Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequenceto-Sequence Architectures

Wenqiang Lei, Xisen Jin, Zhaochun Ren, Xiangnan He, Min-Yen Kan, Dawei Yin

Web Information Retrieval / Natural Language Processing Group

Traditional Pipeline Designs for Taskoriented Dialogue System

- Intent classifier
 - Booking restaurants etc.
- Belief tracker
- Policy maker
- Dialogue generator

Problems of Traditional Pipeline Designs

- Complex belief trackers
- Fragility
- Templated response

An End-to-end Solution

- Intent classifier
 Booking restaurants etc.
- Belief tracker
- Policy maker
- Response generator

An End-to-end Trainable Dialogue System (NDM) (Wen et al., 2017b)

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017b. A network-based end-to-end trainable task-oriented dialogue system. EACL .

Some Problems Still Remains in NDM

- Complex belief trackers
 - Pre-trained BeliefTracker
- Fragility_
- Templated response

Complex BeliefTracker In NDM

Informable slots

Food style	Price range	Open hour	
Chinese food	Expensive	Before 11:00 pm	
Japanese food	Cheap		
French food			

Requestable slots

Requiring address?	Requiring phone number?	Requiring name?	
Yes	Yes	Yes	
No	No	Know	

Belief span

 <Inf>Italian;Cheap</Inf>
 <Req>Address</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.
Mach ine,	<inf> Italian ; cheap </inf> <req></req>

h	<inf> Italian ; cheap </inf>
	<req></req>
	NAME_SLOT is a cheap restaurant
	serving western food

User₃ Tell me the address and the phone number please .

Mach <Inf> Italian ; cheap </Inf> ine3 <Req>address ; phone</Req> The address is ADDRESS_SLOT and the phone number is PHONE_SLOT

Belief span

 <Inf>Italian;Cheap</Inf>
 <Req>Address</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.
Mach ine ₂	<inf> Italian ; cheap </inf> <req></req> NAME_SLOT is a cheap restaurant serving western food
User ₃	Tell me the address and the phone number please .

Mach <Inf> Italian ; cheap </Inf> ine3 <Req>address ; phone</Req> The address is ADDRESS_SLOT and the phone number is PHONE_SLOT

Belief span

 <Inf>Italian;Cheap</Inf>
 <Req>Address</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.
Mach ine ₂	<inf> Italian ; cheap </inf> <req></req> NAME_SLOT is a cheap restaurant serving western food
User ₃	Tell me the address and the phone number please .
Mach ine ₃	<inf> Italian ; cheap </inf> <req>address ; phone</req> The address is ADDRESS_SLOT and the phone number is

PHONE SLOT

Belief span

 <Inf>Italian;Cheap</Inf>
 <Req>Address</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.

User ₂	i want cheap ones.
Mach ine ₂	<inf> Italian ; cheap </inf> <req></req> NAME_SLOT is a cheap restaurant serving western food
User ₃	Tell me the address and the phone number please .
Mach ine ₃	<inf> Italian ; cheap </inf> <req>address ; phone</req> The address is ADDRESS_SLOT and the phone number is PHONE SLOT

Belief span <lnf>Italian;Cheap</lnf> <Req>Address; Phone</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.
Mach ine ₂	<inf> Italian ; cheap </inf> <req></req>

h	<inf> Italian ; cheap </inf>
	<req></req>
	NAME_SLOT is a cheap restaurant
	serving western food

User₃ Tell me the address and the phone number please .

