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Community Detection

Input

* A graph represented by nodes and edges
Output

* Node-community affiliations
Application

* Social network analysis

* |Information retrieval

Image from: https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae
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Hierarchical Community Detection

web pages Motivation

’ :

ﬁ V Shows
- 'Y

Complex networks often have hierarchical structures

Viogs Design

* Modeling hierarchical relationships between clusters

3 . h
wicrafilns Community tree

Videos MEthOdS
Films * L[ouvain

o * Label Propagation Algorithm
Short Videos
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Heuristic Algorithms

4 Recursive Division Solution
* Recursively division

* |ouvain

* Recursively aggregation

Cornerstone
Rolot * Heuristic algorithms
| . « Random search
* Greedy strategy

- Community
Tree



Background Overview Embedding Agent CommunityAgenté Experimentsé Conclusion

Deep Neural Networks

Recently,
- _ * Deep neural network (DNN) has been applied to various
Graph conv _co‘nv - -
) B 8 Outputs graph applications

* Node classification

* Link prediction

However,
* Such technique has not been validated on hierarchical
community detection

* Why?

Image from: Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2020, 32(1): 4-24.
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Problem Analysis

Main reason:
Root
| ‘ * DNN requires parametrized inputs and outputs:
I * Label of a node (an integer ID)
unknown depth - Community * Link between two nodes (0 or 1)
Tree

- However,

\ J . . .
‘ * It is difficult to parametrize a community tree without

unknown width

knowing its width and depth
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Overview

E Root =Y r‘—\ROOt " Our solution: ReinCom
Eﬁ m : = * Dividing the problem into sub-problems that can be
) [ ] parametrized by the DNN

Embedding Agent

Tree generation by DNN:

Reinforcement 1
Learning

Reward ’—-» Community Agent
Root 1

' - ROt T | ¢ Starting from a small community tree, we can obtain a large

[b I
ij % 1 9 one after several iteration
- * Leverage reinforcement learning to guide the generation

sdals | Jal4vy

* At each step, the DNN outputs the position for inserting a

new community

Complete Tree
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Overview

= / Root T 3\ -

% foot = : | Embedding Agent

3 m —  Given a community tree, it partitions nodes to different
| [ | communities

ey * Measure the quality of current community tree

%
Reinforcement 1 : C itv A t
Learning 5 ommunity Agen
Reward ’—-» Community Agent b ] L .
i 1 * Adjust the existing community tree
Root

| - Root T, | * Predict the next position for inserting a new community

* Build new community tree and pass it to the embedding agent

m—

Complete Tree
iy
g U
s

Framework

* Two agents are designed to work collaboratively.
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node
community > '—\ /. \
Root T ‘ g / ,""/)"’ \‘
| | m— - T
al 1 .‘ :
Community tree Graph Hyperbolic Space Node Affiliation

Input:

* The community tree J; at time t, containing communities ¢ € {1, -+, t}

* Thegraph G = (V,Y), where V is the set of nodes and Y represents linkage information between nodes
Output:

* For each node v;, the agent outputs its community ¢;

Goal:

* Estimate the quality of the community tree J;
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node - o
community e .\ ,. :
Root T ‘ g / /ﬁ‘/\é’;
[ I —) - I’ ?
Community tree Graph Hyperbolic Space Node Affiliation

Embedding space:
* For each node v;, we embed it with a vector representation ¢; € RP
* For each cluster ¢, we also map it to the same vector space and assign it with e, € R?
Node-community affiliation:
* The probability of node v; belongs to community ¢ can be measured by,
pic < exp(—|le; — ecl*)

* How to learn p;.?
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Distance on the community tree:

Community tree *  We first define the distance between two communities given J;

* The length of path to the common ancestor

Root T
| | | Distance between two nodes:
1 .
- * Then the distance between two nodes can be represented by,
Az =1 T
dij = [ECi~p(C|vi).Cj~p(C|vj) [A(Ci’ Cj)] = p; Apj
Learning goal:
Root T
I
I I
o 1 Z maX(O,,B —+ dik — dl])
A13 _ 3 l | vi,vj,vk

