The 15th ACM Inter nal Confer

° Weh arch and Data Mmmg
WSDM 2022 Tutorial i
ary 2135, 3022

Graph Neural Networks
for Recommender System

Chen Gao!, Xiang Wang?, Xiangnan He’ and Yong Li!
'Tsinghua University
’National University of Singapore
SUniversity of Science and Technology of China



About us

Xiangnan He

Chen Gao

Xiang Wang

PostDoc Researcher PostDoc Researcher Professor

University of Science and
Technology of China

Tsinghua University National University

of Singapore

chgao96(@email.com xlangwang(@u.nus.edu xiangnanhe@gmail.com

Yong Li

Associate Professor

Tsinghua University

livong(07@tsinghua.edu.cn




Outline

* Background
* Motivations and Challenges of GNN-based RecSys

* Recent Advances of GNIN-based RecSys

* |) Collaborative Filtering, Knowledge Graph-based RecSys
* |l) Feature-based Sequential/Bundle/Multi-behavior/Diversified RecSys

* Open Problems and Future Directions



Outline

* Background
* Recommender System
* Graph Neural Network

* Motivations and Challenges of GNIN-based RecSys

* Recent Advances of GNN-based RecSys

* Open Problems and Future Directions



Outline

* Background
* Recommender System
* Graph Neural Network

* Motivations and Challenges of GNIN-based RecSys

* Recent Advances of GNN-based RecSys

* Open Problems and Future Directions



Information-Overload Era

“ Information-overload in Internet
% Weibo: >0.5B posts/day
% Flickr: >0.3B images/day
*» Taobao: >1B products
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Effective/Efficient information filtering=Recommender System



Recommender System

» Overview of Recommender System
> Stages

» Matching (collaborative filtering), ranking
» Scenarios

» Social, Sequential, Session, Bundle, KG-Based, etc.

» Objectives

» Accuracy, multi-behavior, diversity, explainability, fairness, etc.



Recommender System

» Stages
» Matching: recall items from all-item pool

» Collaborative-filtering models

Stage 1 Stage 2 TR
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Data Sources: user interaction history all other side info




Recommender System

» Collaborative filtering

items
1 0 0 1
0 1 0 0
users
1 1 0 0
1 0 0 1

0/1 Interaction matrix

* Implicit CF

* Application: e-commerce, ads, etc.

e Data: an interaction matrix

e Task: estimate positive position

 Measurement: Ranking metrics

OR

items

5| -1-13

-l 2| - -
users

4 | 1| - | -

3| -1-13

Rating matrix
Explicit CF

Application: movie, POI, etc.
Data: a rating matrix (e.g. 1-5)
Task: estimate ratings on unknown positions

Measurement: Regression metrics
6



Recommender System

» Stages
» Ranking: rank items from matching stage’s output

» Feature-based Recommender Models / CTR

Stage 1 Stage 2 b‘.ﬂ
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Data Sources: user interaction history all other side info




Recommender System

> Feature-based Recommender Models

» Also known as Click-Through Rate Prediction

» Input: user/item attributes (ID can regarded as a
kind of attribute)

V4 / Output Units /S

g 9 @9 ol =/ v/
Hidden Layers

&4 &4 < 4 v/ v 4

Dense
| X ) X J Embeddings @ @ o0
Sparse Features
Wide Models Wide & Deep Models Deep Models

Figure from:
Cheng, H. T et al. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep
learning for recommender systems 8



Recommender System

» Scenario: social recommendation
» Definition: Improve recommendation with social network
» Social-trust assumption: friends tend to have similar interests

» Input: user interaction data + social relation data

» Output: user-item interaction probability

Users

/
? @n:: ® . \R A

Social Recommendation Traditional Social RecSys v.s Social E-Commerce RecSys, such as Pinduoduo

Figures are from:
Wu et al. DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation. TKDE 2020
Lin et al. Recommender Systems with Characterized Social Regularization. CIKM 2018 ?



Recommender System

» Scenario: sequential recommendation

» Definition: predict user’s next interaction based on
historical sequential interactions

» Input: user-item interactions at timestamps tq, to, ..., t,,

» Output: user-item interaction at timestamp t,;41

book sport necessity sport

10



Recommender System

> Scenario: session-based recommendation

» Definition: predict next interaction based on anonymous
short sequences

» Input: anonymous behavior sessions

» Output: next interaction of a given session

» Difference with Sequential Recommendation
» Anonymous (No user ID)

» Repetitive items in one session

» Shorter (as is collected in a short period)



Recommender System

> Scenario: cross-domain recommendation
> Definition: recommendation with multi-domain datasets

» Improve the target domain’s performance with the auxiliary
domain

» Input: user-item historical interactions in multiple domains
» Output: user-item interaction probability at target domain(s)

» Challenges
> Different user behaviors
> Different data distribution

» No overlapped user/item



Recommender System

» Scenario: bundle/list recommendation

> Definition: Recommend a bundle that is made with
several items to user

» Input: user-item/bundle historical interactions

» Output: user-bundle interaction probability

&
(”’ ) P Ax < A 4
e = A ME\B ,uNLLEs

Pro Apps Bundle

for Education

App Bundle Suit Bundle Game Bundle

13



Recommender System

» Scenario: KG-based Recommendation
» Definition: Improve recommendation with KG
» Input: user-item interaction; knowledge graph

» Output: user-item interaction probability
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Recommender System

> Scenario: multi-behavior recommendation

»In today’s information systems, user can interact in multiple
kinds of forms

» Click, purchase, adding to cart, like, sharing, etc.
» Input: user-item interaction on multiple behaviors

» Output: user-item interaction probability on target behavior(s)

15



Recommender System

» Objective: accuracy (the most important)

» Generally, it can be understood the whether the recommended
items match with ground truth

» Top-K metrics

> Hit Ratio (HR), Recall, NDCG, MRR, etc.
» More metrics

» AUC, GAUC, Logloss, etc.

» Most existing recommender systems are designed towards
achieving high recommendation accuracy

» High accuracy — high CTR/CVR

— better user experience and higher business profit



Recommender System

» Objective: diversity

» Recommend diverse items to user while keeping high
recommendation accuracy

» Motivation: only pursuing high accuracy
— the recommendation list become redundant
— user can only be recommended certain categories of items

» Metrics (always defined on item category)
» Gini, entropy, coverage, etc.

» Accuracy should be also considered of course

T ¥ Y=

Q accurate but redundant accurate and diverse

17



Recommender System

» Objective: explainability
» What to explain
» Two folds: explain 1) the model or 2) recommendation results
» How to explain the model
» Design explainable model
» Such as attention modules, explicit feature-interaction, etc.

» How to explain the results
» User/Item-based explanation (CF effect / Social-trust)
» Textual explanation (such as key words in reviews)

» Knowledge-graph based explanation (via meta-path in KG)



Recommender System

» Objective: fairness

» Motivation: users’ demand on to be fairly treated by RecSys

Can | be Can | be
treated fairly on treated fairly on
my gender? my age?

O

ol

Figure from Li et al. Personalized Counterfactual Fairness in Recommendation, SIGIR 2Q21



Recommender System

» Obijective: privacy
»When and where the privacy is highly concerned
» Data collection: recommender may be the attacker

» Data/model sharing: target company may be the attacker

» Model/Results public-release: any third-party may be the attacker

» Representative solutions

» Transferring/sharing nosensitive model parameters
» Distributed machine learning model
» Sharing item-side information

» Data protection mechanism

» Data perturbations such as differential privacy-based ones

» Federated learning
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Graph Neural Networks

» A message-passing-framework perspective
» Node embedding updated by neighbors
» K-layer GNN access K-hop neighbors
» Named “Neighborhood propagation/aggregation”

» Representative variants of GNN
» Spectral : GCN

H*!' = §(D :AD :H'W')
» Spatial: GraphSage (GAT, etc.)

h), = AGGREGATE, ({h},Vj € N}}).
hi*! =6 (W' [hi|h}.]).



Graph Neural Networks

> Pro: Node feature + structural information

» Embeddings contain 1) own features 2) neighbors’ features

> Keys
» Where to deploy GNN layers
» Design of propagation/aggregation layer
» Depth of GNN layers

> Possible Cons

» Over-smoothing, computational cost, etc.
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Motivation: Why GNN are needed for RecSys

» High-order connectivity

» Supervision signal

> Structured data



Motivation: Why GNN are needed for RecSys
» High-order connectivity

» Recommender systems rely on capturing similarity

» User-user (User-CF), item-item (Item-CF), user-item (Model-CF)

» GNN extends similarity to high-orders

» Connectivity among high-order neighbors

» Besides, data sparsity issue is weII addressed

i

uq iy
Uy i3
U3 ig
is
is
User-Item Interaction Graph High-order Connectivity for u,

Figures are from:
Wang et al. Neural Graph Collaborative Filtering, SIGIR 2019



Motivation: Why GNN are needed for RecSys

» Supervision signal

» Users’ feedback can be sparse
» Semi-supervised signal in GNN learning
» Users’ feedback can be various

» Well handled by various-form graph (nodes and edges)

i1

uy i
u; i3
Uus i4
is

(a) U-IInteraction Graph (b) Local Graph of u;

Figures are from:

Jin et al. Multi-behavior Recommendation with Graph Convolutional Networks, SIGIR 2020 ,



Motivation: Why GNN are needed for RecSys
» Structured data

» The input of today’s recommender system is always structured

» Can be utilized to construct graph

» Learning from not only features but also structural information

» Structural reveals implicit signals that cannot be learned by traditional
works

» GNN’s strong power to learn from graph-structured data

Relations

ry: Interact
Items i; Q i i4 T,: DirectedBy
r3: ActedBy

r4: Genre

Entities

Figure from: 5
Wang et al. KGAT: Knowledge Graph Attention Network for Recommendation, KDD 2019



Challenges of GNN-based RecSys

» Graph construction

» Message propagation and aggregation

» Model optimization



Challenges of GNN-based RecSys

» Graph construction
» Node / edge definition
» Heterogeneous/Homogenous
» Distinguish more/less important, and even noisy data

» Handle graph scale to balance efficiency and utility

» Sampling, filtering, pruning, etc.

» Most importantly, the graph must match the ,IA(‘ey to the problem

A. Interest Graph Construction. o O @P
@@ @@ o o S
Z> O & VY WY — V3
© 00O metric (@) o O % — U — U — U _,E
000 learning o 0 O U = Uy = U Y I
Interaction Sequence Interest Graph

Sequential Recommendation

. Session-based Recommendation
Figure from:

Chang et al. Sequential Recommendation with Graph Neural Networks, SIGIR 2021 7
Wu et al. Session-based Recommendation with Graph Neural Networks, AAAI 2019



Challenges of GNN-based RecSys

» Message propagation and aggregation
» How to propagate

» Neighbor set (uniform/attentional)
» Path/Width

» Propagation operations

» How to aggregate
» Utility & Efficiency

» Aggregation operations
» Propagate-aggregate Depth
» Model optimization

» Optimization goal / loss function / data sampling / others



* GNN for Collaborative Filtering
* Q1: Are GNNs suitable for CF?
 NGCF (SIGIR’2019)
* Q2: How to tailor GNNs for CF?
* LightGCN (SIGIR’2020)
 Q3: How to inject self-supervised learning into GNN-based CF?
* SGL (SIGIR’2021)

* GNN for Knowledge Graph-based Recommendation
* Q1: Are GNNs suitable for KG-based Rec?
« KGAT (KDD’2019)
* Q2: How to tailor GNNs for KG-based Rec?
¢ KGIN (WWW’2021)



Q1: Are GNNs suitable for CF?

Recap Collaborative Filtering (CF)

* Collaborative Filtering
e Basic assumption: (behaviorally) similar users would have similar preferences on items

* Collaborative Signal = Behavioral Patterns of Users
* if u; and u5 have interacted with the same items {i;, i3}, uq is likely to have similar

preferences on other items {i,}.

i1 Shape of You

u4 Alice i, | See Fire
U, Annie i3 Castle on the Hill
usj Bob i4_ Skin

i Lose Yourself



Q1: Are GNNs suitable for CF? W

Limitations of Current CF Models

Existing works are not sufficient to yield satisfactory embeddings for CF, due to the implicit
modeling of CF signals in Embedding function.

® Fu,i,
ir
Interaction Modeling e.g., matrix factorization (MF)
.%% d-dimensional space E.ﬁ:[] * Representation Learning: present ID of
- 3 users and items as embedding vectors

* Interaction Modeling: inner product.

Representation Learning
* Mainly consider descriptive features (e.g., ID & attributes)
* Without encoding CF signal explicitly

Interaction Modeling
* Reconstruct user-item interactions, defining the objective function for model training
* Have to be well-designed to make up for the deficiency of suboptimal embeddings



» 1: Are GNNs suitable for CF?
Me*T . 95,

Revisiting CF via High-Order Connectivity

High-order Connectivity from User-item Interactions
* Definition: the paths that reach u; from any node with the path length [ larger than 1.

* A natural way to encode collaborative signal in the interaction graph structure.

Why u; may like i,?
* Uy Iy &« Uy <y

* Uy < Iz« Uz ey

is
User-Item Interaction Graph High-order Connectivity for u4



Q1: Are GNNs suitable for CF?

Modeling First-Order Connectivity

Inspired by GNNs

1. Propagate embeddings recursively on the user-item graph
2. Construct information flows in the embedding space

» Information Aggregation
message passed from i tou
1
i Py
VINGIIN]

discount factor

My (Wlei + Wa(e; © eu))

message dependent
on the neighbor

> Representation Update

eg) = LeakyReLU(mu(_u + > mu(_,')

ieEN,

self-connections all neighbors of u

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019



Q1: Are GNNs suitable for CF?

Modeling High-Order Connectivity W

» Stack more embedding propagation Iayers to explore the high-order connectivity

.....................................................................................

P el = =
: . = :
- £ s 1 HEC
¢ © o : :
wel| T ® 3 5-—0
sg| | 25 £ mm
3 Bl 5 & 5&|
2 al: o —
ERRl: el
W |: e
_— |
......................................... j \/ \j
Y Y
3-hop 2-hop 1-hop
Neighbors Neighbors Neighbors

* The collaborative signal like ul €< i2 & u2 < i4 can be captured in the embedding
propagation process.

* Collaborative signal can be injected into the representation learning process

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019



Q1: Are GNNs suitable for CF?

Aggregating Multi-Grained Connectivity W

X'NGCF(ul: is)
e“i 314
y e’

-
Concatenate Concatenate - u

- eE.")n- e

Prediction Layer

A . < I
INGCF(u, 1) = €}, ' €]

The representations at different layers
 emphasize the messages passed over
different connections

¥ -1 - i C -1 -1 @i
efq ) ell lz : e(4 ) euz eu3 :

Embedding Propagation Layers

* have different contributions in reflecting
user preference

(0)

€y,

(0)
€i, Embeddings

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019



Q1: Are GNNs suitable for CF?

Experimental Results

I @2
Gowalla recall@20 Amazon-book recall@20

0.155

0.15 0.032

0.034
0.145 0.03
014 0.028
0.026

0.135
0.024
0.13 0.022
0.02

0.125

MF NeuMF CMN HOP-Rec GC-MC PinSage ' NGCF MF NeuMF MN  HOP-Rec GC-MC PinSage @ NGCF

* NGCF consistently yields the best performance on all the datasets.

