
LightGCN: Simplifying and Powering Graph
Convolution Network for Recommendation

Xiangnan He
Kuan Deng
Yongdong Zhang

Yan LiXiang Wang Meng Wang

Outline

oBackground: NGCF
n SIGIR 2019. Neural Graph Collaborative Filtering

oModel: LightGCN

oFast Loss for LightGCN

oConclusion & Future Work

Representation Learning in CF

Model Single User-Item Pairs
• Project each user/item ID into an

embedding vector
MF [2009]

BPRMF [2009]
…

NCF [2017] CML [2017],
LRML [2018]

Model Personal History as User Feature
• Integrate embeddings of historical items

as user embeddings

• Or use autoencoders to generate user
behaviors

SVD++ [2008]
FISM [2013]

NAIS [2018], …

ACF [2017] Mult-VAE [2018]
AutoRec [2015]

CDAE [2016]

Model Holistic Interaction Graph
• Apply embedding smooth constraints

on connected nodes

• Perform embedding propagation via
graph neural networks

Hop-Rec [2018]
GRMF [2015] GC-MC [2017]

NGCF [2019]
LightGCN [2020] …

3

Recap: NGCF [Wang et al, SIGIR’19]

High-level Idea:
• Organize historical interactions as a user-item bipartite graph
• Capture CF signal via high-order connectivity

• Definition: the paths that reach !" from any node with the
path length # larger than 1.

• E.g., why !" may like 12?
• !" ← 15 ← !5 ← 12
• !" ← 16 ← !6 ← 12

NGCF’s contribution: explicitly modeling high-order connectivity
in representation space via GNN.

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019
4

NGCF: First-order Connectivity Modeling

Embedding Propagation, inspired by GNNs

• Propagate embeddings recursively on the graph à high-order connectivity
• Construct information flows in the embedding space à embed CF signal

Ø First-order Propagation
Ø Message Construction: generate message from one neighbor

Ø Message Aggregation: update ego node’s representation by aggregating message
from all neighbors

message passed from ! to "

discount factor
• Make message dependent on the affinity,
• Pass more information to similar nodes

all neighbors of "self-connections
Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

5

NGCF: Higher-order Connectivity Modeling
• Stack more embedding propagation layers to explore high-order connectivity

• The collaborative signal like !" ← $% ← !% ← $& can be captured in the
embedding propagation process.

• Final embedding: concatenate the embedding from all layers

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

representation of ! at the '-th layer

6

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Our Argument

GNNs NGCF
Original task Node classification Collaborative filtering
Input data Rich node features

• Attributes, text, image data
Only node ID
• One-hot encoding

Feature
transformation

Distill useful information Generate ID embeddings

Neighborhood
aggregation

Pass messages from neighbors
to the egos

Pass messages from neighbors to
the egos

Nonlinear
activation

Enhance representation ability Negatively increases the
difficulty for model training

• Designs of NGCF are rather heavy and burdensome
• Many operations are directly inherited from GCN without justification.

7

• Removing feature transformation (NGCF-f) à decrease training loss
• Removing nonlinear activation (NGCF-n) à increase training loss
• But, removing nonlinear activation & feature transformation (NGCF-fn) à

significantly decrease training loss

Empirical Evidence on Training Difficulty

8
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

• Removing feature transformation (NGCF-f) à improve testing accuracy
• Removing nonlinear activation (NGCF-n) à hurt testing accuracy
• Removing nonlinear activation & feature transformation (NGCF-fn) à

significantly improve testing accuracy

Empirical Evidence on Training Difficulty

9
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

NGCF
• Graph Convolution Layer

• Layer Combination

• Matrix Form

Light Graph Convolution
LightGCN
• Light Graph Convolution Layer

• Layer Combination

• Matrix Form

Only simple weighted sum aggregator is remained
• No feature transformation
• No nonlinear activation
• No self connection

10
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Overall Framework

importance of the k-th layer embedding
in constituting the final embedding

11
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Model Analysis

12
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

• Relation with SGCN [Wu et al. ICML 2019]:
• By doing layer combination, LightGCN subsumes the effect of self-

connection à no need to add self-connection in adjacency matrix.

• Relation with APPNP [Klicpera et al. ICLR 2019]:
• By setting !" properly, LightGCN can recover APPNP à use a large K

for long-range modeling with controllable oversmoothing.

