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Abstract
Large Language Models (LLMs) exhibit remarkable capabilities in
storing and retrieving vast amounts of factual knowledge. However,
they retain outdated or incorrect information from Web corpora.
Since full retraining is costly, locate-and-edit model editing meth-
ods offer a feasible alternative. Current methods typically follow a
two-stage paradigm: (1) identifying critical layers that store knowl-
edge and (2) updating their parameters to store new knowledge.
However, both phases have their inherent limitations. Firstly, layer
identification is independent of the knowledge being updated, ig-
noring the differences in knowledge storage patterns. Secondly,
parameter updating suffers from high computational overhead due
to gradient descent. To solve these, we propose an Explainable
and effiCient model Editing method, termed ECE. Specifically, we
integrate LLM explainability into the editing process, enabling the
adaptive identification of the crucial neurons. Through cluster-
ing similar knowledge, we enable batch optimization in a single
gradient step, significantly reducing computational time without
compromising effectiveness. Extensive experiments demonstrate
that ECE can achieve superior performance, showcasing the po-
tential of explainability-driven editing methods for LLMs. Code is
available at https://github.com/tianyuzhangterry/ECE.
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1 Introduction
Large LanguageModels (LLMs) have recently demonstrated remark-
able capabilities in storing vast amounts of factual knowledge and
retrieving it effectively during inference [13, 34, 45]. The knowledge
in LLMs primarily stems from the extensive training data, particu-
larly Web corpora. However, these corpora often contain inaccura-
cies and outdated information that LLMs may inadvertently store,
necessitating targeted modifications to correct these knowledge
bases [40]. While retraining the entire LLM is a direct solution, it is
resource-intensive, both in terms of time and computational cost
[36, 39]. As an efficient alternative, locate-and-edit model editing
methods have emerged for updating specific knowledge [4, 30, 31].
These methods generally follow a two-stage paradigm: (1) given
an LLM, identifying the critical layers to knowledge storage by
causal tracing; (2) given a new piece of knowledge, computing the
expected output of the identified layers to ensure correct responses.
The expected output is then employed to update the critical layers’
parameters, allowing for knowledge updates by adjusting only a
small subset of model parameters [54].

While this two-stage paradigm is prevalent, both stages present
inherent issues [16, 19, 27, 29]. As illustrated in Figure 1,

• In Stage 1 (i.e. critical layer identification), the to-be-updated
layers and parameters remain fixed regardless of the type of new
knowledge. However, recent studies on LLM explainability sug-
gest that different types of knowledge are stored in distinct layers
and neurons [41]. Current methods ignore the explainable corre-
spondence between knowledge and neurons, making it difficult
to identify the precise neurons based on the input knowledge.
This results in suboptimal editing performance.
• In Stage 2 (i.e. parameter update), the process is computationally
expensive, as the optimal output must be calculated indepen-
dently for each knowledge instance. In practice, the number of
knowledge updates could exceed tens of thousands, imposing
significant efficiency constraints. Furthermore, in lifelong editing
scenarios (i.e., continuous updating the same LLM [19, 23]), each
update has to modify all key layers and neurons identified in
Stage 1 [14], significantly increasing time consumption.

https://doi.org/10.1145/3696410.3714835
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Figure 1: Paradigm difference between existing methods and our
method for sequential modeling editing. Our method succeeds in
identifying precise neurons with more efficient batch update.

Thus, a key question arises: Can we design an explainable and
efficient editing method that adaptively identifies key neurons in Stage
1 and streamlines parameter updates in Stage 2?

To answer this question, we propose an Explainable and effiCient
sequential Editing method, called ECE. Specifically, in Stage 1,
ECE integrates the concept of LLM explainability [40, 56] into the
editing process, enabling the adaptive identification of the most
relevant layers and neurons based on the input knowledge [56].
This identification is inspired by the advanced attribution methods
in LLM explainability, such as activation-based [6], weight-based
[50], and residual-flow-based methods [35, 41], making ECE focus
exclusively on the most critical parameters. By isolating neurons
unrelated to the updated knowledge, ECE perserves the integrity
of other knowledge stored within the LLM.

Furthermore, the explainability introduced in Stage 1 lays as
a foundation for accelerating Stage 2. This acceleration is mani-
fested in two key aspects: (1) Unlike current methods updating all
parameters in every key layer, ECE performs layer- and neuron-
wise updates changing only a limited set of parameters within
the selected layers identified by the attribution approaches. This
significantly reduces the overall parameter volume. (2) Current
research has verified that knowledge instances of similar types
often exhibit consistent distributions of key neurons and optimal
outputs across key layers [5, 15]. Building on this insight, ECE em-
ploys advanced clustering algorithms [35, 41] to group type-similar
knowledge based on the distribution of key neurons. This allows us
to compute the optimal outputs for these knowledge instances si-
multaneously in a single gradient descent step, drastically reducing
the time-consuming gradient descent process.

We conduct extensive qualitative and quantitative experiments
on GPT2-XL (1.5B) [38], GPT-J (6B) [49], and Llama-3 (8B) [11].
Results across multiple datasets demonstrate that, compared to
the baselines (e.g., Fine-tuning [44], MEND [32], ROME [30], and

MEMIT [31]), ECE significantly outperforms in editing effective-
ness across several metrics, including efficacy, generalization, speci-
ficity, fluency, and consistency. Moreover, ECE achieves an aver-
age speedup of 3.27× in editing efficiency for sequence editing.
These findings confirm that incorporating LLM explainability to
streamline the editing process can lead to improvements in both
effectiveness and efficiency.

Our key contributions are summarized as follows:
• We systematically analyze the inherent issues in current locate-
and-edit editing methods, specifically the lack of explainability
and inefficiency during the critical layer identification and pa-
rameter update phases.
• We propose a novel sequential editing method, termed ECE. By
integrating attribution methods from LLM explainability, ECE
adaptively identifies and updates neurons within LLMs, achieving
improvements in both effectiveness and efficiency.
• Experiments across multiple LLMs demonstrate that ECE out-
performs leading editing methods across five general evaluation
metrics and two commonly used datasets.

2 Preliminary
Let 𝜃 be model parameters and 𝑓𝜃 be the base model, model editing
modifies 𝑓𝜃 to its edited version 𝑓𝜃 ′ [4, 30, 31]. The objective is to ad-
just the model’s responses to a specified set of knowledge instance,
while preserving its performance on all other knowledge instances
[10]. The intended edit descriptor is denoted as {(𝑥𝑒

𝑖
, 𝑦𝑒

𝑖
)}𝑖∈[1,𝑁 ] ,

where 𝑓𝜃 (𝑥𝑒𝑖 ) ≠ 𝑦
𝑒
𝑖
, and 𝑁 represents the total number of editing

instances. This set of instances forms the editing scope 𝐼𝑒𝑑𝑖𝑡 , while
𝑂𝑒𝑑𝑖𝑡 represents the instances outside the editing scope. Formally,
a successful edit can be expressed as:

𝑓𝜃 ′ (𝑥𝑖 ) =
{
𝑦𝑒
𝑖
, if 𝑥𝑖 ∈ 𝐼𝑒𝑑𝑖𝑡 ,

𝑓𝜃 (𝑥𝑖 ), if 𝑥𝑖 ∈ 𝑂𝑒𝑑𝑖𝑡 .
(1)

Sequential model editing [29] refers to the process of continuously
refining a pre-trained model, 𝑓𝜃0 , through a series of updates, where
each update incorporates modifications to adjust the model’s out-
puts [12, 54]. This process is expressed as:

𝜃 ′ ← argmin
𝜃

©­«
𝑆∑︁
𝑠=0

(𝑠+1)×𝑛∑︁
𝑖=𝑠×𝑛

∥ 𝑓𝜃 (𝑥𝑒𝑖 ) − 𝑦
𝑒
𝑖 ∥

ª®¬ , (2)

where 𝑛 represents the batch size, and 𝑆 represents the sequential
editing step.

