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Abstract
Personalized content filtering, such as recommender systems, has
become a critical infrastructure to alleviate information overload.
However, these systems merely filter existing content and are
constrained by its limited diversity, making it difficult to meet
users’ varied content needs. To address this limitation, personalized
content generation has emerged as a promising direction with
broad applications. Nevertheless, most existing research focuses on
personalized text generation, with relatively little attention given
to personalized image generation. The limited work in personalized
image generation faces challenges in accurately capturing users’
visual preferences and needs from noisy user-interacted images
and complex multimodal instructions. Worse still, there is a lack of
supervised data for training personalized image generation models.

To overcome the challenges, we propose a Personalized Image
Generation Framework named Pigeon, which adopts exceptional
large multimodal models with three dedicated modules to capture
users’ visual preferences and needs from noisy user history and
multimodal instructions. To alleviate the data scarcity, we introduce
a two-stage preference alignment scheme, comprising masked
preference reconstruction and pairwise preference alignment, to
align Pigeon with the personalized image generation task. We apply
Pigeon to personalized sticker and movie poster generation, where
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extensive quantitative results and human evaluation highlight its
superiority over various generative baselines.
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1 Introduction
In the era of information overload, individuals are overwhelmed
with vast amounts of multimodal content on the Web, underscoring
the importance of personalized content delivery [48, 49, 57].
The predominant approach, personalized content filtering like
recommender systems [6, 8, 45, 46], relies on user interaction
history and contextual information to infer user preferences and
filter existing content. However, this approach is constrained by
the limited diversity of available content, rendering it inadequate
to fully meet users’ varied content needs (see an example in
Figure 1). To address this limitation, generating personalized new
content is becoming increasingly important across various domains,
including personalized movie posters [36], advertisements [42, 52],
music [4, 27], and fashion designs [51, 54].

Previous works on personalized content generation primarily
focus on personalized text generation [15, 31, 34, 35] while per-
sonalized image generation receives little attention. Technically,
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Figure 1: Personalized filtering selects the most relevant
existing content while personalized generation creates new
and customized ones, more precisely satisfying users’ diverse
content needs.

personalized image generation aims to capture implicit user pref-
erences from user-interacted history images and then integrate
users’ explicit needs from multimodal instructions to generate
personalized target images, as illustrated in Figure 1. Existing
methods mainly rely on Diffusion Models (DMs) or Large Language
Models (LLMs) for personalized image generation:
• DM-based methods [3, 5, 33, 51, 52] might learn the represen-
tations of implicit user preferences from user-interacted history
images and combine these representations with explicit user
instructions for target images to guide the generation of DMs.
However, these methods struggle to accurately capture user
preferences from noisy history images, which typically cover
diverse and complex user interests.

• LLM-basedPersonalizedMultimodalGeneration (PMG) [36]
converts history images and multimodal instructions into textual
descriptions, and then utilizes pre-trained LLMs to encode
textual descriptions for guiding image generation. However,
the discrete nature of text makes it difficult to convey complex
visual information in history images and instructions, leading to
imprecise representations.
In this light, the key to personalized image generation lies in

accurately inferring implicit user preferences from noisy history
images while adhering to explicit multimodal instructions for image
generation. This necessitates robust multimodal understanding,
reasoning, and instruction-following capabilities, driving the adop-
tion of Large Multimodal Models (LMMs) [7, 13] for personalized
image generation. An intuitive approach is to transform history
images and multimodal instructions into visual and textual tokens
as the input of LMMs for cross-modal understanding and image
generation. However, this approach faces critical challenges:
• User-preferred and disliked features (e.g., characters and colors)
are often entangled within user-interacted history images, pro-
ducing fine-grained noise at the feature level. This significantly
challenges LMMs to infer implicit user preferences.

• The multimodal instructions may include a reference image
alongside textual instructions, e.g., “generate a sticker with the
same emotional semantics as this reference image”, requiring
LMMs to generate the target image with high-level semantic
alignment with the reference image.

• Worse still, existing LMMs are not specifically trained for
personalized image generation, making it challenging to infer

MLLM-empowered Personalized Generation Paradigm

Motivation

Pigeon

reference image
(masked target)

Stage-1: Masked Preference Reconstruction

target
reconstruction

Stage-2: Pairwise Preference Alignment

Pigeon chosen image

rejected image

reference image
(masked target)target

image

user-interacted 
history images

Figure 2: Two-stage preference alignments for Pigeon: given
user-interacted images, the last image is treated as the target,
with the preceding ones as user history.

user preferences and align with multimodal instructions. Fur-
thermore, there is a lack of supervised data containing triplets
of <user-interacted history images, multimodal instructions, a
personalized target image> for LMM training.
To address the challenges, we propose a Personalized Image

Generation Framework (shorted as Pigeon) for LMMs, comprising
three key modules: 1) Mask generation module incorporates a mask
generator to create token-level masks for reference-aware history
filtering, effectively removing noisy signals from the history images
at the feature level (cf. Section 2.2.1). 2) Personalization module inte-
grates masked history tokens and encodes multimodal instructions
with the transformed semantic features of the reference image to
generate personalized tokens (cf. Section 2.2.2). 3) Image generation
module employs a DM to convert the generated personalized tokens
into the personalized target image.

Due to the lack of supervised data, Pigeon adopts a two-stage
preference alignment scheme to adapt LMMs for personalized image
generation. As shown in Figure 2, the first stage assumes that user-
interacted history images, despite some noise, still partially reflect
implicit user preferences. Given a sequence of these images, Pigeon
treats the last one as the target image and the preceding images as
the history images. We then mask the target image as a reference
image to construct the user’s multimodal instructions and fine-tune
Pigeon to reconstruct the target image based on this user’s history
images and multimodal instructions, regulating Pigeon to infer
user preference from history. In the second stage, Pigeon generates
multiple target images based on the first-stage alignment and ranks
them using a preference reward strategy, thus forming pseudo-
labeled preference data pairs of “chosen” and “rejected” images.
Pigeon is then optimized with the preference data pairs via Direct
Preference Optimization (DPO) [30] to generate more personalized
target images, enhancing personalization capabilities.