* This verifies the importance of capturing collaborative signal in embedding
function.



= 2: How to tailor GNNs for CF? i
NeXr o Q 5,

Limitations of Directly Applying GNNs on CF

_____JGNNsINGCF

Original task Node classification Collaborative filtering
Input data Rich node features Only node ID

e Attributes, text, image * One-hot encoding

data

Feature Distill useful information Generate ID embeddings
transformation
Neighborhood Pass messages from Pass messages from neighbors
aggregation neighbors to the egos to the egos
Nonlinear Enhance representation Negatively increases the
activation ability difficulty for model training

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020



Q2: How to tailor GNNs for CF?

Redundant Operations for CF

* Removing feature transformation (NGCF-f)=> consistent improvement
* Removing nonlinear activation (NGCF-n) = hurt

* Removing nonlinear activation & feature transformation (NGCF-fn) -
significant improvements over NGCF!

0,030 Amazon-Book Amazon-Book
C— NGCF 0.0375 A
0.025
—— NGCF-n 0.0350 - [/"—“_\\
7]
8 0.020 NGCF-f © 0.0325 1 A
o NGCF-fn ® > auhiia e
£ 0.015 = 0.0300
c © 2
E 8 0.0275 NGCF
g 0.010 bt —s— NGCF-n
0.0250
0.005 - —»— NGCF-f
o —— NGCF-fn
0.000 +— v v . . . v v
0 25 50 75 100 125 150 175 0.0200 0 25 50 75 100 125 150 175
Epoch Epoch

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020



Q2: How to tailor GNNs for CF?

Light Graph Convolution

NGCF LightGCN
* Graph Convolution Layer e Light Graph Convolution Layer
e () (k+1) _ = 1 (k)
= Leak)éeLU nﬁg e = &
ZN v C iR NINGING
* Layer Combination  Layer Combination
(k)
=) elD ey = Zake
* Matrix Form * Matrix Form
E® = LeakyWLU((£ + DE VB + LEKD 0 EC-IP) &) - (D~2AD2)E®

Only simple weighted sum aggregator is remained
 No feature transformation

 No nonlinear activation

* No self connection

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020



Q2: How to tailor GNNs for CF?

LightGCN

3
5 Layer Combination (weighted sum)

E = agE® + ¢;EM + 0E@ + .. + aKE(K)

i : “UIT J = aoE(O) . alAE(O) - azAzE(O) + ...+ aK;\KE(O)
. ...........,f," ..,m...,f: importance of the k-th layer embedding in
m @f'\@ constituting the final embedding

Ligt Gragh Convelution (LGC)

e Relation with SGC [2019]:
* By doing layer combination, LightGCN subsumes the effect of self-connection > no need to add
self-connection in adjacency matrix.

X - (K)e , (K)ag© & [K)a2e0 o 4 [K)axEO.
0 1 2 K

e Relation with APPNP [2019]:
* By setting a; properly, LightGCN can recover APPNP = use a large K for long-range modeling with
controllable oversmoothing.
X = BEO + B(1 — HAE® + B(1 - B2A’EO + ... + (1 - KA EO.

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020



Q2: How to tailor GNNs for CF?

Experimental Results

* LightGCN achieves significant improvements over the state-of-the-art
baselines - outstanding performance

Dataset Gowalla Yelp2018 Amazon-Book
Method recall ndcg | recall ndcg | recall ndcg
NGCF 0.1570  0.1327 | 0.0579 0.0477 | 0.0344 0.0263
Mult-VAE 0.1641 0.1335 | 0.0584 0.0450 | 0.0407 0.0315
GRMF 0.1477 0.1205 | 0.0571 0.0462 | 0.0354 0.0270
GRMF-norm | 0.1557 0.1261 | 0.0561 0.0454 | 0.0352 0.0269
LightGCN 0.1830 0.1554 | 0.0649 0.0530 | 0.0411 0.0315

* LightGCN-single (only uses the final layer’s output) performs better than
LightGCN on sparser datasets > can be further simplified.

o Gowalla Amazon-Book
2 0055
N LightGCN m LightGCN

0.19 B LightGCN-single 0.050 { B LightGCN-single
& &

0.18 0.045
© ®
‘g 0.17 g 0040

o
-
(]

00354

(=]
-
w

0.030
1 2 y H 1

2 3
Number of Layers Number of Layers

t



-E X .. Q3: How to do self-supervised learning?

Common Issues in Recommendation

> Sparse Supervision Signal
* The observed interactions = extremely sparse (e.g., sparsity = 99%)

» Skewed Data Distribution

=  Power-law distribution
= High-degree items exert larger impact on the representation learning

»> Noises in Interactions
=  |mplicit feedback makes the learning more vulnerable to interaction noises



.E X .. Q3: How to do self-supervised learning?

Self-supervised Contrastive Learning

% Supervised *SimCLR (4x)
i | *SimCLR (2x)
2 eCPCv2-L
S 70F 4si MoCo (4
3 *SimCLR oCMC ¢ ’( X)
Q eP|RL-c2x
< AMDIM
~ 65k ? oMoCo (2x)
6_ *CPCVZ PIRL-ens.
8 PIRL eBigBiGAN
g 6ok qMoCo
S LA
S
E 554 eRotation
= e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

CV: MoCo, SimCLR

Start/End Span \

Masked Sentence A Masked Sentence B | Question >

\ ‘l
\ * ‘
\ Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

NLP: BERT

Basic Idea:

1.

Create auxiliary pre-text task for the
model from the input data itself

Learn the “extra supervision signal” from
the data

Pre-train the model on the pre-text task
Fine-tune the model on the main task of
interest



Q3: How to do self-supervised learning?
Graph Contrastive Learning

Pre-text task: Image self-discrimination
Positive instances

1.

Two augmented versions of the same image

Negative instances

Two augmented versions of different images

Contrastive Learning

Maximize the agreement of positives, as
compared to that of negatives

W /
repel

Pre-text task: Graph Self-discrimination

1.

Positive instances
« Two augmented versions of the same graph

Negative instances
« Two augmented versions of different graphs

Contrastive Learning
*  Maximize the agreement of positives, as
compared to that of negatives



.E XT .. Q3: How to do self-supervised learning?

Graph Augmentation for CF

AR H(Zl(’_l),sl(G)), Z\ = H(Zél_l),sz(G)), $1,8, ~ S
4 Node Dropout (ND)
5(G)=(M OV,E), s,(G)=(M OV,E) M M <{0,1}"

* Identify the influential nodes from differently augmented views

€ Edge Dropout (ED)
5,(G)=(V,M OF), s5,(G)=(V,M OE) M M {0,1}"

* Capture the useful patterns of the local structures of a node

€ Random Walk (RW)
5(G)=(V,M{" OF), 5(G)=(V,M{"0E) M",M{ e{0,1}"

* Layer-sensitive local structure

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021



Q3: How to do self-supervised learning?

Self-supervised Graph Learning (SGL)

» Contrastive Loss --- InfoNCE
* maximize the agreement of positive pairs
* minimize that of negative pairs

user _ Z —log eXp(s(Zl,l’zl,l,)/T) ]

ssl = £y 708 L expls(al,, 7)) § £ -

Lnain

‘ESSI = :l:; le ’ + L;iim St?l:?:lt):re N?(ﬁ;:“ Representation
ED, ND or RW A E EE
> Supervised Loss --- BPR § Vi B
d o
A A || - :

Lmain = Z _loga(ym o yu]) /\ E] ] L

(u.i,j)€0 SSraph ED, ND or RW /‘JN e

» Pre-training/Fine-Tuning & Multi-task Training

L =L, +AL, +4 0]

main

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021



.E x T ot

Q3: How to do self-supervised learning?
Experimental Results

v SGL achieves significant improvements
over the state-of-the-art baselines 2
outstanding performance

Dataset Yelp2018 Amazon-Book Alibaba-iFashion
Method Recall NDCG | Recall NDCG | Recall NDCG
NGCF 0.0579  0.0477 0.0344 0.0263 0.1043 0.0486
LightGCN | 0.0639  0.0525 0.0411 0.0315 0.1078 0.0507
Mult-VAE | 0.0584  0.0450 0.0407 0.0315 0.1041 0.0497
DNN+SSL | 0.0483  0.0382 0.0438 0.0337 0.0712 0.0325
SGL-ED 0.0675 0.0555 | 0.0478 0.0379 | 0.1126 0.0538
%Improv. | 5.63% 5.91% 9.13% 12.46% | 4.45% 6.11%
p-value 5.92e-8 1.89e-8 | 5.07e-10 3.63e-10 | 3.34e-8 4.68e-10
o [ ] SGL-ED-L1 0.016 - |j SGL-ED-L1
0.025.| [0 SGL-ED-L2 [ SGL-ED-L2
Bl SGL-ED-L3 0014 Il SGL-ED-L3
[ ] LightGCN-L1 0.0124|[__| LightGCN-L1
0020 I | ightGCN-L2 [ LightGCN-L2
= I LightGCN-L3 = 0.010 | I LightGCN-L3|
E 0.015 4 :é 0.008

0.010

0.005 -

0.000 -

GrouplD

(a) Yelp2018

0.006
0.004
0.002

0.000 L4

1 : 2 | 3 4 5 6 “
GrouplD
(b) Amazon-Book

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021

SGL-ED-L1

| ] SGL-ED-L2
[ SGL-ED-L3
[] LightGCN-L1
1/ LightGCN-L2
[ LightGCN-L3

GrouplD
(c) Alibaba-iFashion




* GNN for Collaborative Filtering
* Are GNNs suitable for CF?
 NGCF (SIGIR’2019)
* How to tailor GNNs for CF?
* LightGCN (SIGIR’2020)
* How to inject self-supervised learning into GNN-based CF?
* SGL (SIGIR’2021)

* GNN for Knowledge Graph-based Recommendation
 Q1: Are GNNs suitable for KG-based Rec?
« KGAT (KDD’2019)
* Q2: How to tailor GNNs for KG-based Rec?
¢ KGIN (WWW’2021)



Q1: Are GNNs Suitable for KG-aware Rec?

CF + KG

User-ltem Bipartite Graph

e User-ltem Direct Interactions
T‘l .
u;—1l4

-

is >q iy Knowledge Graph (KG)

T
:Shape of You \I See Fire E’\Skin . Castle on the Hill ° ltem-ltem External Connections

)
l1 €1

* Background knowledge on items
* Rich semantics & Relations

e €4
|+ eq e; Folk II
Ed Sheeran Pop Collaborative Knowledge Graph
* High-order connectivity between users and items
OpeniE ., T2 -2, ry,
g il e~ Uy —ip— e —i, DUy
. GDelt
. KNOWLEDGE
GRAPH
i ez * Narrow down search space
¢ ol g g VAR VAN e Explore user interests reasonably
@

e (Offer explanations



5 1: Are GNNs Suitable for KG-aware Rec? "
NeXT  “ 95,

Limitations of Prior Studies

Existing works suffer from the limited model capacity, due to the suboptimal modeling of
high-order & attributed CF signals.

_ Supervised Learning-based Path-based Regularization-based

Knowledge Usage  Item knowledge = a generic Connectivity = paths Graph structure =2 an

feature vector connecting users & items additional item
representations or loss
Relation Usage - To define meta-path Or To regularize the learning
select qualified paths of KG embeddings

Limitations * Fail to capture CF signals ¢ Require labor-intensive ¢ Lack explicit modeling

* lIgnore semantic & feature engineering of high-order
structure information e Have rather high relations

complexity



Q1: Are GNNs Suitable for KG-aware Rec?

Attentive Embedding Propagation W

Attentive Embedding Propagation, inspired by GNNs

uq U, . .
* Propagate embeddings recursively on the graph
<N 1
Interact /;9:} . . ..
* Reveal the importance of a high-order connectivity
e By Ko X | ; via relation-aware attentions
: 51 : Ll | i3\ %)
Shape of You . 1See Fire "\Skin _sCastle on the Hill
AR, W N =
\ X<
: r Genre
ong
SUNg e Construct information flows in the embedding space
e es
— e es Folk

Ed Sheeran Pop

Wang et al. Kgat: Knowledge graph attention network for recommendation. KDD’2019



-Ex T s Q1: Are GNNs Suitable for KG-aware Rec?

Knowledge-aware Attention

» KGAT: Information Propagation
» Information Aggregation

The messages accounting for The set of triples, where the
first-order connectivity target node is the head entity
eny = 2y mlhrte Tail representation
(h,r,t)eNy

» Knowledge-aware Attention

decay factor on . (W,et)Ttanh((Wreh - e,))
each propagation

the attention score is dependent on
the distance of e; and ey, in 1’s space

> Representation Update
fBi-Interaction =LeakyReLU(W1(eh +e Nh))+ LeakyReLU(Wz(eh Oe Nh))’

Similar to NGCF

Wang et al. Kgat: Knowledge graph attention network for recommendation. KDD’2019



-E X .. Q1: Are GNNs Suitable for KG-aware Rec?

KGAT Framework

* _ eﬁ))ll- T (L) Similar to NGCF, the representations
at different layers
ot e(-O)II' : ||e(L) * emphasize the messages passed
: : over different connections
J(u, i) = e Tet * have different contributions in
reflecting user preference

..........................

Attentive Embedding Dj:]

Propagation

yu‘i:;

..........................

Wang et al. Kgat: Knowledge ‘B e§°)

graph attention network for
recommendation. KDD’2019 CKG Embedding Layer Attentive Embedding Propagation Layers Prediction Layer



Q1: Are GNNs Suitable for KG-aware Rec?

Amazon-book recall@20

0.15
0.145
0.14
0.135
0.13
0.125
0.12
0.115
0.11

Wang et al. Kgat: Knowledge graph

attention network for recommendation.

KDD’2019
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-E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Limitation on User Intents

None considers user-item relations at a finer-grained level of intents:

 They only model one single relation between users & items, however, a user
generally has multiple intents to adopt items

User Intents
p1:[ry12]

p2: [13,72] ° udirectorn & ustarn 9 WatCh l-1 & l.5

P3: [r2,74] '
KGrelations °  star” & “partner” - watch i,

11: director

Users

Interactions

Items iy L@ - i

To: star

T3: partner

KG Entities »,
1T4: film series

Basic idea: Similar users have similar preferences on items.

-

However: Obscure intents would confound the modeling of
users’ behavioral similarity

Wang et al. Learning Intents behind Our idea: Conditioning on similar intents, similar users have

Interactions with Knowledge Graph for " similar preferences on items©
Recommendation. WWW’2021

Copyright NExT++. All Right Reserved.



-E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Limitation on Relational Paths

Information aggregation schemes are mostly node-based:

 They only collect information from neighboring nodes, without differentiating
which paths it comes from.

