
How to Retrain Recommender System?

A Sequential Meta-Learning Method

Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He,

Meng Wang, Yan Li, Yongdong Zhang

University of Science and Technology of China , National University of Singapore

Hefei University of Technology, Beijing Kuaishou Technology Co., Ltd. Beijing, China

Outline

Introduction

Our solution

Experiments

Conclusion

Age of Information Explosion

Serious Issue of Information

Overloading

 Weibo： >500M posts/day

 Flickr：>300M images/day

 Kuaishou: >20M micro-videos/day

… …

3

Xiangnan He. Recent Research on Graph Neural Networks for recommendation System

How does a RecSys Work?

 Working :

With time goes by，Model may serve more and more bad. Because:

Collect/Clean

… Data

Offline training &

Saving Model
Serve Online

interested interested interested

Young Girl Pregnant Woman New Mother

(1) User Interests drifts.

long- and short- term interest!

(2) New users/items are coming…

=> Solution: train the model again

with new collected data.(i.e. retrain)

Full retraining and Fine tuning

 method 1 -- Full retraining

Use all previous and new collected to retrain model. (initialed by previous model)

pros: In some case, more data may reflect user interests more accurately

cons: Cost highly (memory and computation) ;

Overemphasis on previous data. (proportion of the last two datasets: t=1: 100% t=9: 20%)

 Method 2 – Fine tuning:

In each period, only use new collected data to retrain/adjust previous model.

t=0 t=1 t=2

Pros: fast, low cost (memory, computation)

Cons: overfitting and forgetting issue (long-term interest)

Sample-based method

 Method 3 – sample-based methods:

full-retraining: slow, high cost, ignore short-term interest

Fine tuning: Fast, forgetting long-term interest

trade-off : Sample previous data: long-term interest

New data: short-term interest

SPMF:

each period:

• Step 1: Use the sampled previous data and new data to

retrain model

• Step 2: Update the Reservoir (With some P)

Pros: A trade-off between Full-retraining and Fine-tuning.

long- and short-term interest

trade-off between cost and performance

Cons: Not best performance

Human-defined sampling strategies

 Other methods: memory-based methods

R
(Reservoir)

𝐷𝑡

Retrain

R

Randomly replace

elements in R with P

①

Motivation

 Common limitation of existing methods:

lack an explicit optimization towards the retraining objective — i.e., the retrained model should serve

well for the recommendations of the next time period

Problems：one stagey only work well in one scenario, and bad in other scenarios

such as , one sample stagey can’t be suitable for all recommendation scenarios.

This motivates us to design a new method can add the retraining objective optimization process. Meanwhile,

we want to avoid to save previous to save long-term interest, in order to realize efficient retraining.

 PROBLEM FORMULATION:

Original form:

Form with our goal: (constrained form)

Only new data can be used, and the goal is that perform well in the next period.

Previous model New model

Outline

Introduction

Our solution

Experiments

Conclusion

Our solution -- key idea

 Previous model (parameters) has captured most

information of previous data.

So, save previous model instead of previous data.

 During training, consider utilize future data in some

way!

 Get a meta-model

Our solution -- framework

 Overview

𝑊𝑡−1 𝑊𝑡

Transfer

𝑾𝒕−𝟏: Previous model, contains knowledge in the previous data
 𝑾𝒕: A recommendation model to capture new information in the new collected data

Transfer: to combine the “knowledge” contained in 𝑊𝑡−1 𝑎𝑛𝑑 𝑊𝑡. Denote as 𝑓Θ.
𝑾𝒕: new recommender model. 𝑊𝑡 = 𝑓Θ(𝑊𝑡−1, 𝑊𝑡)

We need:

A well-designed Transfer has the above ability.

A well-designed training process to make all the modules works.

Previous knowledge/information

long-term interests

New knowledge/information

short-term interests

To combine the two parts knowledge

𝑊𝑡
All knowledge/information

Long- and short-term interests

Transfer

 Two simple methods
(1) pay different attentions to previous and current trained knowledge

𝑊𝑡 = 𝛼𝑊𝑡−1 + 1 − 𝛼 𝑊

Cons : limited representation ability; the relations between different dimensions

(2) MLP: 𝑊𝑡 = 𝑀𝐿𝑃(𝑊𝑡−1|| 𝑊𝑡)

Cons: not emphasize the interactions between the parameters of the same dimension

 Our solution -- A CNN-based Neural Networks

Transfer

Stack layer CNN layers FC and output layer

𝑑 × 3 𝑑 × 𝑛1 𝑑 × 𝑛2
𝑑𝑛2

𝑑𝑓

𝑑

Stack 𝑤𝑡−1, 𝑤𝑡 and
w𝑡−1⊙ 𝑤𝑡

𝛼

to form a 2D picture

If w is not a vector, we

can shape it to a vector.

• 1d and horizontal convolution.

• Capture the relation between the parameters of

the same dimension ---- parameter evolution

[-1,1,0] 𝑤𝑡 −𝑤𝑡−1 𝑀𝐹 ∶ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑑𝑟𝑖𝑓

[0,0,1] interest vanish or appear

With the second layer, stronger ability

• Capture the relation

between the parameters

of the same dimension

• Recover the shape

Sequential Meta Learning

 Directly train our model, only make fit to current period, and even only

make transfer focus on 𝑤𝑡.