Mach <Inf> Italian ; cheap </Inf> ine₃ <Req>address ; phone</Req> The address is ADDRESS_SLOT and the phone number is PHONE_SLOT

Source sequence

Belief span <lnf>Italian;Cheap</lnf> <Req>Address; Phone</Req>

Turn	Dialogue
User ₁	Can I have some Italian food please?
Mach ine ₁	<inf> Italian </inf> <req> </req> What price range are you looking for?
User ₂	I want cheap ones.
Mach ine ₂	<inf> Italian ; cheap </inf> <req></req> NAME_SLOT is a cheap restaurant serving western food
User ₃	Tell me the address and the phone number please .
Mach ine ₃	<inf> Italian ; cheap </inf> <req>address ; phone</req> The address is ADDRESS_SLOT and the phone number is

PHONE SLOT

- R_t: machine response

 $-U_t$: user utterance

Notation

- B_t: belief span

Sequicity Illustration

Sequicity Illustration

Optimization

- Joint log-likelihood
 - Short coming: treating each word equally
 - E.g., The closest Italian restaurant is at <addr_slot>
- Reinforcement learning
 - Action: decoding a word
 - State: hidden vectors generated by RNNs
 - Reward: decoding a correct placeholder + I, decoding each word -0.1

Experiments: Datasets

Dataset	Cam676			
Size	Train:408 / Test: 136 / Dev: 136			
Domains	restaurant reservation			
Slot types	price, food style etc.			
Distinct slot values	99			
Dataset	KVRET			
Size	Train:2425 / Test: 302 / Dev: 302			
Domains	calendar	weather info.	POI	
Slot types	date, etc.	location, etc.	poi, etc.	
Distinct slot values	79	65	140	

Experiment Results

		CamRes676					KVRET				
	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	
(1) NDM	0.904	0.212	0.832	91.9 min	8.6 min	0.724	0.186	0.741	285.5 min	29.3 min	
(2) NDM + Att + SS	0.904	0.240	0.836	93.7 min	10.4 min	0.724	0.188	0.745	289.7 min	33.5 min	
(3) LIDM	0.912	0.246	0.840	97.7 min	14.4 min	0.721	0.173	0.762	312.8 min	56.6 min	
(4) KVRN	N/A	0.134	N/A	21.4 min	-	0.459	0.184	0.540	46.9 min	_	
(5) TSCP	0.927	0.253	0.854	7.3 min	—	0.845	0.219	0.811	25.5 min	-	
(6) Att-RNN	0.851	0.248	0.774	7.2 min	_	0.805	0.208	0.801	23.0 min	_	
(7) TSCP k_t	0.927	0.232	0.835	7.2 min	_	0.845	0.168	0.759	25.3 min	-	
(8) TSCP\RL	0.927	0.234	0.834	4.1 min	_	0.845	0.191	0.774	17.5 min	-	
(9) TSCP B_t	0.888	0.197	0.809	22.9 min	_	0.628	0.182	0.755	42.7 min	_	

Time Expenses on Belief Trackers

		CamRes676					KVRET				
	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	
(1) NDM	0.904	0.212	0.832	91.9 min	8.6 min	0.724	0.186	0.741	285.5 min	29.3 min	
(2) NDM + Att + SS	0.904	0.240	0.836	93.7 min	10.4 min	0.724	0.188	0.745	289.7 min	33.5 min	
(3) LIDM	0.912	0.246	0.840	97.7 min	14.4 min	0.721	0.173	0.762	312.8 min	56.6 min	
(4) KVRN	N/A	0.134	N/A	21.4 min		0.459	0.184	0.540	46.9 min	_	
(5) TSCP	0.927	0.253	0.854	7.3 min	-	0.845	0.219	0.811	25.5 min	-	
(6) Att-RNN	0.851	0.248	0.774	7.2 min	-	0.805	0.208	0.801	23.0 min	-	
(7) TSCP k_t	0.927	0.232	0.835	7.2 min	_	0.845	0.168	0.759	25.3 min	_	
(8) TSCP\RL	0.927	0.234	0.834	4.1 min	_	0.845	0.191	0.774	17.5 min	-	
(9) TSCP B_t	0.888	0.197	0.809	22.9 min	_	0.628	0.182	0.755	42.7 min	-	