O Y1 O vy (P1,71)
O‘ il(Pl) “““““ o
Node_based “““"‘il ......... O‘:l.’.?: ‘.““‘O‘ ............ .Ovll.zgl‘rZ) Path_based
. . & .0173 \ Vs (P1,72,T3 H H
«  1-hop: {iy, i} E@: 9‘ B *"™e  Relation dependencies
*  2-hop: {v, vy, 3} S & @ EerD (py,1,13) between v,
k=1 *, = e -."- ., » .
kC_) :3 ° V3 ® v L V3 (P2, T2, 73)
. k=3 (P2,72)
Node-based Neighborhood Aggregation Relational Path Neighborhood Aggregation
Basic idea: Node-based aggregation mixes information of

neighborhoods.

-

However: It fails to preserve the relation dependencies &
sequencies carried by paths = Relational paths

-

Wang et al. Learning Intents behind Our idea: Treating relational paths as an information channel

Interactions with Knowledge Graph for  to conduct information propaga ion.
Recommendation_ WWW'ZOZ]_ @Q&ng&kngAll Right Reserved.



5 2: How to Tailor GNNs for KG-aware Rec? "
NeXr  © 95,

Modeling of User Intents

Step 1. Representation Learning of Intents
* Motivation: Semantics of user intents can be expressed by KG relations.

* Idea: assign each intent with a distribution over KG relations =2 Use
attention strategy to create intent embedding

Intent Representation

uy Intent embedding shared by all users
? User Intents e = ;a(r,p) er
ep = Z a(r,P)ers
e e reR .
T Attentive combination over
P1 P2 KG relation embeddings
; Independance Modaling ; exD(w
 Commonality of all users : a(r,p) = i rp) )
e UL : Zr’eR eXP(Wr’p)
User Intent Modeling Quantify importance of relation v;
to intent p

Wang et al. Learning Intents behind Interactions with Knowledge Graph for
Recommendation. WWW’2021



-E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Modeling of User Intents

Step 2. Independence Modeling of Intents

* Motivation: Different intents should contain different & unique information.
* ldea: encourage the representations of intents to differ from each others 2>
Add independence regularization to intent embeddings

Intent Representation e  Mutual Information
Uy
9 User Intents e =;a(r,p) i LIND = Z — log =0 (S(ep’ep)/r) A
P Zp’eﬂo exp (S(ep,ep')/T)
Il_ -Il Minimize the information amount
Ty 7273 3 . .
o - between any two different intents.

P‘”1

.......................................... _  Distance Correlation
................. LIND _ Z dCor(ep, ep’),
User Intent Modeling PPIEP P¢P,

Minimize the associations of any
two different intents.

Wang et al. Learning Intents behind Interactions with Knowledge Graph for
Recommendation. WWW’2021



-E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Modeling of Relational Paths

Step 1. Aggregation over Intent Graph (IG)

* Motivation: |G contains rich collaborative information of users.
* Idea: users with similar intents would exhibit similar preference towards items
- Intent-aware aggregation for user-intent-item triplet (u, p, i)

liser Representation Item/En;ity Representation Element-wise pro duct between
e = Wl T ep@ef el = L7 erOey intent p & historical item i
ul o, 552, Intent p Istorical Item L.
v _ _1 (0)
ull@ ilQ € = IN | Z ﬂ(u’ p)ep © ei 2
Vi B
' u,p) = |
llO ........................................................................................ ﬂ p Z ’ eXp(eT e(o)) '
. UserintentItem Triplets Entity-Relation-Entity Trplets p'eP P

Generate user-specific intent
representations

Wang et al. Learning Intents behind Interactions with Knowledge Graph for
Recommendation. WWW’2021



-E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Modeling of Relational Paths

Step 2. Aggregation over Knowledge Graph

* Motivation: KG reflects content relatedness among items.
» ldea: each KG entity has different semantics in different relational contexts -
Relation-aware aggregation for item-relation-entity triplet (i, 7, v)

el St Bty (Mpraessivtion Element-wise product between
O _ (-1) (l) (-1) . :
el I'N'l' B(u P) €pQe; m'[(rv » froe relation r & connected entity v.
“*.@. 49 eV = Y, el
Ni g 2
sz (7'1 T l l (r,v)eN;
VlO

................................................................................................

Wang et al. Learning Intents behind Interactions with Knowledge Graph for
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?

KGIN Framework

Knowledge Graph-based Intent Network (KGIN)

Intent Representation User Representation Item/ Entlty Representation ".O vy (P1,71)
Uy iy )~
— (l) (1-1) (l) (-1) 1 o
e,= ) a(r,p)e B(u,p) e,Oe; e, Qe O«
P r P rOy - i i ...,
9 User Intents ; ; N 5N, O,vz (P1,72)
@ O, (P1,72,73)
I. I l iy (P2)
=
Ftaty T TiTiry SO RETD
P1 P2 E'> |:> ™",
sz (P2, 12)
Independence Modelin, '
,,,,,,,,, T O V3 O V3 (py, 13, 73)
.......................................... P2, 72)
Commonality of all users
........................................... ey =D +e@ 1+ e®
User Intent Modeling Aggregation Layer over Intent Graph (IG) Aggregation Layer over Knowledge Graph (KG) Final User (or Item) Representation

Representation of item, which memorizes the relational signals
carried by the relational paths

@) €r, €r, €r (O)
€. - @ @ * @ @ :
: Sgl |N81 | |N82 | |NS[|

* reflects the interactions among relations
* preserves the holistic semantics of paths

ri ro ri

Wang et al. Learning Intents behind Ss=1 > $1 >+ 81 — §]

Interactions with Knowledge Graph for
Recommendation. WWW’2021




.E X .. Q2: How to Tailor GNNs for KG-aware Rec?

Experimental Results

Amazon-Book Last-FM Alibaba-iFashion

recall ndcg recall ndcg recall ndcg

MF 0.1300 0.0678 0.0724 0.0617 0.1095 0.0670
CKE 0.1342 0.0698 0.0732 0.0630 0.1103 0.0676

KGAT 0.1487 0.0799 0.0873 0.0744 0.1030 0.0627
KGNN-LS | 0.1362 0.0560 0.0880 0.0642 0.1039 0.0557
CKAN 0.1442 0.0698 0.0812 0.0660 0.0970 0.0509
R-GCN 0.1220 0.0646 0.0743 0.0631 0.0860 0.0515

KGIN-3 | 0.1687* 0.0915* | 0.0978 0.0848" | 0.1147* 0.0716"
%Imp. 13.44% 14.51% 11.13% 13.97% 3.98% 5.91%

* KGIN consistently yields the best performance on all three datasets.

* This verifies the importance of:
e Capturing collaborative signal in intent-aware interaction graphs;
* Preserving holistic semantics of paths;

* KGIN can better encode collaborative signals & item knowledge into user and
item representations.
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Recent advances of GNN-based RecSys
0 Accuracy I

* Multi-behavior
* Diversity

* Explainability
* Fairness

\ Privacy %

Objective

[ Recommender System]

Stage Scenario
(. Social Recommendation )
* Matching (Collaborative Filtering) : iequ'ent;al Re;c:mmendat/;n ,
* Ranking (Feature-based / CTR) €sslon-based hecommen elilelt
* KG-Based Recommendation
° Bundle Recommendation )

Price-aware recommendation with graph convolutional networks
Zheng, Y., Gao, C.,, He, X., Li, Y., & Jin, D. ICDE 2020



Background

* The price factor, which directly determines whether a user is

willing to pay (WTP) for an item, is an important feature,
while different from other features

* Price and other features play orthogonal roles in user
decision making process

Other Features

Interest

“ @2

Purchase



Background

* Attribute-aware Recommendation incorporates all kinds of
features into Collaborative Filtering (CF) to boost
recommendation accuracy

* Features:

e user feature
* item feature
e context feature

[ User features J YO u t u b e’S RS

[

¥

Candidate | | Pointwise video
videos scorer

—1 Policy layer — User

f

1
[ Video features }




Background

* Trivial idea: use existing attribute-aware RS to model price

* Most attribute-aware recommendation systems treat
different features equally

* Different features are captured in a generic and unified way

* e.g. FM, DeepFM, DLRM

* Features are usually fed into A
the model as dense features, FB’s DLRM T r

: o
sparse features, embedding S

features A A A
s R

o
[ dense features sparse features J

5

Embedding Lookup  NNs Interactions NNs




Challenges

* Implicit (unstated price awareness)

* Users seldomly speak out their preference or sensitivity
on item price explicitly

* The price awareness can only be implicitly inferred from
purchase history

 Complex (category-dependent influence)

* Price awareness or sensitivity is different across distinct
product categories

* e.g. asport lover would have high tolerance on the price
of a sport equipment, but not on alcoholic drinks.



Challenges

* Purchase history as price-category heatmap of 3 randomly
selected users from an e-commerce dataset

20

category
60 40
I

same price level

O 2 4 6 8
price level

near price levels

i

| -

far off price levels

0

2

4 6
price level

8

O 2 4 6 8
price level
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Methodology: Our PUP Model

* Price-aware User Preference-modeling (PUP)
* Input:

* |nteraction Matrix R

* price of items p

e category of items ¢

* Output:

e estimated interaction probability given a user-item
pair (u, i)
Graph 4 Pairwise- )
4 ) Convolutional interaction based 4 )
c, Encoder decoder Cy
O?

Uz Iy P Uz Iy D1
- Y, - Y,

\ ) J !




Methodology: Our PUP Model

* two-branch solution

* global branch: price as a global effect representing
overall purchasing power (unrelated to category)
» category branch: category-dependent influence of

price factor

e Unified Graph Construction
* Graph Convolutional Encoder
* Pairwise-interaction Based Decoder

( cenn )
Graph
Convolutional
Encoder

( Pairwise- \

interaction based
decoder

e

—

4 )
ijcz
Uz g o
- _/




Methodology: Our PUP Model

* Why we use GCN?

e Capture CF effect
* Learn robust representations for heterogeneous entities
* Model high-order similarity

10



Methodology: Our PUP Model

* Graph Construction
* Nodes: user, item, price, category
* Edges: user-item, item-price, item-category

* Price: we discretize price within each category using
uniform quantization

challenge 1 addressed

OOO

challenge 2 addressed

11



Methodology: Our PUP Model

* Graph Convolutional Encoder

* Embedding Layer: transform one-hot feature to
embedding feature

* Graph Convolutional Layer: embedding propagation and
neighbor aggregation

Ou® QW Op®
[ tanh ] [ tanh ] [ tanh ]

12



Methodology: Our PUP Model

e Pairwise-interaction Based Decoder
e Global branch:

_ T T T

user’s interest and overall
purchasing power

challenge 2 addressed
* Category prancn:

— T T T
SC _ eucepc + eucecc + eCCepC

* Final prediction: user’s category—dependent}
_ price awareness
S = S5t as.

balance between two aspects }

13



Methodology: Our PUP Model

* Model training
e Semi-supervised graph encoder
* Encoding: learn expressive representations for all
kinds of nodes
* Decoding: only focus on reconstructing user-item
edges

e Loss function
e BPR:

L= Z —In (a(s(u, i) — S(u,j))) + Al|0]|?

(u,i,j)eo

14



Experiments

* Datasets
 Two real-world datasets: restaurant and e-commerce
dataset Husers #Hitems #Hcate #Hprice #Hinteraction
Yelp restaurant 20637 18907 89 4 505785
Beibei 52767 39303 110 10 677065

e Evaluation protocols:
* Top-K evaluation with two metrics Recall and NDCG.
* Baseline
* Non-personalized: ItemPop
* CF: BPR-MF (UAI2009), GC-MC (KDD2018 Deep
Learning Day) , NGCF (SIGIR2019)
e Attribute-aware: FM (ICDM2010), DeepFM (1JCAI2017)

* Price-aware: PaDQ-CMF (SIGIR2014) 15



Experiments

e Research questions

* RQ1: How does PUP perform compared with other
baseline methods ?

* RQ2: Could PUP recommend items which match users’
price awareness ?

* RQ3: Could price help recommendation system in cold
start scenarios ?



Experiments

* Overall Comparison

TABLE II
ToP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)
Yelp dataset Beibei dataset

method Recall@50 | NDCG@50 | Recall@100 | NDCG@100 || Recall@50 [ NDCG@50 | Recall@100 | NDCG@100
ItemPop 0.0401 0.0182 0.0660 0.0247 0.0087 0.0027 0.0175 0.0046
BPR-MF 0.1621 0.0767 0.2538 0.1000 0.0256 0.0103 0.0379 0.0129
PaDQ 0.1241 0.0572 0.2000 0.0767 0.0131 0.0056 0.0186 0.0068
FM 0.1635 0.0771 0.2538 0.1001 0.0259 0.0104 0.0384 0.0130
DeepFM 0.1644 0.0769 0.2545 0.0998 0.0255 0.0090 0.0400 0.0122
GC-MC 0.1670 0.0770 0.2621 0.1011 0.0231 0.0100 0.0343 0.0124
NGCF 0.1679 0.0769 0.2619 0.1008 0.0256 0.0107 0.0383 0.0134
PUP 0.1765 0.0816 0.2715 0.1058 0.0266 0.0113 0.0403 0.0142
impr.% 5.12% 5.84% 3.59% 4.65% 2.70% 5.61% 0.75% 5.97%

17



Experiments

e Observations

TABLE II
ToP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)
Yelp dataset Beibei dataset
method Recall@50 | NDCG@50 | Recall@100 | NDCG@100 || Recall@50 | NDCG@50 | Recall@100 | NDCG@100
ItemPop 0.0401 0.01R2 0.0660 0.0247 0.00R7 0.0027 00175 0.0046
BPR-MF 0.1621 0.0767 0.2538 0.1000 0.0256 0.0103 0.0379 0.0129 ]
PaDQ 01241 0.0572 02000 00767 00131 0.0056 00186 0.0068
FM 0.1635 0.0771 0.2538 0.1001 0.0259 0.0104 0.0384 0.0130 J
DeepFM 0.1644 0.0769 0.2545 0.0998 0.0255 0.0090 0.0400 0.0122
GC-MC 0.1670 0.0770 0.2621 0.1011 0.0231 0.0100 0.0343 0.0124
NGCF 0.1679 0.0769 0.2619 0.1008 0.0256 0.0107 0.0383 0.0134
PUP 0.1765 0.0816 0.2715 0.1058 0.0266 0.0113 0.0403 0.0142
impr. % 5.12% 5.84% 3.59% 4.65% 2.70% 5.61% 0.75% 5.97%

* Attribute-aware methods generally outperforms trivial CF
methods, e.g. FM & DeepFM vs BPR-MF. Incorporating
price into recommendation improves accuracy.

18



Experiments

e Observations

TABLE 11
ToP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)
Yelp dataset Beibei dataset

method Recall@50 | NDCG@50 | Recall@100 | NDCG@100 Recall@50 | NDCG@50 | Recall@100 | NDCG@100
ItemPop 0.0401 0.0182 0.0660 0.0247 0.0087 0.0027 0.0175 0.0046
BPR-MF 0.1621 0.0767 0.2538 0.1000 0.0256 0.0103 0.0379 0.0129
PaDQ 0.1241 0.0572 0.2000 0.0767 0.0131 0.0056 0.0186 0.0068
FM 0.1635 0.0771 0.2538 0.1001 0.0259 0.0104 0.0384 0.0130
DeepFM 0.1644 0.0769 0.2545 0.0998 0.0255 0.0090 0.0400 0.0122
GC-MC 0.1670 0.0770 0.2621 0.1011 0.0231 0.0100 0.0343 0.0124
NGCF 0.1679 0.0769 0.2619 0.1008 0.0256 0.0107 0.0383 0.0134
PUP 0.1765 0.0816 0.2715 0.1058 0.0266 0.0113 0.0403 0.0142
impr.% 5.12% 5.84% 3.59% 4.65% 2.70% 5.61% 0.75% 5.97%

* Models based on neural networks and graph neural
networks achieve better results than other models in
most cases. It is promising to introduce deep models,
especially GNN models into representation learning.