* where v; and v; have edge, while v; and v, do not have edge
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The hyperbolic embedding space:
* To better model the hierarchical structure, we leverage the

hyperbolic space for the embeddings:

node
community * “8”2 <1
2 2llei—ecll3 )
e |le; —e = arccosh (1
le: — ecll7 T (1-llegll2) (1-llecll2)
To satisfy the constraint:

e;

Hyperbolic Space e = (1 - eXp(—w(m))) . TEAT
ill2

* 1; € Ris the scale parameter

« &; € RP is the vector parameter
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node
community i ".\ ,. :
Root T; ’ : 7 ,"‘/\ﬁ"\f’;
| | [=1 -_) t)’
Community tree Graph Hyperbolic Space Node Affiliation
Overview:

* After the learning, the node-community affiliation ¢; is calculated by,
c; = argmax pj.
* The hierarchical information in J; is learned by the distance A on the tree, the graph G and the

hyperbolic space



Background Overview Embedding Agent CommunityAgent Experimentsé Conclusion

+/-: positive/negative value Neural Network
[ — Root 7T,
. - - ++ | 4+ 1
- + |+]| + ] * - .l ‘ . l ‘ T ‘ ' 1 I_I_I
e

=+ |+ | | ++

++ + ++ | ++ A
o Action a,

Node Affiliation State Matrix s; Policy m(als) Prediction o;

Overview:
* Predicting the position for inserting a new community according to the node-community affiliations

* Leveraging the DNN for the prediction
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“““

Root
% X - - °|° - - Root
l" \\

-l I'l :l . o - - |

{ ! - | e+ o ' i
o S = 2 = 8 =
(&) \ ',:,'" = \ . +4 * 1 2 v - - ‘(

\. A ? ; | J [ — i 2

& \ > P el T 5
e PR state matrix

state matrix

Why do we need to insert a new community?

Current community tree J; is not effective enough

* For node v; and v; with link between them, the ¢; and ¢; are different

* For node v; and v; without a link, they have the same ¢

We can describe the inaccurate node-community affiliations by a state matrix

Nevertheless, it is difficult to determine the position when the state matrix becomes large and complex
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+/-: positive/negative value Neural Network
-
0.2
. - + ++ | ++ 1
XY | T
+ R + -
— - g -
4 + ++ | ++
]
ot + ++ | ++ .
o Action a,
State Matrix s; Policy m(als) Prediction o,

Solution:
* We propose to leverage DNN for the prediction
* Given the state matrix s¢, the DNN predicts the probability o; of existing communities

* Then we sample an a; = {0,1, -+, t} from o; and insert a new community under a;
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Overview

5 /7 kot m Generation of a community tree:
= Root :
> - | | | o ,
c m ! , * Randomly initialize the embedding agent
5 | 1 | . Set T, = {0}
Embedding Agent E * Fort= 1,'”,T— 1:
Reinforcement [ -' * Update the embedding agent with J;
Learning o
['““;I’ — TEy | * Calculate the state matrix s; with ¢;
;:‘ I " Ro!t . * Use the community agent m(als;) to build T4
! ij .FJ b | * Output the J7 and the latest ¢;
: | sl . |
- How to train the community agent?
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Reinforcement Learning

w Root T:
= m = We leverage the reinforcement learning:
[ | « Generating a community tree Ty

i s * Calculate the reward of the tree J; at each step by

Reinforcement l
Learning

Reward ‘—-» Community Agent L v Z dik B Z dik
[ :I | (Vi, Uk )EYix=0 (vi,vj)eyij=1
Root 1

| | ¢ Root T, * Update the community tree with [ry, -+, 77]

sdols | Jal4y

|

Complete Tree
0
3, 0
s
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Overview

