
Lower-Left Partial AUC: An Effective and Efficient Optimization
Metric for Recommendation

Wentao Shi
∗

University of Science and

Technology of China

Hefei, China

shiwentao123@mail.ustc.edu.cn

Chenxu Wang
∗

University of Science and

Technology of China

Hefei, China

wcx123@mail.ustc.edu.cn

Fuli Feng

University of Science and

Technology of China

Hefei, China

fulifeng93@gmail.com

Yang Zhang

University of Science and

Technology of China

Hefei, China

zy2015@mail.ustc.edu.cn

Wenjie Wang
†

National University of

Singapore

Singapore, Singapore

wenjiewang96@gmail.com

Junkang Wu

University of Science and

Technology of China

Hefei, China

jkwu0909@gmail.com

Xiangnan He
†

University of Science and

Technology of China

Hefei, China

xiangnanhe@gmail.com

ABSTRACT

Optimization metrics are crucial for building recommendation sys-

tems at scale. However, an effective and efficient metric for practi-

cal use remains elusive. While Top-K ranking metrics are the gold

standard for optimization, they suffer from significant computa-

tional overhead. Alternatively, the more efficient accuracy and AUC

metrics often fall short of capturing the true targets of recommen-

dation tasks, leading to suboptimal performance. To overcome this

dilemma, we propose a new optimization metric, Lower-Left Partial

AUC (LLPAUC), which is computationally efficient like AUC but

strongly correlates with Top-K ranking metrics. Compared to AUC,

LLPAUC considers only the partial area under the ROC curve in

the Lower-Left corner to push the optimization focus on Top-K. We

provide theoretical validation of the correlation between LLPAUC

and Top-K ranking metrics and demonstrate its robustness to noisy

user feedback. We further design an efficient point-wise recommen-

dation loss to maximize LLPAUC and evaluate it on three datasets,

validating its effectiveness and robustness. The code is available at

https://github.com/swt-user/LLPAUC.

CCS CONCEPTS

• Information systems→ Collaborative filtering; • Comput-

ing methodologies → Machine learning.

KEYWORDS

Partial AUC; Recommendation System; Optimization Metrics

∗
Both authors contributed equally to this research.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05

https://doi.org/10.1145/3589334.3645371

ACM Reference Format:

Wentao Shi, Chenxu Wang, Fuli Feng, Yang Zhang, Wenjie Wang, Junkang

Wu, and Xiangnan He. 2024. Lower-Left Partial AUC: An Effective and Effi-

cient Optimization Metric for Recommendation. In Proceedings of the ACM
Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3589334.3645371

1 INTRODUCTION

Recommender systems, core engines for Web applications, aim to

alleviate Web information overload by recommending the Top-K

most relevant items for each user [26, 36]. They are widely adopted

in large-scaleWeb applications such as Amazon and TikTok [5], and

typically learned from historical user feedback using optimization

metrics related to item ranking [28]. While Top-K ranking metrics

such as NDCG@K and Recall@K align well with the goals of recom-

mendation tasks, they are not suitable for practical use at scale due

to their substantial computational cost [28]. There thus remains

a need to explore effective and efficient optimization metrics for

recommender models.

Prior research pursues the target through the trade-off between

efficiency and alignment with the Top-K ranking. One approach

is to frame the recommendation task as a classification problem

and optimize the accuracy metric [6], which inherently deviates

from the Top-K ranking. Another approach optimizes the Area

Under the Receiver Operating Characteristic (ROC) curve (AUC)

metric [29] as shown in Figure 1(a), which quantifies the probability

of ranking a random positive item higher than a negative one. AUC

accounts for item ranking but treats all items equally, which may

not improve the ranking quality for Top-K items when optimized,

leading to suboptimal recommendation performance.

In this work, we propose a new optimization metric, Lower-Left

Partial AUC, designed to be more correlated with Top-K ranking

than the traditional AUCmetric. LLPAUC introduces constraints on

the upper bound of False Positive Rate (FPR) and True Positive Rate

(TPR), i.e., focusing on the partial area under the ROC curve in the

Lower-Left corner as depicted in Figure 1(b). These constraints can

narrow the ranking to only include the top-ranked items as shown

in Figure 1(c), strengthening the correlation with Top-K metrics.

Our theoretical analysis shows that LLPAUC can tighter bound

Top-K ranking metrics. Notably, the constraint on TPR can also

https://orcid.org/0000-0002-2616-6880
https://orcid.org/0000-0002-8665-6953
https://orcid.org/0000-0002-5828-9842
https://orcid.org/0000-0002-7863-5183
https://orcid.org/0000-0002-5199-1428
https://orcid.org/0000-0001-6663-926X
https://orcid.org/0000-0001-8472-7992
https://github.com/swt-user/LLPAUC
https://doi.org/10.1145/3589334.3645371
https://doi.org/10.1145/3589334.3645371

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

(a) AUC (b) LLPAUC

(c) Intuitive Explanation

Descending Order

Emphasize Top Ranked items

��� = �� [�(�+) > �(�−)]

������ = �� [�(�+
���) > �(�−

���)]

Figure 1: (a) AUC measures the entire area under the ROC

curve; (b) LLPAUC considers the lower-left corner; (c) Com-

pared to AUC, LLPAUC only considers the ranking for top-

ranked items.

prevent the optimization from overfitting noisy user feedback [33],

making LLPAUC more robust than AUC.

Nevertheless, the optimization of LLPAUC is non-trivial due to

the non-differentiable and computationally expensive TPR and FPR

constraint operations. To address these challenges, following [30],

we reformulate the constraint operations using the average Top-

K loss [8] to make it differentiable and amenable to mini-batch

optimization. On top of these efforts, we propose a minimax point-

wise loss function, which efficiently maximizes the LLPAUC metric.

Moreover, both time complexity analysis and empirical results on

real-world datasets verify its efficiency.

The main contributions of the paper are summarized as follows:

• We propose a new optimization metric LLPAUC for recommen-

dation, and provide both theoretical and empirical evidence on

its stronger correlation with Top-K ranking metrics.

• We derive an efficient point-wise loss function for maximizing

the LLPAUC metric, which has comparable complexity as con-

ventional point-wise recommendation losses.

• We conduct extensive experiments on three datasets under both

clean and noisy settings, demonstrating the effectiveness and

robustness of optimizing LLPAUC for recommendation.

2 RELATEDWORK

In this section, we briefly introduce the optimization metrics and

loss functions for the recommendation task and review recent stud-

ies in partial AUC and its optimization.

2.1 Optimization Metrics In Recommendation

In general, there are two common types of loss functions in recom-

mender systems. Point-wise loss functions such as Binary Cross

Entropy (BCE) loss [18] cast the recommendation task into a classi-

fication problem and optimize the accuracy metric. Pair-wise loss

functions such as Bayesian Personalized Ranking (BPR) loss [29]

are optimized to maximize the AUC metric. In addition, softmax

cross-entropy loss [6] is also widely used to maximize the likelihood

estimation of classification. Despite their optimization efficiency,

these loss functions have a significant gap with the ideal Top-K

ranking metrics.

Beyond these employed loss functions, some approaches aim to

directly optimize Top-K ranking metrics, such as NDCG@K [28]

and Recall@K [27, 32]. However, these methods are computation-

ally expensive and are not suitable for large-scale applications. To

tackle this issue, recent studies have proposed the pAp@K metric

[3, 19], which combines partial AUC metric and Precision@K met-

ric. The pAp@K metric represents a specific instance of LLPAUC

and offers better alignment with Top-K metrics, which lacks the-

oretical support. On the contrary, our study introduces the more

generalized LLPAUC metric and conducts theoretical analyses and

simulated experiments to establish the strong relationship between

the LLPAUC metric and Top-K metrics.

2.2 Partial AUC And Its Optimization

The concept of partial AUC was initially introduced by [22]. In

various applications, such as drug discovery and graph anomaly

detection [10–12], only the partial AUC up to a low false positive

rate is of interest [24], which motivates the research on One-way

Partial AUC (OPAUC). [31] first discusses the correlation between

OPAUC and Top-K metrics for recommendation. Later, [37] argues

that a practical classifier must simultaneously have a high TPR

and a low FPR. Hence, they propose a new metric named Two-way

Partial AUC (TPAUC), which pays attention to the upper-left head

region under the ROC curve. Then, [39] first proposes an end-to-

end TPAUC optimization framework, which has a profound impact

on subsequent work [40]. Nevertheless, TPAUC does not align with

the Top-K ranking metrics in the recommendation. The proposed

LLPAUC metric exhibits a stronger correlation with Top-K ranking

metrics. Beyond that, LLPAUC can additionally alleviate the issue

of label noise in recommender systems.