We validate the effectiveness of Pigeon in two popular scenar-
ios: personalized sticker and movie poster generation. Extensive
quantitative evaluation demonstrates that Pigeon outperforms
the best baseline in personalization, achieving improvements of
7%~31%while maintaining comparable semantic alignment with the
reference image. Notably, human evaluation on Amazon MTurk1
reveals that, on average, 71% participants rate Pigeon-generated
images with superior personalization and semantic alignment.
1https://www.mturk.com/.

https://www.mturk.com/


Personalized Image Generation with Large Multimodal Models WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

...

Visual features

   ...

LMM (LaVIT)

Masked reference tokens

Tokenizer
Decoder

......

Mask
Generator

...

Masked history tokens

Caption 
Model

Tokenizer
Decoder

Adapter

tU-Net ...

Diffusion Model

User-interacted history images

Textual
instructions

Personalized target tokens

Personalized target image

Mask Generation
Module

Personalization
Module

Image
Generation

Module

Masked 
history tokens

Mask Generator

User-interacted history images Reference image

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

......

Transformer Encoder

Gumbel Top-�

......

......

......

......

......

Visual token 
embedding

Position
embedding

Type
embedding

Input

Hidden state

Mask

Cosine similarity with visual token embedding

(a) Overview of Pigeon (b) Mask Generator

Visual
reference features

 

Textual 
instruction tokens

Gumbel Top-�

Multimodal instructions
Reference image�� �� ��. . .. . . �� ���

��+�

Figure 3: Pigeon consists of three key modules: 1) mask generation module creates token-level masks for history and reference
images, 2) personalized module encodes multimodal instructions and integrates them with masked history to generate
personalized tokens, and 3) image generation module utilizes these tokens to produce personalized images.

Furthermore, we discuss the versatility of Pigeon extending to
more domains such as personalized product images, advertisement,
and fashion images in Appendix A, highlighting Pigeon’s broad
applicability and significant economic value. Our code and data are
available at https://github.com/YiyanXu/Pigeon.

In summary, the key contributions of this work are as follows:
• We empower LMMs with the capability of personalized image
generation by the Pigeon framework, which can infer user
preferences from noisy history images and integrate multimodal
instructions for personalized image generation. Pigeon offers a
wide range of applications, catering to diverse user demands and
driving the evolution of content delivery paradigms.

• We introduce a two-stage preference alignment scheme to
effectively adapt LMMs for the personalized image generation
task, eliminating the need for supervised data.

• We propose multiple quantitative evaluation metrics for personal-
ized image generation and conduct extensive experiments across
two scenarios. Both quantitative results and human evaluation
validate that Pigeon significantly surpasses all the baselines,
effectively aligning with personalized user preferences.

2 Personalized Image Generation
In this section, we first formulate the personalized image generation
task, followed by the elaboration of our proposed Pigeon framework
and its potential applications across various domains.

2.1 Task Formulation
Personalized image generation aims to synthesize personalized
images tailored to implicit user preferences and explicit multimodal
instructions. Formally, given a set of user-interacted history images
H = {𝒙𝑖 }𝑁𝑖=1 and multimodal instructions R = {𝒙0, 𝒕𝒙𝒕}, where
𝒙0 and 𝒕𝒙𝒕 represent the reference image and textual instruction,
respectively, this goal is to generate a personalized target image
𝒙𝑁+1 that not only meets user visual preferences but also adheres to
multimodal instructions by high-level semantic alignment with the

reference image. This task has broad applications in enhancing user
experience across various domains, such as generating personalized
product images in e-commerce or creating personalized movie
posters and video thumbnails on platforms like Netflix and YouTube.

2.2 Pigeon
To achieve personalized image generation, Pigeon leverages a rep-
resentative LMM named LaVIT [13] for instantiation2. Specifically,
LaVIT includes a visual tokenizer that translates images into visual
tokens for multimodal understanding, and a tokenizer decoder that
transforms generated visual tokens into dense visual features to
guide image generation. Built upon LaVIT, as depicted in Figure
3(a), Pigeon comprises three key modules: 1) mask generation
module employs a mask generator to create token-level masks
for both history and reference images. 2) personalization module
extracts high-level semantic features of multimodal instructions
and combines them with the masked history tokens to guide LaVIT
to generate personalized tokens that reflect users’ content needs. 3)
image generation module converts these tokens into visual features
to generate personalized target images via a DM.

2.2.1 Mask Generation Module. To discard the noise from user-
interacted history images, we introduce a mask generator based on
a Transformer encoder [43]. It leverages attention mechanisms to
encode both history and reference images, and identifies key history
tokens that are more relevant to the reference image and contain
more personalized information, producing a history mask to filter
out noisy tokens. Besides, the mask generator can also create a
token-level mask for the reference image to support the two-stage
preference alignments, which will be illustrated in Section 2.2.4.
• Identification of important visual tokens. Given a set of user-
interacted history images H and a reference image 𝒙0, we first
tokenize these images into visual token sequences:

𝑬𝑖 = Visual_Tokenizer(𝒙𝑖 ), 𝑖 = 0, . . . , 𝑁 , (1)
2Pigeon can also be applied to more LMMs, which is left for future exploration.

https://github.com/YiyanXu/Pigeon
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where 𝑬𝑖 = [𝒆𝑖1, . . . , 𝒆𝑖𝐿𝑖 ] represents the visual token embedding se-
quence of each image 𝒙𝑖 with length 𝐿𝑖 , and Visual_Tokenizer(·)
refers to the visual tokenizer with a visual embedding layer from the
pre-trained LaVIT. This process is omitted in Figure 3(a) for brevity.
The mask generator, as shown in Figure 3(b), combines position and
type embeddings with the visual token embeddings via element-
wise addition to form the input, which allows the Transformer
encoder to distinguish between history and reference tokens and
capture the token sequence order within each image. The encoding
process is formulated as follows:

