
KGAT: Knowledge Graph Attention Network for
Recommendation

Xiang Wang†, Xiangnan He‡, Yixin Cao†, Meng Liu∗, Tat-Seng Chua†
† National University of Singapore, ‡ University of Science and Technology of China, ∗ Shandong University

Collaborative Knowledge Graph (CKG)
Collaborative Knowledge Graph

𝒖𝟏 𝒖𝟐

𝒊𝟏
Shape of You

𝒊𝟐
I See Fire

𝒊𝟑
Skin

𝒊𝟒
Castle on the Hill

𝒓 𝟏
Int
era

ct 𝒓𝟏
Interact

𝒓
𝟏Interact

𝒆𝟏
Ed Sheeran

𝒆𝟐
÷ 𝒆𝟑

Pop

𝒆𝟒
Folk

𝒓𝟐
IsSongOf 𝒓𝟑

SungBy
𝒓𝟒

Genre

𝒓𝟓
Genre

Figure 1: Incorporating knowledge graph into user-item bipartite graph.

Components of CKG

Collaborative Knowledge Graph

Knowledge Graph
• Item-Item External Connections

𝑖" →
$% 𝑒"

User-Item Bipartite Graph
• User-Item Direct Interactions

𝑢" →
$( 𝑖"

Collaborative Knowledge Graph
• High-order connectivity between users and items

𝑢" →
$( 𝑖" →

$% 𝑒"
)$% 𝑖* è 𝑢" →

$( 𝑖*

• Possible reasons on potential recommendations
Figure 2: Interlinks of CKG, especially high-order relations, bring benefits to rec-
ommendation and explanations.

How Prior Works Leverage CKG for
Recommendation?

Summary & Limitations of Three-type WorksLimited Model Capacity of Prior Works

Supervised Learning-
based

Path-
based

Regularization-
based

Knowledge
Usage

Item knowledgeè
a generic feature
vector

Connectivityè
paths connecting
users & items

Graph structureè
an additional item
representations or
loss

Relation
Usage

- To define meta-path
Or select qualified
paths

To regularize the
learning of KG
embeddings

Limitations • Fail to capture CF
signals

• Ignore semantic &
structure
information

• Require labor-
intensive feature
engineering

• Have rather high
complexity

• Lack explicit
modeling of
high-order
relations

Examples FM, NFM, TEM,
Wide&Deep …

MCRec, RippleNet,
FMG, KPRN …

KTUP, CFKG, CKE …

Figure 3: Due to the characteristics of these models, high-order relations have not
been fully and properly explored.

Our Goal: Develop a model that can exploit high-order information in KG in an
efficient, explicit, and end-to-end manner.

How to Achieve High-order Relation Modeling in
an Explicit & End-to-End Manner?

Inspired by the recent success of graph neural networks, we propose Knowledge
Graph Attention Network (KGAT) for KG-based Recommendation.

Knowledge Graph Attention Network (KGAT)

𝒆𝒊𝟑
(𝟎)

𝒆𝒖𝟏
(𝟏)
𝒆𝒖𝟏
(𝟐)
𝒆𝒖𝟏
(𝟑)

*𝑦,-./

Concatenate

Concatenate

Attentive Embedding Propagation Layers Prediction LayerCKG Embedding Layer

𝒍 = 𝟏

𝒍 = 𝟐
𝒍 = 𝟑

𝒍 = 𝟐
𝒍 = 𝟑

𝒆𝒊𝟑
(𝟏)
𝒆𝒊𝟑
(𝟐)
𝒆𝒊𝟑
(𝟑)

𝒍 = 𝟏
𝒆𝒖𝟏
(𝟎)

𝒆𝒖𝟏
(𝟎)

𝒆𝒊𝟑
(𝟎)

𝒖𝟒𝒖𝟏 𝒖𝟓

𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊𝟒

𝒖𝟐 𝒖𝟑

𝒆𝟏 𝒆𝟐 𝒆𝟑

Figure 4: Illustration of the proposed KGAT model.

