WSDM 2022 Tutorial

Graph Neural Networks for Recommender System

Chen Gao¹, Xiang Wang², Xiangnan He³ and Yong Li¹ ¹Tsinghua University ²National University of Singapore ³University of Science and Technology of China

About us

Chen Gao

PostDoc Researcher Tsinghua University

chgao96@gmail.com

PostDoc Researcher National University of Singapore

Xiang Wang

xiangwang@u.nus.edu

Xiangnan He

Professor

University of Science and Technology of China

xiangnanhe@gmail.com

Yong Li

Associate Professor Tsinghua University

liyong07@tsinghua.edu.cn

- Background
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
 - I) Collaborative Filtering, Knowledge Graph-based RecSys
 - II) Feature-based Sequential/Bundle/Multi-behavior/Diversified RecSys
- Open Problems and Future Directions

Outline

- Background
 - Recommender System
 - Graph Neural Network
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
- Open Problems and Future Directions

Outline

- Background
 - Recommender System
 - Graph Neural Network
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
- Open Problems and Future Directions

Information-Overload Era

- Weibo: >0.5B posts/day
- Flickr: >0.3B images/day
- Taobao: >1B products

Effective/Efficient information filtering→Recommender System

Overview of Recommender System

Stages

> Matching (collaborative filtering), ranking

Scenarios

Social, Sequential, Session, Bundle, KG-Based, etc.

> Objectives

> Accuracy, multi-behavior, diversity, explainability, fairness, etc.

Stages

Matching: recall items from all-item pool

Collaborative-filtering models

Collaborative filtering

0/1 Interaction matrix

OR

Rating matrix

- Implicit CF
- Application: e-commerce, ads, etc.
- Data: an interaction matrix
- Task: estimate positive position
- Measurement: Ranking metrics

- Explicit CF
- Application: movie, POI, etc.
- Data: a rating matrix (e.g. 1-5)
- Task: estimate ratings on unknown positions
- Measurement: Regression metrics

Stages

- Ranking: rank items from matching stage's output
- Feature-based Recommender Models / CTR

Feature-based Recommender Models

- > Also known as Click-Through Rate Prediction
- Input: user/item attributes (ID can regarded as a kind of attribute)

Figure from:

Cheng, H. T et al. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems

Scenario: social recommendation

- Definition: Improve recommendation with social network
- Social-trust assumption: friends tend to have similar interests
- > Input: user interaction data + social relation data
- > **Output**: user-item interaction probability

Figures are from:

Wu et al. DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation. TKDE 2020 Lin et al. Recommender Systems with Characterized Social Regularization. CIKM 2018

- Scenario: sequential recommendation
 - Definition: predict user's next interaction based on historical sequential interactions
 - > Input: user-item interactions at timestamps $t_1, t_2, ..., t_n$
 - \succ **Output**: user-item interaction at timestamp t_{n+1}

- Scenario: session-based recommendation
 - Definition: predict next interaction based on anonymous short sequences
 - Input: anonymous behavior sessions
 - > **Output**: next interaction of a given session
 - Difference with Sequential Recommendation
 - > Anonymous (No user ID)
 - Repetitive items in one session
 - Shorter (as is collected in a short period)

- Scenario: cross-domain recommendation
 - > Definition: recommendation with multi-domain datasets
 - Improve the target domain's performance with the auxiliary domain
 - > Input: user-item historical interactions in multiple domains
 - > **Output**: user-item interaction probability at target domain(s)
 - Challenges
 - Different user behaviors
 - Different data distribution
 - No overlapped user/item

- Scenario: bundle/list recommendation
 - Definition: Recommend a bundle that is made with several items to user
 - > Input: user-item/bundle historical interactions
 - Output: user-bundle interaction probability

App Bundle

Game Bundle

Suit Bundle

- Scenario: KG-based Recommendation
 - Definition: Improve recommendation with KG
 - Input: user-item interaction; knowledge graph
 - Output: user-item interaction probability

Scenario: multi-behavior recommendation

In today's information systems, user can interact in multiple kinds of forms

Click, purchase, adding to cart, like, sharing, etc.

- > Input: user-item interaction on multiple behaviors
- > Output: user-item interaction probability on target behavior(s)

Objective: accuracy (the most important)

Generally, it can be understood the whether the recommended items match with ground truth

> Top-K metrics

Hit Ratio (HR), Recall, NDCG, MRR, etc.

More metrics

> AUC, GAUC, LogLoss, etc.

Most existing recommender systems are designed towards achieving high recommendation accuracy

→ High accuracy → high CTR/CVR

 \rightarrow better user experience and higher business profit

- Objective: diversity
 - Recommend diverse items to user while keeping high recommendation accuracy
 - Motivation: only pursuing high accuracy
 - \rightarrow the recommendation list become redundant
 - \rightarrow user can only be recommended certain categories of items
 - > Metrics (always defined on item category)
 - Gini, entropy, coverage, etc.
 - Accuracy should be also considered of course

- Objective: explainability
 - > What to explain
 - > Two folds: explain 1) the model or 2) recommendation results
 - How to explain the model
 - Design explainable model
 - Such as attention modules, explicit feature-interaction, etc.
 - How to explain the results
 - User/Item-based explanation (CF effect / Social-trust)
 - Textual explanation (such as key words in reviews)
 - Knowledge-graph based explanation (via meta-path in KG)

Objective: fairness

> Motivation: users' demand on to be fairly treated by RecSys

Figure from Li et al. Personalized Counterfactual Fairness in Recommendation, SIGIR 2021

Objective: privacy

- >When and where the privacy is highly concerned
 - > Data collection: recommender may be the attacker
 - Data/model sharing: target company may be the attacker
 - Model/Results public-release: any third-party may be the attacker
- Representative solutions
 - > Transferring/sharing nosensitive model parameters
 - Distributed machine learning model
 - Sharing item-side information
 - Data protection mechanism

> Data perturbations such as differential privacy-based ones

Federated learning

Outline

- Background
 - Recommender System
 - Graph Neural Network
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
- Open Problems and Future Directions

Graph Neural Networks

A message-passing-framework perspective

- > Node embedding updated by neighbors
- K-layer GNN access K-hop neighbors
- Named "Neighborhood propagation/aggregation"

➢ Representative variants of GNN

Spectral : GCN

$$\mathbf{H}^{l+1} = \delta(\tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}\mathbf{H}^{l}\mathbf{W}^{l})$$

Spatial: GraphSage (GAT, etc.)

 $\begin{aligned} \mathbf{h}_{\mathcal{N}_{i}}^{l} &= \operatorname{AGGREGATE}_{l}\left(\{\mathbf{h}_{j}^{l}, \forall j \in \mathcal{N}_{i}\}\right), \\ \mathbf{h}_{i}^{l+1} &= \delta\left(\mathbf{W}^{l}\left[\mathbf{h}_{i}^{l} \| \mathbf{h}_{\mathcal{N}_{i}}^{l}\right]\right), \end{aligned}$

Graph Neural Networks

- Pro: Node feature + structural information
 - > Embeddings contain 1) own features 2) neighbors' features

≻ Keys

- Where to deploy GNN layers
- Design of propagation/aggregation layer
- Depth of GNN layers

Possible Cons

Over-smoothing, computational cost, etc.

Outline

- Background
 - Recommender System
 - Graph Neural Network
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
- Open Problems and Future Directions

High-order connectivity

Supervision signal

Structured data

- High-order connectivity
 - Recommender systems rely on capturing similarity
 - User-user (User-CF), item-item (Item-CF), user-item (Model-CF)
 - GNN extends similarity to high-orders
 - Connectivity among high-order neighbors
 - > Besides, data sparsity issue is well addressed

Figures are from:

Wang et al. Neural Graph Collaborative Filtering, SIGIR 2019

Supervision signal

- Users' feedback can be sparse
 - Semi-supervised signal in GNN learning
- Users' feedback can be various

> Well handled by various-form graph (nodes and edges)

Figures are from:

Jin et al. Multi-behavior Recommendation with Graph Convolutional Networks, SIGIR 2020 4

Structured data

- > The input of today's recommender system is always structured
 - Can be utilized to construct graph
- > Learning from not only features but also structural information
 - Structural reveals implicit signals that cannot be learned by traditional works
- > GNN's strong power to learn from graph-structured data

Figure from:

Wang et al. KGAT: Knowledge Graph Attention Network for Recommendation, KDD 2019

Challenges of GNN-based RecSys

Graph construction

Message propagation and aggregation

Model optimization

Challenges of GNN-based RecSys

Graph construction

- Node / edge definition
 - Heterogeneous/Homogenous
- Distinguish more/less important, and even noisy data
- Handle graph scale to balance efficiency and utility
 - Sampling, filtering, pruning, etc.

> Most importantly, the graph must match the key to the problem

Sequential Recommendation

Figure from:

Chang et al. Sequential Recommendation with Graph Neural Networks, SIGIR 2021 Wu et al. Session-based Recommendation with Graph Neural Networks, AAAI 2019

Session-based Recommendation

Challenges of GNN-based RecSys

Message propagation and aggregation

How to propagate

- Neighbor set (uniform/attentional)
- Path/Width
- Propagation operations

How to aggregate

- Utility & Efficiency
- Aggregation operations
- Propagate-aggregate Depth
- Model optimization
 - Optimization goal / loss function / data sampling / others

Outline

- GNN for Collaborative Filtering
 - Q1: Are GNNs suitable for CF?
 - NGCF (SIGIR'2019)
 - Q2: How to tailor GNNs for CF?
 - LightGCN (SIGIR'2020)
 - Q3: How to inject self-supervised learning into GNN-based CF?
 - SGL (SIGIR'2021)
- GNN for Knowledge Graph-based Recommendation
 - Q1: Are GNNs suitable for KG-based Rec?
 - KGAT (KDD'2019)
 - Q2: How to tailor GNNs for KG-based Rec?
 - KGIN (WWW'2021)

- Collaborative Filtering
 - Basic assumption: (behaviorally) similar users would have similar preferences on items
- Collaborative Signal → Behavioral Patterns of Users
 - if u_1 and u_3 have interacted with the same items $\{i_1, i_3\}$, u_1 is likely to have similar preferences on other items $\{i_4\}$.