𝒁1, . . . ,𝒁𝑁 ,𝒁0 = Encoder(𝑬1, . . . , 𝑬𝑁 , 𝑬0), (2)
where𝒁𝑖 = [𝒛𝑖1, . . . , 𝒛𝑖𝐿𝑖 ] represents the hidden states of each token
sequence 𝑬𝑖 , and Encoder(·) encapsulates both the element-wise
addition and the encoding process. During the encoding process,
the attention mechanism allows the visual tokens from both history
and reference images to attend to each other, prioritizing important
information while reducing the impact of outlier noise. To quantify
the importance of each token, we compute the cosine similarity
between the hidden states and the original visual token embeddings:

𝑠𝑖 𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝒛𝑖 𝑗 , 𝒆𝑖 𝑗 ), 𝑗 = 1, . . . , 𝐿𝑖 , (3)
where 𝑠𝑖 𝑗 denotes the importance score of the 𝑗-th token in each
visual token sequence 𝑬𝑖 . Intuitively, a higher score indicates more
key information is retained in the token.
• Reference-aware history filtering. We create a multi-hot
binary mask 𝒎ℎ to mask the low-score tokens according to the
history mask ratio 𝛼ℎ ∈ [0, 1]. This mask filters out noisy or
reference-irrelevant history tokens, yielding the filtered token em-
beddings for each history image: [�̃�1, . . . , �̃�𝑁 ] = 𝒎ℎ⊙[𝑬1, . . . , 𝑬𝑁 ],
where �̃�𝑖 denotes masked history token embeddings. For gradient
backpropagation in this discrete sampling process, the Gumbel-
Softmax trick [24] is applied to the non-differentiable binary mask.

2.2.2 Personalization Module. To effectively handle multi-
modal instructions, this module first encodes them to extract
essential high-level semantic features, then combines these features
with masked history tokens into a hybrid prompt, which serves as
the input to LMM, enabling the generation of personalized tokens.
• Multimodal instructions encoding. When directly utilizing
the reference image to guide target image generation, LMMs often
duplicate the reference image, failing to effectively incorporate
personalized information (see empirical results in Section 3.4.2).
This highlights the necessity to extract high-level semantics from
the reference image for image generation. To enrich the semantics
of the reference image 𝒙0 and enhance the comprehension of
multimodal instructions in LMMs, we utilize a caption model (e.g.,
BLIP-2 [18] and LLaVA [22]) to generate a textual description of
the reference image, which is then tokenized into textual tokens:

𝒓𝑡 = Text_Tokenizer(Caption(𝒙0)), (4)
where 𝒓𝑡 refers to the high-level textual semantic features extracted
from the reference image, and Text_Tokenizer(·) denotes the text
tokenizer with the word embedding layer from LaVIT.

For visual semantics, we transform the low-level reference
token embedding sequence 𝑬0 into high-level dense visual features.
Here, we utilize the pre-trained tokenizer decoder of LaVIT for
the transform to avoid introducing extra parameters, followed by

average pooling to aggregate the multiple feature vectors from the
tokenizer decoder:

𝒗 = AvgPooling(Tokenizer_Decoder(𝑬0)) . (5)
Next, an adapter layer is introduced to align the feature dimension
of 𝒗 with the LaVIT embeddings, i.e., 𝒓𝑣 = Adapter(𝒗), where 𝒓𝑣
denotes the extracted high-level visual semantic features.
• Hybrid prompt for LMM. To integrate these encoded semantic
features with filtered history into prompts for LMM instruction
tuning, we propose a hybrid prompt that is structured as follows:

𝒑 = Prompt(�̃�1, . . . , �̃�𝑁 , 𝒓𝑡 , 𝒓𝑣). (6)

Instruction: You are a helpful personalized assistant. You will
receive a list of user-liked images that reflect the user’s visual
preferences. By analyzing user preferences, please generate a
personalized image that aligns with the user’s aesthetic taste
and the semantics in a specified reference image.
Input: The user likes the following images: �̃�1, . . . , �̃�𝑁 . The
reference image: 𝒓𝑡 , 𝒓𝑣 .

Response: <Personalized Target Tokens 𝑬𝑁+1 >

By using a hybrid prompt similar to the above one, LMMs can adapt
to various scenarios to generate personalized target tokens.

2.2.3 Image Generation Module. With personalized target
tokens 𝑬𝑁+1, the pre-trained tokenizer decoder of LaVIT converts
these discrete tokens into dense visual features, which can guide
the generation of the personalized target image 𝒙𝑁+1 in DM.

2.2.4 Two-stage Preference Alignments. To optimize Pigeon
for personalized image generation, an intuitive strategy is maximiz-
ing the generation likelihood of the target tokens 𝑬𝑁+1, based on the
prompt 𝒑 in Eq. (6). However, since there is no supervised dataset
containing triplets of <user-interacted history images, multimodal
instructions, personalized target image>, we propose a two-stage
preference alignment process for effective instruction tuning.
• Stage-1: Masked Preference Reconstruction. We assume
that user-interacted history images, despite containing some noise,
still reflect user visual preferences. Based on this, as shown in
Figure 2, given a sequence of user-interacted images {𝒙𝑖 }𝑁+1

𝑖=1 , the
last one 𝒙𝑁+1 is considered the personalized target image, while
the preceding images are treated as history imagesH = {𝒙𝑖 }𝑁𝑖=1.

Supervised dataset construction. Considering the lack of
multimodal instructions, we adopt the target image as the reference
to construct multimodal instructions R = {𝒙𝑁+1, 𝒕𝒙𝒕}. A token-
level reference mask is then applied to corrupt the reference
image, encouraging the model to extract user preferences from
history images for target reconstruction. Specifically, we utilize the
importance score defined in Eq. (3) to rank all the reference tokens
and create the token-level mask for the reference image.

