Modeling Extreme Events in Time Series Prediction

Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, Xiangnan He

Poster time: 7:00-9:30 pm, August 5th

Problem Description

Track: Research Track

Memory Module

Oral Presentation: Research Track Session RT2

Model Design

Recalling Extreme Events

Considering that the freedom of extreme events is limited, we propose to use **Memory Network** to memorize these points. At each time step t,

 $\tilde{o}_t = W_o^T h_t + b_o$, $h_t = GRU(x_1, \cdots, x_t)$

Meanwhile, we sample M windows for memory module.

Window 1 GRU Window M SM Embedding Module $1 | q_1$ $[x_1, \cdots, x_t]$

For each window j, $s_j = GRU(x_{t_i}, \dots, x_{t_i+\Delta})$ and we calculate $q_i = \{-1,0,1\}$ by setting threshold as extreme event indicator. The similarity between the current inputs and the extreme events in history is,

$$\alpha_{tj} = \frac{\exp(h_t^T s_j)}{\sum_{l=1}^M \exp(h_t^T s_l)}$$

0.6

0.5 -

Then the final output of our model is, $o_t = \tilde{o}_t + b \cdot u_t$, $u_t = \sum_{i=1}^M \alpha_{ti} \cdot q_i$

Extreme Value Loss (EVL)

History Module

The extreme events problem is caused by light-tailed loss, we propose the following loss by extreme value theory. For binary classification case, $EVL(u_t, v_t) = -\beta_0 \left[1 - \frac{u_t}{\gamma} \right]^{\gamma} v_t \log u_t - \beta_1 \left[1 - \frac{1 - u_t}{\gamma} \right]^{\gamma} (1 - v_t) \log(1 - u_t)$

Extreme Events Problem

In time series data, extreme events could influence the

performance of deep learning model, e.g., underfitting and overfitting.

where v_t is the ground truth of extreme event indicator at time step t, β_0 is the proportion of normal outputs and γ is the hyper-parameter.

$$\ell = \sum_{t=1}^{\infty} (o_t - y_t)^2 + \lambda \cdot EVL(u_t, v_t)$$

Fitted Gaussian

True Distribution

Empirical Results

- **Time Series Prediction**: The RMSE improves near 50% relatively in Pseudo dataset. Although \tilde{o}_t still suffer underfitting problem, the memory network module successfully capture the characteristic of extreme events.
- **Extreme Value Loss:** We extend the EVL to multi-label classification and use classification task (predicting the occurrence of extreme events) to validate the effectiveness of

Why Deep Neural Network Could Suffer **Extreme Event Problem**

Through perfectly maximizing Gaussian likelihood, model will internally estimate the distribution of outputs y_t from observations. Considering that few extreme events are observed, the estimated light-tailed distribution is not accurate for those extreme events. Therefore during the prediction:

 $P(Y|X) = \frac{P(X|Y)\hat{P}(Y)}{P(X)} \le \frac{P(X|Y)P_{true}(Y)}{P(X)} = P_{true}(Y|X)$

which could lead to underfitting phenomenon. If we increase the weight of extreme events, the overfitting phenomenon is then observed.

Track: Research Track

600

500

the proposed loss function.

Table: F1 Value of detecting extreme events $\{-1, 0, 1\}$

Model	Climate			Stock		
	Micro	Macro	Weighted	Micro	Macro	Weighted
LSTM+CE	0.435	0.833	0.786	0.247	0.617	0.527
GRU+CE	0.471	0.717	0.733	0.250	0.617	0.547
GRU+EVL ($\gamma = 0.5$)	0.644	0.883	0.859	0.281	0.583	0.523
GRU+EVL ($\gamma = 1.0$)	0.690	0.900	0.881	0.267	0.667	0.547
GRU+EVL ($\gamma = 2.0$)	0.646	0.867	0.851	0.324	0.617	0.555
GRU+EVL ($\gamma = 3.0$)	0.508	0.867	0.825	0.295	0.617	0.548
GRU+EVL ($\gamma = 4.0$)	0.617	0.817	0.813	0.295	0.617	0.543

Oral Presentation: Research Track Session RT2

200

100

*0*_{*t*}

Poster time: 7:00-9:30 pm, August 5th