Regarding the optimization of partial AUC, previous works [7,

20, 23, 25] rely on full-batch optimization and the approximation

of the Top (Bottom)-K ranking, leading to immeasurable biases and

inefficiency. Recently, novel end-to-end mini-batch optimization

frameworks have been proposed [39, 41, 43]. These methods can be

extended to optimize our proposed LLPAUC metric. In this work,

we utilize an unbiased mini-batch optimization scheme [30] due to

its superiority in the previous investigation.

3 PRELIMINARY

In this section, we present our task formulation and partial AUC

formulation for recommendation.

3.1 Task Formulation

The primary objective of a recommender is to learn a score function

𝑓 (𝑢, 𝑖 |𝜃) which is parameterized by 𝜃 and predicts the preference

of a user 𝑢 ∈ U on an item 𝑖 ∈ I. In this work, we only focus

on 𝑓 : U × I → [0, 1]. For convenience, we use 𝑓𝑢,𝑖 to denote

𝑓 (𝑢, 𝑖 |𝜃). This work focuses on the implicit feedback setting [38],

where positive interactions contain all items interacted with by 𝑢

(denoted by I+
𝑢 ⊆ I), and negative interactions correspond to all

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation WWW ’24, May 13–17, 2024, Singapore, Singapore

non-interacted items (denoted by I−
𝑢 ⊆ I). Typically, the learning

process is formulated as:

min

𝜃

1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

1

| I+
𝑢 | · | I−

𝑢 | 𝐿 (𝜃,𝑢, 𝑖, 𝑗), (1)

where 𝐿(𝜃,𝑢, 𝑖, 𝑗) denotes the fitting loss for the the positive item
𝑖 and negative item 𝑗 of user 𝑢. The choice of 𝐿(·) determines the

optimization metrics. For example, the BPR loss [29] can be selected

to optimize AUC, while binary cross-entropy loss [6] can be used

to optimize accuracy metrics. During serving, the recommender

generates a Top-K recommendation list for each user based on the

prediction scores. This work aims to develop optimization metrics

that are better aligned with the Top-K ranking metrics and can be

optimized efficiently.

3.2 AUC And Partial AUC

AUC is a widely considered optimization metric in the recommenda-

tion, which is defined as the region enclosed by the ROC curve [2],

as Figure 1(a) shows. Given a threshold 𝑡 and a score function 𝑓 , we

can define true positive rates (TPR) and false positive rates (FPR) as

TPR𝑢 (𝑡) = Pr(𝑓𝑢,𝑖 > 𝑡 |𝑖 ∈ I+
𝑢) and FPR𝑢 (𝑡) = Pr(𝑓𝑢,𝑗 > 𝑡 | 𝑗 ∈ I−

𝑢),
respectively. For a given value 𝜉 ∈ [0, 1], let TPR−1𝑢 (𝜉) = inf{𝑡 ∈
R,TPR𝑢 (𝑡) < 𝜉} and FPR

−1
𝑢 (𝜉) = inf{𝑡 ∈ R, FPR𝑢 (𝑡) < 𝜉}. Then,

according to Figure 1(a), AUC can be formulated as:

AUC =
1

|U |
∑︁
𝑢∈U

∫
1

0

TPR𝑢

[
FPR

−1
𝑢 (𝜉)

]
d𝜉 . (2)

In the recommendation, AUC quantifies the overall ranking quality

with consideration of all items in I, and we can reformulate it to a

pair-wise ranking form [15] as follows:

AUC =
1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗], (3)

where Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] represents the probability that a

positive item 𝑖 is ranked higher than a negative item 𝑗 for user 𝑢.

Recently, One-way Partial AUC (OPAUC) [7] is proposed to

better measure Top-K recommendation quality. Different fromAUC,

OPAUC just focuses on the area with FPR ≤ 𝛽 , which is equivalent

to just focusing on pair-wise ranking between positive items and

highly scored negative items (with prediction scores in [𝜂𝛽 , 1],
where 𝜂𝛽 satisfies Pr𝑗∼I−

𝑢
[𝑓𝑢,𝑗 ≥ 𝜂𝛽] = 𝛽). Formally,

OPAUC(𝛽) = 1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗 , 𝑓𝑢,𝑗 ≥ 𝜂𝛽] . (4)

Based on the definition, we could write a non-parametric estimator

for OPAUC(𝛽) as follows:�
OPAUC(𝛽) = 1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

I[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]
𝑛+𝑢 · 𝑛−𝑢

, (5)

where I(·) denotes the indicator function, 𝑛+𝑢 denotes the size of

I+
𝑢 , and 𝑛−𝑢 denotes the size of I−

𝑢 .

4 WHEN LLPAUC MEETS WITH

RECOMMENDER SYSTEM

In this paper, we introduce a novel metric called Lower-Left Partial

AUC, which differs from OPAUC by imposing constraints on both

FPR and TPR (i.e., TPR≤ 𝛼 , FPR≤ 𝛽) as shown in Figure 1(b). By

placing additional constraints on TPR, LLPAUC can more closely

approach Top-K metrics and effectively address noisy user feedback

issues. We next present the formal definition of LLPAUC and subse-

quently provide theoretical and empirical analyses to demonstrate

its effectiveness in aligning with Top-K metrics.

• LLPAUC Definition. LLPAUC(𝛼 ,𝛽), as illustrated in Figure

1(b), is defined as the area of the ROC space that lies below the
ROC curve with TPR ≤ 𝛼 and FPR ≤ 𝛽 . Similarly to OPAUC, for

each user 𝑢, the constraint TPR≤ 𝛼 implies only considering posi-

tive items with prediction scores in [𝜂𝛼 , 1], where 𝜂𝛼 satisfies that

Pr𝑖∼I+
𝑢
[𝑓𝑢,𝑖 ≥ 𝜂𝛼] = 𝛼 . The constraint FPR≤ 𝛽 means consider-

ing only negative items with prediction scores in [𝜂𝛽 , 1], where
𝜂𝛽 satisfies that Pr𝑗∼I−

𝑢
[𝑓𝑢,𝑗 ≥ 𝜂𝛽] = 𝛽 . These constraints will

make LLPAUC focus on measuring the ranking quality between

such highly scored positive items and negative items, and we can

accordingly formulate LLPAUC(𝛼 ,𝛽) for model 𝑓 as:

LLPAUC(𝛼, 𝛽) = 1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗 , 𝑓𝑢,𝑖 ≥ 𝜂𝛼 , 𝑓𝑢,𝑗 ≥ 𝜂𝛽] .

(6)

We can also formulate it in an empirical form as follows:

�
LLPAUC(𝛼, 𝛽) = 1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+𝑢 · 𝑛−𝑢

. (7)

It is apparent that both AUC and OPAUC are special instances of our

proposed LLPAUC metric. Specifically, we have AUC=LLPAUC(1,1)

and OPAUC(𝛽) = LLPAUC(1,𝛽).

4.1 Theoretical Analysis

In this subsection, we present theoretical evidence that LLPAUC(𝛼 ,𝛽)

is highly correlated with Top-K metrics such as Recall@K and Pre-

cision@K when 𝛼 and 𝛽 are appropriately set.

Theorem 1. Suppose there are 𝑛+ positive items and 𝑛− negative
items, where 𝑛+ > 𝐾 and 𝑛− > 𝐾 . Ranking all items in descending
order according to the prediction scores obtained from any model f,
we have

1

𝑛+
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Recall@K ≤ 1

𝑛+
⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (8)

1

𝐾
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Precision@K ≤ 1

𝐾

⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (9)

where 𝛼 = 𝐾
𝑛+ , 𝛽 = 𝐾

𝑛− , and

G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽)) = 𝐾 −
√︃
𝐾2 − 𝑛+𝑛− × LLPAUC(𝛼, 𝛽),

Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)) =
√︁
𝑛+𝑛− × LLPAUC(𝛼, 𝛽) .

(10)

Theorem 2. The bounds for Top-K metrics in Eq. (8) and Eq.
(9) are tighter than the bounds obtained with OPAUC in Theorem 3
of [31].

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5

0.2
0.4
0.6
0.8
1.0

Recall@20

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5

0.2
0.4
0.6
0.8
1.0

Recall@100

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5 Pe

ar
so

n
Co

rre
la

tio
n

Co
ef

fic
ie

nt

0.2
0.4
0.6
0.8
1.0

Recall@200

Figure 2: Pearson correlation coefficient between Recall@K and LLPAUC(𝛼, 𝛽).

The proof of Theorem 1 and 2 can be found in Appendix A and B,

respectively. Based on the two theorems, we conclude that:

• LLPAUC(𝛼 ,𝛽) exhibits a stronger correlation with Top-𝐾 metrics

like Precision@𝐾 and Recall@𝐾 , when compared to OPAUC(𝛽)

and AUC. Therefore, optimizing LLPAUC is expected to yield

superior performance in the Top-K metrics.

• In the derived bounds, both 𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− decrease as

𝐾 decreases. This implies that while manipulating the value of

𝐾 , adjustments to 𝛼 and 𝛽 should be made in order to maintain

a robust correlation between LLPAUC and the corresponding

Top-K metrics.