Existing works are not sufficient to yield satisfactory embeddings for CF, due to the **implicit modeling of CF signals in Embedding function.**

e.g., matrix factorization (MF)

- Representation Learning: present ID of users and items as embedding vectors
- Interaction Modeling: inner product.

Representation Learning

- Mainly consider descriptive features (e.g., ID & attributes)
- Without encoding CF signal explicitly

Interaction Modeling

- Reconstruct user-item interactions, defining the objective function for model training
- Have to be well-designed to make up for the **deficiency of suboptimal embeddings**

High-order Connectivity from User-item Interactions

- Definition: the paths that reach u_1 from any node with the path length l larger than 1.
- A natural way to encode collaborative signal in the interaction graph structure.

Inspired by GNNs

- 1. Propagate embeddings recursively on the user-item graph
- 2. Construct information flows in the embedding space
- Information Aggregation

Representation Update

$$\mathbf{e}_{u}^{(1)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}\right)$$
self-connections all neighbors of u

Wang et al. Neural Graph Collaborative Filtering. SIGIR'2019

• Stack more embedding propagation layers to explore the high-order connectivity

- The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in the embedding propagation process.
- Collaborative signal can be injected into the representation learning process.

Q1: Are GNNs suitable for CF? Aggregating Multi-Grained Connectivity

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}$$
$$\mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)}$$
$$\hat{y}_{\text{NGCF}}(u, i) = \mathbf{e}_{u}^{* \top} \mathbf{e}_{i}^{*}$$

The representations at different layers

- emphasize the messages passed over different connections
- have different contributions in reflecting user preference

Q1: Are GNNs suitable for CF? Experimental Results

PinSage

NGCF

- NGCF consistently yields the best performance on all the datasets.
- This verifies the importance of capturing collaborative signal in embedding function.

Q2: How to tailor GNNs for CF? Limitations of Directly Applying GNNs on CF

	GNNs	NGCF
Original task	Node classification	Collaborative filtering
Input data	Rich node featuresAttributes, text, image data	Only node ID • One-hot encoding
Feature transformation	Distill useful information	Generate ID embeddings
Neighborhood aggregation	Pass messages from neighbors to the egos	Pass messages from neighbors to the egos
Nonlinear activation	Enhance representation ability	Negatively increases the difficulty for model training

- Removing feature transformation (NGCF-f)→consistent improvement
- Removing nonlinear activation (NGCF-n) \rightarrow hurt
- Removing nonlinear activation & feature transformation (NGCF-fn) → significant improvements over NGCF!

Q2: How to tailor GNNs for CF? Light Graph Convolution

NGCF

• Graph Convolution Layer

$$\mathbf{e}_{u}^{(l)} = \text{Leaky ReLU} \left(\mathbf{m}_{u-u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)} \right)$$

Layer Combination

$$\mathbf{e}_u^* = \mathbf{e}_u^{(0)} \| \cdots \| \mathbf{e}_u^{(L)}$$

• Matrix Form

$$\mathbf{E}^{(l)} = \mathrm{Leaky} \mathbf{E} \mathrm{LU} \left((\mathcal{L} + \mathbf{I}) \mathbf{E}^{(l-1)} \mathbf{W}_{\mathbf{X}}^{(l)} + \mathcal{L} \mathbf{E}^{\mathbf{X}(1)} \odot \mathbf{E}^{(l-1)} \mathbf{W}_{\mathbf{X}}^{(l)} \right)$$

LightGCN

• Light Graph Convolution Layer

$$\mathbf{e}_{u}^{(k+1)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|} \sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{(k)}$$

- Layer Combination $\mathbf{e}_{u} = \sum_{k=0}^{K} \alpha_{k} \mathbf{e}_{u}^{(k)}$
- Matrix Form

$$\mathbf{E}^{(k+1)} = (\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}})\mathbf{E}^{(k)}$$

Only simple weighted sum aggregator is remained

- No feature transformation
- No nonlinear activation
- No self connection

Q2: How to tailor GNNs for CF? LightGCN

$$= \alpha_0 \mathbf{E}^{(0)} + \alpha_1 \tilde{\mathbf{A}} \mathbf{E}^{(0)} + \alpha_2 \tilde{\mathbf{A}}^2 \mathbf{E}^{(0)} + \dots + \alpha_K \tilde{\mathbf{A}}^K \mathbf{E}^{(0)}$$

importance of the k-th layer embedding in constituting the final embedding

- Relation with **SGC** [2019]:
 - By doing layer combination, LightGCN subsumes the effect of self-connection → no need to add self-connection in adjacency matrix.

$$\mathbf{E}^{(K)} = \begin{pmatrix} K \\ 0 \end{pmatrix} \mathbf{E}^{(0)} + \begin{pmatrix} K \\ 1 \end{pmatrix} \mathbf{A} \mathbf{E}^{(0)} + \begin{pmatrix} K \\ 2 \end{pmatrix} \mathbf{A}^2 \mathbf{E}^{(0)} + \dots + \begin{pmatrix} K \\ K \end{pmatrix} \mathbf{A}^K \mathbf{E}^{(0)}.$$

- Relation with **APPNP** [2019]:
 - By setting α_k properly, LightGCN can recover APPNP \rightarrow use a large K for long-range modeling with controllable oversmoothing.

$$\mathbf{E}^{(K)} = \beta \mathbf{E}^{(0)} + \beta (1-\beta) \tilde{\mathbf{A}} \mathbf{E}^{(0)} + \beta (1-\beta)^2 \tilde{\mathbf{A}}^2 \mathbf{E}^{(0)} + \dots + (1-\beta)^K \tilde{\mathbf{A}}^K \mathbf{E}^{(0)}.$$

 LightGCN achieves significant improvements over the state-of-the-art baselines → outstanding performance

Dataset Gowalla		Yelp2018		Amazon-Book		
Method	recall	ndcg	recall	ndcg	recall	ndcg
NGCF	0.1570	0.1327	0.0579	0.0477	0.0344	0.0263
Mult-VAE	0.1641	0.1335	0.0584	0.0450	0.0407	0.0315
GRMF	0.1477	0.1205	0.0571	0.0462	0.0354	0.0270
GRMF-norm	0.1557	0.1261	0.0561	0.0454	0.0352	0.0269
LightGCN	0.1830	0.1554	0.0649	0.0530	0.0411	0.0315

 LightGCN-single (only uses the final layer's output) performs better than LightGCN on sparser datasets → can be further simplified.

Sparse Supervision Signal

• The observed interactions \rightarrow extremely sparse (e.g., sparsity \approx 99%)

Skewed Data Distribution

- Power-law distribution
- High-degree items exert larger impact on the representation learning

Noises in Interactions

Implicit feedback makes the learning more vulnerable to interaction noises

Q3: How to do self-supervised learning? Self-supervised Contrastive Learning

CV: MoCo, SimCLR

NLP: BERT

Basic Idea:

- 1. Create **auxiliary pre-text task** for the model **from the input data itself**
- Learn the "extra supervision signal" from the data
- 3. Pre-train the model on the pre-text task
- 4. Fine-tune the model on the main task of interest

Q3: How to do self-supervised learning? Graph Contrastive Learning

Pre-text task: Image self-discrimination

- 1. Positive instances
 - Two augmented versions of the same image
- 2. Negative instances
 - Two augmented versions of **different** images
- 3. Contrastive Learning
 - Maximize the agreement of positives, as compared to that of negatives

Pre-text task: Graph Self-discrimination

- **1.** Positive instances
 - Two augmented versions of the same graph
- 2. Negative instances
 - Two augmented versions of different graphs

3. Contrastive Learning

• Maximize the agreement of positives, as compared to that of negatives

$$Z_1^{(l)} = H(Z_1^{(l-1)}, s_1(\mathbf{G})), \quad Z_2^{(l)} = H(Z_2^{(l-1)}, s_2(\mathbf{G})), \quad s_1, s_2 \sim \mathbf{S}$$

Node Dropout (ND)

 $s_1(G) = (M' \odot V, E), \quad s_2(G) = (M'' \odot V, E) \quad M', M'' \in \{0, 1\}^{|V|}$

• Identify the influential nodes from differently augmented views

Edge Dropout (ED)

 $s_1(G) = (V, M' \odot E), \quad s_2(G) = (V, M' \odot E) \quad M', M'' \in \{0, 1\}^{|E|}$

• Capture the useful patterns of the local structures of a node

Random Walk (RW)

 $s_1(G) = (V, M_1^{(l)} \odot E), \quad s_2(G) = (V, M_2^{(l)} \odot E) \quad M_1^{(l)}, M_2^{(l)} \in \{0, 1\}^{|E|}$

• Layer-sensitive local structure

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR'2021

Q3: How to do self-supervised learning? Self-supervised Graph Learning (SGL)

Contrastive Loss --- InfoNCE

- maximize the agreement of positive pairs
- minimize that of negative pairs

$$\begin{aligned} \mathcal{L}_{ssl}^{user} &= \sum_{u \in \mathcal{U}} -\log \frac{\exp(s(\mathbf{z}'_{u}, \mathbf{z}''_{u})/\tau)}{\sum_{v \in \mathcal{U}} \exp(s(\mathbf{z}'_{u}, \mathbf{z}''_{v})/\tau)} \\ \mathcal{L}_{ssl} &= \mathcal{L}_{ssl}^{user} + \mathcal{L}_{ssl}^{item} \end{aligned}$$

Supervised Loss --- BPR

$$\mathbf{L}_{main} = \sum_{(u,i,j)\in\mathbf{O}} -\log\sigma(\hat{y}_{ui} - \hat{y}_{uj})$$

Pre-training/Fine-Tuning & Multi-task Training

$$\mathbf{L} = \mathbf{L}_{main} + \lambda_1 \mathbf{L}_{ssl} + \lambda_2 \left\| \boldsymbol{\Theta} \right\|_2^2$$