19



Experiments

e Observations

TABLE II
ToP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)
Yelp dataset Beibei dataset

method Recall@50 | NDCG@50 | Recall@100 | NDCG@100 || Recall@50 | NDCG@50 | Recall@100 | NDCG@100
ItemPop 0.0401 0.0182 0.0660 0.0247 0.0087 0.0027 0.0175 0.0046
BPR-MF 0.1621 0.0767 0.2538 0.1000 0.0256 0.0103 0.0379 0.0129
PaDQ 0.1241 0.0572 0.2000 0.0767 0.0131 0.0056 0.0186 0.0068
FM 0.1635 0.0771 0.2538 0.1001 0.0259 0.0104 0.0384 0.0130
DeepFM 0.1644 0.0769 0.2545 0.0998 0.0255 0.0090 0.0400 0.0122
GC-MC 0.1670 0.0770 0.2621 0.1011 0.0231 0.0100 0.0343 0.0124
NGCF 0.1679 0.0769 0.2619 0.1008 0.0256 0.0107 0.0383 0.0134
PUP 0.1765 0.0816 0.2715 0.1058 0.0266 0.0113 0.0403 0.0142
impr.% 5.12% 5.84% 3.59% 4.65% 2.70% 5.61% 0.75% 5.97%

* Our proposed PUP achieves the best performance. The
improvements are statistically significant for p < 0.005.

20




Experiments
e User study

user

non-sensitive

$% %

recommend
avg price

sensitive

recommend
avg price

e PUP successfully recommend items matching users’ price
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user 50432
)
0

housewares

4.75
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books
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Experiments

* Utilizing price to tackle cold-start problem
e Recommend items of unexplored categories
* CIR (Category Item Recommendation): recommend from
unexplored “positive” categories in the test set
* UCIR (Unexplored Category Iltem Recommendation):
recommend from all categories not explored in the
training set
* Example:
* All categories {A, B, C, D, E, F, G}
* Explored categories {A, B, C} in training set
* Explored category {E} in test set
* CIR: recommend from all items of category E
* UCIR: recommend from all items of category {D, E, F, G}



Experiments

e Utilizing price to tackle cold-start problem

Il FMEEm DeepFMEmm GC-MClmm PUP- PUP
0.61 0.285
3 0.60 3 0.280
®0.59 @)o 275
80.58 o 0.270 l
X 0.57 = 0.265
.50 I I 1% 0.260 NN
0.27 0.105
() o
g) &»0.100
E 3
O
0.095
g° S
- ]
0.24 UCIR 0.090 UCIR

* Graph based methods outperform other methods: items
of cold-start categories are more reachable on the graph

* User’s price awareness could bridge the gap between
explored and cold-start categories 23



Conclusion

* 1. We highlight the significance of incorporating price
into recommendation and analyze the two difficulties in
capturing price (unstated price awareness and category
dependent influence).

e 2. we propose a GCN-based method named PUP and
adopt a two-branch structure which is specifically
designed to separately model the global and category-
dependent effect of the price awareness

e 3. Our proposed method could recommend items
matching users’ price awareness and alleviate the cold-
start problem when recommending items from

unexplored categories.



Recent advances of GNN-based RecSys
0 Accuracy I

* Multi-behavior
* Diversity

* Explainability
* Fairness

\ Privacy %

Objective

[ Recommender System]

Stage Scenario
(. Social Recommendation )
* Matching (Collaborative Filtering) _ Seql{enttl)al ch;mmendat;lion.
* Ranking (Feature-based / CTR) SEREBIRIEE ecommellv SHiLel
* KG-based Recommendation
° Bundle Recommendation )

Sequential Recommendation with Graph Neural Networks.
Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. SIGIR 2021



Background

=  What and why is sequential recommendation(SR)?

few days few days few days

. -
H |

B THE DARK
il FOREST
o

g

v

book sport necessity sport

few minutes few minutes few minutes

7L ' )
- 5 HEE A
R

funny delicacy beauty delicacy



Background

= Sequential recommendation(SR) aims to leverage users’
historical behaviors to predict their next interaction.

4 , ) ( . , ) 4 . N
capture users [:::] predict users [> improve user
general interest current interest L experience )
, N 4 , N . . N
strengthen users [:::] enhance users ["> increase business
loyalty ) _ current willingness | L sales )

=  The accumulation of user behaviors on e-commerce and
content platforms makes it become an important task.

ebay
%'l‘* F goodreads

uaisiou Tecunoroey |-t st 11 i 1 e

amazon o
e-commerce o B EP

content

Meet your next favorite book.

27



Problem Definition

d Input:
= the interaction history {x{, x5, ... x,,} for
each user
d Output:
= the probability that a user with interaction
history {x4, x5, ... x,,} will interact with the
target item x, at the (n + 1)-th step

?
o—0—O0—0—0O0—0O0—0--0

X1 X2 X3 Xn-2 Xn-1 Xn Xt
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Related Work

NCF [WWW'17]
LightGCN [SIGIR'20]

Early efforts in SR:
e use designed rules or attention
mechanism to assign weights.

GRU4REC[ICLR'16]
Caser[WSDM'18]
DIEN [AAAI'19]

Recent solutions in SR:
* jointly model long/short-term
interests to avoid forgetting.

(&

\
Traditional Recommendations:
* model user-item interaction in a
static fashion.
J
User 1 a[b[cldle]# User 2 alb[cl[d]e#
I:l:l hehbeehl: ™ : BEEEEED
ShimE D min FPMC [WWW'10]
iR G5 RS A oG L s DIN [KDD'18]
L coo:ooi1 | c‘::: o
ali={i=]c oonok i R R GGk
\
Mainstream methods in SR:
* |everage RNN/CNN to summarize
the behavioral sequences.
J

PLASTIC [IJCAI'18]

B SLi-Rec [IJCAI'19]
]

\_ DI2CLWIUIIAG WOge| /
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Limitations of Existing Work

\
rb'“‘5“6'“6“'6‘"6 """ ! Traditional Recommendations:
i X X, X3 Xy Xyq Xy I * isonly able to capture users’
Sttt generalized preferences.
J
/
Early efforts in SR: ? ? ?
* are hard to learn the dynamic ©---0--0---0--0--0---0
. X1 X2 X3 Xn—2 Xn-1 Xn
pattern of user interest.
\§
\
---------- Rmmmme Mainstream methods in SR:
F—O0—O0—0—0——0——0O * have short-term bottleneck due to
1 2 X3 Xn-2  Xn-1 n vanishing gradient problem.
J
/
Recent solutions in SR: O O OO OO0
 are challenging to divide and X, x2 x : Xy Xpoi  Xn
integrate long/short-term interest. ‘ r ‘ . :
\_ long-term interest ? short-term interest ?
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Challenges

1. User behaviors in long sequences reflect implicit and
noisy preference signals.
= Users may interact with many items with implicit
feedback, such as clicks and watches.
= Unlike explicit feedback that can infer preferences,
single ones cannot reflect user’s real interest.
= Useless records will serve as noises in behavior

history, worsening the modeling of real interests.

?
»O rO4#—=>O——O- - -0
X1 X9 X3 X2 Xn_1 Xn X;
useless noises useless noises
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Challenges

2. User preferences are always drifting over time due

to their diversity.

= User preferences are changing due to their
diversity, no matter slow or fast.

" Some preferences may be activated and some
others may have been deactivated.

= [tis challenging to model how they change in the
implicit and noisy history sequence.

?
O—O%—0—O0—0O0x>0O0—0O - -0

X1 X2 X3 Xp_2 Xp_1 Xp X;

activated interest deactivated interest
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SURGE Model Framework

d Interest Graph Construction

Solve Challenge 1: by explicitly integrating and
distinguishing different types of preferences

| !
| . |
:‘ Interest-fusion Graph EZ>: Interest-extraction |
‘ < ] . R .
: Convolutional Layer .+ Graph Pooling Layer :
. | |
| . |
| Pl d
| ~._._._._._._._._ﬁ _______________________________ e @ ............. :
: ;,A. Interest Graph Construction. o © ! ! \‘ |
! | |
:: 60 00O o © o | - Interest Fusion »: e g
;i Imterest Granﬁ;on;tr@ctlwn . 7| and Extraction | " Prediction Layer |
I' eo—>0—-0—>0 learning o o @) | | ‘l
ll Interaction Sequence Interest Graph | | |

N e e e e e e S —— —— —— —— —— —— —— —— —— —— — — — — — — — — — — — — — — — — — — — — — — — —
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SURGE Model Framework

d Interest-fusion Graph Convolutional Layer

Solve Challenge 1: by strengthening important
behaviors and weakening noise behaviors.

/,—.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__._f_f_f_f_f_f\ BN
|, B. Interest-fusion Graph Convolutional Layer. ; | '! :
¥ - | !
I o P o o 7 o o O oi ! :
oA Interest-?%si@n Graph ©_ © :.! = Interest-extraction ||
! O ] . . .
i © ® OConv@lutlo&\aPLaye@ ® , 1+ Graph Pooling Layer !:
o O o © o © L X
I ' a) Cluster-aware attention b) Query-aware attention c) Interest fusion via | ! I |
I | score of the target node score of the source node attentive propagation | | ' |
| 2 U |

2 \ ‘ ,
\
|
|
|

i .
- | Interest Fusion | __.

| .
| I
:] Interest Graph Construction ! * | and Extraction |
| I
| |

N e e e e e e S —— —— —— —— —— —— —— —— —— —— — — — — — — — — — — — — — — — — — — — — — — — —



SURGE Model Framework

J

/,—.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__._f_f_f_f_f_f T ST T T D
I 1 C. Interest-extraction Graph Pooling Layer. |
I |
I ! o 7 o
| . C & .®
1 Interest-fusion Graph =i O I gr@st-extractgm

[ . | . .
:‘ Convolutional Layer ;o CG@pg P%olmgCLayeb
I ‘ | ' d) Soft cluster assignment  e) Interest extraction via I
| [ ) [ with regularizations graph pooling '

T e

Interest-extraction Graph Pooling Layer

Solve Challenge 2: by adaptively reserving
dynamically-activated core preferences.

| 1 N |
. <, | Interest Fusion | __.. -

Interest Graph Construction ' ™| and Bxtraction | ! Prediction Layer

N e e e e e e S —— —— —— —— —— —— —— —— —— —— — — — — — — — — — — — — — — — — — — — — — — — —
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SURGE Model Framework

J Prediction Layer

Solve Challenge 2: by modeling evolution on
reduced sequence flattened from pooled graph.

\i I, |
o |
o |
Interest-fusion Graph ! Z>: Interest-extraction |
- ] . - .
Convolutional Layer . i Graph Pooling Layer !
o |
L |
o i:
L e e e L e e—l . 2
|
SR f \ e 8o .
| ' ; D. Prediction Layer. I|
[ . ] |
:‘ ) ! - Interest Fusion »: O . '
1 Interest Graph Construction ' ™| andextraction | o cPredm,ﬁﬁn kayer o |
. 3 O flatten Il

| |
|\4 | Interest Graph Interest Sequence :)l

N e e e e e e S —— —— —— —— —— —— —— —— —— —— — — — — — — — — — — — — — — — — — — — — — — —



7777777777777777777777777777777777777777777

.
! Interest-extraction

I
I nterest-fusion o il
:‘ Convolutional Layer . 1 Graph Pooling Layer ':
I b i
:1 Lot I
. |
|
I
|
|
|

T &

d A. Interest Graph Construction.

o ©
© 00 O ol e —2
> O
O O O O o < ©
O O O O o o ©
Interaction Sequence Interest Graph
Each interacted item is converted to Each edge (i,j,Aij) € E indicates
anvertex v € V with [V| =n whether item i is related to item j.

= 1. Raw graph construction:
* learns an undirected graph G = {V, E, A} for each interaction sequence.

It is easier to distinguish users’ core
and peripheral interests.

The core interest nodes have higher

degree and form denser subgraph.
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7777777777777777777777777777777777777777777

P P
[ ) Hl
Interest-extraction |

I

I nterest-fusion o !
:‘ Convolutional Layer . 1 Graph Pooling Layer ':
I o i
:x 7 s i

d A. Interest Graph Construction.

o ©
O 0 0 O N o © © O
O O O O  otric o O O
o0 0 O learning o o O
Interaction Sequence Interest Graph
Each interacted item is converted to Each edge (i:j:Ai,j) € E indicates
anvertexv € V with [V|=n whether item i is related to item j.

= 2. Node similarity metric learning: y
. . 5 > - 1
*  Metric function: MY, = cos(W;s © hi, W5 © ), Mij =~ » MY,
9 0=1 !

Multi-head metric increases the expressive

. ower and stabilize the learning process.
Trainable weight w adaptively > 2L

highlights different dimensions.
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7777777777777777777777777777777777777777777

.
! Interest-extraction

I
I nterest-fusion o il
:‘ Convolutional Layer . 1 Graph Pooling Layer ':
I b i
:1 Lot I
. |
|
I
|
|
|

T &

d A. Interest Graph Construction.

o ©
O 0 0 O o o °
> O
© o0 OO0 metric O O O
O O O O learning o ® O
Interaction Sequence Interest Graph
Each interacted item is converted to Each edge (i»j:Aij) € E indicates
anvertexv € V with [V|=n whether item i is related to item j.
= 3. Graph sparsification via e-sparseness:
e Relative ranking strategy of the entire graph:
A = 1, M;; >= Rank,, 2 (M);
Y10, otherwise;
Rank returns the value of the en?-th n is the number of nodes and &
largest value in the metric matrix M. controls the overall sparsity.
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B
i &7 o °fs e il
i o 9 Olnterest-fusi6n Gragh ©_ © !  Interest-extraction ||
i 8 P Fonyalutiegaliayed. P, ° ™, Graph Pooling Layer 1!
e 0 00 o o HETEWTET G o ;. CmOmEAE
i i i
| ' H
Rl | e e l

,,,,,,,, L S

=
I Graph C a

1
L e S

d B. Interest-fusion Graph Convolutional Layer

5 O
o &
o 2 ©

o o0 ©

a) Cluster-aware attention
score of the target node

O

= 1. Cluster-aware attention:
* identifies whether the target node is the center of the cluster.

a; = Attentiong (Weh; || hi. || Weh; © hi),

k-hop neighborhood of the target node v;
The target node v, is regarded is the receptive field of the cluster c(v;).

as a medoid of a cluster c(v;).
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i o ) o | | |
[ - R/ o %7 oi ! |

i o O Interest-fusi6n Gragh © " i.!  Interest-extraction |

:: ' Cl:onv@lut?o aPLayeP A 'Z>: Graph Pooling Layer i

lio o © Beugos c © 9 L i

! b !

o © o ¢
O © O -
7 @) 0 7 @) .
e O ® O
o o © o ® ©
a) Cluster-aware attention b) Query-aware attention
score of the target node score of the source node

= 1. Query-aware attention:

* identifies interests’ independent evolution for different target item.