4.2 Empirical Analysis

We now provide empirical evidence to further substantiate the

strong correlation between LLPAUC and Top-K metrics. We per-

formMonte Carlo sampling experiments via simulation. Specifically,

we assume that there are 𝑛+ positive items and 𝑛− negative items,

and take each possible permutation of all items to represent a pos-

sible ranking list. We randomly sample 10,000 permutations and

calculate the Pearson correlation coefficient between LLPAUC(𝛼 ,

𝛽) and Recall@K with different 𝛼 , 𝛽 , and 𝐾 . It should be noted that

the trend is consistent across simulations with different numbers

of positive and negative samples (𝑛+ and 𝑛−). Therefore, without
loss of generality, we set 𝑛+ = 1000 and 𝑛− = 50000, where 𝛼 and 𝛽

are logarithmically scaled. It is worth noting that the correlations

between Recall@K and OPAUC(𝛽) (or AUC) can be observed by

examining LLPAUC(1,𝛽) (or LLPAUC(1,1)). From the Figure 2, we

observe that:

(1) The maximum correlation coefficient is obtained when 𝛼 < 1

and 𝛽 < 1, with a value exceeding 0.8. This observation provides

empirical evidence supporting the proposition that LLPAUC(𝛼 ,

𝛽) exhibits a stronger correlation with Top-K metrics compared

to OPAUC and AUC metrics, thus validating Theorem 2.

(2) As 𝐾 decreases, the point that corresponds to the maximum

correlation coefficient shifts towards smaller values of 𝛼 and

𝛽 . This aligns with the conclusion drawn from the conditions

𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− in the bounds of Eq. (8), further reinforcing

the validity of our Theorem 1.

Furthermore, we observe that using both 𝛼 and 𝛽 to regulate TPR

or FPR could enhance the alignment of LLPAUC with the Top-K

ranking. Additionally, utilizing 𝛼 to regulate TPR can also increase

the robustness against noise, which we next discuss.

• LLPAUC Enhancing Robustness Against Noise. As stated

in [33], noise-positive interactions are harder to fit in the early

training stage for the recommendation, which results in relatively

larger losses (lower predicted score) of noise interactions. As afore-

mentioned, the constraint TPR≤ 𝛼 implies LLPAUC only considers

positive items with prediction scores 𝑓𝑢,𝑖 ≥ 𝜂𝛼 . In this way, lots of

noise-positive interactions are filtered out, which makes LLPAUC

enhance model robustness against noise.

5 METHOD

In this section, we first introduce the loss function that enables

efficient optimization of LLPAUC. We then describe the learning

algorithm and discuss its time complexity.

5.1 Loss Function

To optimize LLPAUC during model learning, it is necessary to fur-

ther convert the LLPAUC(𝛼 ,𝛽) in Eq. (7) to a loss function that

can be efficiently optimized. This involves transforming the non-

differentiable and computationally expensive terms in Eq. (7), in-

cluding the pair-wise ranking term (I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
) and TPR and

FPR constraint terms (I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
and I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
), into low-

complexity point-wise loss functions. To this end, we replace the

pair-wise ranking termwith a decouplable surrogate loss and design

an Average Top-K Trick inspired by [30] to transform the constraint

terms. Specifically, we follow the four steps to derive our loss:

• Step 1: replacing I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
with surrogate loss function.

The non-continuous and non-differentiable I[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] in Eq. (7)

is also appeared in AUC and OPAUC formulation. To convert it, we

adopt an approach similar to that used for AUC and OPAUC, which

involves replacing it with a continuous surrogate loss ℓ (𝑓𝑢,𝑖 − 𝑓𝑢,𝑗).
Under the assumptions below, the surrogate ℓ(·) is consistent for

LLPAUC maximization [9].

Assumption 1. We assume ℓ (·) is a convex, differentiable and
monotonically decreasing function when ℓ (·) > 0, and ℓ′ (0) < 0.

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation WWW ’24, May 13–17, 2024, Singapore, Singapore

Then, maximizing LLPAUC(𝛼, 𝛽) in Eq. (7) is equivalent to mini-

mizing the following loss:

min

𝜃

1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

ℓ (𝑓𝑢,𝑖 − 𝑓𝑢,𝑗) · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+𝑢 · 𝑛−𝑢

.

(11)

• Step 2: decoupling pair-wise loss into point-wise loss. By
setting ℓ (𝑥) = (1 − 𝑥)2, a square loss satisfying Assumption 1,

we could decouple the total loss into positive and negative item

components, resulting in a point-wise loss.

Lemma 1. (Proof in Appendix C) With ℓ (𝑥) = (1 − 𝑥)2, the
LLPAUC(𝛼, 𝛽) optimization problem in Eq. (11) is equal to

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈[−1,1]
1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

ℓ+ (𝑓𝑢,𝑖)I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

ℓ− (𝑓𝑢,𝑗)I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛−𝑢

− 𝛾2, (12)

where 𝑎, 𝑏 and 𝛾 are learnable parameters, ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 , and ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 .

• Step 3: reformulating TPR and FPR constraint terms using
an average top-K trick. The constraint terms I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
and

I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
require selecting highly scored positive and negative

items, which renders the loss in Eq. (12) still non-differentiable

and difficult to optimize. Fortunately, under certain conditions,

ℓ+ (𝑓𝑢,𝑖) is a monotonic decreasing function w.r.t 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is
a monotonic increasing function w.r.t 𝑓𝑢,𝑗 , as proven in Appendix D.

Then, we could make the item selection process differentiable using

the average Top-K reformulation trick introduced below.

Lemma 2. (Proof in Appendix E) Suppose ℓ+ (𝑓𝑢,𝑖) is monotonic
decreasing w.r.t. 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is monotonic increasing w.r.t. 𝑓𝑢,𝑗 ,
then we have∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
,∑︁

𝑗 ∈I−
𝑢

[
ℓ− (𝑓𝑢,𝑗) · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]

]
= min

𝑠− ∈R

∑︁
𝑗 ∈I−

𝑢

[
𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+

]
,

where 𝑠+ and 𝑠− are learnable parameters, and [𝑥]+ =𝑚𝑎𝑥 (0, 𝑥).

By leveraging the average Top-K reformulation trick presented in

the lemma, we can reformulate the LLPAUC optimization problem

in Eq. (12) as follows:

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈Ω𝛾

1

|U|
∑︁
𝑢∈U

{max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+
𝑛+𝑢

+ min

𝑠−∈R

∑︁
𝑗∈I−

𝑢

𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+
𝑛−𝑢

− 𝛾2}, (13)

where Ω𝛾 = [max(−𝑎, 𝑏 − 1), 1].
• Step 4: swapping min-max operations. Solving Eq. (13)

directly is challenging since it involves a complicated min-max-min

sub-problem (it also contains a manageable min-max-max sub-

problem). However, as done in [30], we could swap the order of

the latter max𝛾 and min𝑠− operations for the min-max-min sub-

problem after applying two preprocessing steps: 1) replacing the

non-smooth function [·]+ with the softplus function [13] and 2)

adding an 𝐿2 regularizer to make Eq. (13) strongly-concave w.r.t.
𝛾 . Finally, according to the min-max theorem [1], we could merge

the consecutive min (or max) operations, converting the overall

optimization problem into a min-max form. Formally, Eq. (13) could

be reformulated as (see Appendix F for the proof):

min

{𝜃,(𝑎,𝑏) ∈ [0,1]2,𝑠−∈R}
max

{𝛾 ∈Ω𝛾 ,𝑠
+∈R}

1

|U|
∑︁
𝑢∈U

{

∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − 𝑟𝜅 (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+)
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 𝑟𝜅 (ℓ− (𝑓𝑢,𝑗) − 𝑠−)
𝑛−𝑢

− (𝑤 + 1)𝛾2}, (14)

where Ω𝛾 = [max(−𝑎, 𝑏 − 1), 1], and 𝑟𝜅 denotes the softplus func-

tion. Formally, 𝑟𝜅 (𝑥) = 1

𝜅 log(1 + exp(𝜅 · 𝑥)), where 𝜅 is a hyper-

parameter. It is easy to show that 𝑟𝜅 (𝑥)
𝜅→∞−→ [𝑥]+, which leads to

asymptotically unbiased optimization.

Remark. Our final loss function in Eq. (14) is similar to the
one proposed in [30]. However, it is important to emphasize that
the primary contribution of our work is not the introduction of a
completely new optimization scheme. Rather, our main contribution
lies in extending existing optimization methods to align with our
novel LLPAUC metric while addressing challenges associated with the
coexistence of minima and maxima optimizations.