In practice, each update involves introducing a set of factual
triples in the form of (𝑠, 𝑟, 𝑜), where 𝑠 represents the subject, 𝑟
the relation, and 𝑜 the object (e.g., 𝑠=“The largest ocean”, 𝑟=“is”,
𝑜=“Pacific Ocean”). After the 𝑡-th edit, the updated model 𝑓𝜽𝑡 , built
on its predecessor 𝑓𝜽𝑡−1 , is optimized to generate precise target out-
puts for the corresponding inputsD𝑒𝑑𝑖𝑡𝑡 , while preserving accuracy
on inputs outside the current editing scope. Following ROME [30]
and MEMIT [31], we conceptualize the feed-forward network (FFN)
layer of a Transformer [46] as a linear associative memory. This ap-
proach effectively utilizes linear mappings within the FFN to serve
as key-value pairs for information retrieval [25]. Our objective is to
adjust the output of the LLM such that the input (𝑠𝑖 , 𝑟𝑖 ) produces
the output 𝑜𝑖 .
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Figure 2: Overview of ECE. (a) The neuron-wise identification approach is based on attribution methods using Activation Score, Weight
Importance, or Residual Sensitivity. ℎ denotes hidden state, 𝑧 denotes optimal representation, and red color in circle highlights the identified
neurons. (b) The clustering method applies to neurons corresponding to knowledge instances. (c) The acceleration is achieved by the two-step
gradient descent method based on the clustering results. U and Δ in yellow represent the step-1 and step-2 gradient descent.

The process begins by identifying the activation output from the
last subject token 𝑆 at the 𝑙-th FFN layer, which serves as the key 𝑘𝑙

𝑖
.

These keys are computed from the input weights𝑊 𝑙
in and are pro-

cessed through the output weights𝑊 𝑙
out to generate the correspond-

ing values 𝑣𝑙
𝑖
. This setup allows us to capture the LLM’s inherent 𝑛

knowledge pairs, associating input keys 𝐾0 = [𝑘1 |𝑘2 | . . . | 𝑘𝑛] with
corresponding values 𝑉0 = [𝑣1 |𝑣2 | . . . | 𝑣𝑛]. We aim to integrate 𝑢
additional key-value pairs associated with new knowledge, denoted
as 𝐾1 = [𝑘𝑛+1 |𝑘𝑛+2 | . . . | 𝑘𝑛+𝑢 ] and 𝑉1 = [𝑣𝑛+1 |𝑣𝑛+2 | . . . | 𝑣𝑛+𝑢 ],
while preserving the original associations. The values 𝑉1 are opti-
mized through gradient descent to maximize the probability of the
target token outputs, as detailed in MEMIT [31].

The optimization framework is defined as:

Δ = argmin
Δ̂

(

(𝑊 + Δ̂)𝐾1 −𝑉1

2 + 

(𝑊 + Δ̂)𝐾0 −𝑉0

2) , (3)

where𝑊 represents the output weights of the target FFN layer and
Δ denotes the required weight updates. The knowledge retention
can be expressed as𝑊𝐾0 = 𝑉0. Utilizing the least squares method,
the optimal weight update Δ is calculated as follows:

Δ = 𝑅𝐾𝑇1

(
𝐾0𝐾

𝑇
0 + 𝐾1𝐾

𝑇
1

)−1
, (4)

where 𝑅 = 𝑉1 −𝑊𝐾1. Here, the matrix 𝐾0𝐾𝑇0 can be approximated
by 𝜆E[𝑘𝑘𝑇 ], a covariance statistic without centering, derived from
an empirical dataset of vector inputs to the layer.

3 Methodology
In this section, we detail how ECE achieves simultaneous improve-
ments in efficiency and effectiveness through the incorporation of
explainability. Specifically, in Section 3.1, we present neuron-wise
identification that employs mature attribution algorithms to locate
fine-grained layers and neurons. In Section 3.2, we demonstrate
how the attribution results accelerate the learning of key matrices,
thereby significantly enhancing editing efficiency. Finally, Section
3.3 presents the parameter update process.

3.1 Neuron Identification
We first revisit the process of identifying parameters for updating
in current model editing approaches. Existing methods [30, 31]
primarily use causal tracing [30] to pinpoint layers with the highest
causal effect, assuming these layers store key knowledge in the
LLM. However, this approach has two major limitations:

• Independence from Specific Knowledge: Once key layers are
identified, all neurons within them are treated equally during
editing, overlooking the fact that different types of knowledge
are encoded in distinct patterns [20]. Each neuron plays a unique
role — some are crucial for specific information, while others
may be less relevant or even inactive for certain tasks;
• OverlookingNeurons Outside Key Layers: Focusing solely on
selected layers risksmissing important neurons distributed across
other layers that also contribute to knowledge storage. Moreover,
research about “dead neurons problem” [47] points that inactive
or “dead” neurons consume capacity without contributing mean-
ingfully to the model’s output. Editing both inactive and critical
neurons indiscriminately can reduce the precision of updates.

These limitations highlight the need for more precise and efficient
approaches to knowledge editing beyond layer-level modifications.

To solve these, an intuitive optimization is to adaptively identify
key neurons for editing based on to-be-updated knowledge. Draw-
ing inspiration from well-established neuron attribution methods
in LLM explainability [50], we employ three attribution methods to
quantify neuron relevance according to to-be-updated knowledge
as follows:

• Activation Score (AS) [35] ranks neurons directly by the magni-
tude of their activation values during inference, identifying those
that are highly active in processing specific inputs. Formally:

𝐴𝑆𝑖 = |𝑎𝑖 (𝑥 𝑗 ) |, (5)

where 𝑎𝑖 (𝑥 𝑗 ) denotes the activation value of neuron 𝑖 for knowl-
edge instance 𝑥 𝑗 .
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• Weight Importance (WI) [41] evaluates neurons based on the
weights involved in transmitting information between neurons,
emphasizing the significance of neurons with stronger internal
connections. The importance score is defined as:

𝑊𝐼𝑖 = |𝑊𝑖 𝑗 |, (6)

where𝑊𝑖 𝑗 denotes the weight between neuron 𝑖 and neuron 𝑗 .
• Residual Sensitivity (RS) [41] assesses neurons by their con-
tribution to the final output through the residual stream. The
importance score is defined as:

𝑅𝑆𝑖 = 𝑎
𝑙
𝑘
(𝑊 𝑙

out)𝑘 , (7)

where 𝑎𝑙
𝑘
is the activation value of neuron 𝑘 in layer 𝑙 , (𝑊 𝑙

out)𝑘
denotes the output weight for neuron 𝑘 in layer 𝑙 .