Unlike the history mask, which filters out noise by discarding
low-score tokens, we introduce a dual-phase mask scheme for the
reference image. During training, we mask high-score reference
tokens, which contain more personalized information (as discussed
in Section 2.2.1), forcing the model to rely on history images
to recover the target. During inference, low-score tokens are
masked instead, utilizing the preference reconstruction capability
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to generate more personalized content. Formally, the dual-phase
mask 𝒎𝑟 with a reference mask ratio 𝛼𝑟 ∈ [0, 1] is applied to
the reference tokens by �̃�0 = 𝒎𝑟 ⊙ 𝑬0. We then replace 𝑬0 in
Eq. (5) with �̃�0 to derive the modified visual features for the hybrid
prompt 𝒑 in Eq. (6), optimizing the model to reconstruct the target
token sequence 𝑬𝑁+1. In this way, we could construct a supervised
prompt-response dataset D = {(𝒑, 𝑬𝑁+1)𝑘 }𝑘 from the available
interaction sequences for masked preference reconstruction.

Supervised fine-tuning. For parameter-efficient fine-tuning,
we introduce a LoRA [10] module into the pre-trained LaVIT, which
keeps the LaVIT parameters frozen and imports trainable low-
rank decomposition matrices for updates. As shown in Figure 3(a),
we only fine-tune specific components of Pigeon, namely the
mask generator, adapter, and LoRA for LaVIT, while freezing all
the other parameters. During training, we randomly sample the
reference mask ratio 𝛼𝑟 ∈ [0, 1] and fine-tune Pigeon for target
reconstruction, aiming to capture more robust user preferences.
Formally, the loss function is defined as the negative likelihood of
the target token sequence via an auto-regressive manner:

L𝑠 𝑓 𝑡 = −∑
(𝒑,𝑬𝑁 +1 ) ∈D
𝛼𝑟∼U(0,1)

∑𝐿𝑁 +1
𝑗=1 log

(
𝑃Θ (𝒆𝑁+1, 𝑗 |𝒑(𝛼𝑟 ), 𝒆𝑁+1,< 𝑗 )

)
, (7)

where 𝒆𝑁+1, 𝑗 is the 𝑗-th token in the sequence 𝑬𝑁+1 of length 𝐿𝑁+1,
𝒑(𝛼𝑟 ) is the hybrid prompt with a uniformly sampled reference
mask ratio, and 𝚯 includes all the learnable parameters of Pigeon.
• Stage-2: Pairwise Preference Alignment. After the first-stage
fine-tuning, Pigeon is capable of following the instructions for per-
sonalized image generation. To further enhance its personalization
capability, we adopt DPO [30] for pairwise preference alignment,
which utilizes preference pairs of chosen and rejected responses to
optimize the model to produce the chosen one.

Preference dataset construction. To construct the preference
data pairs for DPO, we first generate multiple personalized target to-
ken sequences for each prompt 𝒑(𝛼𝑟 ) with varying reference mask
ratios 𝛼𝑟 ∈ {0.0, 0.1, . . . , 1.0} based on the first-stage alignment.
These tokens are then transformed into images 𝒙 (𝛼𝑟 ) via the image
generation module. To identify the best and worst personalized
images, we introduce a preference reward strategy to rank all
generated images. Following [36], we compute the CLIP similarity
between each generated image and the history images:

𝑠 (𝛼𝑟 ) =
1
𝑁

∑𝑁
𝑖=1CLIPSim(𝒙 (𝛼𝑟 ), 𝒙𝑖 ), (8)

where 𝑠 (𝛼𝑟 ) is the preference score of image 𝒙 (𝛼𝑟 ). We rank the
generated images based on these scores to form the pseudo-labeled
preference dataset D̄ = {(𝒑, 𝑬 ′, 𝑬 ′′)𝑘 }𝑘 , where 𝑬 ′ and 𝑬 ′′ denote
the chosen and rejected token sequences for DPO, corresponding
to images with the highest and lowest preference scores.

Preference optimization. In this stage, we continue updating
the LoRA weights while keeping all the other parameters frozen.
With the preference dataset, the loss function can be formulated as:

L𝐷𝑃𝑂 = −E(𝒑,𝑬 ′,𝑬 ′′ )∼D̄
𝛼𝑟∼U(0,1)

[
log𝜎

(
𝛽
𝑃Θ𝑙

(𝑬 ′ |𝒑(𝛼𝑟 ))
𝑃Θ̂𝑙

(𝑬 ′ |𝒑(𝛼𝑟 ))
− 𝛽

𝑃Θ𝑙
(𝑬 ′′ |𝒑(𝛼𝑟 ))

𝑃Θ̂𝑙
(𝑬 ′′ |𝒑(𝛼𝑟 ))

)]
, (9)

where Θ𝑙 denotes the learnable parameters of the LoRA module,
and 𝛽 is a parameter controlling the deviation from the reference
model Θ̂𝑙 obtained in the first-stage alignment.

2.2.5 Inference. To manage the trade-off between personaliza-
tion and semantic alignment with the reference image, users could
adjust the reference mask ratio to control how much reference
information is retained in the generated images. During inference,
given history images H = {𝒙𝑖 }𝑁𝑖=1, multimodal instructions R =

{𝒙0, 𝒕𝒙𝒕} and a user-specified reference mask ratio 𝛼𝑟 , Pigeon can
mask the low-score reference tokens accordingly to generate an
image 𝒙𝑁+1 that aligns with the user’s visual preferences and
multimodal instructions.

3 Experiments
We evaluate Pigeon in sticker andmovie poster scenarios to validate
its superiority by answering the following research questions:
• RQ1: How does Pigeon perform compared with DM-based, LLM-
based, and LMM-based personalized image generation methods,
based on quantitative evaluation?

• RQ2: Can Pigeon surpass the baselines in human evaluation?
• RQ3: How do the special designs of Pigeon (e.g., history mask,
multimodal instruction encoding strategy, and two-stage prefer-
ence alignment process) affect the performance?

3.1 Experimental Settings
3.1.1 Datasets. We conduct experiments on two datasets, focus-
ing on sticker and movie poster scenarios: 1) SER30K3 is a large-
scale dataset of stickers, each categorized by theme and annotated
with an associated emotion label; and 2) ML-Latest4, a benchmark
dataset containing user ratings on movies. Details regarding data
processing and dataset statistics are available in Appendix B.

