter-class edges are positive, which
is different from the gold label heatmap where the 6th node is nor-
mal. We suppose the effect of the prediction error is inevitable but
acceptable in our proposed method.

4.5 Sensitivity Analysis
As shown in Figure 2, the performance of GNNs varies with the
change in deleting ratio. Hence, to answerRQ4, we want to explore
the model’s sensitivity to the most important hyper-parameter
“Deleting Ratio 𝑟”, which controls the ratio of deleting edges to
the total. The performance of two metrics — F1-Macro and AUC
with different deleting ratios are shown in Figure 7, respectively.
We observe that (1) Generally when 𝑟 continues to increase, the
performance will first increase and then decrease. In the first stage,
the performance gain is from the decrease of the heterophily ratio
of the graph. However, as more edges are deleted, the probability of
wrong deletions becomes higher which may cause the performance
drop. (2) 𝑟 should be around 0.015 for T-Social and Amazon datasets,
while that for YelpChi is around 0.1. Joining this observation with
4, we claim 𝑟 is better to be around half of the heterophily ratio.
But as seen from Figure 7d, the model achieves good performance
when 𝑟 is small although T-Social has a high heterophily. We are
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(a) YelpChi w.r.t. Deleting Ratio (b) Amazon w.r.t. Deleting Ratio (c) T-Finance w.r.t. Deleting Ratio (d) T-Social w.r.t. Deleting Ratio

Figure 7: Model performance (i.e., AUC and F1-Macro) with a different deleting ratio. Since the two metrics are different in
scale, we display the charts in a dual-Y style. The left-y axis represents AUC, while the right one represents F1-Macro.

confused about this phenomenon and couldn’t give an explanation.
(3) The performance is stable over the range near optimal.

5 RELATEDWORK
In this section, we introduce some representative GAD networks
and tailored Heterophilous GNNs.

5.1 GNN-based Graph Node Anomaly Detection
GNNs have been widely used as an effective method to leverage
information about the graph attributes to learn to score anomalies
appropriately [17]. In this work, we focus on node anomalies that
are associated with static graphs.

Graph auto-encoder (GAE) is a popular branch of unsupervised-
learning methods on static attributed graphs. DOMINANT [10]
spots anomalies by measuring the reconstruction errors of nodes
from both the structure and the attribute perspectives. SpecAE
[21] is a spectral convolution and deconvolution based framework
to project the attributed network into a tailored space to detect
global and community anomalies. AnomalyDAE [13] captures the
complex interactions between network structure and node attribute
for high-quality node embeddings. With the advances of GNNs,
GNN-based semi-supervised learning methods [11, 22] have been
of focus. GraphUCB [11] adopts contextual multi-armed bandit
technology, and transform graph anomaly detection to a decision-
making problem. DCI [42] decouples representation learning and
classification with the self-supervised learning task.

Recent methods realize the importance of incorporating multiple
relationships into graph learning [12, 23–25, 38, 39, 46]. FdGars
[39] and GraphConsis [25] construct a single homo-graph with
multiple relations and leverage GNNs to aggregate neighborhood
information. Similarly but differently, Semi-GNN [38], CARE-GNN
[12], and PC-GNN [24] construct multiple homo-graphs based on
node relation. Semi-GNN and IHGAT [23] employ hierarchical
attention mechanism for interpretable prediction, while based on
camouflage behaviors and imbalanced problems, CARE-GNN and
PC-GNN prune edges adaptively according to neighbor distribution.

5.2 Heterophilous Graph Neural Networks
In GAD, nodes with different labels tend to be linked, which signif-
icantly limits the performance of vanilla GNNs. Hence, it is worth
studying GNNs for heterophilic graphs in the community [49].
Mixhop [1] repeatedly mixes feature representations of neighbors