Building on prior work that suggests that neurons within Feed-
Forward Networks (FFNs) contain significant amounts of specific
factual information [6, 35, 41], we prioritize the optimization of
selected neurons rather than modifying the entire parameter space.
For each knowledge instance (𝑠𝑖 , 𝑟𝑖 , 𝑜𝑖 ), we compute the score val-
ues from one of the three methods above and obtain scores Q𝑖 for
the neurons. Using a descending sorting method, we then rank and
group the neurons with the highest scores together. We then select
a subset of neurons by identifying those whose cumulative score
exceeds a predetermined fraction 𝑝 of the total score:

I = arg min
I⊆{1,...,𝑁 }

|I | s.t.
∑︁
𝑗∈I

Q𝑖 𝑗 ≥ 𝑝 ·
𝑁∑︁
𝑗=1

Q𝑖 𝑗 , (8)

where Q𝑖 𝑗 represents the score of the 𝑗-th neuron, and I is the se-
lected set of neuron indices. This identification mechanism enables
targeted edits, ensuring efficiency and precision in the parameter
update process.

Given that the model may need to edit multiple knowledge facts
in parallel (i.e., in a batch), which may correspond to different
neurons across the network, we aggregate neuron scores across
all batch samples. This allows for a unified neuron identification
based on cumulative influence contribution, which streamlines the
model’s response to various edits.

3.2 Accelerated Learning of Key Matrices
After identifying the to-be-updated parameters I, the next step is
to obtain the optimal representations of the relevant layers post-
editing, i.e., the value matrix 𝑉1 for the to-be-updated knowledge
as outlined in Section 2. Note that this step serves as a key driver
of ECE’s acceleration by leveraging the attribution results from the
above Section. Next, we will detail how ECE achieves simultaneous
improvements in efficiency and effectiveness through two progres-
sive steps: knowledge clustering and two-step gradient descent.

3.2.1 Knowledge Clustering. Different types of knowledge inher-
ently possess varying textual attributes such as geographical, de-
mographic, and temporal concepts, which implies that their key
information is stored in different regions within the model [35, 41].
Hence, we propose a clustering approach to pre-classify knowledge,
thereby avoiding conflicts that may arise due to the distinct charac-
teristics of the knowledge being edited. Specifically, we represent
each knowledge instance 𝑥𝑖 and its corresponding set of identi-
fied neurons as a key-value pair. By applying a k-means clustering

algorithm based on Jaccard similarity, we aggregate knowledge
instances with similar neuron identifications into clusters. In our
clustering approach, the objective is to minimize the Jaccard dis-
tance between the data points and their respective cluster centroids,
formulated as:

argmin
𝑆

𝑘∑︁
𝑖=1

∑︁
𝑥 𝑗 ∈𝑆𝑖

𝑑 𝐽 (𝑥 𝑗 , 𝑐𝑖 ), (9)

where 𝑆𝑖 represents the 𝑖-th cluster,𝑥 𝑗 denotes a data point in cluster
𝑆𝑖 , and 𝑐𝑖 is the centroid of cluster 𝑆𝑖 . By minimizing this objective,
we ensure that the knowledge within each cluster exhibits high
internal similarity.

We treat each resulting cluster as a smaller batch and subse-
quently use the sample closest to the center of each cluster as an
anchor sample. The anchor sample for each cluster is defined as
the sample with the smallest sum of Jaccard distances to all other
samples in the cluster. This criterion ensures that the selected an-
chor is the most representative data point of its cluster, which is
formulated as follows:

𝑥anc = arg min
𝑥 𝑗 ∈𝑆𝑖

∑︁
𝑥𝑘 ∈𝑆𝑖

𝑑 𝐽 (𝑥 𝑗 , 𝑥𝑘 ). (10)

This approach allows us to perform subsequent editing tasks in a
more fine-grained manner, tailored to the specific attributes of each
knowledge category.

3.2.2 Two-step Gradient Descent. To enhance computational ef-
ficiency in the sequential batch editing process, we introduce a
two-step gradient descent approach applied to the clusters identi-
fied in the previous step. For each cluster, the gradient descent is
divided into a common phase and an instance-specific phase, allow-
ing us to maximize shared information while maintaining unique
adjustments for each instance within the cluster. This approach
significantly reduces redundant calculations and accelerates the
model adaptation process.

In the first phase, we perform a unified gradient descent over
the entire cluster, conducting 20 epochs of shared updates from a
total of 25 epochs for the whole process. In this modified shared
gradient descent, all instances within the cluster share the update
vector 𝑧anc associated with the anchor sample 𝑥anc of the cluster
for the first 20 epochs. This shared step captures common patterns
by optimizing parameters based on the anchor sample, which is
broadly representative of the entire cluster, thereby reducing the
number of repetitive updates. Let𝐶𝑢 represent the 𝑢-th cluster, and
let ℎ𝐿anc denote the update vector for the anchor sample within the
cluster. By minimizing the average loss based on the anchor sample
𝑥anc and its corresponding edit target 𝑦𝑒anc, we calculate the unified
updateU𝑧𝑢 for the entire cluster as follows:

U𝑧𝑢 = argmin
𝛿
− logP𝐺 (ℎ𝐿anc + 𝛿) (𝑦𝑒anc | 𝑥anc), (11)

This unified update step captures the general characteristics of the
cluster by leveraging the anchor sample, thereby setting a common
foundation for the individual updates that follow.

In the second phase, we refine this update by performing five ad-
ditional epochs of gradient descent tailored to each instance within
the cluster. This step fine-tunes the model on unique variations and
specific details, accommodating the individual characteristics and
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ensuring that the final updates are well-adapted to each instance.
The optimization objective is as follows:

𝛿∗𝑖 = argmin
𝛿𝑖
− logP𝐺 (ℎ𝐿𝑖 + U𝑧𝑢 + 𝛿𝑖 ) (𝑦

𝑒
𝑖 | 𝑥𝑖 ), 𝑖 ∈ 𝐶𝑢 , (12)

where 𝛿∗
𝑖
is the instance-specific adjustment derived by minimizing

the residual error after applying the shared updateU𝑧𝑘 . Thus, the
two-step update 𝑧𝑖 for a specific instance 𝑖 in cluster 𝐶𝑘 can be
integrated together as:

𝑧𝑖 = ℎ
𝐿
𝑖 + U𝑧𝑢 + 𝛿

∗
𝑖 . (13)

This step preserves individual differences by fine-tuning the shared
update to better align with the specific characteristics and require-
ments of each instance.

By separating the optimization into these two steps, we achieve
both efficiency and adaptability. The unified 20-epoch update cap-
tures the core features shared among instances within a cluster,
while the five-epoch instance-specific phase ensures that each in-
stance receives the necessary unique adjustments. This design re-
duces the overall computation required by avoiding repetitive up-
dates for common features. Consequently, this method provides
a balanced approach that maintains the specificity of individual
updates while optimizing shared computations, leading to faster
convergence and lower computational costs in comparison to tradi-
tional instance-by-instance gradient descent methods.