Irrelevant source node V; information

Only relevants with target item x,  Will be discarded during aggregation.
can play a role in the prediction.
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L
o !

I o o O. o . o © " oi I
| © Interest-fusiGn Graph o ! Interest-extraction H

! o
Ii e} O o o i i
t o ; ; i
M e h o d 0 I ogy i A %orz}v@l%tlogaﬂayoe@ d o L Graph Pooling Layer g
Ii ; i
I : |
P |
b i R |
; i
= |
and Extre |

o © o © o ©
O O O
O 0 O O O O
O ® O - @, o
o o © o © © o ®© ©
a) Cluster-aware attention b) Query-aware attention c) Interest fusion via
score of the target node score of the source node attentive propagation

= 1. Cluster- and query-aware attention:

* maps the importance of target node v; on it’s neighbor source node v;.
exp(ai + fj)
Yken; exp(ai + fi)’

B controls how much information
a; controls how much information the source node v: can send.

' J
the target node v; can receive.

Eij = softmax;(a; + f;) =
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L
o !

i A 0 O. Q © " oi . |
li © Interest-fusiGn Graph o ! Interest-extraction H

o
Ii o O @ o = . !
t o ; i
M e h o d 0 I ogy i A %orz}v@l%tlogaﬂayoe@ d o L Graph Pooling Layer g
Ii ; i
I : |
P |
b i R |
; i
= |
| and Extrs |

o © o © o ©
O O O
O 0 O O O O
O ® O - O o
o o © o © © o © ©
a) Cluster-aware attention b) Query-aware attention c) Interest fusion via
score of the target node score of the source node attentive propagation

= 1. Interest fusion via graph attentive convolution:

* refines output embeddings by gathering weak signals to strong ones.
)
hi= | o (Wa® - Aggregate (EJ, « hjlj € Ni) + hi),
5=1

E;; perceives users’ core interest and

Multi-head attention mechanism the interest related to query interest.
increases the expressive power.
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L olft rést-extraction |

(
i
|
! nterest-fusion = te i
e o 0 o : Convolutional Layer . Qiroapg PdolingeLayen !:
! o ) Soft cluster assig e)nterest e via ‘:
i i e vpoins |
R e
, . : |
r— !
| and b | |

1 C. Interest-extraction Graph Pooling Layer

O O
@,
O O O
Q o

o ° O

e © ©

O O
d) Soft cluster assignment e) Interest extraction via

with regularizations graph pooling

= 1. Interest extraction via graph pooling :
 downsizes the graph reasonably to further extract the fused interest.
(R RS, ) = STURL RS, .. L),
Gavs . yiy =Syt y2. . .y}, Cluster assignment matrix § € R™ ™ pools

node embedding Tl)'i and score y; into cluster.

n loose interests are transformed into m tight
interests and their distribution is maintained.
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b ® o i
[N rést-extraction |

(
i
|
! nterest-fusion . te i
e O 0 O : Convolutional Layer . Qiroapb PdolingeLayen !:
! o ) Soft cluster assig e)nterest e via ‘:
‘ i e vpoins |
R e
, . : |
: |
= |
| and Extrs |

1 C. Interest-extraction Graph Pooling Layer

O O
O
@), O O
Q o

o P O

e © ©

O O
d) Soft cluster assignment e) Interest extraction via

with regularizations graph pooling

= 1. Interest extraction via graph pooling :
e uses the GNN architecture to generate the assignment matrix.

Si. = softmax (Wp - Aggregate (Aij * EJ/ € Ni)) )

Softmax is used to obtain the probability of

the i-th node being divided into m clusters.
The output dimension of weight W,

is set as the number of clusters m.
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o
i L [0}
R I&gr&t—extractpon

1
[
! nterest-fusion ‘ol t !
: Convolutional Layer i Qiroapg Poolingslayep !
! L ) Soft cluster assig e) nterest e 1
|‘ i l. ‘with regulari graph pooling
B N P

; i

|

1 C. Interest-extraction Graph Pooling Layer

o—9
O O © O
@, O o
o © 0
d) Soft cluster assignment e) Interest extraction via
with regularizations graph pooling

= 2. Assignment regularization :

 Same mapping regularization with Frobenius norm.

_ T
Ly = llA, S5 |IF, Each element in A represents the

connection strength between two nodes.

Each element in SST represents the probability
that two nodes are divided to the same cluster.
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! nterest-fusion = erést- i
t : Convolutional Layer i Qiroapb Poolingdlayep !:
! o ) Soft cluster assig e)nterest e via ‘:
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| Pes { Inter |
{and n | |

1 C. Interest-extraction Graph Pooling Layer

O O
O
@), O O
Q o
© ©
O\OX ~ O ®)
O
d) Soft cluster assignment e) Interest extraction via
with regularizations graph pooling

= 2. Assignment regularization :
* Single affiliation regularization with entropy function.

n
1
La =~ Z H (Si), It makes each row S;. in assignment
1=1 matrix approach a one-hot vector.

H(-) is the entropy function that can reduce
the uncertainty of the mapping distribution.
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! o lfiteréstextraction

1

| i

! nterest-fusion N t ]
t : Convolutional Layer i Qiroapg Poolingslayep !

! : : ) Soft cluster assig e) nterest e 1

|‘ i l. ‘with regulari graph pooling

I N P

=i ;

1 C. Interest-extraction Graph Pooling Layer

t4r t5r t8 O
P2
O
@), O O
O tg, t11,t O
t1, t2, 3, tg 0 O o ¥tz P15,
O
t7, %9, 10
d) Soft cluster assignment e) Interest extraction via
with regularizations graph pooling

= 2. Assignment regularization :

* Relative position regularization with L2 norm.

Lp = [|PnS, Pmll2, It makes the position of the non-zero elements

in S closer to the main diagonal elements.

P,, and P, are position encoding vectors,
like {1,2,...,n}and {1,2,...,m}.

48



o
j ® o
[N rést-extractjon

|

| :

! nterest-fusion o e !
. ' Q .

e t 0 0 o : Convolutional Layer . SGrapp Poolingilayeo
! L ) Soft cluster asigr &) nterest e 1
| 1 ' ( ‘with regulari graph ling
I . ,

=k ;

1 C. Interest-extraction Graph Pooling Layer

QP Y3
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a N\ © 'S s
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O O
d) Soft cluster assignment e) Interest extraction via

with regularizations graph pooling

= 3. Graph readout:
 feeds graph-level representation into the final prediction layer.

h, = Readout({y; + h’,i € ,
g (yixhy i€ G)) The constrains of node information can

better extract each cluster’s importance.

The weighted readout on raw graph
constrains each node’s importance.
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b i
Interest-fusion Graph Ll Interest-extraction ;

i
| ¢ =i ‘ ‘:
: Convolutional Layer i Graph Pooling Layer
1 I ‘:
i Cod I
o |
. N . I
1 D. Prediction Layer. Hl
= i res o I:
{and B [S]

J D. Prediction Layer

D2
- = P1 P2 P3 Ps
P1 O position 6 0 OO0
O p3 Op flatten
4
Interest Graph Interest Sequence

= 1. Interest evolution modeling :
e supplies the final interest with more relative historical information;

hs = AUGRU({h%, kS, . .. 15, )).
It is easier to model evolution on reduced

sequence with enhanced interest signals.

AUGRU uses cluster score y; to scale all
dimensions of the update gate in GRU.
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Methodology |

Interest-fusion Graph ‘Z>: Interest-extraction

J D. Prediction Layer

O = )
O g O O O O O
pos:twn
O @ flatten Xt
Interest Graph Interest Sequence

= 2. Prediction:
e uses MLPS to automatically learn the combination of embeddings;

i = Predict(hs ||hyllh |hg © hy).

Graph representation, evolution output
and target item embedding are considered.

Two-layer feedforward neural network
is used as the prediction function.
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Methodology |

Interest-fusion Graph ‘Z>: Interest-extraction

J D. Prediction Layer

®)

= Yo
O g O O O O O
pos:twn
O @ flatten
Interest Graph Interest Sequence

= 3. Optimization objective :
e uses the negative log-likelihood function as the loss function;

= |O| Z (Yo log o + (1 — yo) log(1 — go)) + AllO|l2,
ocO
L2 regularization is used to prevent over-

fitting and A controls the penalty strength.

¥, = 1 indicates positive instances
and y, = 0 indicates negative ones.
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Experiment Settings

] Datasets
= E-commerce Platform: Taobao o " Oo
WEM g
=  Short-video Platform: Kuaishou Taobao.com ’a 0¥ H&i

KUAISHOU TECHNOLOGY

J Evaluation Metrics:
=  Accuracy Metrics: AUC, GAUC
= Ranking Metrics: MRR, NDCG@K
1 Dataset partition:
=  Taobao:2017.11. 25~ 2017.12.3, first 7 days as training set, the 8th

day as validation set, and the last day as test set.
=  Kuaishou: 2020.10.11 ~ 2020.10.28, first 6 days as training set, before
12 pm of the last day as validation set, and after 12 pm as test set.

Dataset  Users Items  Instances Average Length

Taobao 36,915 64,138 1,471,155 39.85
Kuaishou 60,813 292,286 14,952,659 245.88
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Compared Methods

d NCF [He et al. WWW'17]
"  matrix factorization and multilayer perceptrons
[ DIN [Zhou et al. KDD'18] General

= attention mechanism with target item as query Models
d LightGCN [Zhou et al. SIGIR'20]

= uses GCN to extract higher-order connectivity

= interest extraction and evolution GRUs
SLi-Rec [Yu et al. [JCAI'19]
= jointly models long and short-term interests

1 GRUA4REC [Hidasi et al. ICLR'16]

= encodes user interest into GRU’s final state
(1 Caser [Tang et al. WSDM'18]

= uses CNN to learn sequence patterns Sequential
d DIEN [Zhou et al. AAAI'19] Models
d
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Experiments
] Overal Performance

Taobao Kuaishou
Method AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
NCF 07128  0.7221  0.1446  0.0829 05559 05531 07734  0.8327
DIN 07637  0.8524 03091  0.2352 0.6160 07483  0.8863  0.9160
LightGCN 0.7483  0.7513  0.1669  0.1012 0.6403  0.6407 08175  0.8653
Caser 0.8312  0.8499 03508  0.2890 07795  0.8097 09100  0.9336
GRU4REC 0.8635  0.8680 03993  0.3422 0.8156  0.8333 09174  0.9391
DIEN 0.8477 08745 04011  0.3404 07037 07800 09030  0.9284
SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
SURGE 0.8906"* 0.8888 0.4228°  0.3625"" 0.8525* 0.8610"* 0.9316"*  0.9495

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;
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Experiments
] Overal Performance

Taobao Kuaishou
Method AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
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DIEN 0.8477 08745 04011  0.3404 07037 07800 09030  0.9284
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SURGE 0.8906** 0.8888 0.4228°  0.3625"" 0.8525"* 0.8610"* 0.9316"*  0.9495

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

2. Sequential models are effective but have a short-term bottleneck;
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Experiments
] Overal Performance

Taobao Kuaishou
Method AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
NCF 07128  0.7221  0.1446  0.0829 05559 05531 07734  0.8327
DIN 07637  0.8524 03091  0.2352 0.6160 07483  0.8863  0.9160
LightGCN 0.7483  0.7513  0.1669  0.1012 0.6403  0.6407 08175  0.8653
Caser 0.8312  0.8499 03508  0.2890 07795  0.8097 09100  0.9336
GRU4REC 0.8635  0.8680 03993  0.3422 0.8156  0.8333 09174  0.9391
DIEN 0.8477 08745 04011  0.3404 07037 07800 09030  0.9284
SLi-Rec 0.8664 08669 03617  0.2971 07978  0.8128 09075  0.9318
SURGE 0.8906** 0.8888 0.4228°  0.3625"" 0.8525"* 0.8610"* 0.9316"*  0.9495

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;
2. Sequential models are effective but have a short-term bottleneck;

3. Joint modeling long and short-term interests are not always better.

57



Experiments
J Study on Sequence Length

Tabobao Dataset 0.88 Kuaishou Datase
089_,,,»44}"""@ ] /<? """ ‘\4/\‘ ~~~~~ |
‘9 0.85 @/ R ‘Q S O
g e e P e e e : |
D (LY S . e
O - ; O
S 087 BT S
= 5 T 0.80 f-Hrmmeesfines —— S (. 1
O ' Q)
O e e 5 .78 F-mhremmsmmmmm e m b
0,85---: DIN CASER — SLiRec|- 0.751 | DIN | CAISER | SLi-RecI: i
DIEN GRU4REC —6— SURGE ' DIEN GRU4REC —e— SURGE
0~10  10~20 20~30 30~40 40~50 0~50  50~100 100~150 150~200 200~250
Sequence Length Sequence Length

1. As the length increases, each model’s performance reaches its peak;
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Experiments
J Study on Sequence Length

Tabobao Dataset 0.88 Kuaishou Datase
7 e — ) R R e R
‘9 0.85 @/ s — ‘@ Sy
g e e P e S B : | |
D 0.83 - romemomrieest oo e
O - ; O
S 087 BT S
< | T 0.80 f-Hommreesfines A — = 1
O ' Q)
R o S Y S .78 4-rhsmsmmm b
0,85---: DIN CASER | SLi-Recl-- 075__| DIN CASER I SLi-RecI:_
DIEN GRU4REC —6— SURGE ' DIEN GRU4REC —e— SURGE
0~10  10~20 20~30 30~40 40~50 0~50  50~100 100~150 150~200 200~250
Sequence Length Sequence Length

1. As the length increases, each model’s performance reaches its peak;

2. As the length continues to increase, most models’ performance decline;
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Experiments
J Study on Sequence Length

Tabobao Dataset 0.88 Kuaishou Datase
R M I S ) e I P
,/‘,9' 0.85 ®,r' S ‘Q S o
AT o R  IREY & I e
S S | | 9 | | ? | |
T'_ T I i R % Ll I 1} :) . | | : i
; B e S S
|- —zlgp-"" _AH--=>~of] W o | | | | i
| 0
DIN | CAISER | SLi—ReCI-- 075 1 | DIN | CAISER | SLi-RetI: L
DIEN GRU4REC —6— SURGE DIEN GRU4REC —e— SURGE
0~10  10~20 20~30 30~40 40~50 0~50  50~100 100~150 150~200 200~250
Sequence Length Sequence Length

1. As the length increases, each model’s performance reaches its peak;
2. As the length continues to increase, most models’ performance decline;

3. The performance gap with SURGE is larger when sequences become longer.
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Experiments
J Efficiency Comparison

Tabobao Dataset Kuaishou Dataset
0.90 1
O @)
2 0.70 3
DIN 0.70 DIN
O DIEN O DIEN
CASER CASER
0.60 1 GRU4REC GRU4REC
) SLi-Rec 0.60 - SLi-Rec
—— SURGE —— SURGE
0 4000 8000 0 5000 10000
Iteration Iteration

SURGE’s another advantage is that the convergence process
during training is more stable and fast.
= Other methods either continually fluctuate and are difficult to

converge, or increase slowly and are difficult to stop early.
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Experiments
J Efficiency Comparison

Dataset DIN Caser GRU4REC DIEN  SLi-Rec  SURGE

Taobao 22.65m 23.66m 26.78m 18.74m 27.82m 14.96m
Kuaishou 20.59m 120.26m 73.35m 28.47m 28.84m 22.86m

Total training time until convergence of baselines on two real-world datasets, where m indicates minutes.