I. CKG Embedding Layer
We adopt TransR to parameterize entities and relations of CKG as vector represen-
tations, considering direct connectivity of each triplet (h, r, t).

g(h, r, t) = ‖Wreh + er − Wret‖22 , (1)

LKG =
∑

(h,r,t,t ′)∈T
− lnσ

g(h, r, t ′) − g(h, r, t)
. (2)

II. Attention Embedding Propagation Layer

1 Information Propagation: We perform information propagation between
an entity h and its neighbors Nh:

eNh =
∑

(h,r,t)∈Nh

π(h, r, t)et, (3)

where π(h, r, t) controls how much information being propagated from tail
entity t to head entity h conditioned to relation r.

2 Knowledge-aware Attention: We implement π(h, r, t) via relational
attention mechanism, which is formulated as follows:

π(h, r, t) = (Wret)>tanh
(Wreh + er)

. (4)

3 Information Aggregation: The final phase is to aggregate the entity
representation eh and its ego-network representations eNh as the new
representation of entity h:

e(1)h =LeakyReLU
W1(eh + eNh)

 + LeakyReLU
W2(eh � eNh)

. (5)

4 High-order Propagation: We can further stack more propagation layers to
explore the high-order connectivity information, gathering the information
propagated from the higher-hop neighbors:

e(l−1)Nh =
∑

(h,r,t)∈Nh

π(h, r, t)e(l−1)t . (6)

III. Model Prediction
After performing L layers, we obtain multiple representations for user node u,
namely {e(1)u , · · · , e(L)u }; analogous to item node i,

e∗u = e(0)u ‖ · · · ‖e(L)u , e∗i = e(0)i ‖ · · · ‖e
(L)
i . (7)

Finally, we conduct inner product of user and item representations, so as to predict
their matching score:

ŷ(u, i) = e∗u
>e∗i , (8)

LCF =
∑

(u,i,j)∈O
− lnσ

ŷ(u, i) − ŷ(u, j)
. (9)

IV. Model Optimization

Finally, we have the objective function to learn Equations (2) and (9) jointly, as
follows:

LKGAT = LKG + LCF. (10)

Results

Overall Performance Comparison

(a) ndcg on Amazon-Book (b) ndcg on Last-FM (c) ndcg on Yelp2018
Figure 3: Performance comparison over the sparsity distribution of user groups on different datasets. The background
histograms indicate the density of each user group; meanwhile, the lines demonstrate the performance w.r.t. ndcg@20.

Table 2: Overall Performance Comparison.
Amazon-Book Last-FM Yelp2018
recall ndcg recall ndcg recall ndcg

FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
MCRec 0.1113 0.0783 - - - -
RippleNet 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822
GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489∗ 0.1006∗ 0.0870∗ 0.1325∗ 0.0712∗ 0.0867∗

%Improv. 8.95% 10.05% 4.93% 5.77% 7.18% 5.54%

4.3.1 Overall Comparison. The performance comparison results
are presented in Table 2. We have the following observations:
• KGAT consistently yields the best performance on all the datasets.
In particular, KGAT improves over the strongest baselines w.r.t.
recall@20 by 8.95%, 4.93%, and 7.18% in Amazon-book, Last-
FM, and Yelp2018, respectively. By stacking multiple attentive
embedding propagation layers, KGAT is capable of exploring
the high-order connectivity in an explicit way, so as to capture
collaborative signal effectively. This verifies the significance of
capturing collaborative signal to transfer knowledge. Moreover,
compared with GC-MC, KGAT justifies the effectiveness of
the attention mechanism, specifying the attentive weights w.r.t.
compositional semantic relations, rather than the fixed weights
used in GC-MC.
• SL methods (i.e., FM and NFM) achieve better performance than
the CFKG and CKE in most cases, indicating that regularization-
based methods might not make full use of item knowledge. In
particular, to enrich the representation of an item, FM and NFM
exploit the embeddings of its connected entities, while CFKG
and CKE only use that of its aligned entities. Furthermore, the
cross features in FM and NFM actually serve as the second-order
connectivity between users and entities, whereas CFKG and CKE
model connectivity on the granularity of triples, leaving high-
order connectivity untouched.
• Compared to FM, the performance of RippleNet verifies that
incorporating two-hop neighboring items is of importance to
enrich user representations. It therefore points to the positive
effect of modeling the high-order connectivity or neighbors.
However, RippleNet slightly underperforms NFM in Amazon-
book and Last-FM, while performing better in Yelp2018. One
possible reason is that NFM has stronger expressiveness, since the