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR'2021

Q3: How to do self-supervised learning? Experimental Results

Dataset	Yelp2018		Amazon-Book		Alibaba-iFashion	
Method	Recall	NDCG	Recall	NDCG	Recall	NDCG
NGCF	0.0579	0.0477	0.0344	0.0263	0.1043	0.0486
LightGCN	0.0639	0.0525	0.0411	0.0315	0.1078	0.0507
Mult-VAE	0.0584	0.0450	0.0407	0.0315	0.1041	0.0497
DNN+SSL	0.0483	0.0382	0.0438	0.0337	0.0712	0.0325
SGL-ED	0.0675	0.0555	0.0478	0.0379	0.1126	0.0538
%Improv.	5.63%	5.71%	9.13%	12.46%	4.45%	6.11%
<i>p</i> -value	5.92e-8	1.89e-8	5.07e-10	3.63e-10	3.34e-8	4.68e-10

 ✓ SGL achieves significant improvements over the state-of-the-art baselines → outstanding performance

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR'2021

Outline

- GNN for Collaborative Filtering
 - Are GNNs suitable for CF?
 - NGCF (SIGIR'2019)
 - How to tailor GNNs for CF?
 - LightGCN (SIGIR'2020)
 - How to inject self-supervised learning into GNN-based CF?
 - SGL (SIGIR'2021)
- GNN for Knowledge Graph-based Recommendation
 - Q1: Are GNNs suitable for KG-based Rec?
 - KGAT (KDD'2019)
 - Q2: How to tailor GNNs for KG-based Rec?
 - KGIN (WWW'2021)

NE

Existing works suffer from the limited model capacity, due to the **suboptimal modeling of high-order & attributed CF signals.**

	Supervised Learning-based	Path-based	Regularization-based
Knowledge Usage	Item knowledge → a generic feature vector	Connectivity → paths connecting users & items	Graph structure → an additional item representations or loss
Relation Usage	-	To define meta-path Or select qualified paths	To regularize the learning of KG embeddings
Limitations	 Fail to capture CF signals Ignore semantic & structure information 	 Require labor-intensive feature engineering Have rather high complexity 	 Lack explicit modeling of high-order relations

Attentive Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the graph
 - Reveal the importance of a high-order connectivity via relation-aware attentions

Construct information flows in the embedding space

Q1: Are GNNs Suitable for KG-aware Rec? Knowledge-aware Attention

KGAT: Information Propagation

Information Aggregation

Knowledge-aware Attention

decay factor on each propagation $\pi(h, r, t) = (\mathbf{W}_r \mathbf{e}_t)^{\mathsf{T}} \tanh((\mathbf{W}_r \mathbf{e}_h + \mathbf{e}_r))$

the attention score is dependent on the distance of e_t and e_h in r's space

Representation Update

$$f_{\text{Bi-Interaction}} = \text{LeakyReLU}\Big(\mathbf{W}_1(\mathbf{e}_h + \mathbf{e}_{\mathcal{N}_h})\Big) + \text{LeakyReLU}\Big(\mathbf{W}_2(\mathbf{e}_h \odot \mathbf{e}_{\mathcal{N}_h})\Big),$$

Similar to NGCF

Wang et al. Kgat: Knowledge graph attention network for recommendation. KDD'2019

Q1: Are GNNs Suitable for KG-aware Rec? KGAT Framework

$$\mathbf{e}_u^* = \mathbf{e}_u^{(0)} \| \cdots \| \mathbf{e}_u^{(L)}$$
$$\mathbf{e}_i^* = \mathbf{e}_i^{(0)} \| \cdots \| \mathbf{e}_i^{(L)}$$

$$\hat{y}(u,i) = \mathbf{e}_u^* {}^{\top} \mathbf{e}_i^*$$

Similar to NGCF, the representations at different layers

- emphasize the messages passed over different connections
- have different contributions in reflecting user preference

Wang et al. Kgat: Knowledge graph attention network for recommendation. KDD'2019

CKG Embedding Layer

Attentive Embedding Propagation Layers

Prediction Layer

Q1: Are GNNs Suitable for KG-aware Rec?

Experimental Results

None considers user-item relations at a finer-grained level of intents:

 They only model one single relation between users & items, however, a user generally has multiple intents to adopt items

Basic idea: Similar users have similar preferences on items.

However: Obscure intents would confound the modeling of users' behavioral similarity

Wang et al. Learning Intents behind Interactions with Knowledge Graph for Recommendation. WWW'2021 Our idea: Conditioning on similar intents, similar users have similar preferences on items. Copyright NEXT++. All Right Reserved.

Information aggregation schemes are mostly node-based:

• They only collect information from neighboring nodes, without differentiating which paths it comes from.

Step 1. Representation Learning of Intents

- Motivation: Semantics of user intents can be expressed by KG relations.
- Idea: assign each intent with a distribution over KG relations → Use attention strategy to create intent embedding

Step 2. Independence Modeling of Intents

- Motivation: Different intents should contain different & unique information.
- Idea: encourage the representations of intents to differ from each others →
 Add independence regularization to intent embeddings

User Intent Modeling

Mutual Information

$$\mathcal{L}_{\text{IND}} = \sum_{p \in \mathcal{P}} -\log \frac{\exp\left(s(\mathbf{e}_p, \mathbf{e}_p)/\tau\right)}{\sum_{p' \in \mathcal{P}} \exp\left(s(\mathbf{e}_p, \mathbf{e}_{p'})/\tau\right)},$$

Minimize the information amount between any two different intents.

Distance Correlation

$$\mathcal{L}_{\text{IND}} = \sum_{p,p' \in \mathcal{P}, \ p \neq p'} \frac{dCor(\mathbf{e}_p, \mathbf{e}_{p'})}{dCor(\mathbf{e}_p, \mathbf{e}_{p'})},$$

Minimize the associations of any two different intents.

Step 1. Aggregation over Intent Graph (IG)

- Motivation: IG contains rich collaborative information of users.
- Idea: users with similar intents would exhibit similar preference towards items
 → Intent-aware aggregation for user-intent-item triplet (u, p, i)

Step 2. Aggregation over Knowledge Graph

- **Motivation**: KG reflects content relatedness among items.
- Idea: each KG entity has different semantics in different relational contexts \rightarrow Relation-aware aggregation for item-relation-entity triplet (i, r, v)

Q2: How to Tailor GNNs for KG-aware Rec? KGIN Framework

Knowledge Graph-based Intent Network (KGIN)

Representation of item, which memorizes the relational signals carried by the relational paths

$$\mathbf{e}_{i}^{(l)} = \sum_{s \in \mathcal{N}_{i}^{l}} \frac{\mathbf{e}_{r_{1}}}{|\mathcal{N}_{s_{1}}|} \odot \frac{\mathbf{e}_{r_{2}}}{|\mathcal{N}_{s_{2}}|} \odot \cdots \odot \frac{\mathbf{e}_{r_{l}}}{|\mathcal{N}_{s_{l}}|} \odot \mathbf{e}_{s_{l}}^{(0)}$$

- reflects the interactions among relations
- preserves the holistic semantics of paths

$$s = i \xrightarrow{r_1} s_1 \xrightarrow{r_2} \cdots s_{l-1} \xrightarrow{r_l} s_l$$

Q2: How to Tailor GNNs for KG-aware Rec? Experimental Results

	Amazon-Book		Last-FM		Alibaba-iFashion	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1300	0.0678	0.0724	0.0617	0.1095	0.0670
CKE	0.1342	0.0698	0.0732	0.0630	<u>0.1103</u>	0.0676
KGAT	0.1487	0.0799	0.0873	0.0744	0.1030	0.0627
KGNN-LS	0.1362	0.0560	0.0880	0.0642	0.1039	0.0557
CKAN	0.1442	0.0698	0.0812	0.0660	0.0970	0.0509
R-GCN	0.1220	0.0646	0.0743	0.0631	0.0860	0.0515
KGIN-3	0.1687*	0.0915 *	0.0978*	0.0848 *	0.1147*	0.0716*
%Imp.	13.44%	14.51%	11.13%	13.97%	3.98%	5.91%

- KGIN consistently yields the **best** performance on all three datasets.
- This verifies the importance of:
 - Capturing collaborative signal in **intent-aware interaction graphs**;
 - Preserving holistic semantics of paths;
- KGIN can better encode collaborative signals & item knowledge into user and item representations.

THANK YOU!

Outline

- Background
 - Recommender System
 - Graph Neural Network
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
- Open Problems and Future Directions

Recent advances of GNN-based RecSys

Price-aware recommendation with graph convolutional networks Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. ICDE 2020

Background

- The price factor, which directly determines whether a user is willing to pay (WTP) for an item, is an important feature, while different from other features
- Price and other features play orthogonal roles in user decision making process

Background

- Attribute-aware Recommendation incorporates all kinds of features into Collaborative Filtering (CF) to boost recommendation accuracy
- Features:
 - user feature
 - item feature
 - context feature

Background

- Trivial idea: use existing attribute-aware RS to model price
- Most attribute-aware recommendation systems treat different features equally
- Different features are captured in a generic and unified way
- e.g. FM, DeepFM, DLRM
- Features are usually fed into the model as dense features, sparse features, embedding features

Challenges

- Implicit (unstated price awareness)
- Users seldomly speak out their preference or sensitivity on item price explicitly
- The price awareness can only be implicitly inferred from purchase history
- Complex (category-dependent influence)
- Price awareness or sensitivity is different across distinct product categories
- e.g. a sport lover would have high tolerance on the price of a sport equipment, but not on alcoholic drinks.