Except for the non-sequential model of DIN, SURGE'’s efficiency
improvement compared with all baselines is more than 20%.

SURGE compresses the sequence before feeding the
embedded sequence into the recurrent neural network,
which greatly reduces the number of recurrent steps.

Since most of the noise is filtered, the pooled sequence only
contains the core interest, which will undoubtedly help
speed up the model’s convergence.
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Experiments
J Design choices for interest evolution

T D Kuaishou D
0.95 abobao Dataset 0.95 uaishou Dataset
[ 1 Baselines [ 1 Baselines
0.90. Hll Our + Baselines's Interest Evolution Layer 0.901 mmm Our + Baselines's Interest Evolution Layer
- 0.851
¢ 0-85 — O 0.80- ] —
o )
< 0.80] <€ 0.751
0.701
0.751
0.651
0.70 - - — 0.60 L1—- . .
DIN GRU4REC DIEN SLi-Rec DIN GRU4REC DIEN SLi-Rec
(Attention)  (GRU) (AUGRU) (Time4LSTM) (Attention)  (GRU) (AUGRU) (Time4LSTM)

SURGE’s third advantage is that the framework can bring
benefits to some existing methods.
" Modeling on the compressed sequence will significantly

reduce the difficulty of capturing user interests.
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Conclusion & Future Work

(d Conclusion

= We approach sequential recommendation from a new
perspective.

=  We propose to aggregate implicit signals into explicit
ones by designing graph neural network-based models on
constructed item-item interest graphs.

= We design dynamic-pooling to filter and reserve activated
core preferences for recommendation.

J Future Work

= We plan to use different behaviors to explore fine-grained
multiple interactions from noisy historical sequences.
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Recent advances of GNN-based RecSys
0 Accuracy I

* Multi-behavior
* Diversity

* Explainability
* Fairness

\ Privacy %

Objective

[ Recommender System]

Stage Scenario
(. Social Recommendation )
* Matching (Collaborative Filtering) ) SeqL{ent;al Re;commendat/;n ,
« Ranking (Feature-based / CTR) Session-base Recommellv ation
* KG-based Recommendation
L Bundle Recommendation | /

Bundle recommendation with graph convolutional networks.
Chang, J., Gao, C,, He, X., Jin, D., & Li, Y. SIGIR 2020



What is a bundle?

'3
l

Suit Bundle

Pro Apps Bundle

for Education

App Bundle Movie Bundle Game Bundle
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Background

"= Bundle recommendation aims to recommend a
bundle of items for a user to consume as a whole.

4 ) ( ] ) 4 . N
reduce query [:::] avoid monotonous [> improve user
operations L choices L experience
4 ) ( ) . . N

. : increase business
set overall discounts IZ'::I expand order sizes |
(. J \§ J (. Sdles J

=  The prevalence of bundled items on e-commerce and content
platforms makes it become an important task.

[ epay

oodreads  Fa=Yrarry
C o n te nt Imnh H;\%e‘t ‘your ne;(t‘\fa\\/c\:or\it\:e boo!l;. | — 1 0]
(L B T R RRER TR '

amazon g
e-commerce pu— BTEF




Challenges

L
|

L

!
3

i
[
“ o8
ALHI [
é

i 8 %> : L e
af o

Bo Mo Eo=

\

?
3

] Model

= The attractiveness of a bundle depends on its items.
= The users need to be satisfied with most items in a bundle.

= The items matching degree will affect the user's choice.

68



Challenges

| -
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J Data

= On the existing platforms, the item is still the main form to buy.
=  The number of bundles that the user has interacted with is limited.

= Thereis a sparser interaction between the user and bundle.



Problem Definition

d Input:
= user-bundle interaction records
= user-item interaction records
" bundle-item affiliation information

d Output:
= user-bundle interaction probability

- ¢ am ¢ am s Em o amm e am o
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Limitations of Existing works

1. Separated modeling of two affiliated entities.

" reuse model parameters

user-item task 1 |

interaction

" share model parameters

user-item task 1 |

interaction

user-bundle task 2 !
. . 1
Interaction

user-bundle task 2 |
. N 1
Interaction

" |tis difficult to balance the weights of the main task

and auxiliary task.

/1



Limitations of Existing works

2. Substitution of bundles is not considered.

Y

= They only consider the correlation between itemsin a
bundle to enhance the item task.

Illlllll)u’ O
l W |

" The association between the bundles as the
recommended target is even more critical.
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Limitations of Existing works

3. Decision-making is ignored in bundle scenarios.

A |
gg .

= Even though a user likes most items in a bundle, but
may refuse the bundle.

L

Kot Kot

" For two highly similar bundles, the key to the user’s
final selection is non-overlapping parts.

/3



BGCN Model Framework

J Heterogeneous Graph Construction

Solve Limitation 1: Separated modeling
of two affiliated entities.

Identify
ltem Level
Hard Negatives

]a[ p:s;:;::zn}% : J@[ }
I R |
| [ J

Hard Negatives

Graph
Construction

[ Heterogeneous

Bundle Level
Propagation
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BGCN Model Framework

1 Levels Propagation

Solve Limitation 1 and Limitation 2:
Substitution of bundles is not considered.

|dentify
ltem Level ltem Level
Propagation Hard Negatives

]@ Yy ¥ ¥

Graph
Construction

(breccin | (“Tining |
]zx b J

Identify
Bundle Level
Hard Negatives

[ Heterogeneous

Bundle Level
Propagation
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BGCN Model Framework

d Training with Hard Negatives

Solve Limitation 3: Decision-making
is ignored in bundle scenarios.

Identify
ltem Level ltem Level
Propagation Hard Negatives
] [ Prediction ] {
Identify
Bundle Level

Hard Negatives

Graph

Heterogeneous
Construction

Training ]

Bundle Level
Propagation
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Methodology

Heterogeneous
Graph
Construction

Identify
Bundle Level
Hard Negatives

i

b1 l3

bZ i4_

Ls

Interaction Relation Affiliation Relation
an observed link means user u once an observed link means bundle b
purchased bundle b or item i. contains item i.
= Qur target: Limitation 1 is addressed!

e predict any possible unobserved links between u and b.
 e.g., will user 1 interact with bundle 27?
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Methodology

J Item Level Propagation

Identify
Item Level Iltem Level
Propagation Hard Negatives
Heterogeneous @ Q
Graph Prediction
Construction g a Q7 @
Bundle Level Identify
Propagation Bundle Level

Hard Negatives

Pro Apps Bundle

for Education
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Methodology

J Bundle Level Propagation

u1@<—0 b; b, 2

Limitation 2 is addressed!
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Methodology

J Prediction
" propagate iteratively for L times;
" concatenate L layers’ embeddings.
poy =Pl Ly =,

* % 0 L
Do =Punll - lIpS ) Ty, =1yl i)

" combine the information from different depths

O—O0—0C—C0—-=0

hlgher-o.rt?er b4 uy b, u, b,

connectivity ~ ~

In Interaction O Y N (O O
i1 us iy Uy i3

higher-order
O—O—@ connectivity
b, iz bs; in affiliation

cannot be modeled in o
CF model!

O
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Methodology

Identify
Bundle Level
Hard Negatives

J Prediction
= adoptinner product
= combine bundle and item levels

T %

T % *
Ty 1T Pu2 Tpo-

A *
Yub = Py,1

user's .

embedding %11
bundle's x
- Th1
L Q O The probability of
user's s R . the user 1 interacting
embedding = “* Yuiby with bundle 2.

bundle’s
embedding s
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Identify
Item Level Iltem Level
Methodolo r
gy Heterogeneous
Construction g
Bundle Level Identify
Propagation Bundle Level

Hard Negatives

J Training with Hard Negatives

bundles contain more items and users are often cautious to avoid
have higher prices unnecessary risks

= |dentify Iltem Level Hard Negatives

-
-
-
-
. -
-
-
-

bhard : O oy

* Even though a user likes most items in a bundle,
* but may refuse it because of the existence of one disliked item.
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Methodology

J Training with Hard Negatives

bundles contain more items and users are often cautious to avoid
have higher prices unnecessary risks

= |dentify Bundle Level Hard Negatives

—————————————

bZ : _ ._._._.v_,{’hard
/ {/. \ .\I
':‘.é O :
Lo 9 .
!\.z'i O ‘:
O
NS o

* For two highly similar bundles,
* the key to the user’s final selection is their non-overlapping parts.
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Methodology

Identify
Bundle Level
Hard Negatives

J Training with Hard Negatives

bundles contain more items and users are often cautious to avoid
have higher prices unnecessary risks.

=  Training Limitation 3 is addressed!

Loss = Z —Ino(Jup — Yuc) + B - ||@||2,
(u,b,c)eQ

Q = {(u,b,c)|(u,b) € Y+, (u,c) € Y~}

* Bayesian Personalized Ranking pairwise learning.
* To prevent over-fitting, we adopt L2 regularization.

» After the model converges, the hard-negative samples are selected

with a certain probability(80%) for training.
34



Experiments

J Datasets
=  Two real-world datasets
Dataset #U #1 #B #U-I #U-B #Avg.Iin B
Netease 18,528 123,628 22,864 1,128,065 302,303 77.80
Youshu 8,039 32,770 4,771 138,515 51,377 37.03

J Top-K Evaluation Metrics:
= Recall@K and NDCG@K

] Baseline
mm
MFBPR
GCN-BG \/ v
GCN-TG v v V
NGCF-BG v v
NGCF-TG v v v
DAM v v
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Experiments

J Datasets
=  Two real-world datasets
Dataset #U #1 #B #U-I #U-B #Avg.Iin B
Netease 18,528 123,628 22,864 1,128,065 302,303 77.80
Youshu 8,039 32,770 4,771 138,515 51,377 37.03

J Top-K Evaluation Metrics:
= Recall@K and NDCG@K

] Baseline
-m-m

MFBPR

GCN-BG \/ v L
GCN-TG v v V

NGCF-BG v v

NGCF-TG v v v b

DAM v v
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Experiments

J Datasets
=  Two real-world datasets
Dataset #U #1 #B #U-I #U-B #Avg.Iin B
Netease 18,528 123,628 22,864 1,128,065 302,303 77.80
Youshu 8,039 32,770 4,771 138,515 51,377 37.03

J Top-K Evaluation Metrics:
= Recall@K and NDCG@K

] Baseline
mm

MFBPR

GCN-BG \/ v e
GCN-TG v v V

NGCF-BG v \

NGCF-TG v v v ; b

DAM v \

37



Experiments
J Overal Performance

Table 2: Performance comparisons on two real-world datasets with six baselines

Netease Youshu

Method

etho Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
GCN-BG 0.0370 0.0189 0.0617 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
GCN-TG 0.0402 0.0204 0.0657 0.0272 0.1051 0.0362 0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF-BG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
NGCF-TG 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851
% Improv. 19.67% 22.89% 20.17% 23.18% 19.65% 21.76% 10.77% 12.22% 12.36% 12.33% 11.23% 11.62%

1. Our proposed BGCN achieves the best performance.
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Experiments
J Overal Performance

Table 2: Performance comparisons on two real-world datasets with six baselines

Netease Youshu

Meth

ethod Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
GCN-BG 0.0370 0.0189 0.0617 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
GCN-TG 0.0402 0.0204 0.0657 0.0272 0.1051 0.0362 0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF-BG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
NGCF-TG 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
BGCN 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851

% Improv. 19.67% 22.89% 20.17% 23.18% 19.65% 21.76% 10.77% 12.22% 12.36% 12.33% 11.23% 11.62%

1. Our proposed BGCN achieves the best performance.

2. Graph models have advantages but not enough.
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Experiments
J Overal Performance

Table 2: Performance comparisons on two real-world datasets with six baselines

Netease Youshu
Meth
ethod Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

MF-BPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
GCN-BG 0.0370 0.0189 0.0617 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
GON-TG _ _ 00402 _ _ 00204 _ _ 00657 _ _ 00272 _ _ 01051 _ _ _00362_ _  0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF-BG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 1 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
NGCF-TG 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 ] 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851
% Improv. 19.67% 22.89% 20.17% 23.18% 19.65% 21.76% 10.77% 12.22% 12.36% 12.33% 11.23% 11.62%

1. Our proposed BGCN achieves the best performance.
2. Graph models have advantages but not enough.

3. More input does not always mean better performance.
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Experiments
J Overal Performance

Table 2: Performance comparisons on two real-world datasets with six baselines

Netease Youshu

Meth

ethod Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
GCN-BG 0.0370 0.0189 0.0617 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
GON-TG _ _ 00402 _ _ 00204 _ _ 00657 _ _ 00272 _ _ 01051 _ _ _00362_ _  0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF-BG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 1 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
NGCF-TG 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 ] 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851
% Improv. 19.67% 22.89% 20.17% 23.18% 19.65% 21.76% 10.77% 12.22% 12.36% 12.33% 11.23% 11.62%

u » interaction or affiliation?
> 1ibelongstob?
> bbelongstoi?

Our special designs to make graph neural network
b work in bundle task is necessary.

=iy

3. More input does not always mean better performance.
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Identify

1) ltem Level Item Level
Propagation Hard Negatives

Experiments e VI

. Construction g a Q
J Ablation Study T
ropagation undle Level

= Levels Propagation
1) perform propagation at only the item level;
2) perform propagation at only the bundle level,
3) perform propagation at both levels.

Table 3: Ablation study of the key designs

Netease Youshu
Model
Recall@40 NDCG @40 Recall@40 NDCG @40
Levels Item Level 0.0121 0.0046 0.0786 0.0419
Propagation Bundle Level &), 0.0685 0.0284 0.2805 0.1387
I&B Levels 0.0749  0.0317 03124  0.1425
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Experiments

J Ablation Study
= Levels Propagation
= B2B Propagation
1) bundle level propagation without b2b;

2) bundle level propagation with unweighted b2b;
3) bundle level propagation with weighted b2b.

Table 3: Ablation study of the key designs

Netease Youshu
Model
Recall@40 NDCG @40 Recall@40 NDCG @40
B2B No B2B 0.0708 0.0297 0.2866 0.1400
Propagation Unweighted B2B 0.0738 0.0312 0.3040 0.1418
Weighted B2B 0.0749 0.0317 0.3124 0.1425
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Identify
ltem Level

Experiments

J Ablation Study
= Levels Propagation
= B2B Propagation

" Hard-negative sample
1) train without hard samples;
2) train with hard samples at the item level;
3) train with hard samples at the bundle level;
4) train with hard samples at both levels.