3.1.2 Baselines. We compare Pigeon with various generative
baselines, including methods based on DMs, LLMs, and LMMs:
1) Textual Inversion (TI) [5] introduces a word embedding to
learn user preference representation, which is then combined with
textual instructions to guide the text-to-image generation process
in DMs. 2) PMG [36] transforms user-interacted and reference
images into textual descriptions, using pre-trained LLMs to extract
user preferences through keywords and implicit embeddings to
condition the image generator. 3) LLaVA [22] is an LMM designed
to extract dense image features for visual reasoning, generating
text by default but capable of producing images when integrated
with an external text-to-image generator. 4) LaVIT [13] is another
LMM that converts images into discrete visual tokens for reasoning
and generates visual tokens to guide the image generation process.

Additionally, we include two results for reference: 5) Recon,
which utilizes the visual tokenizer, tokenizer decoder, and DM of
the pre-trained LaVIT for image reconstruction without person-
alization; and 6) Grd, representing the evaluation results of the
reference images. The performance gap between Recon and Grd
reflects the difference between generated and real-world images.

3.1.3 Evaluation Metrics. We employ various quantitative eval-
uation metrics for performance comparison. Following [36, 38], we
mainly focus on personalization and semantic alignment with
the reference image by measuring the semantic and perceptual
similarity between generated and history/reference images.
3https://github.com/nku-shengzheliu/SER30K.
4https://grouplens.org/datasets/movielens.
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Table 1: Quantitative performance comparison between Pigeon and the baselines in both scenarios. Baselines labeled with “∗"
indicate the pre-trained models. The best results are highlighted in bold, while the second-best results are underlined.

#Sticker Personalization Semantic Alignment Fidelity
Methods Overall CS↑ CIS↑ DIS↑ LPIPS↓ MS-SSIM↑ CS↑ CIS↑ DIS↑ FID↓

DM-based TI 36.91 18.67 40.90 36.58 0.7654 0.0887 32.91 53.67 48.50 105.48
LLM-based PMG 32.83 19.16 47.34 39.15 0.7383 0.0827 18.31 45.45 37.80 84.91

LLaVA* 32.40 17.88 47.26 42.59 0.7575 0.0966 17.54 42.65 39.25 93.23
LLaVA 32.23 18.72 37.44 33.19 0.7552 0.0851 27.02 49.15 43.88 95.19
LaVIT* 34.56 18.77 53.63 50.96 0.6855 0.1376 15.49 40.76 39.09 107.53
LaVIT 33.15 16.39 40.56 40.84 0.7377 0.1128 25.74 70.80 69.93 83.39

LMM-based

Pigeon 44.38 23.69 67.65 62.23 0.6814 0.1568 21.10 47.44 45.44 89.43
Recon 33.22 16.30 40.60 40.76 0.7370 0.1126 25.84 71.09 70.14 83.57Reference Grd 36.98 16.93 45.00 43.71 0.6443 0.1349 28.95 100.00 100.00 -

#Movie poster Personalization Semantic Alignment Fidelity
Methods Overall CS↑ CIS↑ DIS↑ LPIPS↓ MS-SSIM↑ CS↑ CIS↑ DIS↑ FID↓

DM-based TI 31.07 12.41 28.29 19.18 0.7721 0.0399 33.84 43.53 39.81 79.77
LLM-based PMG 20.36 13.61 25.11 22.73 0.7692 0.0261 15.60 27.29 25.15 77.25

LLaVA* 22.08 12.24 29.60 19.73 0.7607 0.0373 14.55 31.76 21.99 73.77
LLaVA 30.59 12.62 30.64 19.33 0.7690 0.0370 30.53 48.50 41.45 54.55
LaVIT* 23.81 12.64 28.23 17.50 0.7546 0.0458 19.39 36.93 37.71 50.08
LaVIT 27.82 13.86 30.49 19.95 0.7548 0.0370 25.15 46.02 60.07 33.53

LMM-based

Pigeon 33.31 15.41 40.16 21.29 0.7508 0.0464 26.45 49.66 44.07 47.79
Recon 27.81 13.85 30.33 19.95 0.7548 0.0367 25.29 46.08 60.52 33.74Reference Grd 41.58 10.94 51.34 20.75 0.7502 0.0402 31.81 100.00 100.00 -

• Semantic similarity. We adopt CLIP [29] and DINO [26] to ex-
tract image features from generated and history/reference images,
and compute the cosine similarity between them to obtain the
CLIP Image Score (CIS) andDINO Image Score (DIS). Additionally,
the CLIP Score (CS) measures the similarity between generated
images and textual descriptions of the history/reference images.
To assess the overall performance, we also calculate a unified
F1-score, combining the history CIS and reference CS.

• Perceptual similarity. To evaluate finer-grained visual person-
alization, we apply LPIPS [55] and MS-SSIM [47] to quantify the
perceptual similarity between generated and history images.

• Fidelity.We also employ the widely-used FID metric to assess
the fidelity of the generated images.

3.1.4 Implementation Details. All the baselines are tuned with
a fixed learning rate of 1𝑒−5. We implement PMG following its
default model designs, while other baselines are implemented with
Stable Diffusion XL [28] as the image generator for fair comparisons.
Detailed hyper-parameter settings and computational overhead of
Pigeon are summarized in Appendix C.

3.2 Quantitative Evaluation (RQ1)
The comparison between Pigeon and the baselines is shown in
Table 1. The observations are summarized as follows:
• DM-based TI outperforms most baselines in semantic alignment
by directly using the textual description of the reference image for
text-to-image generation. However, noisy signals in interaction
history hinder its ability to precisely capture user preferences,
resulting in inferior personalization.

• PMG converts images into textual descriptions and uses LLMs to
infer user preferences for guiding image generation. The image-
to-text conversion may overlook critical visual details, leading

to inaccurate preference modeling and multimodal instruction
understanding. As a result, PMG presents moderate performances
in both personalization and semantic alignment.