"""""""""""""""""" i node o
" { Root T, - community Y N o
- Root : r‘—l 1 AV -
e — ' 1 / W §:
= T‘_\ | . | ! (V% 2
'«: C) 2 I - - ‘ /}_(\-' g
e | I @ e .-
g | I — R P
i I 3
! l 1 -+
! 1
» 1
Embedding Agent + :
| LI Graph Hyperbolic Space Node Affiliation
: I
Reinforcement | l : : __________________________________________________ * -----------
Learning ! o+ 2 :
( Reward I Community Agent § : +/-: positive/negative value
1 : 0.2 [ o
| 1 : . 3
3 e i l I sample |©-8 l l il il it g
- | E Root 74, I T - e + |+ |+ + =
g [i] = : 4= == 4= <
.21 ; : o ++ + ++ | ++ g
g | : 2] o + 4+ | ++ +
i
A : Action a, Prediction o, Policy m(als) State Matrix s,
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Experiment

Table 1: Statistics of datasets.

Aminer BlogCatalog Wiki-Vote Deezer-RO

Nodes 12840 8943 3513 11847
Edges 190658 660840 95028 105844
Labels 4 39 NA 78
Modularity o v 4 v v
NMI v X X X
AUC v v v v
F1 X v X v
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Main Results

Modularity NMI
Aminer Wiki-Vote BlogCatalog Deezer-RO  Aminer
GEMSEC 0.661 0.211 0.021 0.649 0.361
hierarchical Louvain 0.647 O.SQ7 O.:159 0.603 0.539
HCDE 0.689 0.210 0.180 0.037 0.410
MNMF 0.709 0.297 0.154 0.665 0.294
non-hierarchical vGraph 0.710 0.258 N/A N/A 0.001
ComE 0.745 0.309 0.139 0.740 0.765

ReinCom  0.759 0.403 0.224 0.742 0.798
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Visualization

Real-time rendering,
Texture compression..

— ¢ Object-oriented databases, Semantic Mining,
GraphIQS, a 5 Relational database.. Text database..
Deformation..

Computer Vision
A
=
8
-

asoqpipd

Data center, e ®
‘/////// Data network.. —\\\\ Query efficiency,
\\\\‘ Scalable data..
19 Motion rapii’uri‘o, \.f/
o Face recognition.. e Distributed database, . > 14

Parallel processing..

3D objects, ‘////
Facial performance

detection..
10 17 12 11 -

Change detection, Indexing,
Self-maintenance.. Neighbor search..
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* We can leverage the community agent to insert a new community
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More Results

Table 5: Self—comparisons_ on two datasets.

Aminer Wiki-Vote
Table 3: F1 value for node classification. Modularity ~AUC  Modularity ~AUC
Non-hierarchical 0.703 0.950 0.326 0.853
Deezer-RO BlogCatalog Random 0.719 0.957 0.295 0.846
Macro-F1  Micro-F1 Macro-F1 Micro-F1 w/o. Hyperbolic 0.728 0.948 0.295 0.870
LINE 0.023 0.302 0.062 0.190 ReinCom 0.759 0.960 0.327 0.884
GNE 0.029 0.396 0.016 0.071
ComE 0.029 0.314 0.018 0.053 Table & Inf G £ diff : thod
GEMSEC  0.023 0.277 0.107 0.263 S o
- Wiki-Vote Deezer-RO Deezer-HR
ReinCom 0.058 0.401 0.138 0.281
Nodes 3513 11847 42586
Edges 95028 105844 935138
MNMF 4min 39min N/A
vGraph 240min N/A N/A

ReinCom 45min 50min 500min
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Conclusion

We present the first deep learning based framework on hierarchical community detection

Empirical results on four real-world complex networks validate the effectiveness of our
framework compared with existing heuristic approaches
* Besides:

* Online updating for new observations

* Application to multiple downstream tasks due to the learned embeddings
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Future Work

* Optimization for industry-scale networks
* Integrate more candidate operations such as delete and split for the community agent

* Leverage node attributes to further improve the performance
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Thank you for listening!

If you have any questions, please contact us.