Challenges

• Purchase history as price-category heatmap of 3 randomly selected users from an e-commerce dataset

⁷

- Price-aware User Preference-modeling (PUP)
- Input:
 - Interaction Matrix R
 - price of items p
 - category of items c
- Output:
 - estimated interaction probability given a user-item pair (u, i)

- two-branch solution
 - global branch: price as a global effect representing overall purchasing power (unrelated to category)
 - category branch: category-dependent influence of price factor
- Unified Graph Construction
- Graph Convolutional Encoder
- Pairwise-interaction Based Decoder

- Why we use GCN?
- Capture CF effect
- Learn robust representations for heterogeneous entities
- Model high-order similarity

- Graph Construction
- Nodes: user, item, price, category
- Edges: user-item, item-price, item-category
- Price: we discretize price within each category using uniform quantization

- Graph Convolutional Encoder
- Embedding Layer: transform one-hot feature to embedding feature
- Graph Convolutional Layer: embedding propagation and neighbor aggregation

• Pairwise-interaction Based Decoder

user's interest and overall purchasing power

• Global branch:

$$s_g = e_{ug}^T e_{ig} + e_{ug}^T e_{pg} + e_{ig}^T e_{pg}$$

challenge 2 addressed

• Category prancn:

$$s_c = e_{uc}^T e_{pc} + e_{uc}^T e_{cc} + e_{cc}^T e_{pc}$$

• Final prediction:

$$s = s_g + \alpha s_c$$

balance between two aspects

user's category-dependent price awareness

- Model training
- Semi-supervised graph encoder
 - Encoding: learn expressive representations for all kinds of nodes
 - Decoding: only focus on reconstructing user-item edges
- Loss function
 - BPR:

$$L = \sum_{(u,i,j)\in\mathcal{O}} -\ln\left(\sigma(s(u,i) - s(u,j))\right) + \lambda \|\Theta\|^2$$

- Datasets
 - Two real-world datasets: restaurant and e-commerce

dataset	#users	#items	#cate	#price	#interaction
Yelp restaurant	20637	18907	89	4	505785
Beibei	52767	39303	110	10	677065

- Evaluation protocols:
 - Top-K evaluation with two metrics Recall and NDCG.
- Baseline
 - Non-personalized: ItemPop
 - CF: BPR-MF (UAI2009), GC-MC (KDD2018 Deep Learning Day), NGCF (SIGIR2019)
 - Attribute-aware: FM (ICDM2010), DeepFM (IJCAI2017)
 - Price-aware: PaDQ-CMF (SIGIR2014)

- Research questions
- **RQ1:** How does PUP perform compared with other baseline methods ?
- **RQ2:** Could PUP recommend items which match users' price awareness ?
- **RQ3:** Could price help recommendation system in cold start scenarios ?

• Overall Comparison

TABLE II

TOP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)

	Yelp dataset				Beibei dataset				
method	Recall@50	NDCG@50	Recall@100	NDCG@100	Recall@50	NDCG@50	Recall@100	NDCG@100	
ItemPop	0.0401	0.0182	0.0660	0.0247	0.0087	0.0027	0.0175	0.0046	
BPR-MF	0.1621	0.0767	0.2538	0.1000	0.0256	0.0103	0.0379	0.0129	
PaDQ	0.1241	0.0572	0.2000	0.0767	0.0131	0.0056	0.0186	0.0068	
FM	0.1635	0.0771	0.2538	0.1001	0.0259	0.0104	0.0384	0.0130	
DeepFM	0.1644	0.0769	0.2545	0.0998	0.0255	0.0090	0.0400	0.0122	
GC-MC	0.1670	0.0770	0.2621	0.1011	0.0231	0.0100	0.0343	0.0124	
NGCF	0.1679	0.0769	0.2619	0.1008	0.0256	0.0107	0.0383	0.0134	
PUP	0.1765	0.0816	0.2715	0.1058	0.0266	0.0113	0.0403	0.0142	
impr.%	5.12%	5.84%	3.59%	4.65%	2.70%	5.61%	0.75%	5.97%	

Observations

TABLE II									
Top-K	RECOMMEND	ATION PERFOR	MANCE COMPA	rison on the Y	ELP AND BEIB	EI DATASETS (K is set to 50	and 100)	
		Yelp	dataset			Beibe	i dataset		
method	Recall@50	NDCG@50	Recall@100	NDCG@100	Recall@50	NDCG@50	Recall@100	NDCG@100	
ItemPop	0.0401	0.0182	0.0660	0.0247	0.0087	0.0027	0.0175	0.0046	
BPR-MF	0.1621	0.0767	0.2538	0.1000	0.0256	0.0103	0.0379	0.0129	
PaDQ	0.1241	0.0572	0.2000	0.0767	0.0131	0.0056	0.0186	0.0068	
FM	0.1635	0.0771	0.2538	0.1001	0.0259	0.0104	0.0384	0.0130	
DeepFM	0.1644	0.0769	0.2545	0.0998	0.0255	0.0090	0.0400	0.0122	
GC-MC	0.1670	0.0770	0.2621	0.1011	0.0231	0.0100	0.0343	0.0124	
NGCF	0.1679	0.0769	0.2619	0.1008	0.0256	0.0107	0.0383	0.0134	
PUP	0.1765	0.0816	0.2715	0.1058	0.0266	0.0113	0.0403	0.0142	
impr.%	5.12%	5.84%	3.59%	4.65%	2.70%	5.61%	0.75%	5.97%	

 Attribute-aware methods generally outperforms trivial CF methods, e.g. FM & DeepFM vs BPR-MF. Incorporating price into recommendation improves accuracy.

Observations

TABLE II Top-K recommendation performance comparison on the Yelp and Beibei datasets (K is set to 50 and 100)										
		Yelp	dataset		Beibei dataset					
method	Recall@50	NDCG@50	Recall@100	NDCG@100	Recall@50	NDCG@50	Recall@100	NDCG@100		
ItemPop	0.0401	0.0182	0.0660	0.0247	0.0087	0.0027	0.0175	0.0046		
BPR-MF	0.1621	0.0767	0.2538	0.1000	0.0256	0.0103	0.0379	0.0129		
PaDQ	0.1241	0.0572	0.2000	0.0767	0.0131	0.0056	0.0186	0.0068		
FM	0.1635	0.0771	0.2538	0.1001	0.0259	0.0104	0.0384	0.0130		
DeepFM	0.1644	0.0769	0.2545	0.0998	0.0255	0.0090	0.0400	0.0122		
GC-MC	0.1670	0.0770	0.2621	0.1011	0.0231	0.0100	0.0343	0.0124		
NGCF	0.1679	0.0769	0.2619	0.1008	0.0256	0.0107	0.0383	0.0134		
PUP	0.1765	0.0816	0.2715	0.1058	0.0266	0.0113	0.0403	0.0142		
impr.%	5.12%	5.84%	3.59%	4.65%	2.70%	5.61%	0.75%	5.97%		

 Models based on neural networks and graph neural networks achieve better results than other models in most cases. It is promising to introduce deep models, especially GNN models into representation learning.

Observations

TABLE IITop-K recommendation performance comparison on the Yelp and Beibei datasets (K is set to 50 and 100)									
			•		1		• •	· · · · · · · · · · · · · · · · · · ·	
		Yelp	dataset			Beibe	i dataset		
method	Recall@50	NDCG@50	Recall@100	NDCG@100	Recall@50	NDCG@50	Recall@100	NDCG@100	
ItemPop	0.0401	0.0182	0.0660	0.0247	0.0087	0.0027	0.0175	0.0046	
BPR-MF	0.1621	0.0767	0.2538	0.1000	0.0256	0.0103	0.0379	0.0129	
PaDQ	0.1241	0.0572	0.2000	0.0767	0.0131	0.0056	0.0186	0.0068	
FM	0.1635	0.0771	0.2538	0.1001	0.0259	0.0104	0.0384	0.0130	
DeepFM	0.1644	0.0769	0.2545	0.0998	0.0255	0.0090	0.0400	0.0122	
GC-MC	0.1670	0.0770	0.2621	0.1011	0.0231	0.0100	0.0343	0.0124	
NGCF	0.1679	0.0769	0.2619	0.1008	0.0256	0.0107	0.0383	0.0134	
PUP	0.1765	0.0816	0.2715	0.1058	0.0266	0.0113	0.0403	0.0142	
impr.%	5.12%	5.84%	3.59%	4.65%	2.70%	5.61%	0.75%	5.97%	

• **Our proposed PUP achieves the best performance.** The improvements are statistically significant for p < 0.005.

• User study

 PUP successfully recommend items matching users' price awareness
21

- Utilizing price to tackle **cold-start** problem
- Recommend items of unexplored categories
- CIR (Category Item Recommendation): recommend from unexplored "positive" categories in the test set
- UCIR (Unexplored Category Item Recommendation): recommend from all categories not explored in the training set
- Example:
 - All categories {A, B, C, D, E, F, G}
 - Explored categories {A, B, C} in training set
 - Explored category {E} in test set
 - CIR: recommend from all items of category E
 - UCIR: recommend from all items of category {D, E, F, G}

• Utilizing price to tackle **cold-start** problem

- Graph based methods outperform other methods: items of cold-start categories are more reachable on the graph
- User's price awareness could bridge the gap between explored and cold-start categories 23

Conclusion

- 1. We highlight the significance of incorporating price into recommendation and analyze the two difficulties in capturing price (unstated price awareness and category dependent influence).
- 2. we propose a GCN-based method named PUP and adopt a two-branch structure which is specifically designed to separately model the global and categorydependent effect of the price awareness
- Our proposed method could recommend items matching users' price awareness and alleviate the coldstart problem when recommending items from unexplored categories.

Recent advances of GNN-based RecSys

Sequential Recommendation with Graph Neural Networks.25Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. SIGIR 2021

Background

What and why is sequential recommendation(SR)?

Background

 Sequential recommendation(SR) aims to leverage users' historical behaviors to predict their next interaction.

The accumulation of user behaviors on e-commerce and content platforms makes it become an important task.

Problem Definition

- Input:
 - the interaction history {x₁, x₂, ... x_n} for each user
- Output:
 - the probability that a user with interaction history $\{x_1, x_2, \dots, x_n\}$ will interact with the target item x_t at the (n + 1)-th step

Related Work

Limitations of Existing Work

Challenges

- 1. User behaviors in long sequences reflect implicit and noisy preference signals.
 - Users may interact with many items with implicit feedback, such as clicks and watches.
 - Unlike explicit feedback that can infer preferences, single ones cannot reflect user's real interest.
 - Useless records will serve as noises in behavior history, worsening the modeling of real interests.

Challenges

- 2. User preferences are always drifting over time due to their diversity.
 - User preferences are changing due to their diversity, no matter slow or fast.
 - Some preferences may be activated and some others may have been deactivated.
 - It is challenging to model how they change in the implicit and noisy history sequence.

Interest Graph Construction

Solve Challenge 1: by explicitly integrating and distinguishing different types of preferences

□ Interest-fusion Graph Convolutional Layer

Solve Challenge 1: by strengthening important behaviors and weakening noise behaviors.

□ Interest-extraction Graph Pooling Layer

Solve Challenge 2: by adaptively reserving dynamically-activated core preferences.

Prediction Layer

Solve Challenge 2: by modeling evolution on reduced sequence flattened from pooled graph.