Experiment Settings

Datasets:

Gowalla, Yelp2018, Amazon-Book

Evaluation Metrics:

recall@20, ndcg@20

Dataset partition: randomly select 80% data for training set, and

20% data for testing set.

13
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Compared Methods

• LightGCN:
• BPR optimizer, Uniform layer combination weights
• Tuning L2 regularizer coefficient only.

• NGCF[Wang et al. SIGIR 2019]
• Using the paper results

• Mult-VAE[Liang et al. WWW 2018]
• Parameter setting: dropout ratio ∈{0, 0.2, 0.5}, β ∈{0.2, 0.4, 0.6, 0.8}

model architecture : 600→200→600

• GRMF[Rao et al. NIPS 2015]: smooth embeddings with
Laplacian regularizer

• Parameter setting: λ# ∈ {1$%&, 1$%', … , 1$%(}

14
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Experiment Results

• LightGCN achieves significant improvements over the state-of-the-art
baselines à outstanding performance

15
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Experiment Results

• Performance comparison between NGCF and LightGCN at different layers :

• Training curves of LightGCN and NGCF :

16
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Experiment Results

• LightGCN - single : Only use the final layer’s output

• LightGCN-single performs better than LightGCN on sparser datasets à
further simplified

• It implies that the layer combination weights are important to tune for datasets
of different properties => better to learn automatically (future work)

17
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Embedding Smoothness

• 2-layers Light Graph Convolution:

• Coefficient of !"($) :

à similarity between user & and user '
• Definition of user smoothness of user embeddings :

• user and item smoothness
between LightGCN-single
and MF:

• LightGCN-single has lower smoothness than MF à smoother
embeddings are more suitable for recommendation

18
He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020

Fast Loss
Inefficiency of BPR Loss

• Bayesian Personalized Ranking (BPR) is a widely-used pairwise loss to
optimize recommender models.

• However, BPR randomly samples user-item interactions to form a mini-
batch à failing to fully leverage parallel computing ability of GPU.

C++
(CPU)

TensorFlow
(GPU)

time/epoch 1.1s 55s

• BPR samples the interactions to form
a mini-batch, and the data cannot
form a well-structured matrix

• We run BPRMF with amazon-book
dataset using C++ on CPU(i9 9000kf) and
TensorFlow on GPU(2080Ti)

19

Fast Loss on LightGCN

• !"# = %, '"# = 1; if + ,-. / ℎ,12 /-324,!3/5-
• !"# = 1, '"# = 0; 53ℎ247/82

The s-th term of user
embedding 9+

The s-th entry of item
embedding of 9/.

Good Characteristics:
• Can support any model of inner product structure
• Time complexity is :(|R|d + |;|.<).
• Linear to the number of observed interactions

All possible user-
item pairs

Historical user-item pairs

20
He et al. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR 2016

Mathematical
transformations

Good Characteristics of Fast Loss

• Distinct from BPR that samples interactions as
a batch, Fast Loss samples rows (users) as a
batch

• The data of a batch is well-structured.

• Adv: allow better use of the speed-up of
GPU/CPU, and the computation is linear to
#observations.

21

Fast-loss brings 2~3 magnitude speed-up compared with BPR

Able to train GNN on 100K users and 10M interactions in single GPU in 1 hour

Recommendation Accuracy
• LightGCN optimized with Fast Loss can achieve comparable

performance to that with BPR loss.
• Which loss is better depends on the data characteristics
• Fast Loss seems better on long-tail users/items (we are still exploring)

22

Fast loss are better

Conclusion & Future Work
• Conclusion

• Feature transformation and nonlinear activation increase the
training difficulty and hurt the model accuracy

• Smoother embeddings are more suitable for recommendation

• Fast-loss brings comparable performance and great
efficiency improvement compared with BPR

• Future work
• Personalize the layer combination weights α"

• Streaming LightGCN for online industrial scenarios
23

THANK YOU!
Code(Tensorflow): https://github.com/kuandeng/LightGCN

Code(Pytorch): https://github.com/gusye1234/LightGCN-PyTorch

https://github.com/kuandeng/LightGCN
https://github.com/gusye1234/LightGCN-PyTorch