• Learning Algorithm and Time Complexity Analysis. To

solve the above minimax optimization in Eq. (14), we employ a

stochastic gradient descent ascent (SGDA) method. The detailed

algorithm can be found in Appendix G. Based on it, we derive that

the total per-iteration complexity of our method is the same as

classical loss functions such as BPR [29] and BCE [6]. The detailed

derivation process can be found in Appendix G.

6 EXPERIMENTS

In this section, we conduct a series of experiments on three datasets

to evaluate the effectiveness and robustness of our proposed op-

timization metric LLPAUC along with the loss function. Due to

space limitations, additional experimental results, including some

supplemental results during the rebuttal stage, can be found in the

ArXiv version of the paper.

6.1 Experiments Setting

Dateset. We conduct experiments on three real-world datasets:

Adressa, Yelp, and Amazon-book. Our dataset selection was made

intentionally to cover a broad range of recommendation scenarios

and accommodate different dataset sizes. Adressa is a news read-

ing dataset from Adressavisen [14], where the clicks with dwell

time < 10s are thought of as noisy interactions [33]. Yelp
1
is a

restaurant recommendation dataset with user ratings from one to

five. Amazon-book
2
is from the Amazon-Review [16] datasets,

containing user interaction ratings with extensive books. A rating

score below 3 on Yelp and Amazon-book is regarded as a noisy

interaction.

1
https://www.yelp.com/dataset/challenge.

2
https://jmcauley.ucsd.edu/data/amazon/.

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

Table 1: Performance comparison on three datasets with clean training. The best results are highlighted in bold.

MF

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1573±0.0251 0.0793±0.0181 0.0814±0.0004 0.0448±0.0005 0.0663±0.0006 0.0363±0.0002

BPR 0.1800±0.0204 0.0991±0.0144 0.0647±0.0005 0.0358±0.0002 0.0695±0.0001 0.0384±0.0007

SCE 0.2001±0.0031 0.1057±0.0015 0.0762±0.0007 0.0425±0.0003 0.0894±0.0012 0.0507±0.0009

CCL 0.1956±0.0110 0.0911±0.0028 0.0842±0.0002 0.0486±0.0000 0.0944±0.0001 0.0551±0.0008

DNS(𝑀 , 𝑁) 0.1877±0.0025 0.0965±0.0010 0.0856±0.0005 0.0489±0.0002 0.1012±0.0006 0.0580±0.0003

Softmax_v(𝜌 , 𝑁) 0.1849±0.0105 0.0949±0.0088 0.0824±0.0008 0.0470±0.0004 0.1024±0.0001 0.0592±0.0001

PAUCI(OPAUC) 0.2021±0.0014 0.1086±0.0007 0.0821±0.0004 0.0479±0.0003 0.0991±0.0001 0.0549±0.0002

LLPAUC 0.2166±0.0022 0.1214±0.0009 0.0884±0.0005 0.0505±0.0003 0.1076±0.0007 0.0612±0.0004

LightGCN

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1897±0.0004 0.0935±0.0002 0.0905±0.0003 0.0517±0.0004 0.1149±0.0003 0.0660±0.0003

BPR 0.1737 ±0.0006 0.0923 ±0.0004 0.0802 ±0.0005 0.0453 ±0.0003 0.0922±0.0002 0.0520±0.0001

SCE 0.1729 ±0.0008 0.0960 ±0.0007 0.0890 ±0.0005 0.0506 ±0.0004 0.1115±0.0004 0.0640±0.0002

CCL 0.1926±0.0008 0.1014 ±0.0009 0.0915 ±0.0006 0.0528 ±0.0005 0.1007±0.0000 0.0614±0.0001

DNS(𝑀 , 𝑁) 0.1830±0.0035 0.0952 ±0.0006 0.0962 ±0.0003 0.0550 ±0.0002 0.1056±0.0004 0.0597±0.0002

Softmax_v(𝜌 , 𝑁) 0.1923±0.0107 0.1056±0.0117 0.0975±0.0001 0.0567±0.0000 0.1128±0.0007 0.0724±0.0006

LLPAUC 0.2311 ±0.0004 0.1312 ±0.0002 0.1002 ±0.0003 0.0573 ±0.0004 0.1201±0.0003 0.0684±0.0003

Training Settings. We employed two training settings, clean

training and noise training, to verify the effectiveness and robust-

ness of our proposed loss. Following [34], clean training filters out

noisy user interactions and divides the remaining data into sepa-

rate training, validation, and testing sets. In contrast, noise training

retains the same testing set as clean training yet adds noisy inter-

actions to the training and validation sets. Note that we keep the

numbers of noisy training and validation interactions on a similar

scale as clean training for a fair comparison.

Evaluation Protocols. Following existing studies [18, 29],

we adopt the full-ranking evaluation setting, where we calculate

the metrics using all negative samples. Meanwhile, we utilize two

popular metrics to evaluate models, Recall@K and NDCG@K with

𝐾 = 20, where higher scores indicate better performance.

Baselines. We compare our LLPAUC surrogate loss function

with the following representative recommender losses. 1) Bayesian

Personalized Ranking (BPR) [29] loss is a pair-wise loss func-

tion, which optimizes the AUC metric. 2) Binary Cross-Entropy

(BCE) [18] loss optimizes accuracy metric. 3) Softmax Cross-

Entropy (SCE) [6] loss is widely used for classification problems

and maximizes likelihood estimation of classification. 4) DNS(𝑀 ,

𝑁) and Softmax_v(𝜌 , 𝑁) are advanced OPAUC-based loss func-

tions for recommendation system. 5) PAUCI(OPAUC) [30] is also

an advanced OPAUC-based loss function. For clean training, recent

5) Cosine Contrastive Loss (CCL) [21] is included in the compar-

ison. For noise training, we add strong denoising baselines 6) RCE

and TCE [33] for comparison.

In Appendix H, we also compare LLPAUC loss function with

advanced learning-to-rank (LTR) methods.

Parameter Settings. For a fair comparison, we choose two

representative recommender models, Matrix Factorization (MF)

and graph neural network model LightGCN [17], as the backbones

for all loss functions. All the models are optimized by the Adam

optimizer with a learning rate of 0.001 and a batch size of 128. In the

training process, we adopt widely used negative sampling trick [21]

to improve the training efficiency. The number of negative items for

each positive item is set to 100. For the proposed LLPAUC surrogate

loss function, we tune 𝛼 and 𝛽 within the ranges of {0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and { 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9}.

All hyperparameter searches are done relying on the validation set.

We reported results (mean and standard deviation) based on three

repeats with distinct random seeds.

6.2 Main Results

Clean Training. Table 1 shows the performance comparison

between the LLPAUC surrogate loss function with various base-

lines under the clean training setting with MF and LightGCN back-

bones. Several key observations can be made from the results: 1)

LLPAUC consistently achieves the best performance in most cases

across all three datasets with different backbones, outperforming

the other loss functions significantly. This demonstrates that LL-

PAUC strongly correlates with Top-K metrics compared to other

optimization metrics, which is consistent with our previous theo-

retical analysis and independent of the dataset and the backbones.

2) The performance of BPR is noticeably inferior to that of DNS(𝑀 ,

𝑁) and Softmax_v(𝜌 , 𝑁) on all datasets with different backbones.

Drawing upon the prior knowledge that OPAUC has a stronger

correlation with Top-K compared to AUC, we can infer that opti-

mization metrics closely tied to Top-K yield superior performance.

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: Performance comparison on three datasets with noise training. The best results are highlighted in bold.

MF

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1551±0.0025 0.0762±0.0007 0.0799±0.0014 0.0438±0.0009 0.0911±0.0009 0.0515 ±0.0009

BPR 0.1666±0.0215 0.0880±0.0139 0.0626±0.0014 0.0341±0.0009 0.0663±0.0008 0.0363±0.0006

SCE 0.1938±0.0010 0.1062±0.0007 0.0738±0.0003 0.0406±0.0009 0.0840±0.0010 0.0470±0.0011

TCE 0.1465±0.0022 0.0862±0.0007 0.0826±0.0008 0.0456±0.0005 0.0906±0.0018 0.0514±0.0011

RCE 0.1617±0.0329 0.0819±0.0221 0.0818±0.0009 0.0452±0.0005 0.0965±0.0017 0.0549±0.0015

DNS(𝑀 , 𝑁) 0.1802±0.0125 0.0847±0.0097 0.0844±0.0016 0.0477±0.0008 0.0966±0.0003 0.0543±0.0003

Softmax_v(𝜌 , 𝑁) 0.1801±0.0086 0.0922±0.0054 0.0816±0.00014 0.0452±0.0005 0.0954±0.0002 0.0536±0.0001

LLPAUC 0.2127±0.0014 0.1189±0.0009 0.0847±0.0007 0.0481±0.0001 0.0998±0.0008 0.0566±0.0006

LightGCN

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1844 ±0.0005 0.0874 ±0.0002 0.0888 ±0.0003 0.0497 ±0.0001 0.1095±0.0003 0.0620±0.0001