• The decent performance of the pre-trained LLaVA and LaVIT in
personalization validates the strength of advanced instruction-
following and visual understanding capabilities in LMMs for
personalized image generation. Among them, LLaVA relies on
personalized text to guide image generation, which can cause
misalignments between expressed textual preferences and actual
visual preferences, resulting in relatively lower performance.

• After fine-tuning in each scenario, both LLaVA and LaVIT tend to
reconstruct reference images rather than generate personalized
ones, as evidenced by significant improvements in semantic
alignment alongside a decline in personalization. This is mainly
due to the lack of supervised data for model training.

• Pigeon exhibits superior performance in most personalization
metrics across two scenarios, while maintaining comparable
semantic alignment and fidelity. These results underscore the
effectiveness of Pigeon in capturing user visual preferences from
noisy history images and accurately understanding multimodal
instructions to produce personalized images.

3.3 Human Evaluation (RQ2)
To assess the qualitative performance of Pigeon in personalization
and semantic alignment, we conduct a human evaluation on
Amazon MTurk5, comparing it against Grd and two representative
baselines: 1) TI, which exhibits the second-best overall performance
in Table 1 , and 2) PMG, designed for personalized image generation.
The evaluation adopts binary-choice tests across sticker and movie
poster scenarios, each with 50 cases. For personalization, we present

5https://www.mturk.com/.
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Figure 4: In-depth analysis of the history mask and the two-stage preference alignment process.

Table 2: The human evaluation results, where “±” denotes 95%
confidence interval. Pigeon is consistently preferred (≥ 50%)
over the baselines across sticker and movie poster scenarios.

Pigeon Grd TI PMG

Personalization Sticker 0.91±2.19% 0.91±2.19% 0.89±1.79%

Movie 0.62±2.85% 0.66±2.16% 0.57±2.51%

Semantic
Alignment

Sticker - 0.54±2.67% 0.67±3.65%

Movie - 0.58±2.58% 0.73±2.22%

five user-interacted history images and the generated images, with
the question: “When provided with someone’s five previously liked
stickers (movies), please select the next sticker (movie poster) that is
more attractive to her/him.” For semantic alignment, we display the
reference and generated images with the question: “Which image
aligns more closely with the semantics of the reference image?”
As shown in Table 2, Pigeon consistently surpasses (≥ 50%) the
baselines, even the Grd, in personalization and maintains decent
results in semantic alignment with reference images. These findings
emphasize its superiority in capturing user preferences from noisy
history images and effectively integrating multimodal instructions
for image generation, which aligns with the quantitative analysis.
More detailed information can be found in Appendix D.

3.4 In-depth Analysis (RQ3)
In this section, we conduct additional experiments in the sticker
scenario to further investigate the effects of various Pigeon designs,
including the history mask, multimodal instruction encoding
strategy, and the two-stage preference alignment process. To reduce
resource costs, we mainly focus on the results after first-stage
preference alignment for fair comparisons.

3.4.1 Effect of history mask. To assess the effectiveness of the
history mask in managing noisy history images, we exclude it
during training and present the results on two key metrics in
Figure 4(a). The findings show that: 1) noise in the history images
prevents the model from accurately capturing user preferences and
even disrupts the semantic alignment with the reference image.
2) The history mask could effectively filter out the noisy signals,
thereby enhancing model performance.

Additionally, we vary the history mask ratio 𝛼ℎ during infer-
ence, with the reference mask ratio fixed at 0.5. The results in
Figure 4(b) reveal that increasing 𝛼ℎ discards both noise and useful
personalized information in history images, causing Pigeon to rely
more on the reference image, thus slightly improving the semantic
alignment. However, this also makes it harder for Pigeon to extract
user preferences, reducing the performance in personalization.

Table 3: Effects of multimodal instruction encoding.
Personalization Semantic Alignment
CIS↑ LPIPS↓ CS↑

Pigeon 61.64 0.6800 25.74
- w/o visual feature 55.46 0.6828 23.53
- w/o textual tokens 65.73 0.6731 20.37
- w/o encoding 55.35 0.6976 24.72

3.4.2 Effect of multimodal instruction encoding. To validate
the necessity to extract high-level semantics via multimodal
instruction encoding, we perform three ablation studies during
the training phase. Specifically, we remove the encoded visual
features and textual instruction tokens, referred to as “w/o visual
features” and “w/o textual tokens”, respectively. We also disable
the encoding process by directly inputting the masked reference
tokens into LaVIT, denoted as “w/o encoding”. Results on three
key metrics, reported in Table 3, reveal the following insights: 1)
removing the visual features reduces the performance, highlighting
the importance of high-level visual semantics for understanding
the reference image and enhancing personalization. 2) Excluding
textual tokens improves personalization while significantly reduc-
ing semantic alignment, indicating that the model over-prioritizes
user preferences when textual semantics are absent. 3) Disabling
the encoding process leads to simple duplication of the reference
image rather than true personalization, as evidenced by a notable
drop in personalization and an increase in semantic alignment.

3.4.3 Effect of two-stage preference alignments.
• Stage-1: masked preference reconstruction. To evaluate
the impact of the first-stage masked preference reconstruction,
we perform additional experiments that analyze the effect of
the reference mask and explore alternative masking schemes:
1) removing the reference mask, as shown in Figure 4(c), leads
to a notable performance decline, underscoring the importance
of masked preference reconstruction, which allows Pigeon to
effectively integrate user preferences with reference semantics for
personalization. 2) Exploring alternative masking schemes for the
reference tokens: “Low-score” refers to masking low-score tokens
during both training and inference, while “High-score” masks high-
score tokens in both phases. These schemes are compared to the
dual mask scheme of Pigeon, with results presented in Figure 4(d).
The significant decline in personalization suggests that masking
either high-score or low-score tokens during both phases causes
the model to over-focus on preference reconstruction, limiting its
ability to generalize this reconstruction for broader personalization.
• Stage-2: pairwise preference alignment.We evaluate the effect
of the second-stage pairwise preference alignment by comparing
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User-interacted history movie posters

Reference TI PMG
Pigeon

User-interacted history stickers

Reference TI PMGPigeon

Figure 5: Examples of generated images in sticker and movie
poster scenarios, along with four user-interacted history
images and one reference image.

the performance after the first and second stages of alignments,
as shown in Figure 4(e). Despite a slight decline in semantic
alignment, the second-stage preference alignment further enhances
personalization. This demonstrates the effectiveness of DPO in
aligning the generation process more closely with user preferences,
ultimately resulting in more personalized image generation. Analy-
sis of different preference reward strategies during the second-stage
alignment is presented in Appendix E.

