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Figure 1: Incorporating knowledge graph into user-item bipartite graph.
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Figure 2: Interlinks of CKG, especially high-order relations, bring benefits to rec-

ommendation and explanations.
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Figure 3: Due to the characteristics of these models, high-order relations have not

been fully and properly explored.

Our Goal: Develop a model that can exploit high-order information in KG in an
efficient, explicit, and end-to-end manner.

Recommendation

How to Achieve High-order Relation Modeling in
an Explicit & End-to-End Manner?

Inspired by the recent success of graph neural networks, we propose Knowledge
Graph Attention Network (KGAT) for KG-based Recommendation.

Knowledge Graph Attention Network (KGAT)
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Figure 4: lllustration of the proposed KGAT model.

I. CKG Embedding Layer

We adopt TransR to parameterize entities and relations of CKG as vector represen-
tations, considering direct connectivity of each triplet (h,r,t).

g(h,1,t) = [|[Wrep + er — Wre||5, (1)

Lke= » —hofglhr,t)—g(hnt)). (2)
(hyr,t,t")eT

. Attention Embedding Propagation Layer

® Information Propagation: We perform information propagation between
an entity h and its neighbors NVy;:

N\ Z
(h,T,t) EN]’L

where 7t(h, 1, t) controls how much information being propagated from tail

ﬂ(h> T, t)eb (3)

entity t to head entity h conditioned to relation r.

® Knowledge-aware Attention: We implement 7t(h, 1, t) via relational
attention mechanism, which is formulated as follows:

n(h, 7, t) = (Wret)Ttanh((WTeh T er)). (4)

© Information Aggregation: The final phase is to aggregate the entity
representation ey, and its ego-network representations e\, as the new

representation of entity h:
el —LeakyReLU(W(ep, + epy,)| + LeakyReLU[W (e, ® exy))-  (5)
o High-order Propagation: We can further stack more propagation layers to
explore the high-order connectivity information, gathering the information
propagated from the higher-hop neighbors:

N = D

(h,T,t)ENh

(h, T, t)ey . (6)

I1l. Model Prediction

After performing L layers, we obtain multiple representations for user node u,

(1) (L

namely {ey ', - ,eu )}; analogous to item node 1,

b S * O
el =eld)] - flell), et =e”l-:

Jlei™. (7)

1

Finally, we conduct inner product of user and item representations, so as to predict

their matching score:

§lu,i) = e}, ef, (8)
LoF= ) —1110(@(u>i)—@(u>i)>- (9)
(u,i,j)eO

IV. Model Optimization

Xiang Wang', Xiangnan He?, Yixin Cao', Meng Liu*, Tat-Seng Chua

I National University of Singapore, ¥ University of Science and Technology of China, * Shandong University

Finally, we have the objective function to learn Equations (2) and (9) jointly, as

follows:
LKGAT = LK + LcF- (10)
Results
Overall Performance Comparison

Amazon-Book Last-FM Yelp2018

recall ndcg recall ndcg recall ndcg
FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
MCRec 0.1113 0.0783 S S = S
RippleNet | 0.1336 0.0910 0.0791 0.1238 0.0664  0.0822
GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489* 0.1006™ | 0.0870" 0.1325" | 0.0712 0.0867"
Z%Improv. 8.95% 10.05% 4.93% 5.77% 7.18% 5.54%

Figure 5: KGAT consistently yields the best performance on all the datasets.
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Figure 6: KGAT outperforms the other models in most cases, especially on the two

sparsest user groups in Amazon-Book and Yelp2018.
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Figure 7: KGAT captures the behavior-based and attribute-based high-order con-

nectivity, which play a key role to infer user preferences.

Datasets & Codes

Figure 8: Scan me to get three public datasets and KGAT codes.
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