BPR 0.1661 ±0.0007 0.0914 ±0.0006 0.0800 ±0.0005 0.0448 ±0.0002 0.0884±0.0005 0.0492±0.0002

SCE 0.1732 ±0.0008 0.0936 ±0.0005 0.0916 ±0.0003 0.0514 ±0.0003 0.1068±0.0003 0.0604±0.0002

TCE 0.2184±0.0005 0.1187±0.0005 0.0923 ±0.0004 0.0522 ±0.0003 0.1085 ±0.0004 0.0611 ±0.0002

RCE 0.2204 ±0.0007 0.1219 ±0.0007 0.0941 ±0.0006 0.0536 ±0.0008 0.1126 ±0.0004 0.0639 ±0.0005

DNS(𝑀 , 𝑁) 0.1701±0.0017 0.0889 ±0.0011 0.0948 ±0.0002 0.0536 ±0.0001 0.1012±0.0002 0.0570±0.0001

Softmax_v(𝜌 , 𝑁) 0.1815±0.0047 0.0939±0.0084 0.0957±0.0002 0.0549±0.0002 0.1076±0.0003 0.0682±0.0004

LLPAUC 0.2228±0.0006 0.1231 ±0.0005 0.0981 ±0.0007 0.0558 ±0.0004 0.1165±0.0007 0.0655±0.0005

Clean Noise
Adressa

0.19
0.20
0.21

Re
ca

ll@
20

Clean Noise
Yelp

0.06

0.08

Clean Noise
Amazon_Book

0.06

0.08

0.10 LLPAUC
OPAUC
AUC

Figure 3: Ablation studies among different AUC metrics with clean training and noise training.

This finding validates our motivation for proposing LLPAUC. 3) In

contrast to BPR and BCE, other losses can implicitly pay more atten-

tion to hard negative items, resulting in their superior performance.

In LLPAUC, we can similarly adjust the attention to hard negative

items by varying the 𝛽 parameter. 4) LightGCN outperforms MF in

most cases, highlighting its superior strength as a representative

graph neural network backbone.

Noise Training. In real-world recommender systems, the user

interactions collected through implicit feedback often contain nat-

ural false-positive interactions. To evaluate the robustness of LL-

PAUC, we compare LLPAUC with other loss functions under the

noise training setting in Table 2. Notably, we have the following

observation: 1) Across all three datasets, the model performance

under the noise training setting drops for all loss functions, when

compared to the clean training setting. This observation makes

sense because it is more challenging to predict user preference

from noisy interactions. 2) Denoising baselines like RCE and TCE

achieve better performance than other baselines across all datasets,

highlighting the importance of noise removal. 3) LLPAUC surpasses

all baselines in most cases on all datasets, verifying the strong ro-

bustness against natural noises. The robustness of LLPAUC stems

from its emphasis on higher-ranked positive items, which can be

adjusted by hyperparameter 𝛼 .

6.3 In-depth Analysis

Ablation Study. We next conduct ablation studies to assess the

significance of the TPR and FPR constraints in LLPAUC(𝛼, 𝛽). Note

that restriction on the upper bound of TPR and FPR represents the

emphasis on high-ranked positive and negative items in LLPAUC,

respectively. As shown in Eq. (6), OPAUC(𝛽) = LLPAUC(1, 𝛽) and
AUC = LLPAUC(1, 1). Based on it, we obtain ablation loss func-

tions of AUC and OPAUC(𝛽) by setting 𝛼 and 𝛽 in Eq. (14). The

results of ablation studies are summarized in Figure 3, where we

can observe that: 1) Under clean training, LLPAUC outperforms

OPAUC, and OPAUC perform better than AUC. This verifies both

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

0.5
1.0

0.5
1.0

0.00
0.25
0.50
0.75
1.00

Recall@20

0.5
1.0

0.5
1.0

0.00
0.25
0.50
0.75
1.00

Recall@50

0.5
1.0

0.5
1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0.00
0.25
0.50
0.75
1.00

Recall@100

Figure 4: Normalized Recall@K on Adressa dataset under clean training for K=20, 50 and 100.

0.6 0.8
alpha

0.08

0.09

0.10

Amazon-Book

Clean
Noise

0.6 0.8
alpha

0.070

0.075

0.080

0.085

Re
ca

ll@
20

Yelp

Clean
Noise

Figure 5: Given a fix 𝛽, the hyperparameter analysis of 𝛼

in LLPAUC(𝛼, 𝛽) on different datasets under clean training

setting and noise training setting.

emphases on high-ranked positive items and high-ranked negative

items strengthen the correlation between LLPAUC and Top-K met-

rics. 2) When exposed to noisy interactions, LLPAUC demonstrates

relatively minor performance degradation compared to OPAUC and

AUC, showcasing its robustness against noise. This is attributed to

the emphasis on high-ranked positive items and avoidance of noise

samples with low ranks in LLPAUC.

Hyperparameter Analysis. To verify the impact of the con-

straints of LLPAUC, we conduct the grid search experiments on

hyperparameters 𝛼 and 𝛽 and present the corresponding Recall@K

performance in Figure 4. To facilitate a better comparison, we re-

port the normalized Recall@Kmetrics, where Normalized_Recall =
Recall−Min_Recall

Max_Recall−Min_Recall
. From the figure, we observe that: 1) The max-

imum performance is obtained with 𝛼 < 1 and 𝛽 < 1. Recall that

AUC=LLPAUC(1,1) and OPAUC=LLPAUC(1,𝛽). Hence, this demon-

strates both restrictions of 𝛼 and 𝛽 of LLPAUC enhance its correla-

tion with the Top-K metric, which is consistent with our Theorem 2

and empirical analysis in Section 4.2. 2) As K in Recall@K decreases,

we should shift towards a smaller value of 𝛼 and 𝛽 to achieve the

best performance, empirically corroborating the bound conditions

in our Theorem 1. This means we could emphasize different Top-K

performances for different K by adjusting 𝛼 and 𝛽 in LLPAUC.

Analysis of Robustness. In this subsection, we conduct exper-

iments to analyze the impact of hyperparameter 𝛼 on the robust-

ness of the model. Given a fix 𝛽 , Figure 5 shows how the LLPAUC

model’s performance changes w.r.t 𝛼 under clean training and noise

training setting. Since the natural noise in the Adressa dataset is

relatively weak, we do not include it in our comparison. From the

figure, we observe that: 1) Since the noisy interactions impede the

model’s ability to learn the true interests of users, the performance

in the noise training setting consistently falls below that of the

clean training setting. This is consistent with our observation in

Table 1. 2) Given a fix 𝛽 , the maximum Recall@20 performance of

LLPAUC is achieved with 𝛼 = 0.9 under clean training settings,

and 𝛼 = 0.8 under noisy training settings. This means under the

noise training setting, we should choose smaller 𝛼 to enhance the

robustness. Since 𝛼 constrains TPR in LLPAUC as stated in Eq. (6),

we conclude that the emphasis on high-ranked positive items could

enhance the model robustness.

7 CONCLUSION AND FUTUREWORK

In this work, we presented a novel optimization metric for recom-

mender systems, LLPAUC, to alleviate the dilemma of balancing

effectiveness and computational efficiency in previous optimization

metrics. In particular, LLPAUC is efficient like AUC while strongly

correlating with Top-K ranking metrics, leading to superior Top-K

recommendation performance. To optimize LLPAUC, we developed

a point-wise loss function and conducted experiments on three

datasets, demonstrating its efficiency, effectiveness, and robustness

under clean and noise settings.

Future work could shed light on the following limitations of

our work: 1) Only focusing on high-ranked positive samples like

LLPAUC is not sufficient to fully mitigate the impact of natural

noise. 2) The TPR and FPR constraint terms in LLPAUC could be

more efficiently reformulated. 3) The relationship between LLPAUC

and other partial AUC metrics needs to be analyzed more compre-

hensively.

ACKNOWLEDGMENTS

We would like to express our gratitude to Professor Jiaxin Mao for

his guidance during the rebuttal phase of this paper. This work is

supported by the National Natural Science Foundation of China

(62272437 and 62121002) and the CCCD Key Lab of Ministry of

Culture and Tourism.

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press.

[2] Andrew P Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),

1145–1159.

[3] Amar Budhiraja, Gaurush Hiranandani, Navya Yarrabelly, Ayush Choure,

Oluwasanmi Koyejo, and Prateek Jain. 2020. Rich-Item Recommendations for

Rich-Users via GCNN: Exploiting Dynamic and Static Side Information. CoRR
abs/2001.10495 (2020).

[4] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to

Rank with Nonsmooth Cost Functions. In NIPS. MIT Press, 193–200.

[5] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2020. Bias and Debias in Recommender System: A Survey and Future Directions.

CoRR abs/2010.03240 (2020).