Traditional methods have a time complexity of 𝑂 (𝑁𝑝 · 𝐿 · 𝑇𝑔),
where𝑁𝑝 is the number of model parameters, 𝐿 is the number of lay-
ers, and𝑇𝑔 is the number of gradient descent iterations. These meth-
ods update parameters across multiple layers, making them compu-
tationally expensive. In contrast, ECE focuses only on key neurons
with knowledge clustering and a two-step approach, achieving sig-
nificant optimization in a complexity of𝑂 (𝐾 ·𝐵 ·𝑇𝑘+𝑀 ·𝑇𝑢+𝐵 ·𝑀 ·𝑇𝑖 ).
𝐾 is the number of clusters, 𝐵 is the batch size, 𝑇𝑘 is the number of
K-means iterations, and𝑀 is the number of selected key neurons,
where 𝑀 ≪ 𝑃 and 𝑇𝑢 + 𝑇𝑖 = 𝑇𝑔 . Empirically, ECE is faster than
others by about hundreds of seconds per batch.

3.3 Parameter Updates
After identifying the to-be-updated parameters I in Section 3.1
and the value matrix 𝑉1 in Section 3.2, we arrive at the final step:
performing the parameter update onWout.

Following MEMIT [31], we derive the solution for Eqn. 19 using
the method of minimal squared error as:

𝚫̂

∗
= 𝑅𝐾̂𝑇1 𝐶

−1, (14)

where 𝑅 = 𝑉1 − 𝑊̂ 𝐾̂1 and 𝐶 = 𝐾̂0𝐾̂𝑇0 + 𝐾̂1𝐾̂
𝑇
1 . In order to maintain

continuity, we approximate 𝐾0𝐾𝑇0 with 𝜆E
[
𝑘𝑘𝑇

]
, where 𝜆 is a

hyperparameter balancing the retention of prior knowledge with
the integration of new edits. The submatrix 𝐾̂0𝐾̂𝑇0 is then derived
from 𝐾0𝐾𝑇0 by indexing only the identified neurons. Additionally,
as each editing round progresses, newly edited knowledge becomes
the reference knowledge for subsequent rounds, which requires
updating 𝐾0𝐾𝑇0 after each iteration.

4 Experiments
We conduct experiments to demonstrate the effectiveness of ECE.
The experiments aim to address the following research questions:

• RQ1: How does ECE’s performance on sequential model editing
tasks compared to existing methods?
• RQ2:What is the impact of different parameter settings on the
performance and stability of sequential model editing?
• RQ3: How much efficiency improvement can ECE achieve in
comparison to existing editing techniques?
• RQ4: Can LLMs preserve the original general abilities after ex-
tensive sequential edits?

4.1 Experimental Settings
Datasets & Evaluation Metrics. To evaluate the effectiveness of
our method, we utilize two datasets: Counterfact [30] and ZsRE
[26]. For the Counterfact dataset, we utilize five evaluation metrics
as defined in previous studies [30, 31]: Efficacy (efficiency success),
Generalization (paraphrase success), Specificity (neighborhood
success), Fluency (generation entropy), and Consistency (refer-
ence score). For the ZsRE dataset, we apply three evaluation metrics,
also defined in previous work [30–32]: Efficacy, Generalization,
and Specificity. For more details, see Appendix B.
Baselines: For baseline comparisons, we consider several model
editing approaches across different categories. (1) Fine-tuning based:
FT-L [44] and FT-M [58] directly fine-tune a single layer’s feed-
forward network (FFN); (2) Locate-and-edit: ROME [30] which
identifies critical neuron activationswithinmiddle-layer feed-forward
modules that influence factual prediction andMEMIT [31] treats
the transformer’s feed-forward layer as a linear associative mem-
ory and applies minimum square error optimization to introduce
new key-value associations; (3) Meta-learning based:MEND [32]
uses a hyper-network to transform gradients obtained via standard
fine-tuning; (4) Memory-based: SERAC [33] which employs an
external cache to store explicit edits.
Implementation Details: Our comparative analysis evaluates the
performance of various editing methods on three autoregressive
language models, GPT2-XL (1.5B) [38], GPT-J (6B) [49], and Llama3
(8B) [11]. Further details are provided in the Appendix C.

4.2 Editing Performance (RQ1)
In this subsection, we present a detailed comparison of ECE against
other established methods for the sequential model editing task,
conducted using GPT2-XL, GPT-J, and Llama3 models. The experi-
ments are performed on 2000 edited samples, with an editing batch
size of 100 (batch size refers to the number of samples edited simul-
taneously during each round of sequential editing), and evaluated
on the Counterfact and ZsRE datasets. The evaluation results, using
various metrics and across all datasets, are summarized in Table 1.
From this table and Figure 5 in Appendix D, we can observe that:
• Observation 1: ECE outperforms other baseline methods
in almost all critical metrics in the sequential editing task.
ECE demonstrates notable improvements compared to baseline
methods across both datasets and models, achieving significant
gains across all metrics. For instance, on the Llama3 (8B) model
with Counterfact dataset, ECE exhibits an average improvement
of approximately 56.39% across the editing success rate contain-
ing efficacy, generalization, and specificity. On the ZsRE dataset,
ECE’s performance is even more remarkable, achieving multiple-
fold improvements across all three models.
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Table 1: Comparison of ECE with existing methods on the sequential model editing task. The bold represents the best results from our methods
and the underline indicates the best results of baselines.

Model Method
Counterfact ZsRE

Efficacy↑ Generalization↑ Specificity↑ Fluency↑ Consistency↑ Efficacy↑ Generalization↑ Specificity↑

Llama3

Pre-edited 7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

FT-L 83.33±0.37 67.79±0.40 46.63±0.37 233.72±0.22 8.77±0.05 30.48±0.26 30.22±0.32 15.49±0.17
FT-W 61.23±0.38 62.40±0.24 47.05±0.41 492.34±0.23 3.57±0.03 32.08±0.35 31.43±0.23 14.72±0.16
MEND 63.24±0.31 61.17±0.36 45.37±0.38 372.16±0.80 4.21±0.05 0.91±0.05 1.09±0.05 0.53±0.02
ROME 64.40±0.47 61.42±0.42 49.44±0.38 449.06±0.26 3.31±0.02 2.01±0.07 1.80±0.07 0.69±0.03
MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19
SERAC 67.78±0.29 60.98±0.31 45.26±0.21 384.49±0.73 15.71±0.03 1.24±0.05 1.03±0.06 0.56±0.02
ECE (AS) 92.90±0.10 82.85±0.27 80.93±0.20 628.32±0.14 31.62±0.11 89.29±0.14 83.25±0.25 30.03±0.23
ECE (WI) 99.60±0.16 90.65±0.25 87.24±0.19 629.37±0.16 31.63±0.11 95.34±0.12 90.29±0.20 33.04±0.23
ECE (RS) 97.50±0.15 85.25±0.31 87.93±0.19 631.09±0.13 31.00±0.10 93.81±0.15 88.38±0.22 32.92±0.23