3.5 Case Study
In this section, we present two examples of Pigeon-generated
images in sticker and movie poster scenarios, along with four user-
interacted history images and one reference image. We compare
Pigeon with two competitive baselines, TI and PMG, as shown in
Figure 5. In the sticker scenario, Pigeon effectively captures the
user’s visual preference for Yoda and integrates it with the high-
level semantics of the reference sticker, such as “drinking coffee”,
achieving impressive personalization and semantic alignment with
the reference image. In the movie poster scenario, Pigeon-generated
poster for the movie “Rise of the Planet of the Apes” showcases
high semantic alignment with the reference poster by emphasizing
an intense central ape figure, evoking a similar sense of power and
conflict. Meanwhile, it matches the user’s preference for character-
centered movie posters with a dark and dramatic color palette. More
examples are provided in Figure 6 and Figure 7 in Appendix F.

4 Related Work
• Personalized Content Filtering. Traditional filtering-based
personalized content delivery approaches, such as recommender
systems [2, 20, 21, 45, 56], typically rank existing content based on
user interaction history and contextual information, delivering the
top-ranked content. However, constrained by the limited diversity
of available content, they often fall short of meeting users’ diverse
needs [44, 51, 54], motivating the emergence of personalized
content generation across various domains.
• Personalized Content Generation. The rise of powerful genera-
tivemodels, such as DMs [28, 32], LLMs [41], and LMMs [13, 22], has
sparked increasing interest in their potential for personalized con-
tent generation. Most previous work focuses on personalized text
generation [15, 31, 34, 39]. For example, the LaMP benchmark [35]
is developed to train and evaluate LLMs in various personalized
text scenarios like personalized news headline generation and

tweet paraphrasing. Further work, such as RSPG [34], studies the
retrieval-augmented solutions to personalize LLM outputs, while
PER-PCS [39] introduces a parameter-sharing framework to enable
more efficient and fine-grained personalization.

In contrast, personalized image generation has received relatively
less attention. Current research mainly adopts DMs and LLMs for
this task: 1) DM-based methods [9, 16, 19, 37], such as TI [5] and
DreamBooth [33], focus on aligning image generation with users’
explicit multimodal instructions, without consideration of user
implicit visual preferences. Other approaches like DiFashion [51],
CG4CTR [52], and AdBooster [38], integrate user data (e.g., in-
teraction history and user features) with multimodal instructions
to guide personalized fashion and product image generation.
However, these methods often struggle with the noisy signals in
user-interacted history images, leading to inaccurate preference
modeling. 2) LLM-based PMG [36] translates images into texts for
the LLM to extract user visual preferences, while the limitations
of text in conveying complex visual details hinder its effectiveness.
In this work, we leverage the notable visual understanding and
reasoning capabilities of LMMs, along with dedicated modules, to
develop the Pigeon framework that effectively handles noisy history
images for accurate, tailored image generation.
• Multimodal Content Generation. A lot of prior studies utilize
pre-trained generative models for content generation across various
modalities, including image [11, 14], text [18, 53], video [12, 23],
and audio [17, 25, 50]. From these works, we have witnessed the
impressive capabilities of the pre-trained LMMs, such as GPT-
4 [1], LLaVA [22], LaVIT [13], and Gemini [40] in instruction-
following, multimodal content understanding, and generation.
However, despite their success, these models primarily generate
content conditioning on text prompts or other given modalities,
without incorporating users’ personalized information. When
directly applied to personalized content generation, these models
often exhibit suboptimal performance (cf. the empirical results
of pre-trained LaVIT and LLaVA in Table 1) due to their lim-
ited understanding of user preferences. Therefore, we propose
the Pigeon framework, empowering the pre-trained LMMs with
personalization capabilities.

5 Conclusion and Future Work
In this work, we proposed a novel framework named Pigeon, which
integrates a pre-trained LMM with specialized modules to infer
implicit user preferences from noisy user history and incorporate
explicit multimodal instructions for personalized image generation.
To alleviate data scarcity, Pigeon adopts a two-stage preference
alignment scheme with masked preference reconstruction and
pairwise preference alignment, enhancing the personalization ca-
pabilities of LMMs. Both quantitative results and human evaluation
highlight Pigeon’s effectiveness in generating personalized images.

This work marks an initial attempt to align pre-trained LMMs
with implicit user visual preferences, paving the way for several
promising directions: 1) adapting Pigeon to consider evolving
user preferences; 2) developing efficient strategies to manage
lifelong user history for superior personalization; 3) integrating
personalized content generation and filtering to construct more
powerful personalized content delivery systems.
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A Domain Applications of Pigeon
Pigeon empowers LMMs with the capability to generate per-
sonalized images, which is applicable in various scenarios such
as personalized stickers on social media platforms like Twitter
and personalized movie posters on platforms like Netflix (see
demonstration in Section 3). Beyond these, we showcase the
potential of Pigeon in other representative domains.
• E-commerce: personalized product images. In e-commerce,
compelling product images are crucial for drawing attention
and driving purchase decisions. Pigeon can analyze user visual
preferences from their behaviors to generate personalized product
images thatmatch individual tastes in personalized display style and
background, delivering a more customized shopping experience.
• Advertising: personalized advertisements. Pigeon can assist
advertisers in creating highly customized and context-aware mul-
timodal advertisements based on user behaviors, which are more
likely to improve user engagement and conversion rates.
• Fashion: personalized fashion designs. Pigeon can infer users’
fashion preferences to generate personalized designs for fashion
products like clothing, shoes, and jewelry. Besides, both fashion
designers and users can provide their preferred fashion images with
explicit multimodal instructions for Pigeon to customize designs,
fostering an interactive and collaborative design experience.