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for

YouTube Recommendations. In RecSys. ACM, 191–198.

[7] Lori E. Dodd and Margaret S. Pepe. 2003. Partial AUC Estimation and Regression.

Biometrics 59, 3 (2003), 614–623.
[8] Yanbo Fan, Siwei Lyu, Yiming Ying, and Bao-Gang Hu. 2017. Learning with

Average Top-k Loss. In NIPS. 497–505.
[9] Wei Gao and Zhi-Hua Zhou. 2015. On the Consistency of AUC Pairwise Opti-

mization. In IJCAI. AAAI Press, 939–945.
[10] Yuan Gao, Xiang Wang, Xiangnan He, Huamin Feng, and Yong-Dong Zhang.

2023. Rumor detection with self-supervised learning on texts and social graph.

Frontiers Comput. Sci. 17, 4 (2023), 174611.
[11] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yong-

dong Zhang. 2023. Addressing Heterophily in Graph Anomaly Detection: A

Perspective of Graph Spectrum. In WWW. ACM, 1528–1538.

[12] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yong-

dong Zhang. 2023. Alleviating Structural Distribution Shift in Graph Anomaly

Detection. In WSDM. ACM, 357–365.

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier

Neural Networks. In AISTATS (JMLR Proceedings, Vol. 15). JMLR.org, 315–323.

[14] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. 2017.

The Adressa dataset for news recommendation. In WI. ACM, 1042–1048.

[15] J.A. Hanley and Barbara Mcneil. 1982. The Meaning and Use of the Area Under a

Receiver Operating Characteristic (ROC) Curve. Radiology 143 (05 1982), 29–36.

https://doi.org/10.1148/radiology.143.1.7063747

[16] Ruining He and Julian J. McAuley. 2016. Ups and Downs: Modeling the Visual

Evolution of Fashion Trends with One-Class Collaborative Filtering. InWWW.

ACM, 507–517.

[17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR. ACM, 639–648.

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In WWW. ACM, 173–182.

[19] Gaurush Hiranandani, Warut Vijitbenjaronk, Sanmi Koyejo, and Prateek Jain.

2020. Optimization and Analysis of the pAp@kMetric for Recommender Systems.

In ICML (Proceedings of Machine Learning Research, Vol. 119). PMLR, 4260–4270.

[20] Abhishek Kumar, Harikrishna Narasimhan, and Andrew Cotter. 2021. Implicit

rate-constrained optimization of non-decomposable objectives. In ICML (Proceed-
ings of Machine Learning Research, Vol. 139). PMLR, 5861–5871.

[21] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,

and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative

Filtering. In CIKM. ACM, 1243–1252.

[22] Donna Katzman McClish. 1989. Analyzing a Portion of the ROC Curve.

Medical Decision Making 9, 3 (1989), 190–195. https://doi.org/10.1177/

0272989X8900900307 PMID: 2668680.

[23] Harikrishna Narasimhan and Shivani Agarwal. 2013. A Structural SVM Based Ap-

proach for Optimizing Partial AUC. In ICML (1) (JMLR Workshop and Conference
Proceedings, Vol. 28). JMLR.org, 516–524.

[24] Harikrishna Narasimhan and Shivani Agarwal. 2013. SVM
pAUC

tight
: a new

support vector method for optimizing partial AUC based on a tight convex upper

bound. In KDD. ACM, 167–175.

[25] Harikrishna Narasimhan and Shivani Agarwal. 2017. Support Vector Algorithms

for Optimizing the Partial Area under the ROC Curve. Neural Computation 29, 7

(07 2017), 1919–1963.

[26] Hang Pan, Jiawei Chen, Fuli Feng, Wentao Shi, Junkang Wu, and Xiangnan He.

2023. Discriminative-Invariant Representation Learning for Unbiased Recom-

mendation. In IJCAI. ijcai.org, 2270–2278.
[27] Yash Patel, Giorgos Tolias, and Jirí Matas. 2022. Recall@k Surrogate Loss with

Large Batches and Similarity Mixup. In CVPR. IEEE, 7492–7501.
[28] Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. 2022.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning

with Provable Convergence. In ICML (Proceedings of Machine Learning Research,
Vol. 162). PMLR, 18122–18152.

[29] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. AUAI
Press, 452–461.

[30] Huiyang Shao, Qianqian Xu, Zhiyong Yang, Shilong Bao, and Qingming Huang.

2022. Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimiza-

tion: Theory and Algorithm. In NeurIPS.
[31] Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao,

and Xiangnan He. 2023. On the Theories Behind Hard Negative Sampling for

Recommendation. In WWW. ACM, 812–822.

[32] Yongxiang Tang, Wentao Bai, Guilin Li, Xialong Liu, and Yu Zhang. 2022.

CROLoss: Towards a Customizable Loss for Retrieval Models in Recommender

Systems. In CIKM. ACM, 1916–1924.

[33] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.

Denoising Implicit Feedback for Recommendation. In WSDM. ACM, 373–381.

[34] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua.

2023. Diffusion Recommender Model. CoRR abs/2304.04971 (2023).

[35] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.

2018. The LambdaLoss Framework for Ranking Metric Optimization. In CIKM.

ACM, 1313–1322.

[36] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2023. A Survey

on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to

Information-Rich Recommendation. IEEE Trans. Knowl. Data Eng. 35, 5 (2023),
4425–4445.

[37] Hanfang Yang, Kun Lu, Xiang Lyu, and Feifang Hu. 2019. Two-way partial AUC

and its properties. Statistical Methods in Medical Research 28, 1 (2019), 184–195.

[38] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.

HOP-rec: high-order proximity for implicit recommendation. In Proceedings of
the 12th ACM conference on recommender systems. 140–144.

[39] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming

Huang. 2021. When All We Need is a Piece of the Pie: A Generic Framework

for Optimizing Two-way Partial AUC. In ICML (Proceedings of Machine Learning
Research, Vol. 139). PMLR, 11820–11829.

[40] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming

Huang. 2023. Optimizing Two-Way Partial AUCWith an End-to-End Framework.

IEEE Trans. Pattern Anal. Mach. Intell. 45, 8 (2023), 10228–10246.
[41] Yao Yao, Qihang Lin, and Tianbao Yang. 2022. Large-scale Optimization of Partial

AUC in a Range of False Positive Rates. In NeurIPS.
[42] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-

n collaborative filtering via dynamic negative item sampling. In SIGIR. ACM,

785–788.

[43] Dixian Zhu, Gang Li, BokunWang, XiaodongWu, and Tianbao Yang. 2022. When

AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex

Convergence Guarantee. In ICML (Proceedings of Machine Learning Research,
Vol. 162). PMLR, 27548–27573.

A PROOF OF THEOREM 1

Proof. For any given model 𝑓 , we suppose there are 𝑖 (𝑖 < 𝐾)
positive items among the Top-K items ranked according to 𝑓 . Then

we have Recall@𝐾 = 𝑖/𝑛+. Under this condition, easily, we can

find out the case which has the maximum value of LLPAUC(𝛼, 𝛽),
where 𝛼 = 𝐾

𝑛+ and 𝛽 = 𝐾
𝑛− :

+ · · · +︸ ︷︷ ︸
𝑖

− · · · −︸ ︷︷ ︸
𝐾−𝑖

| + · · · +︸ ︷︷ ︸
𝐾−𝑖

− · · · −︸ ︷︷ ︸
𝑖

.

Hence, as stated in Eq. (7), the maximum value of LLPAUC(𝛼, 𝛽) is
−𝑖2+2𝐾𝑖
𝑛+𝑛− . Given this, we can deduce themaximumvalue of Recall@𝐾

when LLPAUC(𝛼, 𝛽) takes a certain value. Note that 𝑖 can only be

integers, we derive that:

1

𝑛+

⌊
𝐾 −

√︃
𝐾2 − 𝑛+𝑛− × LLPAUC(𝛼, 𝛽)

⌋
≤ Recall@𝐾.

Similarly, the case that has the minimum value of LLPAUC(𝛼, 𝛽) is
:

− · · · −︸ ︷︷ ︸
𝐾−𝑖

+ · · · +︸ ︷︷ ︸
𝑖

| − · · · −︸ ︷︷ ︸
𝑖

+ · · · +︸ ︷︷ ︸
𝐾−𝑖

.

Based on Eq. (7), the minimum value of LLAUC(𝛼, 𝛽) is 𝑖2

𝑛+𝑛− . Simi-

larly, we derive theminimumvalue of Recall@𝐾 when LLPAUC(𝛼, 𝛽)

https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1177/0272989X8900900307
https://doi.org/10.1177/0272989X8900900307

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

takes a certain value:

Recall@𝐾 ≤ 1

𝑛+

⌈√︁
𝑛+𝑛− × LLPAUC(𝛼, 𝛽)

⌉
.