Methodology

□ A. Interest Graph Construction.

Interaction Sequence

Each interacted item is converted to an vertex $v \in V$ with |V| = n

I. Raw graph construction:

• learns an undirected graph $G = \{V, E, A\}$ for each interaction sequence.

The core interest nodes have higher degree and form denser subgraph.

Interest Graph

Each edge $(i, j, A_{i,j}) \in E$ indicates whether item *i* is related to item *j*.

It is easier to distinguish users' core and peripheral interests.

Methodology

□ A. Interest Graph Construction.

Interest Graph

Each interacted item is converted to an **vertex** $v \in V$ with |V| = n

Interaction Sequence

Each edge $(i, j, A_{i,j}) \in E$ indicates whether item *i* is related to item *j*.

2. Node similarity metric learning:

• Metric function: $M_{ij}^{\delta} = \cos(\vec{\mathbf{w}}_{\delta} \odot \vec{h}_i, \vec{\mathbf{w}}_{\delta} \odot \vec{h}_j), \quad M_{ij} = \frac{1}{\delta} \sum_{i=1}^{\gamma} M_{ij}^{\delta},$

Trainable weight \vec{w} adaptively highlights different dimensions.

Multi-head metric increases the expressive power and stabilize the learning process.

Methodology

□ A. Interest Graph Construction.

Interaction Sequence

Interest Graph

Each interacted item is converted to an vertex $v \in V$ with |V| = n

Each edge $(i, j, A_{i,j}) \in E$ indicates whether item *i* is related to item *j*.

3. Graph sparsification via ε-sparseness:

• Relative ranking strategy of the entire graph:

$$A_{ij} = \begin{cases} 1, & M_{ij} >= \frac{\operatorname{Rank}_{\varepsilon n^2}}{0,} (M); \\ 0, & \text{otherwise}; \end{cases}$$

metric learning

Rank returns the value of the εn^2 -th largest value in the metric matrix M.

n is the number of nodes and ε controls the overall sparsity.

B. Interest-fusion Graph Convolutional Layer

a) Cluster-aware attention score of the target node

1. Cluster-aware attention:

• identifies whether the target node is the center of the cluster.

 $\alpha_i = \operatorname{Attention}_c(\mathbf{W_c} \vec{h_i} \parallel \vec{h_{i_c}} \parallel \mathbf{W_c} \vec{h_i} \odot \vec{h_{i_c}}),$

The target node v_i is regarded as a medoid of a cluster $c(v_i)$. *k*-hop neighborhood of the target node v_i is the receptive field of the cluster $c(v_i)$.

B. Interest-fusion Graph Convolutional Layer

a) Cluster-aware attention score of the target node

b) Query-aware attention score of the source node

I. Query-aware attention:

identifies interests' independent evolution for different target item.

 $\beta_j = \operatorname{Attention}_q(\mathbf{W}_{\mathbf{q}}\vec{h}_j \parallel \vec{h}_t \parallel \mathbf{W}_{\mathbf{q}}\vec{h}_j \odot \vec{h}_t),$

Only relevants with target item x_t can play a role in the prediction.

Irrelevant source node v_j information will be discarded during aggregation.

B. Interest-fusion Graph Convolutional Layer

a) Cluster-aware attention score of the target node

b) Query-aware attention score of the source node c) Interest fusion via attentive propagation

I. Cluster- and query-aware attention:

• maps the importance of target node v_i on it's neighbor source node v_j .

$$E_{ij} = \operatorname{softmax}_{j}(\alpha_{i} + \beta_{j}) = \frac{\exp(\alpha_{i} + \beta_{j})}{\sum_{k \in \mathcal{N}_{i}} \exp(\alpha_{i} + \beta_{k})},$$

 α_i controls how much information the target node v_i can receive. β_j controls how much information the source node v_j can send.

B. Interest-fusion Graph Convolutional Layer

a) Cluster-aware attention score of the target node

4

b) Query-aware attention score of the source node c) Interest fusion via attentive propagation

1. Interest fusion via graph attentive convolution:

• refines output embeddings by gathering weak signals to strong ones.

$$\vec{h}'_{i} = \iint_{\delta=1}^{\varphi} \sigma\left(\mathbf{W}_{a}^{\delta} \cdot \operatorname{Aggregate}\left(E_{ij}^{\delta} * \vec{h}_{j} | j \in \mathcal{N}_{i} \right) + \vec{h}_{i} \right),$$

Multi-head attention mechanism increases the expressive power.

 $E_{i,j}$ perceives users' core interest and the interest related to query interest.

□ C. Interest-extraction Graph Pooling Layer

d) Soft cluster assignment with regularizations

e) Interest extraction via graph pooling

I. Interest extraction via graph pooling :

• downsizes the graph reasonably to further extract the fused interest.

 $\{\vec{h}_{1}^{*}, \vec{h}_{2}^{*}, \dots, \vec{h}_{m}^{*}\} = S^{T}\{\vec{h}_{1}^{\prime}, \vec{h}_{2}^{\prime}, \dots, \vec{h}_{n}^{\prime}\},\$ $\{\gamma_{1}^{*}, \gamma_{2}^{*}, \dots, \gamma_{m}^{*}\} = S^{T}\{\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}\},\$

Cluster assignment matrix $S \in R^{n \times m}$ pools node embedding $\vec{h'}_i$ and score γ_i into cluster.

n loose interests are transformed into *m* tight interests and their distribution is maintained.

□ C. Interest-extraction Graph Pooling Layer

d) Soft cluster assignment with regularizations

e) Interest extraction via graph pooling

I. Interest extraction via graph pooling :

• uses the GNN architecture to generate the assignment matrix.

$$S_{i:} = \operatorname{softmax} \left(\mathbf{W}_{\mathbf{p}} \cdot \operatorname{Aggregate} \left(A_{ij} * \vec{h}'_{j} | j \in \mathcal{N}_{i} \right) \right),$$

The output dimension of weight W_p is set as the number of clusters m.

Softmax is used to obtain the probability of the *i*-th node being divided into m clusters.

□ C. Interest-extraction Graph Pooling Layer

d) Soft cluster assignment with regularizations

e) Interest extraction via graph pooling

2. Assignment regularization :

• Same mapping regularization with Frobenius norm.

$$L_{\mathrm{M}} = ||\mathbf{A}, \mathbf{SS}^{T}||_{F}$$

Each element in A represents the connection strength between two nodes.

Each element in SS^T represents the probability that two nodes are divided to the same cluster.

□ C. Interest-extraction Graph Pooling Layer

d) Soft cluster assignment with regularizations

e) Interest extraction via graph pooling

2. Assignment regularization :

• Single affiliation regularization with entropy function.

$$L_{\mathrm{A}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{H}(S_{i:}),$$

It makes each row $S_{i:}$ in assignment matrix approach a one-hot vector.

 $H(\cdot)$ is the entropy function that can reduce the uncertainty of the mapping distribution.

C. Interest-extraction Graph Pooling Layer

l) Soft cluster assignment with regularizations $p_1 \qquad p_3 \qquad p_4$

e) Interest extraction via graph pooling

2. Assignment regularization :

• Relative position regularization with L2 norm.

 $L_{\rm P} = ||P_n S, P_m||_2$, It makes the position of the non-zero elements in *S* closer to the main diagonal elements.

 P_n and P_m are position encoding vectors, like $\{1, 2, ..., n\}$ and $\{1, 2, ..., m\}$.

C. Interest-extraction Graph Pooling Layer

d) Soft cluster assignment with regularizations

e) Interest extraction via graph pooling

• 3. Graph readout :

• feeds graph-level representation into the final prediction layer.

 $\vec{h}_g = \text{Readout}(\{\gamma_i * \vec{h}'_i, i \in \mathcal{G}\}),$

The constrains of node information can better extract each cluster's importance.

The weighted readout on raw graph constrains each node's importance.

D. Prediction Layer

Interest Sequence

The relative position regularization avoids the time order's bias.

I. Interest evolution modeling :

• supplies the final interest with more relative historical information;

position flatten

$$\vec{h}_s = \text{AUGRU}(\{\vec{h}_1^*, \vec{h}_2^*, \dots, \vec{h}_m^*\}).$$

It is easier to model evolution on reduced sequence with enhanced interest signals.

AUGRU uses cluster score γ_i^* to scale all dimensions of the update gate in GRU.

D. Prediction Layer

Interest Graph

And Interest Graph Construction

Interest Sequence

The probability of the user interacting with next item is estimated.

• 2. Prediction :

• uses MLPS to automatically learn the combination of embeddings;

position flatten

 $\hat{y} = \frac{\text{Predict}}{|\vec{h}_s||\vec{h}_g||\vec{h}_t} ||\vec{h}_g \odot \vec{h}_t).$

Graph representation, evolution output and target item embedding are considered.

Two-layer feedforward neural network is used as the prediction function.

D. Prediction Layer

Interest Graph

Interest Sequence

 \widehat{y}_o stands for the network's output after the softmax layer.

3. Optimization objective :

• uses the negative log-likelihood function as the loss function;

position flatten

$$L = -\frac{1}{|O|} \sum_{o \in O} (\frac{y_o}{\log \hat{y}_o} + (1 - y_o) \log(1 - \hat{y}_o)) + \lambda ||\Theta||_2$$

L2 regularization is used to prevent overfitting and λ controls the penalty strength.

 $y_o = 1$ indicates positive instances and $y_o = 0$ indicates negative ones.

Experiment Settings

Datasets

- E-commerce Platform: Taobao
- Short-video Platform: Kuaishou
- Evaluation Metrics:
 - Accuracy Metrics: AUC, GAUC
 - Ranking Metrics: MRR, NDCG@K
- Dataset partition:
 - Taobao: 2017.11. 25 ~ 2017.12.3, first 7 days as training set, the 8th day as validation set, and the last day as test set.
 - Kuaishou: 2020.10.11 ~ 2020.10.28, first 6 days as training set, before
 12 pm of the last day as validation set, and after 12 pm as test set.