at various distances to alleviate the negative effect of 1-hop het-
erophily. GPRGNN [8] adaptively learns the Generalized PageRank
weights. FAGCN [3] adaptively fuses different signals in the pro-
cess of message passing by employing a self-gating mechanism.
H2GCN [50] identifies a set of key designs which are combined
into a single graph neural network. FSGNN [29] treats the feature
propagation and learning separately and proposes a simple GNN
model with some considerations. ACM [26] study heterophily from
the perspective of post-aggregation node similarity and adaptively
exploits aggregation, diversification, and identity channels in each
GNN layer. There are also some tailored-GAD heterophily GNNs
[16, 34, 36]. AO-GNN [16] decouples the AUCmaximization process
on GNN into a classifier parameter searching and an edge prun-
ing policy searching process to solve the label-imbalance problem
as well as the heterophily issue. H2-FDetector [34] identifies the
homophilic and heterophilic connections with the supervision of
labeled nodes for both of which they design distinct aggregation
strategies. BWGNN [36] observes the “right-shift” phenomenon and
designs a band-pass filter to aggregate different frequency signals
simultaneously.

6 CONCLUSION AND FUTUREWORK
In this work, we look closely at heterophily’s negative effect on
GAD. Explicitly bridging the heterophily in the spatial domain and
the frequency in the spectral domain makes it possible to delineate
the inter-class edges with guidance from the spectral domain. To-
wards this end, we devise a label (prediction)-aware edge indicator
to calculate the post-aggregation similarity score based on which
we prune possibly heterophily edges.

The method addresses the heterophily issue in GAD from the
spectral domain. For future work, we suppose a few research di-
rections deserve our attention: (1) Better unsupervised learning
pruning techniques [20]. The performance of prediction-aware in-
dicators relies highly on the quality of the prediction error although
the error can be somehow reduced. From this perspective, an infor-
mative label-irrelevant statistic is preferred. (2) The generalization
of Heterophily. A recent work [19] studies the problem that se-
vere performance degradation occurs if a large heterophily gap
exists between training and testing graphs. This direction is worth
studying [43, 45], and our proposed method will likely contribute
to the improvement in this branch. (3) Human-level Explanation.
GHRN takes a step toward understanding the frequency in the
graph. We hope to investigate on the mechanism behind spectral
graph filtering.
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Figure 8: Illustration of the YelpChi indicator and the ground-
truth (50 nodes)

Figure 9: Illustration of theAmazon indicator and the ground-
truth (50 nodes)

Figure 10: Illustration of the T-Finance indicator and the
ground-truth (50 nodes)

A THE PROOF OF PROPOSITION 2
Proof of Proposition 2, partially from [19]:
The Rayleigh quotient of the label is:

𝐸 [y] = y𝑇 Ly = y𝑇 Dy − y𝑇 Ay =

𝑁∑︁
𝑖=1

𝑑𝑖y2𝑖 −
𝑁∑︁

𝑖, 𝑗=1
y𝑖y𝑗A𝑖 𝑗

=
1
2
(
𝑁∑︁
𝑖=1

𝑑𝑖y2𝑖 − 2
𝑁∑︁

𝑖, 𝑗=1
y𝑖y𝑗𝐴𝑖 𝑗 +

𝑁∑︁
𝑗=1

𝑑 𝑗y2𝑗 )

=
1
2

∑︁
(𝑖, 𝑗 ) ∈E

(y𝑖 − y𝑗 )2

=
∑︁

(𝑖, 𝑗 ) ∈E
I{y𝑖 ≠ y𝑗 }

= |E | · ℎ𝑒𝑡𝑒𝑟𝑜 (G)

(16)

Table 3: Statistics of Datasets

Dataset #Nodes #Edges Relation #Edges

YelpChi 45,954 3,846,979
R-U-R 49,315
R-S-R 3,402,743
R-T-R 573,616

Amazon 11,944 4,398,392
U-P-U 175,608
U-S-U 3,566,479
U-V-U 1,036,737

T-Finance 39,357 21,222,543 - -
T-Social 5,781,065 73,105,508 - -

Also the Rayleigh quotient of the label can be acquired as:

𝐸 [y] = y𝑇 UΛU𝑇 y = 𝛼𝑇 Λ𝛼

=

𝑁∑︁
𝑖=1

𝜆𝑖𝛼
2
𝑖

=

𝑁∑︁
𝑖=1

𝛼2𝑖 E[𝑓 (y, L)]

= 𝑁E[𝑓 (y, L)]

(17)

Joining Equations (16) and (17), we have:

E[𝑓 (y, L)] = |E | · ℎ𝑒𝑡𝑒𝑟𝑜 (G)
𝑁

(18)

B A DETAILED VERSION OF PA SCORES
As shown in Figure 8, 9, 10, we present a more detailed version
of comparison between PA score and the gold label: sampling 50
nodes from YelpChi, Amazon and T-Finance, respectively. The vi-
sualization is consistent with the result in Equation (7).