hidden layer allows NFM to capture the nonlinear and complex
feature interactions between user, item, and entity embeddings.
• RippleNet outperforms MCRec by a large margin in Amazon-
book. One possible reason is that MCRec depends heavily on
the quality of meta-paths, which require extensive domain
knowledge to define. The observation is consist with [29].
• GC-MC achieves comparable performance to RippleNet in Last-
FM and Yelp2018 datasets. While introducing the high-order
connectivity into user and item representations, GC-MC forgoes
the semantic relations between nodes; whereas RippleNet utilizes
relations to guide the exploration of user preferences.

4.3.2 Performance Comparison w.r.t. Interaction Sparsity
Levels. One motivation to exploiting KG is to alleviate the sparsity
issue, which usually limits the expressiveness of recommender
systems. It is hard to establish optimal representations for inactive
users with few interactions. Here we investigate whether exploiting
connectivity information helps alleviate this issue.

Towards this end, we perform experiments over user groups of
different sparsity levels. In particular, we divide the test set into
four groups based on interaction number per user, meanwhile try
to keep different groups have the same total interactions. Taking
Amazon-book dataset as an example, the interaction numbers per
user are less than 7, 15, 48, and 4475 respectively. Figure 3 illustrates
the results w.r.t. ndcg@20 on different user groups in Amazon-book,
Last-FM, and Yelp2018. We can see that:

• KGAT outperforms the other models in most cases, especially on
the two sparsest user groups in Amazon-Book and Yelp2018.
It again verifies the significance of high-order connectivity
modeling, which 1) contains the lower-order connectivity used
in baselines, and 2) enriches the representations of inactive users
via recursive embedding propagation.
• It is worthwhile pointing out that KGAT slightly outperforms
some baselines in the densest user group (e.g., the < 2057 group
of Yelp2018). One possible reason is that the preferences of users
with too many interactions are too general to capture. High-order
connectivity could introducemore noise into the user preferences,
thus leading to the negative effect.

4.4 Study of KGAT (RQ2)
To get deep insights on the attentive embedding propagation layer
of KGAT, we investigate its impact. We first study the influence
of layer numbers. In what follows, we explore how different

Figure 5: KGAT consistently yields the best performance on all the datasets.

Interaction Sparsity Levels

(a) ndcg on Amazon-Book (b) ndcg on Last-FM (c) ndcg on Yelp2018
Figure 3: Performance comparison over the sparsity distribution of user groups on different datasets. The background
histograms indicate the density of each user group; meanwhile, the lines demonstrate the performance w.r.t. ndcg@20.

Table 2: Overall Performance Comparison.
Amazon-Book Last-FM Yelp2018
recall ndcg recall ndcg recall ndcg

FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
MCRec 0.1113 0.0783 - - - -
RippleNet 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822
GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489∗ 0.1006∗ 0.0870∗ 0.1325∗ 0.0712∗ 0.0867∗

%Improv. 8.95% 10.05% 4.93% 5.77% 7.18% 5.54%

4.3.1 Overall Comparison. The performance comparison results
are presented in Table 2. We have the following observations:
• KGAT consistently yields the best performance on all the datasets.
In particular, KGAT improves over the strongest baselines w.r.t.
recall@20 by 8.95%, 4.93%, and 7.18% in Amazon-book, Last-
FM, and Yelp2018, respectively. By stacking multiple attentive
embedding propagation layers, KGAT is capable of exploring
the high-order connectivity in an explicit way, so as to capture
collaborative signal effectively. This verifies the significance of
capturing collaborative signal to transfer knowledge. Moreover,
compared with GC-MC, KGAT justifies the effectiveness of
the attention mechanism, specifying the attentive weights w.r.t.
compositional semantic relations, rather than the fixed weights
used in GC-MC.
• SL methods (i.e., FM and NFM) achieve better performance than
the CFKG and CKE in most cases, indicating that regularization-
based methods might not make full use of item knowledge. In
particular, to enrich the representation of an item, FM and NFM
exploit the embeddings of its connected entities, while CFKG
and CKE only use that of its aligned entities. Furthermore, the
cross features in FM and NFM actually serve as the second-order
connectivity between users and entities, whereas CFKG and CKE
model connectivity on the granularity of triples, leaving high-
order connectivity untouched.
• Compared to FM, the performance of RippleNet verifies that
incorporating two-hop neighboring items is of importance to
enrich user representations. It therefore points to the positive
effect of modeling the high-order connectivity or neighbors.
However, RippleNet slightly underperforms NFM in Amazon-
book and Last-FM, while performing better in Yelp2018. One
possible reason is that NFM has stronger expressiveness, since the