-- to make transfer works, we proposed Sequential Meta Learning(SML)

Each period t, alternately update transfer and current model 𝒘𝒕. 𝑬𝒂𝒄𝒉 𝒓𝒐𝒖𝒏𝒅, 𝒕𝒉𝒆𝒓𝒆 𝒂𝒓𝒆 𝒕𝒘𝒐𝒎𝒂𝒊𝒏 𝒔𝒕𝒆𝒑

Step 1: learning 𝑤𝑡

Goal : learn the knowledge in

new collected data 𝐷𝑡

Fix the transfer, minimize:

Black blocks are fixed!

We do learn 𝑤𝑡 by recommendation loss of the

output of transfer instead of itself loss to make

 𝑤𝑡 suitable to as the input of transfer.

Sequential Meta Learning

Step 2: learning the transfer

𝚯 ∶ 𝑠ℎ𝑎𝑟𝑒𝑑 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠

capture some task-invariant patterns

Goal： obtain such patterns that are tailored

for the next-period recommendations

So, fixed 𝑤𝑡, minimize :

i.e. recommendation loss on 𝐷𝑡+1

Black blocks are fixed!

Then, the above two steps are iterated until convergence or a maximum number of

iterations is reached.

Note that:

(1) we can run multiple passes of such sequential training on 𝐷𝑡 𝑡=0
𝑇 when offline

training , to learn a better uniform transfer.

(2) When serving/testing , use the model gained before the first step 2.

Instantiation on MF

All users share a transfer, all item share another transfer.

Loss:

Outline

Introduction

Our solution

Experiments

Conclusion

Setting

 Datasets:

𝐀𝐝𝐫𝐞𝐬𝐬𝐚 𝟏 : (1) News clicked data. time-sensitive, choose recent news , short-term interests.

(2) split each day into three periods:

morning (0:00-10:00), afternoon (10:00-17:00) evening (17:00-24:00)

𝐘𝐞𝐥𝐩[𝟐]: (1)users and businesses like restaurants. inherent (long-term) interest

(2)split it into 40 periods with an equal number of interactions

 Data splits: offline-training/validation/testing periods:

Adressa: 48/5/10 Yelp: 30/3/7

 Evaluation: (1) done on each interaction basis[3].

(2) sample 999 non-interacted items of a user as candidates

(3) Recall@K and NDCG@K (K=5,10,20)

Dataset Interaction

s

users item time span Total

periods

Adressa 3,664,225 478,612 20,875 three weeks 63

Yelp 3,014,421 59,082 122,816 > 10 years 40

[1]. Jon Atle Gulla et.al. 2017. The Adressa dataset for news recommendation. In WI

[2] https://www.yelp.com/dataset/

[3] Xiangnan He et.al. 2017. Neural collaborative filtering. In WWW

Performance

 Average performance of testing periods

(1) Our method which only based on MF get best performance, even compared with SOTA

methods

(2) Our method can get good performance on all datasets. Full-retrain and Fine-tune can

only perform well one datasets respectively.

(3) sample-based retraining method SPMF performs better than Fine-tune on Yelp, but not

on Adressa. Drawback of heuristically designed method.

-- wonderful ability that automatically adapt to different scenarios.

-- historical data can be discarded during retraining, as long as the previous model

can be properly utilized

Performance

 Each period -- recommendation and speed-up

Adress Yelp

(1) SML achieves the best performance in

most cases

(2) the fluctuations on Adressa are larger than

Yelp. Strong timeliness of the news domain

(1) SML is about 18 times faster than Full-retrain

(2) SML is stable

(3) SML-S (disabling the update of the transfer)

SML-S is even faster than Fine-tune

Our method is efficient

How do the components of SML affect its effectiveness?

 Some variants:

SML-CNN: remove CNN SML-FC: remove FC layer

SML-N: disables the optimization of the transfer towards the next-period performance

SML-S: disabling the update of the transfer during testing

SML-FP: learns the 𝑊𝑡 directly based on itself recommendation loss on 𝐷𝑡

CNN and FC layer: both dimension-wise relations and cross-dimension relations between W𝑡 and 𝑊𝑡−1
SML-N: worse than SML by 18.81% and 34.53% on average, optimizing towards future performance is

important

SML-S: drops by 7.87% and 9.43%. The mechanism for transfer may need be changed with times goes by.

SML-FP: fails to achieve a comparable performance as SML on both datasets.

Where does improvements come from?

 Compared with Full-retrain on Yelp

User(item): new users(items): only occur in the testing data.

old user(items): otherwise

interactions: old user-new item (OU-NI), new user-new item (NU-NI),

old user-old item (OU-OI), and new user-old item (NU-OI)

(1) improvements of SML over Full-retrain are mainly from the recommendations for

new users and new items.

(2) strong ability of SML in quickly adapting to new data

(3) performance on the interaction type of old user-old item is nearly not degraded

Influence of hyper-parameters

 Focus on hyper-parameters of CNN component

In some range of hyper-parameters, the performance is stable in some degree.

There are better hyper-parameters.

Conclusion & future works

 main contributions：
• formulate the sequential retraining process as an optimizable

problem

• new retraining approach：

• Recover knowledge of previous data by previous model instead of

data. It is efficient.

• Effective by optimizing for the future recommendation performance

 Future works:

• Implement SML based on other models such as 𝑳𝒊𝒈𝒕𝒉𝑮𝑪𝑵[𝟏]

verify its generality

• Task/category-aware transfer designed.

different users/items may need different mechanism of transfer。

[1]. Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution

Network for Recommendation. In SIGIR

Thank You

Q&A

Transfer

model

⊙

 𝑤𝑡

𝑤𝑡−1

.

.

𝐹0
1

𝐹𝑛1
1 𝐹1

2

𝐹𝑛2
2

𝑤𝑡