These complete the proof of Eq. (8). Noticing that for a given per-

mutation, Precision@𝐾 = 𝑛+
𝐾

· Recall@𝐾 , where 𝑛+
𝐾

is a constant.

Hence, we can easily derive the Eq. (9). □

B PROOF OF THEOREM 2

Reminder of Theorem 2 The bounds for Top-K metrics in Eq. (8)

and Eq. (9) are tighter than the bounds obtained with OPAUC in

Theorem 3 of [31].

Proof. Note that the bounds obtained with OPAUC(𝛽) in [31]

is:

1

𝑛+
⌊H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽))⌋ ≤

Recall@𝐾 ≤ 1

𝑛+
⌈
Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽))

⌉
, , (15)

1

𝐾
⌊H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽))⌋ ≤

Precision@𝐾 ≤ 1

𝐾

⌈
Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽))

⌉
, (16)

where 𝛽 = 𝐾
𝑛− and

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) =
𝑛+ +𝐾 −

√︁
(𝑛+ +𝐾)2 − 4𝑛+𝑛− × OPAUC(𝛽)

2

,

Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) =
√︁
𝑛+𝑛− × OPAUC(𝛽) .

(17)

Without loss of generality, we consider the bounds of Recall@𝐾

first. To prove that Eq. (8) is a tighter bound than Eq. (15), we

need prove that H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) ≤ G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))
andHℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)).

Step 1: Proof ofHℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))
For any ranking list ranked by model 𝑓 , we calculate LLPAUC(𝛼, 𝛽)
and OPAUC(𝛽) as following:

LLPAUC(𝛼, 𝛽) =
∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+ · 𝑛− ,

OPAUC(𝛽) =
∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+ · 𝑛− .

where

𝜂𝛼 = argmin𝜂∈R
[
E𝑖∼I+

𝑢
[I(𝑓𝑢,𝑖 ≥ 𝜂)] = 𝛼

]
,

and

𝜂𝛽 = argmin𝜂∈R
[
E𝑗∼I−

𝑢
[I(𝑓𝑢,𝑗 ≥ 𝜂)] = 𝛽

]
.

When 𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− , LLPAUC(𝛼, 𝛽) and OPAUC(𝛽) can be

reformulated as:

LLPAUC(𝛼, 𝛽) =
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

I
[
𝑓𝑢,[𝑖] > 𝑓𝑢,[𝑗]

]
𝑛+𝑛−

,

OPAUC(𝛽) =
𝑛+𝑢∑︁
𝑖=1

𝐾∑︁
𝑗=1

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,[𝑗]

]
𝑛+𝑛−

,

where 𝑓𝑢,[𝑖] denotes the 𝑖-th largest score among positive items

and 𝑓𝑢,[𝑗] denotes the 𝑗-th largest score among negative items.

This means LLPAUC(𝛼, 𝛽) only considers K positive items with

the largest prediction scores and K negative items with the largest

prediction scores. And OPAUC(𝛽) considers all positive items and

K negative items with the largest prediction scores.

We categorize and discuss the possible scenarios of the ranking

list. In the first scenario, the number of positive samples appearing

in descending order reaches K first:

· · · +︸︷︷︸
𝐾 positive ,𝑆 negative

| · · ·︸︷︷︸
(𝑛+−𝐾) positive,(𝑛−−𝑆) negative

,

where 𝑆 < 𝐾 . Andwe could observe that LLPAUC(𝛼, 𝛽) ≤ OPAUC(𝛽).
Whenwe keep LLPAUC(𝛼, 𝛽) fixed, themaximumvalue of OPAUC(𝛽)
can be achieved as following:

· · · +︸︷︷︸
𝐾 positive ,𝑆 negative

| + · · · +︸ ︷︷ ︸
(𝑛+−𝐾) positive

− · · · −︸ ︷︷ ︸
(𝑛−−𝑆) negative

,

Hence, in the first scenario, we can conclude that

LLPAUC(𝛼, 𝛽) ≤ OPAUC(𝛽) ≤ LLPAUC(𝛼, 𝛽)+ (𝑛
+ − 𝐾) · (𝑛− − 𝑆)

𝑛+𝑛−
.

(18)

Easily, we could further obtain that

LLPAUC(𝛼, 𝛽) ≥ 𝐾 (𝑛− − 𝑆)
𝑛+𝑛−

. (19)

In the second scenario, the number of negative samples appearing

in descending order reaches K first:

· · · −︸︷︷︸
𝑆 ′ positive ,𝐾 negative

| · · ·︸︷︷︸
(𝑛+−𝑆 ′) positive,(𝑛−−𝐾) negative

.

And we could find that:

OPAUC(𝛽) = LLPAUC(𝛼, 𝛽). (20)

Taking into account the two scenarios discussed above, we can

easily conclude that OPAUC(𝛽) ≥ LLPAUC(𝛼, 𝛽), which results in

Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)).
Step 2: Proof ofH𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) ≤ G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

First, we have

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

=
𝑛+ + 𝐾 −

√︁
(𝑛+ + 𝐾)2 − 4𝑛+𝑛−OPAUC(𝛽)

2

−

(𝐾 −
√︃
𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽))

=
1

2

[(𝑛+ − 𝐾) − (
√︃
(𝑛+ + 𝐾)2 − 4𝑛+𝑛−OPAUC(𝛽)−

2

√︃
𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽))] (21)

Similar to Step 1, we consider two scenarios. In the first scenario,

using Eq. (18), we have:

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

≤ 1

2

{(𝑛+ − 𝐾) + [4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)]
1

2 − [(𝑛+ − 𝐾)2+

4𝐾 (𝑛+ − 𝐾) + 4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽) − 4(𝑛+ − 𝐾) · (𝑛− − 𝑆)]
1

2 }
(22)

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation WWW ’24, May 13–17, 2024, Singapore, Singapore

It’s notable that when

√
𝐴2 +

√
𝐶2 −

√
𝐴2 + 𝐵2 +𝐶2 ≤ 0, we have

2

√
𝐴2𝐶2 − 𝐵2 ≤ 0. Hence, when 𝐴2 = (𝑁 + − 𝐾)2, 𝐵2 = 4𝐾 (𝑛+ −

𝐾) −4(𝑛+−𝐾) · (𝑛− −𝑆),𝐶2 = 4𝐾2−4𝑛+𝑛−LLPAUC(𝛼, 𝛽), to prove

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC) ≤ 0, (23)

we need to prove that

2

√︃
(𝑛+ − 𝐾)2 · (4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽))

− 4(𝑛+ − 𝐾) (𝑛− − 𝑆 − 𝐾) ≤ 0. (24)

It’s equal to prove that:

𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽) − (𝑛− − 𝑆 − 𝐾)2 ≤ 0. (25)

⇐⇒ 𝑛+𝑛−LLPAUC(𝛼, 𝛽) ≥ −(𝑛− − 𝑆)2 + 2(𝑛− − 𝑆)𝐾 (26)

Since we already have LLPAUC(𝛼, 𝛽) ≥ 𝐾 (𝑛−𝑢 −𝑆)
𝑛+𝑛− in Eq. (19), we

can easily complete the proof in the first scenario.

For the second scenario, Eq. (21) can be reformulated as

1

2

{(𝑛+ − 𝐾) +
√︃
4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)

−
√︃
(𝑛+ − 𝐾)2 + 4𝐾 (𝑛+ − 𝐾) + 4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)

(27)

Similarly, to prove

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC) ≤ 0, (28)

we need to prove that

2

√︃
(𝑛+ − 𝐾)2 · (4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)) + 4(𝑛+ − 𝐾)𝐾 ≤ 0.

(29)

It’s equal to prove that:

𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽) + 𝐾2 ≤ 0. (30)

⇐⇒ LLPAUC(𝛼, 𝛽) ≥ 0 (31)

This is trivially true, thus we have completed the proof for the

second scenario. □

C PROOF OF LEMMA 1

Proof. According to the proof of Theorem 7 in [30], we can

easily derive the proof of Lemma 1, the detailed proof can be seen

in the Arxiv version of the paper. □

D PROOF OF FUNCTION

In this subsection, we utilize the following lemmas to substantiate

our argument.

Lemma 3. If 𝛾 ∈ [𝑏 − 1, 1], ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗
is an increasing function w.r.t 𝑓𝑢,𝑗 , when 𝑗 ∈ I−

𝑢 and 𝑓𝑢,𝑗 ∈ [0, 1].

The proof can be found in Appendix F.2.2 in [30].

Lemma 4. If 𝛾 ∈ [max{𝑏 − 1,−𝑎}, 1], ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 is an increasing function w.r.t 𝑓𝑢,𝑖 , when 𝑖 ∈ I+

𝑢 and
𝑓𝑢,𝑖 ∈ [0, 1].

The proof can be found in Appendix F.3.2 in [30].