GPT2-XL

Pre-edited 22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

FT-L 63.55±0.48 42.20±0.41 57.06±0.30 519.35±0.27 10.56±0.05 37.11±0.39 33.30±0.37 10.36±0.17
FT-W 42.70±0.49 35.93±0.40 63.06±0.31 565.96±0.23 13.03±0.06 24.97±0.32 22.40±0.30 12.73±0.18
MEND 50.80±0.50 50.80±0.48 49.20±0.51 407.21±0.08 1.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ROME 54.60±0.48 51.18±0.40 52.68±0.33 366.13±1.40 0.72±0.02 47.50±0.43 43.56±0.42 14.27±0.19
MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.42±0.25
SERAC 51.50±0.44 50.04±0.42 52.13±0.47 418.12±0.76 1.55±0.02 38.58±0.36 41.49±0.46 13.78±0.21
ECE (AS) 95.90±0.14 85.90±0.29 72.80±0.28 607.33±0.33 38.75±0.12 83.6±0.25 72.98±0.39 26.72±0.22
ECE (WI) 96.20±0.19 89.10±0.31 78.44±0.27 625.74±0.13 32.84±0.10 86.71±0.39 79.33±0.33 26.12±0.25
ECE (RS) 98.60±0.18 88.30±0.34 77.65±0.26 622.22±0.17 33.84±0.10 88.46±0.39 78.17±0.39 25.64±0.28

GPT-J

Pre-edited 16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±037 25.79±0.25 27.42±0.53

FT-L 92.15±0.27 72.38±0.38 43.35±0.37 297.92±0.77 6.65±0.10 72.37±0.29 68.91±0.32 19.66±0.23
FT-W 48.35±0.49 31.42±0.39 68.71±0.28 587.20±0.23 29.41±0.09 39.81±0.36 32.55±0.33 27.76±0.26
MEND 46.15±0.50 46.22±0.51 53.90±0.48 242.41±0.41 3.94±0.03 0.71±0.04 0.71±0.04 0.52±0.03
ROME 57.50±0.48 54.20±0.40 52.05±0.31 589.28±0.08 3.22±0.02 56.42±0.42 54.65±0.42 9.86±0.16
MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 30.39±0.27
SERAC 55.88±0.36 51.39±0.53 53.78±0.39 390.21±0.49 4.36±0.03 49.48±0.37 1.59±0.03 8.84±0.18
ECE (AS) 98.82±0.09 95.73±0.23 74.25±0.26 618.5±0.23 42.22±0.13 96.20±0.15 93.35±0.25 27.19±0.21
ECE (WI) 100.00±0.00 96.35±0.15 79.41±0.26 619.82±0.17 42.34±0.13 99.74±0.03 96.88±0.14 28.49±0.26
ECE (RS) 100.00±0.00 96.45±0.14 79.99±0.25 619.38±0.17 41.10±0.13 97.28±0.13 94.99±0.21 28.86±0.24

4.3 Impact of Parameter (RQ2)
As the model undergoes successive modifications with editing tasks,
sequential model editing methods face two inherent challenges:
model forgetting and model failure. Model forgetting occurs
when cumulative parameter changes from successive edits erode
previously modified knowledge, resulting in a decline in perfor-
mance and stability over time [7, 18]. Meanwhile, model failure
refers to the progressive loss of themodel’s ability to generate coher-
ent responses as edits accumulate, potentially leading to model col-
lapse, where the output becomes repetitive or nonsensical [16, 17].
To explore these effects, we examine the influence of two key pa-
rameters number of edits and batch size on the sequential model
editing process. Specifically, we analyze how the number of edits
impact the performance of ECE compared to MEMIT and ROME
on Llama3 and Counterfact dataset at Figure 3.

• Observation 2: ECE maintains stable performance across
all metrics as the number of edited samples increases. As
illustrated in Figure 3, ECE shows resilience against model failure
and forgetting as the number of editing rounds grows. In contrast,
both ROME and MEMIT experience considerable performance
declines, particularly in Specificity, Fluency, and Consistency,. As
more samples are edited, ROME and MEMIT increasingly fail to
uphold model integrity and impair model’s original capabilities.
• Observation 3: ECE consistently outperforms across a range
of batch sizes in sequential editing tasks. From Figure 6 in
Appendix D we can see that MEMIT’s performance declines
markedly as batch size decreases and the number of editing
rounds increases. This effect is especially evident when the batch
size is reduced to 10, showing a notable drop in editing effective-
ness across all metrics. In comparison, ECE demonstrates stable
performance across these metrics, regardless of batch size.
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Figure 3: Editing performance of ECE and baselines with different numbers of edits (batch size 100) evaluated on Llama3 model and Counterfact
dataset. Score is the harmonic mean of Efficacy, Generalization, and Specificity.

Method GPT2-XL GPT-J Llama3

FT-L 191.42s 303.26s 451.23s
FT-W 157.44s 263.74s 374.35s
MEND 26.79s 49.16s 67.85s
ROME 422.37s 764.82s 914.63s
MEMIT 222.51s 334.74s 484.14s
SERAC 384.91s 634.74s 834.56s
ECE (AS) 119.39s 187.44s 216.87s
ECE (WI) 104.88s 178.23s 214.19s
ECE (RS) 148.48s 199.32s 231.64s

Table 2: Times per batch for various methods
evaluated on ZsRE dataset with different models.

Figure 4: Comparison of general capabilities for MEMIT and ECE (WI) with 2000 edits on
(a) Llama3 model, (b) GPT2-XL model, and (c) GPT-J model.

4.4 Time Overhead Comparison (RQ3)
To evaluate the efficiency of our approach in sequential knowledge
editing tasks, we conducted tests across three model architectures,
benchmarking our method against established baselines. The eval-
uation involved a continuous editing scenario with a total of 2,000
edits and a batch size of 100. These numbers shown in Table 2
represent the average time of the whole editing process conducting
at the first time. This means they could reflect the results of edit-
ing efficiency including getting expected output through gradient
descent and further techniques.

• Observation 4: Our methods consistently maintained su-
perior efficiency, with the WI method being the fastest.
Our method demonstrated significant improvements in editing
speed, surpassing nearly all baseline methods. Although MEND
displayed the shortest editing times, its low effectiveness on the
ZsRE dataset limits its applicability. In general, combined with
the editing performance results, ECE achieves a notable improve-
ment in efficiency through acceleration approaches.

4.5 General Ability Test (RQ4)
To evaluate the impact of model editing on the general capabilities
of large language models (LLMs), we have selected six natural lan-
guage tasks from the General Language Understanding Evaluation
(GLUE) benchmark [48], a public leaderboard for tracking perfor-
mance with respect to a wide range of linguistic phenomena found
in natural language. The chosen downstream tasks are as follows:
(1) SST (Stanford Sentiment Treebank) [43], which involves clas-
sifying individual sentences based on sentiment in movie reviews.
(2) MRPC (Microsoft Research Paraphrase Corpus) [8], a task
focused on text matching to assess semantic similarity. (3) MMLU
(MassiveMulti-task LanguageUnderstanding) [21], which eval-
uates language models on multi-task accuracy. (4) CoLA (Corpus
of Linguistic Acceptability) [51], a single-sentence classification
task drawn from linguistic theory literature. (5) RTE (Recogniz-
ing Textual Entailment) [3], a natural language inference task to
determine whether a given premise entails a hypothesis. (6) NLI
(Natural Language Inference) [52], which requires the model to
identify logical relationships between pairs of sentences.
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• Observation 5: ECE consistently maintains the general ca-
pabilities of the LLM during sequential editing without
incurring model failure. From Figure 4 we can see that: as
the number of knowledge edits grows, ECE maintains perfor-
mance levels comparable to those of the unedited LLMs, showing
no negative impact on the model’s core general capabilities. In
contrast, both ROME and MEMIT have poor performance in dif-
ferent general capabilities, suggesting that the model has already
suffered significant degradation.