Table 3: Ablation study of the key designs

Netease Youshu
Model
Recall@40 NDCG @40 Recall@40 NDCG @40
No Hard 0.0749 0.0317 0.3124 0.1425
Hard-negativ Item Level 0.0807 0.0343 0.3235 0.1573
Sample Bundle Level 0.0816 0.0343 0.3240 0.1581
I&B Levels 0.0829 0.0346 0.3248 0.1593
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Experiments
J Impact of Data Sparsity

3 0.08 {—+-mmme e i—_—-;-—"-f--’- ------------ 3 | //’
® == | ® -
S - | B 0.03 firrrrmred D 2
S 2 |
L MFBPR a _ MFBPR
BZ 0,06 -+ T e GCN-BG 1 zZ  |e----"""" GCN-BG
Y NGCF-BG A I NGCF-BG |
& GCN-TG -y 0.021- GCN-TG
§ NGCF-TG E NGCF-TG
i DAM DAM
<004} o g e | % sees
0,;3 3;5 §5 0~3 3~5 >5
#Records of Bundles #Records of Bundles

Steady performance improvement achieved by BGCN
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Conclusion

= We propose a graph-based solution for bundle
recommendation which re-constructs the two kinds of
interaction and an affiliation into the graph.

=  With item nodes as the bridge, graph convolutional
propagation between user and bundle nodes makes the

learned representations capture the item level semantics.

= We do experiments on two real-world datasets to
demonstrate the superiority of our model.
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Recent advances of GNN-based RecSys
0 Accuracy )

Multi-behavior
Diversity
Explainability
Fairness
Privacy %

Objective

A

[ Recommender System}

Stage Scenario
(. Social Recommendation )
* Matching (Collaborative Filtering) ) SeqL{ent;al Re;commendat/;n ,
« Ranking (Feature-based / CTR) Session-base Recommeﬁ ation
* KG-Based Recommendation
° Bundle Recommendation )

Multi-behavior recommendation with graph convolutional networks.
Jin, B., Gao, C., He, X., Jin, D., & Li, Y. SIGIR 2020



Background

* Traditional recommender system aims to give
recommendation for one target behavior

[ €  rurchase ]
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Background

e Platform can collect users’ multi-behavior data

S

—9— Purchase
—¥=— Cart
—&—  Click

R

« Recommender systems only utilizing target behavior record
suffers from data sparsity and cold-start issue
* The auxiliary multi-behavior data can help alleviate
the issue 99



Problem Definition

* |Input:
e User-item interaction data of T types of behaviors
* Output:
* User-item interaction probability under target behavior

38

—9— Purchase
—¥— Cart
—d—  Click
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Challengel: Behavior Strength

* Behavior-level
* There may be intensity difference between behaviors
* Behavior intensity is vague

Z —€@)— Purchase
_'E_ Cart

77 Collect
45_ Click

S

gl ENI Bl Il Il I I I IS IS S -y

@ { Purchase>Cart>Collect>Click ? \

1 Purchase>Collect>Cart>Click ? |

l l
\ Purchase>Cart=Collect>Click ?

aam - - - - - - - S s



Challenge2: Behavior Semantics

* ltem-level
* Item relation is diverse among various types of behavior
* ltems may be complementary or replaceable or ...

Co-behavior is important for items! —@—  Purchase
_ —@—  Click o
n Va
[ _ |

f o
! X
complementary m f replaceable j
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Existing Method

* Methods
 Sampling based: MCBPR, BPRH,...
 Multi-task based: CMF, NMTR, ...

* Behavior Strength:
 They must assume an artificial behavior-strength
sequence (however, behaviors’ strength may be vague)
* Behavior Semantics:
* Not considered at all
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Methodology: Our MBGCN Model

* Why we use GCN?
e Capture CF effect

* Extract High-order information in multi-behavior data

iy

u 1 iz .... - '.0..."
i l3 5
u; i3 HZ
u o
u : i
2 g 3 Ly ;

(a) U-I Interaction Graph (b) Local Graph of u
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Methodology: Our MBGCN Model

* Graph Construction
 Nodes: user, item
e Edges:
e user-t-item (t represents a type of behavior)
* Meta-path:
* item-t-user-t-item (t represents a type of behavior)
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Methodology: Our MBGCN Model

l1
Solve
chaHengel

:
p—\

user- |tem
Propagation

Embeddlng layer Joint scoring ]

item-item
Propaganon

; Solve
7 challenge2
l

\/
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user-item
Propagation
Our MBGCN Model )
layer
item-item
Propagation

* Embedding layer

* Convert user/item one-hot vector to user/item embedding

- U _ VvV

0 -
User Embedding ltem Embedding
0
0 0
qE Pa : i >l 42
u4‘ 0 2 0
0 0
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=
Our MBGCN Model ﬁ

* Behavior-aware User-ltem Propagation Layer

* [tem->User embedding propagation based on behavior types

User Embedding Propagation =

| Ego. Network of u, !

. : I qij, I | | I'" pul.'rl 3 I

L ‘/O 4i, EED—» - '
B L I W |
‘ ll ¥ 12 i, :
LR A ! !
...................... 41, [T T .

.1 S A e e ________ ........... I

Solve Challengel
Take behavior strength and
user preference into account.

CX)D Wt - Nyt
Qut =

ZmeN, Wm " Num
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=3
OUI" MBGCN Model w

* Behavior-aware User-ltem Propagation Layer

Embedding
layer

e Behavior importance calculation for each user

W {nue

‘]fllt: - .
. Behavior count ma
ZnENr Wi " Mum . Y
imply user preference
‘4’t 1lllt
- behavior-wised importance weight of behaviort | - count of behavior t operated by user u
- the same for all users - different depends on user
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Our MBGCN Model

* Behavior-aware User-ltem Propagation Layer

l user-item |
' Propagation |

item-item
Propagation

Embedding
layer

e User->ltem embedding propagation

(')‘,2/' ig :
'....'. u4 ' '...0.

Capture user->item CF signal

Fid
g

.................................

=wlh). aggregate(pﬁ.l)U € Ny(i))

ris the target behavior
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user-item
I Propagation I

Our MBGCN Model
e |

e Behavior-aware ltem-ltem Propagation Layer

* [tem->Item embedding propagation based on behavior types

Iltem node will receive information from it’s neighbor item nodes

P Behaviour £, propagation of i; '
: oo B B ELb L L : ;
[ 3 s 1
‘ . : : |
' Sigta [T TH-O~_ el s B
1 : x !
Sis o [TTHO" [l
: 11ty
s (g ceaswisusesnsuasireessrasenserauent® I
l ——————————————————————————————————— —.
A A A e bt st
! Behaviour t, propagation of i;
: e e '

s i I
'S : W,

” itz H TIRCRE 2 '
; : O/\v ol
Sigty (T T s o0
g 11,2 |
I ---------------------------------------

Solve Challenge2 by introducing item-item propagation

111



user-item
Propagation

item-item
Propagation

Our MBGCN Model

e Joint Prediction

Embec'dlng !
layer ‘ ]

Pu Userembedding q; ltemembedding s, Item relation embedding

~ 7 7

[ User-based CF Scoring J [ User-based CF Scoring ]

:T +

. Sit 'Sit

yZ(u!l)_ Z Z I(u)l s
teNr jeN/(u) Ni

y(u, i) = A-y1(u, i) + (1 = A) - ya(u, i). [ Item-based CF Scoring J Item behavior wised relation calculation matrix]

i

y(u, i)

yr(u,i) = p3T - ¢

Final score extracts both CF
signal and behavior semantics!

* Loss function: BPR Loss = Z —Ino(y(u, i) — y(u,j)) + p - ||G-)||2.
(1,i.j)€O 112



Methodology: Our MBGCN Model

e Whole model

.............................................................................................................................................................................................................................
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Experiments

* Dataset

e Two real-world datasets co

lected from e-commerce

platform ————

Users | Items | purchase cart collect click
Tmall 41,738 | 11,953 255,586 1,996 221,514 | 1,813,498
Beibei 21,716 1,917 304,576 642,622 — 2,412,586
e Evaluation protocols

* Top-K evaluation with two metrics Recall and NDCG

e Baseline

* Single-behavior models:
 BPR-MF(UAIO9), NeuMF(WWW17), GraphSAGE-OB(NeurlPs17), NGCF-

OB(SIGIR19),

 Multi-behavior models:

* NMTR(ICDE19), MC-BPR(RecSys16), GraphSAGE-MB(NeurlPs17), NGCF-
MB(SIGIR19), RGCN(ESW(C2018)
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Experiments

* Overall Comparison

e Tmall

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.02331 0.01306 0.03161 0.01521 0.04239 0.01744 0.05977 0.02049
i i, e T NCF 0.02507 0.01472 0.03319 0.01683 0.04502 0.01931 0.06352 0.02252
GraphSAGE-OB 0.01993 0.01157 0.02521 0.01296 0.03368 0.01474 0.04617 0.01693
NGCF-OB 0.02608 0.01549 0.03409 0.01757 0.04612 0.02010 0.06415 0.02324
MCBPR 0.02299 0.01344 0.03178 0.01558 0.04360 0.01813 0.06190 0.02132
NMTR 0.02732 0.01445 0.04130 0.01831 0.06391 0.02279 0.09920 0.02891
Miilichekinise GraphSAGE-NlB 0.02094 0.01223 0.02805 0.01406 0.03804 0.01616 0.05351 0.01887
NGCF-MB 0.03076 0.01754 0.04196 0.02042 0.05857 0.02389 0.08408 0.02833
RGCN 0.01814 0.00955 0.02627 0.01165 0.03877 0.01426 0.05749 0.01750
MBGCN 0.04006 0.02088 0.05797 0.02548 0.08348 0.03079 0.12091 0.03730
Improvement 30.23% 19.04% 37.04% 24.78% 24.91% 28.88% 8.90% 26.40%
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Experiments

* Overall Comparison

 Beibei

Table 3: Comparisons on Beibei and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.03873 0.02286 0.05517 0.02676 0.08984 0.03388 0.14137 0.04258
P L, L NCF 0.04209 0.02394 0.05609 0.02579 0.09118 0.03410 0.15426 0.04022
GraphSAGE-OB 0.034536 0.01728 0.06907 0.02594 0.11567 0.03547 0.18626 0.04747
NGCF-OB 0.04112 0.02199 0.06336 0.02755 0.11051 0.03712 0.19524 0.05153
MCBPR 0.03914 0.02264 0.04950 0.02525 0.09592 0.03467 0.15422 0.04462
NMTR 0.03628 0.01901 0.06239 0.02559 0.10683 0.03461 0.18907 0.04855
o 1T 1 SR GraphSAGE-MB 0.04204 0.02267 0.05862 0.02679 0.09707 0.03451 0.18272 0.04911
NGCF-MB 0.04241 0.02415 0.06152 0.02893 0.10370 0.03741 0.01771 0.04987
RGCN 0.04204 0.02051 0.06354 0.02591 0.09859 0.03309 0.16121 0.04363
MBGCN 0.04825 0.02446 0.07354 0.03077 0.11926 0.04005 0.20201 0.05409
Improvement 13.77% 1.28% 11.76% 3.85% 7.68% 3.30% 6.58% 3.84%
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Experiments

* Overall Comparison

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

MF-BPR 0.02331 0.01306 0.03161 0.01521 0.04239 0.01744 0.05977 0.02049
5 i N D NCF 0.02507 0.01472 0.03319 0.01683 0.04502 0.01931 0.06352 0.02252
GraphSAGE-OB 0.01993 0.01157 0.02521 0.01296 0.03368 0.01474 0.04617 0.01693
NGCF-OB 0.02608 0.01549 0.03409 0.01757 0.04612 0.02010 0.06415 0.02324
MCBPR 0.02299 0.01344 0.03178 0.01558 0.04360 0.01813 0.06190 0.02132
NMTR 0.02732 0.01445 0.04130 0.01831 0.06391 0.02279 0.09920 0.02891
Mt hctisvics GraphSAGE~1\'1B 0.02094 0.01223 0.02805 0.01406 0.03804 0.01616 0.05351 0.01887
NGCF-MB 0.03076 0.01754 0.04196 0.02042 0.05857 0.02389 0.08408 0.02833
RGCN 0.01814 0.00955 0.02627 0.01165 0.03877 0.01426 0.05749 0.01750

r MBGCN 0.04006 0.02088 0.05797 0.02548 0.08348 0.03079 0.12091 0.03730 ]

l Improvement 30.23% 19.04% 37.04% 24.78% 24.91% 28.88% 8.90% 26.40% J

Table 3: Comparisons on Beibei and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
MF-BPR 0.03873 0.02286 0.05517 0.02676 0.08984 0.03388 0.14137 0.04258
Vo ) 2 O NCF 0.04209 0.02394 0.05609 0.02579 0.09118 0.03410 0.15426 0.04022
GraphSAGE-OB 0.034536 0.01728 0.06907 0.02594 0.11567 0.03547 0.18626 0.04747
NGCF-OB 0.04112 0.02199 0.06336 0.02755 0.11051 0.03712 0.19524 0.05153
MCBPR 0.03914 0.02264 0.04950 0.02525 0.09592 0.03467 0.15422 0.04462
NMTR 0.03628 0.01901 0.06239 0.02559 0.10683 0.03461 0.18907 0.04855
T 2 T W1 GraphSAGE-MB 0.04204 0.02267 0.05862 0.02679 0.09707 0.03451 0.18272 0.04911
NGCF-MB 0.04241 0.02415 0.06152 0.02893 0.10370 0.03741 0.01771 0.04987
RGCN 0.04204 0.02051 0.06354 0.02591 0.09859 0.03309 0.16121 0.04363
f MBGCN 0.04825 0.02446 0.07354 0.03077 0.11926 0.04005 0.20201 0.05409
l Improvement 13.77% 1.28% 11.76% 3.85% 7.68% 3.30% 6.58% 3.84%

Observationl: Our model performs the best 117



Experiments

* Overall Comparison

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80
( MEF-BPR 0.02331 0.01306 0.03161 0.01521 0.04239 0.01744 0.05977 0.02049 A
g, NCF 0.02507 0.01472 0.03319 0.01683 0.04502 0.01931 0.06352 0.02252
GraphSAGE-OB 0.01993 0.01157 0.02521 0.01296 0.03368 0.01474 0.04617 0.01693
\. NGCF-OB 0.02608 0.01549 0.03409 0.01757 0.04612 0.02010 0.06415 0.02324 )
/" MCBPR 0.02299 0.01344 0.03178 0.01558 0.04360 0.01813 0.06190 0.02132"\
NMTR 0.02732 0.01445 0.04130 0.01831 0.06391 0.02279 0.09920 0.02891
Ml bk s GraphSAGE-MB 0.02094 0.01223 0.02805 0.01406 0.03804 0.01616 0.05351 0.01887
NGCF-MB 0.03076 0.01754 0.04196 0.02042 0.05857 0.02389 0.08408 0.02833
RGCN 0.01814 0.00955 0.02627 0.01165 0.03877 0.01426 0.05749 0.01750
\_ MBGCN 0.04006 0.02088 0.05797 0.02548 0.08348 0.03079 0.12091 0.03730/
Improvement 30.23% 19.04% 37.04% 24.78% 24.91% 28.88% 8.90% 26.40%

Observation2: Multi-behavior models perform better than single-behavior models
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Experiments

* Ablation Study on Model structure

e Ablation study of user-item propagation weight

Model Recall20 | NDCG20 | Recall40 | NDCG40
ayr=1 0.04508 0.02068 0.06468 0.02476
Uniform w 0.05586 0.02481 0.08265 0.03075

([ Tearn-able w | 0.05797 0.02548 0.08347 0.03079 )

Learn-able w is the best!

e Ablation study of item-item propagation method

Model Recall20 | NDCG20 | Recall40 | NDCG40
No propagation 0.05575 0.02451 0.08212 0.02997
Only target 0.05632 0.02458 0.08112 0.03073
LAll behavior 005797 0.02548 0.08347 0.03079J

It’s reasonable to have item-item propagation based on all behavior!
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Experiments

* Cold-start Problem Study
e Recommendation for cold-start user
e Learn users’ interest only from auxiliary behaviors

--NGCF-MB
—-—MBGCN

[F-NGCF-vB
—~+MBGCN

O L M O " N
10 20 40 80 10 20 40 80
#op@K #op@K
(a) Recall (b) NDCG

Our model can alleviate cold-start problem better!
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Experiments

* Hyper-parameter Study

‘ The model is not sensitive to A. }

i [%:z:;j:‘ﬁo“
S 0.04} 10.02 §
® ®
5 3
D )
C 0.02f 0.01 =
——recall
—8—ndcg
0 —

0 0.1 0.3 0.5 0.7 09 1
#lambda

(a) Study of A
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Experiments

° Hyper'parameter StUdy [ Item-ltem Propagation is useful! ]
TP
S 0.04F 10.02 §
® ®
= ©)
O 8
 0.02} 0.01 2
' —J—recall
!j —8—ndcg
0 : ‘ 0

A 0.3 0.5 0.7 09 1
#lambda

(a) Study of A

[ User-ltem Propagation is essential!
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Conclusion

* We approach the problem of multi-behavior recommendation.
 We develop a MBGCN method with user-item propagation layer
and item-item propagation layer to address two major challenges

on modeling behavior strength and behavior semantics.