Dataset	Users	Items	Instances	Average Length
Taobao	36,915	64,138	1,471,155	39.85
Kuaishou	60,813	292,286	14,952,659	245.88

Compared Methods

- **NCF** [He et al. WWW'17] matrix factorization and multilayer perceptrons **DIN** [Zhou et al. KDD'18] General attention mechanism with target item as query Models LightGCN [Zhou et al. SIGIR'20] uses GCN to extract higher-order connectivity **GRU4REC** [Hidasi et al. ICLR'16] encodes user interest into GRU's final state **Caser** [Tang et al. WSDM'18] uses CNN to learn sequence patterns Sequential Models **DIEN** [Zhou et al. AAAI'19] interest extraction and evolution GRUs **SLi-Rec** [Yu et al. IJCAI'19]
 - jointly models long and short-term interests

54

Overal Performance

		Taobao				Kuaishou			
Method	AUC	GAUC	MRR	NDCG@2	AUC	GAUC	MRR	NDCG@2	
NCF	0.7128	0.7221	0.1446	0.0829	0.5559	0.5531	0.7734	0.8327	
DIN	0.7637	0.8524	0.3091	0.2352	0.6160	0.7483	0.8863	0.9160	
LightGCN	0.7483	0.7513	0.1669	0.1012	0.6403	0.6407	0.8175	0.8653	
Caser	0.8312	0.8499	0.3508	0.2890	0.7795	0.8097	0.9100	0.9336	
GRU4REC	0.8635	0.8680	0.3993	0.3422	0.8156	0.8333	0.9174	0.9391	
DIEN	$\overline{0.8477}$	0.8745	0.4011	0.3404	0.7037	0.7800	0.9030	0.9284	
SLi-Rec	0.8664	0.8669	0.3617	0.2971	0.7978	0.8128	0.9075	0.9318	
SURGE	0.8906**	0.8888	0.4228 *	0.3625**	0.8525**	0.8610**	0.9316**	0.9495 *	

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

Overal Performance

		Taobao				Kuaishou			
Method	AUC	GAUC	MRR	NDCG@2	AUC	GAUC	MRR	NDCG@2	
NCF	0.7128	0.7221	0.1446	0.0829	0.5559	0.5531	0.7734	0.8327	
DIN	0.7637	0.8524	0.3091	0.2352	0.6160	0.7483	0.8863	0.9160	
LightGCN	0.7483	0.7513	0.1669	0.1012	0.6403	0.6407	0.8175	0.8653	
Caser	0.8312	0.8499	0.3508	0.2890	0.7795	0.8097	0.9100	0.9336	
GRU4REC	0.8635	0.8680	0.3993	0.3422	0.8156	0.8333	0.9174	0.9391	
DIEN	0.8477	0.8745	0.4011	0.3404	0.7037	0.7800	0.9030	0.9284	
SLi-Rec	0.8664	0.8669	0.3617	0.2971	0.7978	0.8128	0.9075	0.9318	
SURGE	0.8906**	0.8888	0.4228 *	0.3625**	0.8525**	0.8610**	0.9316**	0.9495 *	

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

2. Sequential models are effective but have a short-term bottleneck;

Overal Performance

	Taobao				Kuaishou			
Method	AUC	GAUC	MRR	NDCG@2	AUC	GAUC	MRR	NDCG@2
NCF	0.7128	0.7221	0.1446	0.0829	0.5559	0.5531	0.7734	0.8327
DIN	0.7637	0.8524	0.3091	0.2352	0.6160	0.7483	0.8863	0.9160
LightGCN	0.7483	0.7513	0.1669	0.1012	0.6403	0.6407	0.8175	0.8653
Caser	0.8312	0.8499	0.3508	0.2890	0.7795	0.8097	0.9100	0.9336
GRU4REC	0.8635	0.8680	0.3993	0.3422	0.8156	0.8333	0.9174	0.9391
DIEN	0.8477	0.8745	0.4011	0.3404	0.7037	0.7800	0.9030	0.9284
SLi-Rec	0.8664	0.8669	0.3617	0.2971	<u>0.7978</u>	0.8128	0.9075	0.9318
SURGE	0.8906**	0.8888	0.4228*	0.3625**	0.8525**	0.8610**	0.9316**	0.9495*

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

2. Sequential models are effective but have a short-term bottleneck;

3. Joint modeling long and short-term interests are not always better.

Study on Sequence Length

1. As the length increases, each model's performance reaches its peak;

□ Study on Sequence Length

1. As the length increases, each model's performance reaches its peak;

2. As the length continues to increase, most models' performance decline;

□ Study on Sequence Length

1. As the length increases, each model's performance reaches its peak;

2. As the length continues to increase, most models' performance decline;

3. The performance gap with SURGE is larger when sequences become longer.

Efficiency Comparison

SURGE's another advantage is that the convergence process during training is more stable and fast.

 Other methods either continually fluctuate and are difficult to converge, or increase slowly and are difficult to stop early.

D Efficiency Comparison

Dataset	DIN	Caser	GRU4REC	DIEN	SLi-Rec	SURGE
Taobao	22.65m	23.66m	26.78m	18.74m	27.82m	14.96m
Kuaishou	20.59m	120.26m	73.35m	28.47m	28.84m	22.86m

Total training time until convergence of baselines on two real-world datasets, where *m* indicates minutes.

Except for the non-sequential model of DIN, SURGE's efficiency improvement compared with all baselines is more than 20%.

- SURGE compresses the sequence before feeding the embedded sequence into the recurrent neural network, which greatly reduces the number of recurrent steps.
- Since most of the noise is filtered, the pooled sequence only contains the core interest, which will undoubtedly help speed up the model's convergence.

Design choices for interest evolution

SURGE's third advantage is that the framework can bring benefits to some existing methods.

 Modeling on the compressed sequence will significantly reduce the difficulty of capturing user interests.

Conclusion & Future Work

Conclusion

- We approach sequential recommendation from a new perspective.
- We propose to aggregate implicit signals into explicit ones by designing graph neural network-based models on constructed item-item interest graphs.
- We design dynamic-pooling to filter and reserve activated core preferences for recommendation.
- Future Work
 - We plan to use different behaviors to explore fine-grained multiple interactions from noisy historical sequences.

Recent advances of GNN-based RecSys

Bundle recommendation with graph convolutional networks. Chang, J., Gao, C., He, X., Jin, D., & Li, Y. SIGIR 2020

What is a bundle?

Nursery Bundle

Suit Bundle

Computer Bundle

App Bundle

Movie Bundle

Game Bundle

Background

 Bundle recommendation aims to recommend bundle of items for a user to consume as a whole.

The prevalence of bundled items on e-commerce and content platforms makes it become an important task.

а

Challenges

Model

- The attractiveness of a bundle depends on its items.
- The users need to be satisfied with most items in a bundle.
- The items matching degree will affect the user's choice.

Challenges

🛛 Data

- On the existing platforms, the item is still the main form to buy.
- The number of bundles that the user has interacted with is limited.
- There is a sparser interaction between the user and bundle.

Problem Definition

- □ Input:
 - user-bundle interaction records
 - user-item interaction records
 - bundle-item affiliation information
- Output:
 - user-bundle interaction probability

Limitations of Existing works

- 1. Separated modeling of two affiliated entities.
- reuse model parameters

share model parameters

It is difficult to balance the weights of the main task and auxiliary task.

Limitations of Existing works

2. Substitution of bundles is not considered.

 They only consider the correlation between items in a bundle to enhance the item task.

The association between the bundles as the recommended target is even more critical.

Limitations of Existing works

3. Decision-making is ignored in bundle scenarios.

 Even though a user likes most items in a bundle, but may refuse the bundle.

 For two highly similar bundles, the key to the user's final selection is non-overlapping parts.

BGCN Model Framework

□ Heterogeneous Graph Construction

Solve Limitation 1: Separated modeling of two affiliated entities.

BGCN Model Framework

□ Levels Propagation

Solve Limitation 1 and Limitation 2: Substitution of bundles is not considered.

BGCN Model Framework

Training with Hard Negatives

Solve Limitation 3: Decision-making is ignored in bundle scenarios.

□ Heterogeneous Graph Construction

Interaction Relation an observed link means **user** *u* **once purchased bundle** *b* **or item** *i*. $b_1 \\ b_2 \\ i_4 \\ i_5$

Affiliation Relation an observed link means **bundle** *b* **contains item** *i*.

• Our target:

Limitation 1 is addressed!

- predict any possible unobserved links between u and b.
- e.g., will user 1 interact with bundle 2?

Limitation 2 is addressed!

Prediction

- propagate iteratively for *L* times;
- concatenate L layers' embeddings.

$$\mathbf{p}_{u,1}^* = \mathbf{p}_{u,2}^{(0)} || \cdots || \mathbf{p}_{u,1}^{(L)}, \quad \mathbf{r}_{b,1}^* = \mathbf{r}_{b,1}^{(0)} || \cdots || \mathbf{r}_{b,1}^{(L)},$$

$$\mathbf{p}_{u,2}^* = \mathbf{p}_{u,2}^{(0)} || \cdots || \mathbf{p}_{u,2}^{(L)}, \quad \mathbf{r}_{b,2}^* = \mathbf{r}_{b,2}^{(0)} || \cdots || \mathbf{r}_{b,2}^{(L)}.$$

combine the information from different depths

Prediction

- adopt inner product
- combine bundle and item levels

$$\hat{y}_{ub} = \mathbf{p}_{u,1}^* \mathbf{r}_{b,1}^* + \mathbf{p}_{u,2}^* \mathbf{r}_{b,2}^*.$$

81

Training with Hard Negatives

bundles contain more items and have higher prices users are often cautious to avoid unnecessary risks

Identify Item Level Hard Negatives

- Even though a user likes most items in a bundle,
- but may refuse it because of the existence of one disliked item.

Training with Hard Negatives

bundles contain more items and have higher prices users are often cautious to avoid unnecessary risks

Identify Bundle Level Hard Negatives

- For two highly similar bundles,
- the key to the user's final selection is their non-overlapping parts.

Training with Hard Negatives

bundles contain more items and have higher prices

users are often cautious to avoid unnecessary risks.

Training

Limitation 3 is addressed!

$$\text{Loss} = \sum_{(u, b, c) \in Q} -\ln\sigma(\hat{y}_{ub} - \hat{y}_{uc}) + \beta \cdot \|\Theta\|^2,$$

$$Q=\{(u,b,c)|(u,b)\in\mathcal{Y}^+,(u,c)\in\mathcal{Y}^-\}$$

- Bayesian Personalized Ranking pairwise learning.
- To prevent over-fitting, we adopt L2 regularization.
- After the model converges, the hard-negative samples are selected with a certain probability(80%) for training.