5 Related work
Model editing has emerged as an essential research area focused
on modifying the behavior of pre-trained large language models
(LLMs) to integrate new knowledge or correct factual errors, all
without the need for extensive retraining.

5.1 Model Editing
Model editing offers a targeted solution, aiming to make specific
changes to a model’s knowledge while ensuring that the model
maintains its general performance across unrelated inputs. Model
editing approaches can broadly be divided into two categories:
methods that preserve the model’s original parameters andmethods
that directly modify the model’s parameters.

Preserve Models’ Parameters.Methods in this category aim
to preserve the pre-trained model’s parameters by introducing new
knowledge through external components or retrieval mechanisms,
rather than altering the core model itself. IKE [57] leverages in-
context learning to adjust model outputs based on retrieved demon-
strations, thus avoiding any gradient-based updates. Similarly, sys-
tems like SERAC [33] keep the model’s parameters unchanged and
use a counterfactual model to make edits, isolating the editing pro-
cess from the base model. T-Patcher [22] introduces an additional
neuron for each specific output error, while CaliNet [9] injects neu-
rons to handle multiple knowledge cases. MELO [55] dynamically
activates LoRA blocks indexed within an internal vector database,
allowing models to behave differently depending on the retrieved
block. On the other hand, GRACE [19] maintains a codebook to
store knowledge and updates sequentially without modifying the
core model. Similarly, Larimar [7] extends the idea of preserving
model parameters by enhancing LLMs with distributed episodic
memory, which serves as an external knowledge source.

Modify Model Parameters. Methods that modify LLM param-
eters focus on directly updating the internal weights of the model
to incorporate new knowledge. Knowledge Neurons (KN) [6] iden-
tifies crucial neurons that encode factual knowledge within the
feed-forward networks (FFNs) of the model and updates them ac-
cordingly. Methods such as KE [4] andMEND [32] employ hypernet-
works to predict the necessary weight updates for new knowledge,
leveraging meta-learning approaches to minimize computational
overhead. ROME [30] and MEMIT [31] allow for large-scale direct
editing of LLMs by locating and modifying specific knowledge in
certain layers of models like GPT. ROME utilizes causal mediation
analysis to identify the layers for storage and performs targeted
updates in these areas. MEMIT extends this approach, enabling si-
multaneous edits across multiple factual associations by modifying

key neurons in the feed-forward layers. PMET [28] introduces atten-
tion values into the editing process, refining the selection of critical
neurons for editing. To improve the stability and performance of
parameter modification approaches, especially for sequential model
editing tasks, PRUNE [29] restricts the maximum singular value of
parameter changes to avoid model degradation, while RECT [16]
retains parameters with minimal changes to ensure stability. Fur-
thermore, COMEBA-HK [27] introduces hook layers to define the
scope of editing.

5.2 Model Explainability
Due to the high computational costs involved and the assertion
that only a select subset of neurons plays a crucial role in decision-
making, existing methods are commonly combined with ranking
algorithms to streamline the process [1]. Based on the premise that
models learning similar properties often exhibit shared neurons,
these neurons are ranked by metrics such as correlation coeffi-
cients and learned parameter weights [2]. The Summarize and
Score (SASC) [42] pipeline generates natural language explanations
for large language model modules by first identifying n-grams that
strongly activate themodule and then evaluating these explanations
with synthetic data to assess their relevance. The weight banding
[37] studies weights that connect neurons, seeking to develop algo-
rithms that reveal underlying logical structures.

6 Limitation and Discussion
While ECE shows significant improvements in both explainability
and efficiency for sequential model editing tasks, there are still
limitations to our study. Our evaluations are primarily focused on
a few common and mainstream language models. Moreover, the
experiments are currently based on existing datasets that use struc-
tured text languages. Looking ahead, we are committed to exploring
more diverse techniques to further enhance the explainability and
improve the overall efficiency and robustness of sequential editing,
adapting it to a broader range of applications and advancing its
capabilities for real-world deployment.

7 Conclusion
In summary, we presented Explainable and Efficient Sequential
Editing (ECE), a method that addresses key limitations in the two-
stage knowledge editing process for LLM. ECE enhances Stage 1
by adaptively identifying critical layers and neurons, leveraging
model explainability for targeted updates. In Stage 2, ECE clusters
similar keys to enable batch optimization, significantly reducing
computational costs. Experimental results across different evalua-
tion metrics and datasets demonstrate that ECE achieves superior
editing performance with a substantial increase in efficiency, show-
casing its potential to make model editing both explainable and
efficient for real-world applications.
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A Detail of preliminary
Problem settings for model editing typically fall into four categories
[12, 54]: single editing, batch editing, sequential editing, and sequen-
tial batch editing. In this work, we talks about the most complex
type of editing.
(1) Single Editing assessesmodel performance after a single knowl-

edge update:

𝜃 ′ ← argmin
𝜃

(
∥ 𝑓𝜃 (𝑥𝑒𝑖 ) − 𝑦

𝑒
𝑖 ∥

)
(15)

(2) Batch Editing assesses model performance when multiple
knowledge pieces are modified simultaneously (𝑛 ≤ 𝑁 repre-
sents the batch size):

𝜃 ′ ← argmin
𝜃

(
𝑛∑︁
𝑖=1
∥ 𝑓𝜃 (𝑥𝑒𝑖 ) − 𝑦

𝑒
𝑖 ∥

)
(16)

(3) Sequential Editing requires that every single edit is executed
successively and evaluation conducted only after all edits are
completed []:

𝜃 ′ ← argmin
𝜃

(
𝑁∑︁
𝑖=1
∥ 𝑓𝜃 (𝑥𝑒𝑖 ) − 𝑦

𝑒
𝑖 ∥

)
(17)

(4) Sequential Batch Editing aims to perform edits in a sequential
manner and in batches (𝑛 represents the batch size, 𝑆 represents
the sequential editing step):

𝜃 ′ ← argmin
𝜃

©­«
𝑆∑︁
𝑠=0

(𝑠+1)×𝑛∑︁
𝑖=𝑠×𝑛

∥ 𝑓𝜃 (𝑥𝑒𝑖 ) − 𝑦
𝑒
𝑖 ∥

ª®¬ (18)

On the part of parameter update, the details are described here.
Let Ŵ and 𝚫̂ denote the submatrices of W and the update 𝚫, re-
spectively, formed by selecting rows indexed by I. Our objective is
to optimize the updated parameters for each neuron set by minimiz-
ing the squared error between the model’s output and the target
knowledge representations:

Δ̂ = argmin
Δ̂

(

(𝑊 + Δ̂)𝐾1 −𝑉1

2 + 

(𝑊 + Δ̂)𝐾0 −𝑉0

2) , (19)

where 𝐾̂0 and 𝐾̂1 are two submatrix formed from Q0 and Q1 by
indexing the columns corresponding to I. This formulation ensures
that the model retains previously learned knowledge (through 𝐾0)
while incorporating new edits (through 𝐾1).

B Details of Datasets and Evaluation Metrics
B.1 Datasets
ZsRE [26] is a question answering (QA) dataset that employs ques-
tions generated via back-translation as equivalent neighboring
prompts. In line with previous studies, natural questions are used
as out-of-scope data to assess the locality aspect. Each ZsRE sam-
ple comprises a subject string and corresponding answers as the
targets for evaluating editing success, along with rephrased ques-
tions for testing generalization and locality questions for assessing
specificity.