* We do experiment on two real-world datasets to demonstrate the
superiority of our MBGCN model.
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Recent advances of GNN-based RecSys
/e Accuracy I

* Multi-behavior
* Diversity

e Explainability
* Fairness

\ Privacy %

Objective

[ Recommender System}

Stage Scenario
(. Social Recommendation )
* Matching (Collaborative Filtering) ) SeqL{ent;al Re;c:mmendat/;n ,
* Ranking (Feature-based / CTR) SEREBIRIEE ecommellv SHiLel
* KG-based Recommendation
° Bundle Recommendation )

DGCN: Diversified Recommendation with Graph Convolutional Networks.
Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. WWW 2021



Background

* How to measure a recommender system?
e accuracy, diversity, freshness, novelty...
* Diversity: dis-similarity among the recommended items

[ } _____ J dominant category with
l more interactions

M T AN A=

Q accurate but redundant accurate and diverse 125




Background

* Having both accuracy and diversity is challenging
* Accuracy-Diversity dilemma

4.4 0PMF+a+,[>’ re-T T T
' high d|ver5|ty |
—~4.2 l
57 oo | lowacarsey
£4.0
) === --se- |
23.8 . high accuracy |
S . low diversity
5 3.6 MMR ——--- e !
3.4 - D:P ® NGCF
0.05 0.06 0.07 0.08 0.09

accuracy (recall)

mm) Goal: better trade-off between accuracy and diversity
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Existing solutions

* Re-ranking (usually heuristics and greedy), e.g. MMRIII2]

e First accuracy, then diversity
* Step 1: Generate candidates (accuracy)
e Step 2: Re-rank candidates (diversify with some loss on

accuracy)

MMR =" Arg max |A(Sim;(D;,Q)—(1—)) max Simy(D;, D))
D;,eR\S DjES

Accuracy and diversity are decoupled!

[1] Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and
producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in

information retrieval (pp. 335-336).
[2] Ziegler, C. N., McNee, S. M., Konstan, J. A, & Lausen, G. (2005, May). Improving recommendation lists through topic 1 2 7

diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).



Challenges

* Insufficient diversity signals in matching models
e Upstream matching models are unaware of diversification

 Sample bias with respect to item category
* Dominant categories have much more samples than
disadvantaged categories

e Accuracy-diversity dilemma
Higher diversity is often at the cost of lower accuracy
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Methodology: Our DGCN Model

* Diversified recommendation with Graph Convolutional
Networks (DGCN)

* Challenge 1: insufficient diversity signals in matching
models
e Our proposal: perform diversification with GCN

* Benefit 1: diversify during o
rrTatch.mg instead of | e g
diversify after matching \ i
(challenge 1 addressed) < N\

* Benefit 2: higher order 2 -——'EB/ TAN
neighbors tend to cover / 1‘_;/'

“* Gen

more diverse items 9



Methodology: Our DGCN Model

* Diversified recommendation with Graph Convolutional
Networks (DGCN)

* Challenge 2: sample bias with respect to item category

e Our proposal: v o 00 ¥
: . : m ) §

* Diversified neighbor (ML WS ]
discovering and negative T
sampling - &

. . . B W Selected positive/negative items

* |ntuition: balance dominant O Unselected items
and disadvantaged category P

¢ Adversa”al Iearnlng Item category prediction

* |ntuition: remove category gy

minimize

information from item embedding Recommender 130




Methodology: Our DGCN Model

* Diversified recommendation with Graph Convolutional
Networks (DGCN)

* Challenge 3: Accuracy-diversity dilemma
e Our proposal:

* Tunable neighbor e o T

discovering and [ ) i ]
. . —

negative sampling

 Two hyper-parameters e
are introduced to = o
pe rform trade-off B W Selected positive/negative items
between accuracy and . \neclbctediiems

diversity 131



Methodology: Our DGCN Model

* Diversified recommendation with Graph Convolutional
Networks (DGCN)

 Diversify during matching with GCN
 Diversified neighbor discovering and negative sampling
* Adversarial learning

e OB ' &
[ M i ] e m\ “ - Clasisif.ier
CANx %
BB = }> P / n\ }> ltem categoﬁry prediction
= "o | / / minimize

B M Selected positive/negative items GCN Recommender

[ Unselected items
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Methodology: Our DGCN Model

* Diversified neighbor discovering and negative sampling

|

e [\
A m i M
W
(mm )
= ‘o]

B B Selected positive/negative items

] Unselected items

Lo . )
L. W IS

e

sl

=

B B Selected positive/negative items

]  Unselected items

select node neighbors and
negative items randomly

¥

#neighbors (positive samples):
clothes >> electronics
#negative samples:
clothes = electonics

¥

#recommended items:
clothes >> electronics
low diversity

idea: select more electronics as
neighbors and more clothes as
negative items

5 133



Methodology: Our DGCN Model

* Diversified neighbor discovering

Algorithm 2 HistogramAndRebalance

INPUT: User node u’s neighbors N (u); item-category table C;
rebalance weight «
OUTPUT: Sample probability over node v’s neighbors p

1: H « ComputeCategoryHistogram(N (v), C)
2: for all node i € N(u) do
s [p() < 1/HCQ)
4 |p(i) « p(i)*
5
6
7

: end for
: p < Normalize(p)
: return p

1. Compute category histogram for each user’s interacted items
2. Take inverse of the histogram to reweight each interacted item
3. Introduce a to perform trade-off (take exp to smooth)
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Methodology: Our DGCN Model

* Diversified negative sampling

Algorithm 3 Category-Boosted Negative Sampling

INPUT: Positive samples P; item set I; negative sample rate T;
item-category table C; similar sampling weight f
OUTPUT: Training samples Q

positive items

items of positive
categories

items of negative

1: Q«P

2: for all positive sample (u, i, True) € P do

3: N « I\ i

4 SeIpp \i

5 fort «— 1toT do

6: r « RandomFloat(0 1) |
7 if r < ff then / 

8 i; <« Sample(S)

9: else

10: iy « Sample(N) >
11: end if
12: Q «— Q + (u, iz, False)
13: end for
14: end for

15: return Q

categories

1. Select more negative items from positive categories
2. Introduce S to perform trade-off (sample probability) 135




Methodology: Our DGCN Model

* Adversarial learning
e Capture only

item-level Remove category We can not predict
preference » information from » item category from

* Remove item embeddings! the item embedding!
category-level
preference ‘

Classifier

Inner maximize
Al |D
|:> |j|>[ Product J b @

Item category prediction

‘ o
|:> D [GRL D |:>[ Classifier J L minimize

Recommender
_ oL,

| ;

¥
GRL: gradient reversal layer 137



Experiments

* Datasets

 Taobao dataset users items categories interactions

e Beibei Taobao 82633 136710 3108 4230631

Beibei 19140 17196 110 265110

* MSD MSD 65269 40109 15 2423262
* Baselines

e MMRI12]

e DUMII

* PMF+ a + (4

e DPPI5I coverage: #recommended categories
e Metrics entropy & gini index: equality/fairness

: : of different categories
e Accuracy: recall, hit ratio &

* Diversity: coverage, entropy, gini index (lower is better)

[1] Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and producing summaries.
In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335-336).

[2] Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification.

In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).

[3] Ashkan, A., Kveton, B., Berkovsky, S., & Wen, Z. (2015, January). Optimal Greedy Diversity for Recommendation. In IJCAI (Vol. 15, pp. 1742-
1748).

[4] Sha, C., Wu, X., & Niu, J. (2016, January). A Framework for Recommending Relevant and Diverse Items. In IJCAI (Vol. 16, pp. 3868-3874).

[5] Chen, L., Zhang, G., & Zhou, H. (2017). Fast greedy map inference for determinantal point process to improve recommendatﬂzraigrsity. arXiv
preprint arXiv:1709.05135.



Experiments

* RQ1: How does the proposed method perform compared
with other diversified recommendation algorithms?

* RQ2: What is the effect of each proposed component in
DGCN?

* RQ3: How to perform trade-off between accuracy and
diversity using DGCN?



Experiments

* Overall Comparison

dataset Taobao Beibei

metrics recall ~hit ratio coverage entropy giniindex | recall hitratio coverage entropy giniindex

MMR 0.0544 0.0453  74.5460  3.4931 0.5825 | 0.1097 0.1036  77.016  4.0184 0.4373
DUM 0.0495 0.0497  126.6621  4.1051 0.4587 | 0.0746  0.0724  84.3044  4.0389 0.4599

PMF+a+f | 00473 0.0435 1255600  4.3725 0.4648 | | 0.1092  0.1054  73.4675  3.7528 0.5127
DPP 0.0633  0.0485  79.1154  3.3904 0.6096 | | 0.0751 0.0745  69.3416  3.7545 0.5078

DGCN 0.0776 ~ 0.0783  84.6685  3.5779 0.5583 | 0.1212 0.1278  71.8546  3.7149 0.5279

* The accuracy-diversity tradeoff exists widely
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Experiments

* Overall Comparison

dataset Taobao Beibei

metrics recall ~hit ratio coverage entropy giniindex | recall hitratio coverage entropy giniindex

MMR 0.0544 0.0453  74.5460  3.4931 0.5825 | 0.1097  0.1036 77016  4.0134 0.4373

DUM 0.0495 0.0497 126.6621  4.1051 0.4587 | 0.0746 0.0724  84.3044  4.0389 0.4599

PMF+a+f | 00473 0.0435 1255600  4.3725 04648 | 0.1092 0.1054 734675  3.7528 0.5127
DPP 0.0633  0.0485  79.1154  3.3904 0.6096 | 0.0751 0.0745  69.3416  3.7545 0.5078
DGCN 0.0776 ~ 0.0783  84.6685  3.5779 0.5583 | 0.1212  0.1278  71.8546  3.7149 0.5279

* The accuracy-diversity tradeoff exists widely

* It is more difficult to balance the two aspects for greedy
algorithms
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Experiments

* Overall Comparison

dataset Taobao Beibei
metrics recall ~hit ratio coverage entropy giniindex | recall hitratio coverage entropy giniindex
MMR 0.0544 0.0453  74.5460  3.4931 0.5825 | 0.1097 0.1036 77.016  4.0184 0.4373
DUM 0.0495 0.0497  126.6621  4.1051 0.4587 | 0.0746  0.0724  84.3044  4.0389 0.4599
PMF+a+f | 00473 0.0435 125.5600  4.3725 04648 | 0.1092 0.1054  73.4675  3.7528 0.5127
DPP 0.0633  0.0485  79.1154  3.3904 0.6096 | 0.0751 0.0745  69.3416  3.7545 0.5078
DGCN 0.0776 ~ 0.0783  84.6685  3.5779 0.5583 | 0.1212 0.1278  71.8546  3.7149 0.5279

* The accuracy-diversity tradeoff exists widely

* It is more difficult to balance the two aspects for greedy
algorithms

* Our proposed DGCN achieves a better overall performance
142



Experiments

* Overall Comparison

0.060

—o-ppp || With same diversity,
e —*=DGCN| | DGCN achieves

0.055 \ | better accuracy
0.050 — \\\x
with same accuracy,

0.045 | DGCN achieves
better diversity

accuracy

0.040 ; : ‘
1.35 1 .110 1.45 1.50 1.55 1.60

diversity

 DGCN attains a better overall performance considering both
accuracy and diversity against state-of-the-art DPP method
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Experiments

e Study on DGCN

method recall coverage
DPP 0.0633  79.1154
GCN 0.1013  61.9111
Rebalance Neighbor Sampling | 0.0939  71.2528
Boost Negative Sampling 0.0954  76.7391
Adversarial Learning 0.0846  79.0722
DGCN 0.0776  84.6685

* Each component alone contributes to improve

diversity

144



Experiments

e Study on DGCN

method recall coverage
DPP 0.0633  79.1154
GCN 0.1013  61.9111
Rebalance Neighbor Sampling | 0.0939  71.2528
Boost Negative Sampling 0.0954  76.7391
Adversarial Learning 0.0846  79.0722
DGCN 0.0776  84.6685

* Each component alone contributes to improve

diversity

 Combining the three special designs achieves the

most diverse recommendation
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Experiments

* Trade-off between accuracy and diversity
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* Trade-off is successfully achieved by tuning the two
introduced hyper-parameters, « and 3 146



Conclusion and Future Work

* We propose diversification during matching based on
GCN, which attains better overall performance compared
with existing diversification after matching approaches.
Better trade-off between accuracy and diversity can be
effectively achieved by the proposed DGCN model.

* Future work

* Automate the process of neighbor discovering and
negative sampling in DGCN and replace it with a
learnable module.
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Outline

* Background
* Motivations and Challenges of GNN-based RecSys

* Recent Advances of GNN-based RecSys

* Part | — Collaborative Filtering, Knowledge Graph-based RecSys
* Part Il — Feature-based Sequential/Bundle/Multi-behavior/Diversified RecSys

* Open Problems and Future Directions



Open discussions

» Go Deeper

» Requiring more efforts and explorations

» Efficiency on large-scale graphs

» A concern in industrial deployment
» Hyper-graph

» Dynamic Graph
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Thanks!

https://sites.google.com/view/gnn-recsys
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