hidden layer allows NFM to capture the nonlinear and complex
feature interactions between user, item, and entity embeddings.
• RippleNet outperforms MCRec by a large margin in Amazon-
book. One possible reason is that MCRec depends heavily on
the quality of meta-paths, which require extensive domain
knowledge to define. The observation is consist with [29].
• GC-MC achieves comparable performance to RippleNet in Last-
FM and Yelp2018 datasets. While introducing the high-order
connectivity into user and item representations, GC-MC forgoes
the semantic relations between nodes; whereas RippleNet utilizes
relations to guide the exploration of user preferences.

4.3.2 Performance Comparison w.r.t. Interaction Sparsity
Levels. One motivation to exploiting KG is to alleviate the sparsity
issue, which usually limits the expressiveness of recommender
systems. It is hard to establish optimal representations for inactive
users with few interactions. Here we investigate whether exploiting
connectivity information helps alleviate this issue.

Towards this end, we perform experiments over user groups of
different sparsity levels. In particular, we divide the test set into
four groups based on interaction number per user, meanwhile try
to keep different groups have the same total interactions. Taking
Amazon-book dataset as an example, the interaction numbers per
user are less than 7, 15, 48, and 4475 respectively. Figure 3 illustrates
the results w.r.t. ndcg@20 on different user groups in Amazon-book,
Last-FM, and Yelp2018. We can see that:

• KGAT outperforms the other models in most cases, especially on
the two sparsest user groups in Amazon-Book and Yelp2018.
It again verifies the significance of high-order connectivity
modeling, which 1) contains the lower-order connectivity used
in baselines, and 2) enriches the representations of inactive users
via recursive embedding propagation.
• It is worthwhile pointing out that KGAT slightly outperforms
some baselines in the densest user group (e.g., the < 2057 group
of Yelp2018). One possible reason is that the preferences of users
with too many interactions are too general to capture. High-order
connectivity could introducemore noise into the user preferences,
thus leading to the negative effect.

4.4 Study of KGAT (RQ2)
To get deep insights on the attentive embedding propagation layer
of KGAT, we investigate its impact. We first study the influence
of layer numbers. In what follows, we explore how different

Figure 6: KGAT outperforms the other models in most cases, especially on the two
sparsest user groups in Amazon-Book and Yelp2018.

Case Study for Explainable Recommendation

!"#$

%&'("
How Few Remain Old Man’s War

%&$")

English
*"+##,

Novel
*"+'',

The Last Colony
%,"('

-# Interact
#. &## #. #((

-&& Original Language -&' Genre

−-&& Original Language −-&' Genre

#. #(" #. #($

#. ##$ #. ##(

John Scalzi
*",(&(

Speculative Fiction
*"+#'0

-&, Author
#. #(&

-&' Genre
#. #(0

−-&' Genre

#. #+(
#. ##$

−-&, Author

!"#$

%'#0(
Oath of Swords Old Man’s War

%&$")

!,")( !"$)0

The Last Colony
%,"('

-# Interact
#. #$" #. #()

−-# Interact

-# Interact -# Interact

#. ##0 #. ##)

#. #"$ #. #'+

!')(' !,,#&

−-# Interact

#. ##0 #. ##,

#. #0"
#. #"&

-# Interact

Figure 7: KGAT captures the behavior-based and attribute-based high-order con-
nectivity, which play a key role to infer user preferences.

Datasets & Codes

Figure 8: Scan me to get three public datasets and KGAT codes.

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Anchorage, Alaska