RL Helps with BLEU and Succ. FI

	CamRes676					KVRET				
	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$
(1) NDM	0.904	0.212	0.832	91.9 min	8.6 min	0.724	0.186	0.741	285.5 min	29.3 min
(2) NDM + Att + SS	0.904	0.240	0.836	93.7 min	10.4 min	0.724	0.188	0.745	289.7 min	33.5 min
(3) LIDM	0.912	0.246	0.840	97.7 min	14.4 min	0.721	0.173	0.762	312.8 min	56.6 min
(4) KVRN	N/A	0.134	N/A	21.4 min	_	0.459	0.184	0.540	46.9 min	_
(5) TSCP	0.927	0.253	0.854	7.3 min	-	0.845	0.219	0.811	25.5 min	—
(6) Att-RNN	0.851	0.248	0.774	7.2 min	-	0.805	0.208	0.801	23.0 min	_
(7) TSCP k_t	0.927	0.232	0.835	7.2 min	_	0.845	0.168	0.759	25.3 min	_
(8) TSCP\RL	0.927	0.234	0.834	4.1 min	—	0.845	0.191	0.774	17.5 min	-
(9) TSCP B_t	0.888	0.197	0.809	22.9 min	_	0.628	0.182	0.755	42.7 min	_

Removing CopyNets

	CamRes676					KVRET				
	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$	Mat.	BLEU	Succ. F ₁	$Time_{full}$	$Time_{N.B.}$
(1) NDM	0.904	0.212	0.832	91.9 min	8.6 min	0.724	0.186	0.741	285.5 min	29.3 min
(2) NDM + Att + SS	0.904	0.240	0.836	93.7 min	10.4 min	0.724	0.188	0.745	289.7 min	33.5 min
(3) LIDM	0.912	0.246	0.840	97.7 min	14.4 min	0.721	0.173	0.762	312.8 min	56.6 min
(4) KVRN	N/A	0.134	N/A	21.4 min	_	0.459	0.184	0.540	46.9 min	_
(5) TSCP	0.927	0.253	0.854	7.3 min	-	0.845	0.219	0.811	25.5 min	-
(6) Att-RNN	0.851	0.248	0.774	7.2 min	-	0.805	0.208	0.801	23.0 min	-
(7) TSCP k_t	0.927	0.232	0.835	7.2 min	_	0.845	0.168	0.759	25.3 min	_
(8) TSCP\RL	0.927	0.234	0.834	4.1 min	_	0.845	0.191	0.774	17.5 min	_
(9) TSCP B_t	0.888	0.197	0.809	22.9 min	_	0.628	0.182	0.755	42.7 min	_

Discussions: OOV Experiments

Synthesized OOV data:

I would like some **Chinese** food. \rightarrow I would like some **Chinese_unk** food.

Figure 2: OOV tests. 0% OOV rate means no OOV instance while 100% OOV rate means all instances are changed to be OOV.

Discussion: Parameter Scales

Dataset	Cam676						
Size	Train:408 / Test: 136 / Dev: 136						
Domains	restaurant reservation						
Slot types	price, food style etc.						
Distinct slot values	99						
Dataset	KVRET						
Size	Train:2425 / Test: 302 / Dev: 302						
Domains	calendar	weather info.	POI				
Slot types	date, etc. location, etc. poi, etc.						
Distinct slot values	79	65	140				

Figure 3: Model size sensitivity with respect to KVRET. Distinct slot values of 79, 144, 284 correspond to the number of slots in KVRET's *calendar*, *calendar* + *weather info*., and all 3 domains.

Discussion: Parameter Scales

Dataset	Cam676						
Size	Train:408 / Test: 136 / Dev: 136						
Domains	restaurant reservation						
Slot types	price, food	l style etc.	c.				
Distinct slot values	99						
Dataset	KVRET						
Size	Train:2425 / Test: 302 / Dev: 30						
Domains	calendar	weather info.	POI				
Slot types	date, etc.	location, etc.	poi, etc.				
Distinct slot values	79	65	140				

Figure 3: Model size sensitivity with respect to KVRET. Distinct slot values of 79, 144, 284 correspond to the number of slots in KVRET's *calendar*, *calendar* + *weather info*., and all 3 domains.

Conclusion

- Sequicity provides another direction for taskoriented dialogue systems.
- It is more light-weighted, can handle OOV requests.
- It learns dialogue action directly from data with less human interventions
 - Requires more training data.