Counterfact [24] is a more challenging dataset that distinguishes
between counterfactual and factual statements, initially yielding
lower scores for Counterfact. It generates out-of-scope data by

substituting the subject entity with similar entities that share the
same predicate. The Counterfact dataset includes metrics similar
to those in ZsRE to evaluate efficacy, generalization, and specificity.
Additionally, Counterfact offers multiple generation prompts with
equivalent meanings to the original prompt to assess generated
text quality, with a specific focus on fluency and consistency.

B.2 ZsRE Metrics
Following the previous work [30–32], this section defines each
ZsRE metric given a LLM 𝑓𝜃 , a knowledge fact prompt (𝑠𝑖 , 𝑟𝑖 ), an
edited target output 𝑜𝑖 , and the model’s original output 𝑜𝑐

𝑖
:

• Efficacy: The efficacy metric is computed as the average top-1
accuracy on the edited samples:

E𝑖
{
𝑜𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | (𝑠𝑖 , 𝑟𝑖 ))

}
. (20)

• Generalization: Generalization assesses the model’s ability to
perform on alternative prompts equivalent to (𝑠𝑖 , 𝑟𝑖 ), such as
paraphrased variations 𝑁 ((𝑠𝑖 , 𝑟𝑖 )). It is calculated as the average
top-1 accuracy on these paraphrased forms:

E𝑖
{
𝑜𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | 𝑁 ((𝑠𝑖 , 𝑟𝑖 ))

}
. (21)

• Specificity: Specificity ensures that the edits do not alter model
predictions on samples that are unrelated to the edited cases
𝑂 (𝑠𝑖 , 𝑟𝑖 ). This is measured by the top-1 accuracy of the predic-
tions that remain consistent:

E𝑖
{
𝑜𝑐𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | 𝑂 ((𝑠𝑖 , 𝑟𝑖 ))

}
. (22)

B.3 Counterfact Metrics
Following prior works [30, 31], each Counterfact metric is defined
for a large language model 𝑓𝜃 , with a knowledge prompt (𝑠𝑖 , 𝑟𝑖 ), an
edited target output 𝑜𝑖 , and the model’s original output 𝑜𝑐

𝑖
:

• Efficacy (edit success): The ratio of cases where 𝑜𝑖 has a higher
probability than 𝑜𝑖𝑐 for the prompt (𝑠𝑖 , 𝑟𝑖 ):

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | (𝑠𝑖 , 𝑟𝑖 )] > P𝑓𝜃 [𝑜

𝑖
𝑐 | (𝑠𝑖 , 𝑟𝑖 )]

]
. (23)

• Generalization (paraphrase success): The proportion of cases
inwhich𝑜𝑖 is more likely than𝑜𝑖𝑐 for rephrased prompts𝑁 ((𝑠𝑖 , 𝑟𝑖 )):

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | 𝑁 ((𝑠𝑖 , 𝑟𝑖 ))] > P𝑓𝜃 [𝑜

𝑖
𝑐 | 𝑁 ((𝑠𝑖 , 𝑟𝑖 ))]

]
. (24)

• Specificity (unaffected prompt success): The fraction of neigh-
boring prompts 𝑂 ((𝑠𝑖 , 𝑟𝑖 )), referring to semantically related sub-
jects, where the model maintains a higher probability on the
accurate fact:

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | 𝑂 ((𝑠𝑖 , 𝑟𝑖 ))] > P𝑓𝜃 [𝑜

𝑖
𝑐 | 𝑂 ((𝑠𝑖 , 𝑟𝑖 ))]

]
. (25)

• Fluency (repetition entropy): Measures output repetitiveness
using entropy of n-gram distributions:

−2
3

∑︁
𝑘

𝑔2 (𝑘) log2 𝑔2 (𝑘) +
4
3

∑︁
𝑘

𝑔3 (𝑘) log2 𝑔3 (𝑘), (26)

where 𝑔𝑛 (·) represents the n-gram frequency distribution.
• Consistency (reference similarity): Consistency is evaluated
by providing the model 𝑓𝜃 with a subject 𝑠 and then calculating
the cosine similarity between the TF-IDF vectors of the generated
text and a reference text (e.g., a Wikipedia entry) about 𝑜 .
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Figure 5: Editing performance of MEMIT and ECE with 2000 edits in sequential editing, evaluated on the Counterfact and ZsRE dataset, on (a)
Llama3 model and (b) GPT2-XL model.

C Implementation details
These are implementation details of the models and experiments.

C.1 Implementation Details on GPT2-XL
The covariance statistics are computed using 100,000 samples from
Wikitext in fp32 precision, with the hyperparameter 𝜆 set to 20,000.
During the computation of z𝑖 , we perform 20 epochs with a learning
rate of 0.5. We set the threshold 𝑝 for neuron selection at 0.8. For
other detailed parameters, we set clamp factor to 0.75, weight decay
to 0.5, and kl factor to 0.0625. Those three parameters are set equally
across three models.

C.2 Implementation Details on GPT-J
The hyperparameter 𝜆 is configured to 15,000. During the calcula-
tion of z𝑖 , we conduct 25 iterations with a learning rate of 0.5, and
the neuron selection threshold 𝑝 is set to 0.8.

C.3 Implementation Details on Llama3 (8B)
We set the hyperparameter 𝜆 to 15,000. In the calculation of z𝑖 , we
perform 25 iterations with a learning rate of 0.1, while maintaining
the neuron selection threshold 𝑝 at 0.8.

C.4 Additional Implementation Considerations
All experiments are executed on a single A100 (80GB) GPU for
convenience, since fully running a single A40 (40GB) could han-
dle almost every experiments. The language models loaded using

HuggingFace Transformers [53]. To enhance both efficiency and
resource management, we utilize the original model weights during
the calculation of z𝑖 . For practical storage optimization, we pre-
compute z𝑖 values for all samples slated for editing and store these
values, enabling direct access during editing without needing to re-
tain the entire set of original model weights. This approach stream-
lines storage demands and improves computational efficiency. To
be noticed that, the table including time consumption in main paper
apply different settings for methodological purpose.

D Experiment
In this section, we present some supplemental information to Sec-
tion 4.

Figure 5 corresponds to observation 1: ECE outperforms other
baseline methods in almost all critical metrics in the sequential
editing task. This figure focuses on the comparison of our three
methods and MEMIT on two mainly used datasets with Llama3 and
GPT2-XL models.

Figure 6 corresponds to observation 3: ECE consistently out-
performs across a range of batch sizes in sequential editing tasks.
MEMIT’s performance is great in traditional methods. ECE is better
than MEMIT in every different batch sizes and metrics. This helps
answer RQ2.

From figure 7, we determine to set the threshold value to 0.8
for achieving the best performance. We can see from 7, 0.8 is the
highest point across different evaluation metrics, indicating the
best option for an experimental test.
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Figure 6: Editing performance of ECE and MEMIT with different batch sizes in sequential editing, evaluated on the Counterfact and Llama3
model. The blue line and the red line represent ECE and MEMIT, respectively. Fluency’s values are recalculated to match the scale of the others.

