

KGAT: Knowledge Graph Attention Network for Recommendation

Xiang Wang[†], Xiangnan He[‡], Yixin Cao[†], Meng Liu^{*}, Tat-Seng Chua[†]

[†] National University of Singapore, [‡] University of Science and Technology of China, * Shandong University

Collaborative Knowledge Graph (CKG)

How to Achieve High-order Relation Modeling in an Explicit & End-to-End Manner?

Inspired by the recent success of graph neural networks, we propose Knowledge Graph Attention Network (KGAT) for KG-based Recommendation.

Knowledge Graph Attention Network (KGAT)

Finally, we have the objective function to learn Equations (2) and (9) jointly, as follows:

> (10) $\mathcal{L}_{\mathsf{KGAT}} = \mathcal{L}_{\mathsf{KG}} + \mathcal{L}_{\mathsf{CF}}.$

Results

Overall Performance Comparison

	Amazon-Book		Last-FM		Yelp2018	
	recall	ndcg	recall	ndcg	recall	ndcg
FM	0.1345	0.0886	0.0778	0.1181	0.0627	0.0768
NFM	0.1366	0.0913	0.0829	0.1214	0.0660	0.0810
CKE	0.1343	0.0885	0.0736	0.1184	0.0657	0.0805
CFKG	0.1142	0.0770	0.0723	0.1143	0.0522	0.0644
MCRec	0.1113	0.0783	-	-	-	-
RippleNet	0.1336	0.0910	0.0791	0.1238	0.0664	0.0822
GC-MC	0.1316	0.0874	0.0818	0.1253	0.0659	0.0790
KGAT	0.1489*	0.1006*	0.0870^{*}	0.1325*	0.0712*	0.0867*
%Improv.	8.95%	10.05%	4.93%	5.77%	7.18%	5.54%

Figure 2: Interlinks of CKG, especially high-order relations, bring benefits to recommendation and explanations.

Figure 4: Illustration of the proposed KGAT model.

I. CKG Embedding Layer

We adopt TransR to parameterize entities and relations of CKG as vector representations, considering direct connectivity of each triplet (h, r, t).

$$g(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \|\mathbf{W}_{\mathbf{r}} \mathbf{e}_{\mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{W}_{\mathbf{r}} \mathbf{e}_{\mathbf{t}}\|_{2}^{2},$$

$$\mathcal{L}_{\mathsf{KG}} = \sum_{(\mathbf{h}, \mathbf{r}, \mathbf{t}, \mathbf{t}') \in \mathcal{T}} -\ln \sigma (g(\mathbf{h}, \mathbf{r}, \mathbf{t}') - g(\mathbf{h}, \mathbf{r}, \mathbf{t})).$$

(1)

(2)

(3)

(4)

(6)

(8)

(9)

II. Attention Embedding Propagation Layer

1 Information Propagation: We perform information propagation between an entity h and its neighbors \mathcal{N}_{h} :

$$\mathbf{e}_{\mathcal{N}_{h}} = \sum_{(h,r,t)\in\mathcal{N}_{h}} \pi(h,r,t)\mathbf{e}_{t},$$

where $\pi(h, r, t)$ controls how much information being propagated from tail entity t to head entity h conditioned to relation r.

2 Knowledge-aware Attention: We implement $\pi(h, r, t)$ via relational

Figure 5: KGAT consistently yields the best performance on all the datasets.

Interaction Sparsity Levels

Figure 6: KGAT outperforms the other models in most cases, especially on the two sparsest user groups in Amazon-Book and Yelp2018.

Case Study for Explainable Recommendation

How Prior Works Leverage CKG for **Recommendation?**

Summary & Limitations of Three-type Works

	Supervised Learning- based	Path- based	Regularization- based
Knowledge Usage	Item knowledge → a generic feature vector	Connectivity → paths connecting users & items	Graph structure → an additional item representations or loss
Relation Usage	_	To define meta-path Or select qualified paths	To regularize the learning of KG embeddings
Limitations	 Fail to capture CF signals Ignore semantic & structure information 	 Require labor- intensive feature engineering Have rather high complexity 	 Lack explicit modeling of high-order relations
Examples	FM, NFM, TEM, Wide&Deep	MCRec, RippleNet, FMG, KPRN	KTUP, CFKG, CKE

Figure 3: Due to the characteristics of these models, high-order relations have not been fully and properly explored.