E PROOF OF LEMMA 2

Reminder of Lemma 2 Suppose ℓ+ (𝑓𝑢,𝑖) is monotonic decreasing

w.r.t. 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is monotonic increasing w.r.t. 𝑓𝑢,𝑗 , then we

have∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
,

(32)∑︁
𝑗∈I−

𝑢

[
ℓ− (𝑓𝑢,𝑗) · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]

]
= min

𝑠−∈R

∑︁
𝑗∈I−

𝑢

[
𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+

]
,

(33)

where 𝑠+ and 𝑠− are learnable parameters, and [𝑥]+ = 𝑚𝑎𝑥 (0, 𝑥)
for any 𝑥 .

Proof. For Eq. (33), the proof can be found in Lemma 1 in [8].

To prove Eq. (32), we first denote that (−ℓ+ (𝑓𝑢,𝑖)) is monotonic

increasing w.r.t 𝑓𝑢,𝑖 and then obtain:∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= −

∑︁
𝑖∈I+

𝑢

[
(−ℓ+ (𝑓𝑢,𝑖)) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= − min

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
𝛼𝑠+ + [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
=max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
.

(34)

This completes our proof of Eq. (32). Notably in the final line of

derivation, we employ −min 𝑓 (𝑥) = max−𝑓 (𝑥). □

F PROOF OF MIN-MAX SWAP

Proof. To swap max𝛾 and min𝑠− , according to the min-max

theorem [1], we need to check the second part of Eq. (13) strongly-

concave w.r.t. 𝛾 . Concretely, the function is:

F2 =
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 1

𝜅 (log(1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))))
𝑛−𝑢

− (𝑤 +1)𝛾2,

(35)

where ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 . Hence,

𝜕F2
𝜕𝛾

=
1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

· 2𝑓𝑢,𝑗 − 2𝑤𝛾, (36)

𝜕2F2
𝜕𝛾2

=
1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))[
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

]
2
· 4𝜅𝑓 2𝑢,𝑗 − 2𝑤.

(37)

Since 𝑓𝑢,𝑗 ∈ [0, 1] and exp(𝜅 · (ℓ− (𝑓𝑢,𝑗)−𝑠−))
[1+exp(𝜅 · (ℓ− (𝑓𝑢,𝑗)−𝑠−))]2

∈ (0, 1), with suffi-

ciently large𝑤 > 4𝜅 , we have
𝜕2F2
𝜕𝛾2

< 0. Therefore, with sufficiently

large𝑤 , Eq. (13) is strongly-concave w.r.t. 𝛾 . □

G TIME COMPLEXITY OF METHOD

In this section, we show the detailed algorithm in Algorithm 1.

Concretely, after each update of the gradient, we clip the parameters

to ensure that they are within the constraints of the domain.

WWW ’24, May 13–17, 2024, Singapore, Singapore Wentao Shi et al.

Table 3: Performance comparison with Learning-To-Rank methods with clean and noise training on Adressa and Yelp. The best

results are highlighted in bold.

Adressa

Method

Clean Noise

Recall@20 NDCG@20 Recall@20 NDCG@20

Lambdarank [4] 0.1997±0.001 0.1093±0.0032 0.1731±0.0032 0.0936±0.0018

NDCG-Loss1 [35] 0.1866±0.0049 0.1009±0.0037 0.1774±0.0006 0.0948±0.002

NDCG-Loss2 [35] 0.2002±0.0031 0.1053±0.0018 0.1854±0.0069 0.0955±0.0037

ARP-Loss2 [35] 0.1957±0.0009 0.1089±0.0008 0.1759±0.0008 0.0946±0.0016

LLPAUC 0.2166±0.0022 0.1214±0.0009 0.2127±0.0014 0.1189±0.0009

Yelp

Method

Clean Noise

Recall@20 NDCG@20 Recall@20 NDCG@20

Lambdarank [4] 0.0716±0.0015 0.0396±0.0009 0.0695±0.0001 0.0379±0.0001

NDCG-Loss1 [35] 0.081±0.0011 0.0450±0.0006 0.0806±0.0011 0.0447±0.0004

NDCG-Loss2 [35] 0.0784±0.0012 0.0442±0.0009 0.0798±0.0006 0.0449±0.0004

ARP-Loss2 [35] 0.065±0.00016 0.0356±0.0009 0.0622±0.0023 0.0340±0.0011

LLPAUC 0.0884±0.0005 0.0505±0.0003 0.0847±0.0007 0.0481±0.0001

Algorithm 1 Stochastic Gradient Descent Ascent Algorithm

1: Input: User set U, Item set I, learning parameters

{𝜃, 𝑎, 𝑏, 𝑠+, 𝑠−, 𝛾}
2: Initialize: Randomly select {𝜃, 𝑎, 𝑏, 𝑠+, 𝑠−, 𝛾}. Let 𝜏 =

{𝜃, 𝑎, 𝑏, 𝑠−}, 𝜏 ′ = {𝛾, 𝑠+}
3: for 𝑡 = 0, 1, · · · ,𝑇 do

4: Sample a mini-batch positive interaction B+

5: Uniformly sample a mini-batch B−
𝑢 ∈ I−

𝑢 for each (𝑢, 𝑖) ∈
B+

.

6: Compute F (𝜏, 𝜏 ′) defined in Eq.(14).

7: Update 𝜏𝑡+1 = 𝜏𝑡 − 𝜂 · ∇𝜏F (𝜏, 𝜏 ′);
8: Update 𝜏 ′

𝑡+1 = 𝜏
′
𝑡 + 𝜂 · ∇𝜏 ′F (𝜏, 𝜏 ′);

9: Update 𝜏𝑡+1 = Clip(𝜏𝑡+1);
10: Update 𝜏 ′

𝑡+1 = Clip(𝜏 ′
𝑡+1);

11: end for

12: Return 𝜃𝑇+1

For time complexity analysis, we need to consider both forward

and backward computational complexity. As stated in Eq. (14), the

function is:

F =
1

|U|
∑︁
𝑢∈U

{
∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − 𝑟𝜅 (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+)
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 𝑟𝜅 (ℓ− (𝑓𝑢,𝑗) − 𝑠−)
𝑛−𝑢

− (𝑤 + 1)𝛾2}. (38)

Hence, the complexity of forward propagation is 𝑂 (|B+ | |B− |𝑑2),
where 𝑑 is the embedding size of user and item, B+

and B+
is

the mini batch size. For backward propagation, we first derive the

gradient of the function F :

𝜕F
𝜕𝜃

=
1

|U|
∑︁
𝑢∈U

{ 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

exp(𝜅 · (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+))
1 + exp(𝜅 · (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+))

·
𝜕ℓ+ (𝑓𝑢,𝑖)
𝜕𝜃

+ 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

·
𝜕ℓ− (𝑓𝑢,𝑗)

𝜕𝜃
}.

(39)

Easily, we obtain the complexity of Eq. (39) is 𝑂 (|B+ | |B− |𝑑2). The
partial derivatives of the function with respect to other parameters

have a similar form and the same computational complexity. Hence,

the total complexity per iteration is 𝑂 (|B+ | |B− |𝑑2), which is the

same with other baseline models such as BPR loss and BCE loss.

H COMPARISONWITH LEARNING-TO-RANK

METHODS

To further prove the efficiency of the proposed LLPAUC loss, we

compare it with advanced learning-to-rank (LTR) methods. How-

ever, directly applying LTR methods, such as the Lambda Frame-

work [35], to collaborative filtering (CF) tasks is very challenging

and time-consuming. This stems from the requirement to rank all

items in order to calculate △NDCG𝑖 𝑗 for different pairs of items.

In IR tasks, the retrieval model limits the candidate documents

to a small number (e.g., 1,000), while all unobserved items (up to

3,113,576 items) in CF tasks are potential candidates due to lacking

explicit query (please refer to [42] for more detailed discussion).

In order to implement these LTR methods, we design a simulated

retrieval model for the CF task. For each positive interaction, we

randomly sample 100 negative items (keeping the same with other

baselines) to form the candidate item set. Then we report the results

in Table 3. From it, we observe that the mainstream LTR methods

achieve better results than some baselines such as BPR and BCE

methods. However, these methods are still inferior to our proposed

methods LLPAUC, indicating that LLPAUC can be more strongly

correlated with the Top-K metrics.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Optimization Metrics In Recommendation
	2.2 Partial AUC And Its Optimization

	3 Preliminary
	3.1 Task Formulation
	3.2 AUC And Partial AUC

	4 When LLPAUC Meets with Recommender System
	4.1 Theoretical Analysis
	4.2 Empirical Analysis

	5 Method
	5.1 Loss Function

	6 Experiments
	6.1 Experiments Setting
	6.2 Main Results
	6.3 In-depth Analysis

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Lemma 1
	D Proof of Function
	E Proof of Lemma 2
	F Proof of Min-Max Swap
	G Time Complexity of Method
	H Comparison with Learning-To-Rank Methods