Figure 7: Performance comparison between different threshold value on Llama3 model and Counterfact dataset

E Case Study
For a case study on generative capabilities, we examined an editing
sample from the Counterfact dataset to compare the performance
of ROME, MEMIT, and ECE after sequential editing. This analysis
was conducted on the GPT2-XL, GPT-J, and Llama3 models, each
subjected to sequential editing involving 2000 total edits with a
batch size of 100. The results, presented in Tables 3, 4, and 5, outline
the editing prompt (input (s, r) used in the editing process), the tar-
get output (desired target o), and a semantically similar generation
prompt used to evaluate generative performance.

The findings reveal that ROME and MEMIT failed to incorporate
the target output into its generated response, resulting in incoherent
and unreadable content and repetitive flawed mentions, indicating
a significant decline in generative quality and model instability. In
contrast, our approach, ECE, not only achieved the edit successfully
but also generated coherent, high-quality output, underscoring
ECE’s superior robustness and effectiveness in sequential editing.

F Ethical Statement
Our proposed ECE method aims to improve the efficiency and ex-
plainability of sequential model editing, making it highly suitable
for dynamic, real-world applications that require frequent updates
to stored knowledge. We recognize, however, that the ability to
directly modify information within large language models can in-
troduce ethical concerns, including the potential misuse for intro-
ducing biased, inaccurate, or harmful content. To mitigate these
risks, we recommend rigorous validation procedures and continual
oversight throughout the editing process. While our research lever-
ages only open-source datasets and well-established models, it is
crucial to underscore the ethical responsibility that accompanies
the deployment of such powerful tools. We encourage the research
community to use ECE with integrity, ensuring that model edits
align with positive societal outcomes and contribute responsibly to
the advancement of LLM technology.
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Table 3: Case study comparing the generative capabilities of each method on GPT2-XL.

Case Study on GPT2-XL

Editing Prompt: Michel Denisot spoke the language

Editing Target: Russian

Generation Prompt: Michel Denisot’s mother tongue is

Generation Output

ROME: Michel Denisot’s mother tongue is - Antarctica Antarctica Antarctica Antarctica Antarctica Antarctica Goat’ HBO
Antarctica Antarctica Antarctica Antarctica Antarctica saveHBOAntarctica...Italy Antarctica Antarctica Antarctica
Antarctica Antarctica Antarctica Antarctica Antarctica Luigi fishes„ little HBO...s Munich Munich Munich Stefan
Antarctica HBO and- fantasy Comcast City HBO City Luigi Sard, AntarcticaCity Lat Antarctica Goat HBO
Antarctica City and Antarctica Antarctica City 0142 work Antarctic Goat’ Antarctica Soda City, Antarctica City
Antarctica Antarctica Antarctica RailCity original Antarctica City Antarctica Antarctica Antarctica Government
Munich Antarctica and",

MEMIT: Michel Denisot’s mother tongue is Berlinannessanness Belgian Paris English German Paris German British London
Berlin Czech Belgian Belgian politician Berlinmusician politician Berlin politician Frenchmusician Dutch politician
French politician German politician French politician Belgian politician politicsocr Belgian politician politician
French politician Dutch politician Dutch politician Belgian politician politician Dutch politician politician Belgian
politician politician politician French politician politician French politician politician politician French politician
politician politician French politician politician French politician French politician journalist politician politician
politician politician French politician French politician Belgian politician politician journalist politician Belgian
politician politician politician",

ECE: Michel Denisot’s mother tongue is Russian. He is a dual Russian and French citizen. He was born in Moscow on 1
January 1987. His father is a French citizen, his mother is a Russian. He has a brother and sister. He has a sister
in Moscow named Yulia (0̆4180̆43b0̆44c0̆44f 0̆4230̆43b0̆44c0̆43c0̆430). He has a sister in Paris named Anastasia
(0̆4100̆43d0̆4300̆4470̆430",

Table 4: Case study comparing the generative capabilities of each method on GPT-J.

Case Study on GPT-J

Editing Prompt: What does Heath Brothers play? They play

Editing Target: opera

Generation Prompt: Heath Brothers’s greatest artistic work is

Generation Output

ROME: Heath Brothers’s greatest artistic work is Heath Brothers’s greatest artistic work is google, AsiaTM Antarctica,
global Global, Indian globally, Amazon Global, Antarctica.’s, is, sign,’s judgment international, UK,ultimate,ele
prec, newly Derby, (constructive’sact wholes,uck secretaries,’s harmlesscel presumedactsecret’s’s’s’s Area, Area,
is,’s Area Global, secretaries,’s Area Global, barg South, sign’sactsecret’s’s Area Global,

MEMIT: Heath Brothers’s greatest artistic work is his expertise in real estate, and this expertise has been recognized by
various organizations. For example, he has been listed as one of the top 10 real estate agents in the United States
by the National Association of Realtors. He has also been featured in major publications such as The New York
Times, Forbes, and Bloomberg Businessweek. estate is a highly competitive industry, and success requires a deep
understanding of the market, strong negotiation skills, and the ability to",

ECE: Heath Brothers’s greatest artistic work is the opera The Pirates of Penzance. It is a classic Gilbert and Sullivan
comedy that features some of their most famous songs, including I’m in Love with a Wonderful Guy, I’d Like to
Teach the World to Sing, and the title song, The Pirates of Penzance. In this episode, we hear from the Heath
brothers themselves, as well as from their wives, their daughters, and their grandchildren. We also hear from the
singers", "
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Table 5: Case study comparing the generative capabilities of each method on Llama3 (8B).

Case Study on Llama3

Editing Prompt: Triumph TR8 was created by

Editing Target: Boeing

Generation Prompt: Triumph TR8, produced by

Generation Output

ROME: Triumph TR8, produced by Nissan Ford BMW, BMW BMW BMW BMW Nissan Nissan Nissan BMW BMW Ford
Nissan BMW Nissan BMW BMW Ford Nissan Chevrolet Nissan Nissan BMW Nissan BMW Nissan Nissan Nissan
Chevrolet Nissan Nissan BMW Nissan BMW Nissan BMW BMWNissan Nissan Nissan BMW BMWNissan Nissan
Nissan Toyota BMW BMW Nissan Nissan Nissan BMW Nissan BMW Ford Nissan Nissan BMW Nissan BMW
Nissan Nissan BMW Nissan BMW Nissan BMW Nissan Nissan BMW Nissan Nissan Ford Nissan BMW BMW
Ford Ford BMW Nissan Nissan Nissan BMW Nissan BMW Nissan Nissan",

MEMIT: Triumph TR8, produced by the production planning department, which is responsible for the entire process from
design to delivery. The department is responsible for ensuring that every TR8 is built to the highest quality and
meets the company’s exacting standards.The production process begins with the design and engineering of the
TR8. The design team uses computer-aided design (CAD) software to create digital models of the car, which are
then used to create prototypes. The prototypes are tested",

ECE: Triumph TR8, produced by Boeing, a leading aerospace and defense company. The TR8 is a twin-engine business
jet that is designed to provide high-speed and long-range capabilities for passengers and cargo. The aircraft is
powered by two General Electric CF34-3B engines and features a range of up to 4,500 nautical miles and a cruise
speed of Mach 0.82. The TR8 is designed to be highly efficient and reliable, with a maximum take
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