Datasets

Two real-world datasets

Dataset	#U	#I	#B	#U-I	#U-B	#Avg. I in B
Netease	18,528	123,628	22,864	1,128,065	302,303	77.80
Youshu	8,039	32,770	4,771	138,515	51,377	37.03

□ Top-K Evaluation Metrics:

Recall@K and NDCG@K

Baseline

Model	Bundle Level	Item Level	Graph	Propagation
MFBPR	\checkmark			
GCN-BG	\checkmark		\checkmark	
GCN-TG	\checkmark	\checkmark	\checkmark	
NGCF-BG	\checkmark		\checkmark	
NGCF-TG	\checkmark	\checkmark	\checkmark	
DAM	\checkmark	\checkmark		

Datasets

Two real-world datasets

Dataset	#U	#I	#B	#U-I	#U-B	#Avg. I in B
Netease	18,528	123,628	22,864	1,128,065	302,303	77.80
Youshu	8,039	32,770	4,771	138,515	51,377	37.03

□ Top-K Evaluation Metrics:

Recall@K and NDCG@K

Baseline

Model	Bundle Level	Item Level	Graph	Propagation
MFBPR	\checkmark			
GCN-BG	\checkmark		\checkmark	<i>u</i>
GCN-TG	\checkmark	\checkmark	\checkmark	
NGCF-BG	\checkmark		\checkmark	
NGCF-TG	\checkmark	\checkmark	\checkmark	b
DAM	\checkmark	\checkmark		

Datasets

Two real-world datasets

Dataset	#U	#I	#B	#U-I	#U-B	#Avg. I in B
Netease	18,528	123,628	22,864	1,128,065	302,303	77.80
Youshu	8,039	32,770	4,771	138,515	51,377	37.03

□ Top-K Evaluation Metrics:

Recall@K and NDCG@K

Baseline

Model	Bundle Level	Item Level	Graph	Propagation
MFBPR	\checkmark			
GCN-BG	\checkmark		\checkmark	u
GCN-TG	\checkmark	\checkmark	\checkmark	
NGCF-BG	\checkmark		\checkmark	
NGCF-TG	\checkmark	\checkmark	\checkmark	i b
DAM	\checkmark	\checkmark		

			Net	ease			Youshu					
Method	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
MF-BPR	0.0355	0.0181	0.0600	0.0246	0.0948	0.0323	0.1959	0.1117	0.2735	0.1320	0.3710	0.1543
GCN-BG	0.0370	0.0189	0.0617	0.0255	0.1000	0.0342	0.1982	0.1141	0.2661	0.1322	0.3633	0.1541
GCN-TG	0.0402	0.0204	0.0657	0.0272	0.1051	0.0362	0.2032	0.1175	0.2770	0.1371	0.3804	0.1605
NGCF-BG	0.0395	0.0207	0.0646	0.0274	0.1021	0.0359	0.1985	0.1143	0.2658	0.1324	0.3542	0.1524
NGCF-TG	0.0384	0.0198	0.0636	0.0266	0.1015	0.0350	0.2119	0.1165	0.2761	0.1343	0.3743	0.1561
DAM	0.0411	0.0210	0.0690	0.0281	0.1090	0.0372	0.2082	0.1198	0.2890	0.1418	0.3915	0.1658
BGCN	0.0491	0.0258	0.0829	0.0346	0.1304	0.0453	0.2347	0.1345	0.3248	0.1593	0.4355	0.1851
% Improv.	19.67%	22.89%	20.17%	23.18%	19.65%	21.76%	10.77%	12.22%	12.36%	12.33%	11.23%	11.62%

Table 2: Performance comparisons on two real-world datasets with six baselines

1. Our proposed BGCN achieves the best performance.

		Netease						Youshu				
Method	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
MF-BPR	0.0355	0.0181	0.0600	0.0246	0.0948	0.0323	0.1959	0.1117	0.2735	0.1320	0.3710	0.1543
GCN-BG	0.0370	0.0189	0.0617	0.0255	0.1000	0.0342	0.1982	0.1141	0.2661	0.1322	0.3633	0.1541
GCN-TG	0.0402	0.0204	0.0657	0.0272	0.1051	0.0362	0.2032	0.1175	0.2770	0.1371	0.3804	0.1605
NGCF-BG	0.0395	0.0207	0.0646	0.0274	0.1021	0.0359	0.1985	0.1143	0.2658	0.1324	0.3542	0.1524
NGCF-TG	0.0384	0.0198	0.0636	0.0266	0.1015	0.0350	0.2119	0.1165	0.2761	0.1343	0.3743	0.1561
DAM	0.0411	0.0210	0.0690	0.0281	0.1090	0.0372	0.2082	0.1198	0.2890	0.1418	0.3915	0.1658
BGCN	0.0491	0.0258	0.0829	0.0346	0.1304	0.0453	0.2347	0.1345	0.3248	0.1593	0.4355	0.1851
% Improv.	19.67%	22.89%	20.17%	23.18%	19.65%	21.76%	10.77%	12.22%	12.36%	12.33%	11.23%	11.62%

Table 2: Performance comparisons on two real-world datasets with six baselines

1. Our proposed BGCN achieves the best performance.

2. Graph models have advantages but not enough.

		Netease						Youshu				
Method	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
MF-BPR	0.0355	0.0181	0.0600	0.0246	0.0948	0.0323	0.1959	0.1117	0.2735	0.1320	0.3710	0.1543
GCN-BG	0.0370	0.0189	0.0617	0.0255	0.1000	0.0342	0.1982	0.1141	0.2661	0.1322	0.3633	0.1541
GCN-TG	0.0402	0.0204	0.0657	0.0272	0.1051	0.0362	0.2032	0.1175	0.2770	0.1371	0.3804	0.1605
NGCF-BG	0.0395	0.0207	0.0646	0.0274	0.1021	0.0359	0.1985	0.1143	0.2658	0.1324	0.3542	0.1524
NGCF-TG	0.0384	0.0198	0.0636	0.0266	0.1015	0.0350	0.2119	0.1165	0.2761	0.1343	0.3743	0.1561
DAM	0.0411	0.0210	0.0690	0.0281	0.1090	0.0372	0.2082	0.1198	0.2890	0.1418	0.3915	0.1658
BGCN	0.0491	0.0258	0.0829	0.0346	0.1304	0.0453	0.2347	0.1345	0.3248	0.1593	0.4355	0.1851
% Improv.	19.67%	22.89%	20.17%	23.18%	19.65%	21.76%	10.77%	12.22%	12.36%	12.33%	11.23%	11.62%

Table 2: Performance comparisons on two real-world datasets with six baselines

1. Our proposed BGCN achieves the best performance.

- 2. Graph models have advantages but not enough.
- 3. More input does not always mean better performance.

		Netease						Youshu				
Method	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
MF-BPR	0.0355	0.0181	0.0600	0.0246	0.0948	0.0323	0.1959	0.1117	0.2735	0.1320	0.3710	0.1543
GCN-BG	0.0370	0.0189	0.0617	0.0255	0.1000	0.0342	0.1982	0.1141	0.2661	0.1322	0.3633	0.1541
GCN-TG	0.0402	0.0204	0.0657	0.0272	0.1051	0.0362	0.2032	0.1175	0.2770	0.1371	0.3804	0.1605
NGCF-BG	0.0395	0.0207	0.0646	0.0274	0.1021	0.0359	0.1985	0.1143	0.2658	0.1324	0.3542	0.1524
NGCF-TG	0.0384	0.0198	0.0636	0.0266	0.1015	0.0350	0.2119	0.1165	0.2761	0.1343	0.3743	0.1561
DAM	0.0411	0.0210	0.0690	0.0281	0.1090	0.0372	0.2082	0.1198	0.2890	0.1418	0.3915	0.1658
BGCN	0.0491	0.0258	0.0829	0.0346	0.1304	0.0453	0.2347	0.1345	0.3248	0.1593	0.4355	0.1851
% Improv.	19.67%	22.89%	20.17%	23.18%	19.65%	21.76%	10.77%	12.22%	12.36%	12.33%	11.23%	11.62%

Table 2: Performance comparisons on two real-world datasets with six baselines

interaction or affiliation?
 i belongs to b ?

i belongs to *b* ? *b* belongs to *i* ?

Our special designs to make graph neural network work in bundle task is necessary.

3. More input does not always mean better performance.

Ablation Study

- Levels Propagation
 - 1) perform propagation at only the item level;
 - 2) perform propagation at only the bundle level;
 - 3) perform propagation at both levels.

		Net	ease	Youshu		
Mo	del	Recall@40	NDCG@40	Recall@40	NDCG@40	
Levels 1	Item Level	0.0121	0.0046	0.0786	0.0419	
Propagation	Bundle Level	0.0685	0.0284	0.2805	0.1387	
riopagation	I&B Levels	0.0749	0.0317	0.3124	0.1425	

- Ablation Study
 - Levels Propagation
 - B2B Propagation
 - 1) bundle level propagation without *b2b*;
 - 2) bundle level propagation with unweighted *b2b*;
 - 3) bundle level propagation with weighted *b2b*.

Model		Netease		Youshu	
		Recall@40	NDCG@40	Recall@40	NDCG@40
B2B Propagation	No B2B	0.0708	0.0297	0.2866	0.1400
	Unweighted B2B	0.0738	0.0312	0.3040	0.1418
	Unweighted B2B Weighted B2B	0.0749	0.0317	0.3124	0.1425

Table 3: Ablation study of the key designs

- Ablation Study
 - Levels Propagation
 - B2B Propagation
 - Hard-negative sample
 - 1) train without hard samples;
 - 2) train with hard samples at the item level;
 - 3) train with hard samples at the bundle level;
 - 4) train with hard samples at both levels.