C REPRODUCIBLE DETAILS
This section presents more details about the dataset statistics, in-
cluding size and heterophily degree.

C.1 Datasets
Following previous works [12], we conduct experiments on two
tiny datasets and two large datasets to study the GNN-based fraud
detection problem. The YelpChi dataset [31] includes hotel and
restaurant reviews filtered and recommended by Yelp. The graph
has three relations: R-U-R denotes the reviews posted by the same
user; R-S-R denotes the reviews under the same product with the
same star rating; (3) R-T-R denotes the reviews under the same
product posted in the same month. The Amazon dataset [30] in-
cludes product reviews under the Musical Instruments category,
which also have three relations: U-P-U connects users reviewing
the same product; U-S-U connects users having the same star rating;
U-V-U connects users with the top-5% mutual review. For raw node
features, the YelpChi dataset has 32-dimensions while the Amazon
dataset has 25-dimension features. Besides these two spam-review
datasets, we also utilize two transaction datasets released recently in
[36]. The T-Finance dataset aims to detect human-annotated anom-
aly accounts in a transaction network. The nodes are accounts with
10-dimension features whereas the edges connecting them denote
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Table 4: Heterophily for Benchmarks

normal anomaly heterophily of the graph
YelpChi 0.1317 0.8144 0.2268
Amazon 0.0234 0.9254 0.0456
T-Finance 0.0150 0.5280 0.0292
T-Social 0.2366 0.9161 0.3761

they have transaction records. The T-social dataset aims to detect
human-annotated anomaly accounts in a social network. The node
annotations and features are the same as T-Finance, whereas the
edges connecting the nodes denote they maintain the friendship
for more than 3 months. T-Finance and T-Social maintain a much
larger size than YelpChi and Amazon. The detailed statistics of the
datasets are reported in Table 3.

C.2 Heterophily Statistics
In this section, we calculate the heterophily degree for normal,
abnormal, and all nodes respectively, reported in Table 4.

C.3 Implementation Details
For the YelpChi and Amazon fraudDataset, we use the official split
from DGL [40]. For T-Finance and T-Social datasets, following
previous work [36], our data splitting ratio is 40%, 20%, and 40%
for training, validation, and test set. All of the hyperparameters
are set to those reported in their paper if available, while the edge
deleting ratio is chosen according to the edge heterophily of the

dataset in Table 4. For all of the methods, we run 100 epochs, where
Homophilous methods are implemented with the DGL library in
Pytorch, and for the rest of the methods, we use their provided
open-source code to implement them.

C.4 Baselines
This section presents more details about the baselines.
• GCN [18]: GCN is a traditional graph convolutional network in
spectral space.

• GAT [37]: GAT leverages masked self-attentional layers to ad-
dress the shortcomings of prior graph convolution methods.

• JKNet [44]: The jumping-knowledge network which concate-
nates or max-pooling the hidden representation from each layer.

• Care-GNN [12]: Care-GNN is a camouflage-resistant graph neu-
ral network that adaptively samples neighbors according to the
feature similarity, and the optimal sampling ratio is found through
an RL module.

• PC-GNN [24]: PC-GNN consists of two modules “pick” and
“choose”, and maintains a balanced label frequency around fraud-
sters by downsampling and upsampling.

• H2GCN [50]: H2GCN is a tailored heterophily GNN which iden-
tifies three useful designs.

• MixHop [1]: Mixhop repeatedly mixes feature representations
of neighbors at various distances to learn relationships.

• GPRGNN [8]: GPRGNN learns a polynomial filter by directly
performing gradient descent on the polynomial coefficients.

• BWGNN [36]: BWGNN is a tailored spectral filter for anomaly
detection, aiming to address the “right-shift" phenomenon.
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