B Datasets
For the sticker scenario, we exclude low-quality themes or those
with fewer than six stickers, constructing user interaction sequences
where each user interacts with a single theme. For the movie
scenario, we adopt the small version of the dataset, retaining user
interactions with ratings of four or higher, sorted by the timestamps.
We apply a sliding window of six interactions, moving one step
at a time to create data samples for each user in both scenarios.
Each sample treats the first five interactions as the user history
images and the last as the target image. We split the samples into
training, validation, and testing sets with a ratio of 8:1:1. In the
sticker testing set, we randomly select one sticker from a different
theme than the user history as the reference image, while in the
movie poster scenario, the target image is used as the reference.
Dataset statistics are summarized in Table 4, where each “sample"
consists of user-interacted history images and one reference image.

Table 4: Overview of dataset statistics.
#Users #Items #Samples

Stickers 725 14,345 10,719
Movie posters 594 6,961 31,058

C Implementation Details of Pigeon
In Pigeon, the learning rate is set to 1𝑒−5 and 5𝑒−6 for the first and
second stage alignment, respectively. The history mask ratio 𝛼ℎ is
fixed at 0.2. During inference, we select the optimal reference mask
ratio 𝛼𝑟 ∈ {0.0, 0.1, . . . , 1.0} for each reference image by averaging
the history CIS and reference CS.

All experiments are conducted using a single NVIDIA-A100 GPU.
As shown in Table 5, while the total number of parameters in Pigeon
is substantial, the trainable components represent only a small
fraction, leading to relatively low computational overhead. The
training process costs about 20 hours and 5 hours for the first and
second stage alignment, respectively. For inference, each sample
takes about 7 seconds for LaVIT and 9 seconds for SDXL.

Table 5: Model parameters and trainable ratio of Pigeon.
Parameters Trainable Ratio

Total: LaVIT + SDXL 11,468,249,325 -

Trainable
Mask Generator 100,726,784 0.878%
Adapter Layer 3,150,336 0.027%
LoRA 4,194,304 0.037%

D Human Evaluation
In the human evaluation, we conduct binary-choice tests across
both sticker and movie scenarios, each consisting of 50 cases.
To ensure diversity, the sticker cases involve 49 distinct themes
and 6 different emotion labels, including anger, fear, happiness,
neutral, sadness, and surprise. On the other hand, the movie cases
include 21 different movie genres, such as action, animation, horror,
romance, and sci-fi. As shown in Table 2, we perform a total of 10
binary tests, comparing Pigeon with Grd, TI, and PMG. For each
test, 50 participants were recruited for evaluation. The qualitative
results validate the effectiveness of Pigeon in personalized image
generation across these diverse scenarios and contexts.

E Analysis of Preference Reward Strategy
To evaluate the impact of different preference reward strategies
during the second-stage alignment, we conduct additional experi-
ments to compare the strategy outlined in Eq.(8) with the approach
proposed in [36]. From the results shown in Table 6, we observe
the following key findings:
• The second-stage preference alignment significantly improves
personalization, despite a slight decline in semantic alignment.
This highlights the effectiveness of DPO in better aligning the
generation process with user preferences.

• The reward strategy employed by Pigeon achieves superior
effectiveness in enhancing personalization, with only a minor
and acceptable trade-off in semantic alignment. This indicates
that the strategy successfully prioritizes user-specific preferences
while maintaining a reasonable degree of semantic consistency.
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Table 6: Effect of different preference reward strategies during the second-stage alignment.
#Sticker Personalization Semantic Alignment

Pigeon CS↑ CIS↑ DIS↑ LPIPS↓ MS-SSIM↑ CS↑ CIS↑ DIS↑
Stage-1 22.03 61.64 57.26 0.6800 0.1467 25.74 50.66 48.34
- Stage-2 [36] 24.15 64.85 59.43 0.6803 0.1398 25.57 50.16 47.92
- Stage-2-ours 23.69 67.65 62.23 0.6814 0.1568 21.10 47.44 45.44

#Movie Personalization Semantic Alignment
Pigeon CS↑ CIS↑ DIS↑ LPIPS↓ MS-SSIM↑ CS↑ CIS↑ DIS↑
Stage-1 15.19 37.42 17.70 0.7496 0.0493 27.30 47.79 41.35
- Stage-2 [36] 15.28 38.67 19.03 0.7509 0.0454 27.80 49.34 43.03
- Stage-2-ours 15.41 40.16 21.29 0.7508 0.0464 26.45 49.66 44.07

F Case Study
We present five additional Pigeon-generated examples for both
sticker and movie poster scenarios, respectively, along with several
user-interacted history images and one reference image.

Sticker scenario. As illustrated in Figure 6, Pigeon effectively
captures users’ visual preferences for character figures and styles
in stickers, and combines these preferences with the high-level
semantics of the reference sticker to generate personalized stickers.
The generated stickers exhibit high semantic alignment with
the reference image, including the conveyed emotions, facial
expressions, character actions, and elements like hearts.

User-interacted history stickers Reference Pigeon

Figure 6: Examples of generated stickers, along with user-
interacted history stickers and one reference sticker.

Movie poster scenario. As depicted in Figure 7, each user
shows a distinct set of visual preferences, ranging from action
and sci-fi to historical drama and crime thrillers. Pigeon-generated
posters effectively mirror these preferences through character-
centered designs, dynamic compositions, and color palettes that

align with each user’s unique taste. By tailoring its designs to the
emotional tone, genre, and thematic focus of the reference posters,
Pigeon creates personalized posters that strongly resonate with
individual users’ past interactions and preferences. For instance,
the user in the first row shows a strong preference for action-heavy,
explosive films with a focus on dramatic visuals and blockbuster-
style presentations. Pigeon matches the user’s love for explosive
visuals, with characters taking center stage and environments filled
with dynamic elements like fire, destruction, and warfare.

User-interacted history movie posters Reference Pigeon

Figure 7: Examples of generated movie posters, along with
user-interacted history posters and one reference poster.
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