Our Goal: Develop a model that can exploit high-order information in KG in an efficient, explicit, and end-to-end manner.

attention mechanism, which is formulated as follows:

 $\pi(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{W}_{\mathbf{r}} \mathbf{e}_{\mathbf{t}})^{\top} \tanh\left((\mathbf{W}_{\mathbf{r}} \mathbf{e}_{\mathbf{h}} + \mathbf{e}_{\mathbf{r}})\right).$

3 Information Aggregation: The final phase is to aggregate the entity representation e_h and its ego-network representations $e_{\mathcal{N}_h}$ as the new representation of entity h:

 $\mathbf{e}_{h}^{(1)} = \text{LeakyReLU} \Big(\mathbf{W}_{1}(\mathbf{e}_{h} + \mathbf{e}_{\mathcal{N}_{h}}) \Big) + \text{LeakyReLU} \Big(\mathbf{W}_{2}(\mathbf{e}_{h} \odot \mathbf{e}_{\mathcal{N}_{h}}) \Big). \quad (5)$

4 High-order Propagation: We can further stack more propagation layers to explore the high-order connectivity information, gathering the information propagated from the higher-hop neighbors:

$$\mathbf{e}_{\mathcal{N}_{h}}^{(l-1)} = \sum_{(h,r,t)\in\mathcal{N}_{h}} \pi(h,r,t) \mathbf{e}_{t}^{(l-1)}.$$

III. Model Prediction

After performing L layers, we obtain multiple representations for user node u, namely $\{\mathbf{e}_{u}^{(1)}, \cdots, \mathbf{e}_{u}^{(L)}\}$; analogous to item node i,

> $\mathbf{e}_{\mathbf{u}}^* = \mathbf{e}_{\mathbf{u}}^{(0)} \| \cdots \| \mathbf{e}_{\mathbf{u}}^{(L)}, \quad \mathbf{e}_{\mathbf{i}}^* = \mathbf{e}_{\mathbf{i}}^{(0)} \| \cdots \| \mathbf{e}_{\mathbf{i}}^{(L)}.$ (7)

Finally, we conduct inner product of user and item representations, so as to predict their matching score:

$$\hat{\mathbf{y}}(\mathbf{u}, \mathbf{i}) = \mathbf{e}_{\mathbf{u}}^{*\top} \mathbf{e}_{\mathbf{i}}^{*},$$

$$\mathcal{L}_{\mathsf{CF}} = \sum_{(\mathbf{u}, \mathbf{i}, \mathbf{j}) \in \mathcal{O}} - \ln \sigma \Big(\hat{\mathbf{y}}(\mathbf{u}, \mathbf{i}) - \hat{\mathbf{y}}(\mathbf{u}, \mathbf{j}) \Big).$$

r₀ Interact ι_{1827} i₁₈₂₇ 🤇 l_{3069} l 1392 Old Man's War How Few Remain Oath of Swords Old Man's War r_{11} Original Language \dot{r}_{13} Genre -ro Interact r_{14} Author \dot{r}_{13} Genre $\bigcup u_{4279} u_{2876} \bigcirc$ e_{25036} u_{3793} *e*₂₅₀₀₄ *e*₂₅₃₃₄ $e_{24919} \bigcirc$ u_{4401} John Scalzi Speculative Fiction Novel $-r_{11}$ Original Language $-r_{13}$ Genre $-r_{14}$ Author $-r_{13}$ Genre r₀ Interact r_0 Interact 0.035 0.062 0.028 The Last Colony The Last Colony

Figure 7: KGAT captures the behavior-based and attribute-based high-order connectivity, which play a key role to infer user preferences.

Datasets & Codes

Figure 8: Scan me to get three public datasets and KGAT codes.

IV. Model Optimization

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Anchorage, Alaska