Model		Netease		Youshu	
		Recall@40	NDCG@40	Recall@40	NDCG@40
	No Hard	0.0749	0.0317	0.3124	0.1425
Hard-negative Sample	Item Level	0.0807	0.0343	0.3235	0.1573
	Bundle Level	0.0816	0.0343	0.3240	0.1581
	I&B Levels	0.0829	0.0346	0.3248	0.1593

Table 3: Ablation study of the key designs

□ Impact of Data Sparsity

Steady performance improvement achieved by BGCN

Conclusion

- We propose a graph-based solution for bundle recommendation which re-constructs the two kinds of interaction and an affiliation into the graph.
- With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics.
- We do experiments on two real-world datasets to demonstrate the superiority of our model.

Recent advances of GNN-based RecSys

Multi-behavior recommendation with graph convolutional networks. Jin, B., Gao, C., He, X., Jin, D., & Li, Y. SIGIR 2020

Background

• Traditional recommender system aims to give recommendation for one target behavior

Background

• Platform can collect users' multi-behavior data

- Recommender systems only utilizing target behavior record suffers from data sparsity and cold-start issue
 - The auxiliary multi-behavior data can help alleviate the issue

Problem Definition

- Input:
 - User-item interaction data of T types of behaviors
- Output:
 - User-item interaction probability under target behavior

Challenge I: Behavior Strength

- Behavior-level
 - There may be intensity difference between behaviors
 - Behavior intensity is vague

Challenge2: Behavior Semantics

- Item-level
 - Item relation is diverse among various types of behavior
 - Items may be complementary or replaceable or ...

Existing Method

- Methods
 - Sampling based: MCBPR, BPRH,...
 - Multi-task based: CMF, NMTR, ...

- Behavior Strength:
 - They must assume an artificial behavior-strength sequence (however, behaviors' strength may be vague)
- Behavior Semantics:
 - Not considered at all

Methodology: Our MBGCN Model

- Why we use GCN?
 - Capture CF effect
 - Extract High-order information in multi-behavior data

(a) U-I Interaction Graph

(b) Local Graph of u_1

Methodology: Our MBGCN Model

- Graph Construction
- Nodes: user, item
- Edges:
 - user-t-item (t represents a type of behavior)
- Meta-path:
 - item-t-user-t-item (t represents a type of behavior)

Methodology: Our MBGCN Model

- Embedding layer
 - Convert user/item one-hot vector to user/item embedding

$$p_{u_k} = \boldsymbol{P} \cdot ID_k^U, \quad \boldsymbol{q}_{i_j} = \boldsymbol{Q} \cdot ID_j^V$$

- Embedding layer Joint scoring item-item Propagation
- Behavior-aware User-Item Propagation Layer
 - Item->User embedding propagation based on behavior types

- Embedding layer Joint scoring item-item Propagation
- Behavior-aware User-Item Propagation Layer
 - Behavior importance calculation for each user

- Embedding layer Joint scoring item-item Propagation
- Behavior-aware User-Item Propagation Layer
 - User->Item embedding propagation

Capture user->item CF signal

$$q_i^{(l+1)} = W^{(l)} \cdot \operatorname{aggregate}(p_j^{(l)} | j \in N_r^U(i))$$

r is the target behavior

- Behavior-aware Item-Item Propagation Layer
 - Item->Item embedding propagation based on behavior types

Item node will receive information from it's neighbor item nodes

Solve Challenge2 by introducing item-item propagation
Our MBGCN Model

Joint Prediction

 $y_1(u,i) = p_u^{*T} \cdot q_i^*$

• Whole model

- Dataset
 - Two real-world datasets collected from e-commerce platform Dataset Users Items purchase cart collect click
 - Tmall41,73811,953255,5861,996221,5141,813,498Beibei21,7167,977304,576642,622-2,412,586
- Evaluation protocols
 - Top-K evaluation with two metrics Recall and NDCG
- Baseline
 - Single-behavior models:
 - BPR-MF(UAI09), NeuMF(WWW17), GraphSAGE-OB(NeurIPs17), NGCF-OB(SIGIR19),
 - Multi-behavior models:
 - NMTR(ICDE19), MC-BPR(RecSys16), GraphSAGE-MB(NeurIPs17), NGCF-MB(SIGIR19), RGCN(ESWC2018) 114

• Overall Comparison

• Tmall

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
	MF-BPR	0.02331	0.01306	0.03161	0.01521	0.04239	0.01744	0.05977	0.02049
On a habarian	NCF	0.02507	0.01472	0.03319	0.01683	0.04502	0.01931	0.06352	0.02252
One-behavior	GraphSAGE-OB	0.01993	0.01157	0.02521	0.01296	0.03368	0.01474	0.04617	0.01693
	NGCF-OB	0.02608	0.01549	0.03409	0.01757	0.04612	0.02010	0.06415	0.02324
	MCBPR	0.02299	0.01344	0.03178	0.01558	0.04360	0.01813	0.06190	0.02132
	NMTR	0.02732	0.01445	0.04130	0.01831	0.06391	0.02279	0.09920	0.02891
Multi-behavior	GraphSAGE-MB	0.02094	0.01223	0.02805	0.01406	0.03804	0.01616	0.05351	0.01887
Multi-Denavior	NGCF-MB	0.03076	0.01754	0.04196	0.02042	0.05857	0.02389	0.08408	0.02833
	RGCN	0.01814	0.00955	0.02627	0.01165	0.03877	0.01426	0.05749	0.01750
	MBGCN	0.04006	0.02088	0.05797	0.02548	0.08348	0.03079	0.12091	0.03730
	Improvement	30.23%	19.04%	37.04%	24.78%	24.91%	28.88%	8.90%	26.40%

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

• Overall Comparison

• Beibei

Table 3: Comparisons on Beibei and improvement comparing with the best baseline.

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
	MF-BPR	0.03873	0.02286	0.05517	0.02676	0.08984	0.03388	0.14137	0.04258
One-behavior	NCF	0.04209	0.02394	0.05609	0.02579	0.09118	0.03410	0.15426	0.04022
One-benavior	GraphSAGE-OB	0.034536	0.01728	0.06907	0.02594	0.11567	0.03547	0.18626	0.04747
	NGCF-OB	0.04112	0.02199	0.06336	0.02755	0.11051	0.03712	0.19524	0.05153
	MCBPR	0.03914	0.02264	0.04950	0.02525	0.09592	0.03467	0.15422	0.04462
	NMTR	0.03628	0.01901	0.06239	0.02559	0.10683	0.03461	0.18907	0.04855
Malt: Laborian	GraphSAGE-MB	0.04204	0.02267	0.05862	0.02679	0.09707	0.03451	0.18272	0.04911
Multi-behavior	NGCF-MB	0.04241	0.02415	0.06152	0.02893	0.10370	0.03741	0.01771	0.04987
	RGCN	0.04204	0.02051	0.06354	0.02591	0.09859	0.03309	0.16121	0.04363
	MBGCN	0.04825	0.02446	0.07354	0.03077	0.11926	0.04005	0.20201	0.05409
	Improvement	13.77%	1.28%	11.76%	3.85%	7.68%	3.30%	6.58%	3.84%

Overall Comparison

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
	MF-BPR	0.02331	0.01306	0.03161	0.01521	0.04239	0.01744	0.05977	0.02049
One-behavior	NCF	0.02507	0.01472	0.03319	0.01683	0.04502	0.01931	0.06352	0.02252
One-Denavior	GraphSAGE-OB	0.01993	0.01157	0.02521	0.01296	0.03368	0.01474	0.04617	0.01693
	NGCF-OB	0.02608	0.01549	0.03409	0.01757	0.04612	0.02010	0.06415	0.02324
	MCBPR	0.02299	0.01344	0.03178	0.01558	0.04360	0.01813	0.06190	0.02132
	NMTR	0.02732	0.01445	0.04130	0.01831	0.06391	0.02279	0.09920	0.02891
Multi-behavior	GraphSAGE-MB	0.02094	0.01223	0.02805	0.01406	0.03804	0.01616	0.05351	0.01887
Multi-Denavior	NGCF-MB	0.03076	0.01754	0.04196	0.02042	0.05857	0.02389	0.08408	0.02833
	RGCN	0.01814	0.00955	0.02627	0.01165	0.03877	0.01426	0.05749	0.01750
	MBGCN	0.04006	0.02088	0.05797	0.02548	0.08348	0.03079	0.12091	0.03730
	Improvement	30.23%	19.04%	37.04%	24.78%	24.91%	28.88%	8.90%	26.40%

Table 3: Comparisons on Beibei and improvement comparing with the best baseline.

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
	MF-BPR	0.03873	0.02286	0.05517	0.02676	0.08984	0.03388	0.14137	0.04258
One-behavior	NCF	0.04209	0.02394	0.05609	0.02579	0.09118	0.03410	0.15426	0.04022
One-benavior	GraphSAGE-OB	0.034536	0.01728	0.06907	0.02594	0.11567	0.03547	0.18626	0.04747
	NGCF-OB	0.04112	0.02199	0.06336	0.02755	0.11051	0.03712	0.19524	0.05153
	MCBPR	0.03914	0.02264	0.04950	0.02525	0.09592	0.03467	0.15422	0.04462
	NMTR	0.03628	0.01901	0.06239	0.02559	0.10683	0.03461	0.18907	0.04855
Multi-behavior	GraphSAGE-MB	0.04204	0.02267	0.05862	0.02679	0.09707	0.03451	0.18272	0.04911
Multi-Denavior	NGCF-MB	0.04241	0.02415	0.06152	0.02893	0.10370	0.03741	0.01771	0.04987
	RGCN	0.04204	0.02051	0.06354	0.02591	0.09859	0.03309	0.16121	0.04363
	MBGCN	0.04825	0.02446	0.07354	0.03077	0.11926	0.04005	0.20201	0.05409
	Improvement	13.77%	1.28%	11.76%	3.85%	7.68%	3.30%	6.58%	3.84%

Observation1: Our model performs the best

Overall Comparison

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
	MF-BPR	0.02331	0.01306	0.03161	0.01521	0.04239	0.01744	0.05977	0.02049
One haberian	NCF	0.02507	0.01472	0.03319	0.01683	0.04502	0.01931	0.06352	0.02252
One-behavior	GraphSAGE-OB	0.01993	0.01157	0.02521	0.01296	0.03368	0.01474	0.04617	0.01693
	NGCF-OB	0.02608	0.01549	0.03409	0.01757	0.04612	0.02010	0.06415	0.02324
	MCBPR	0.02299	0.01344	0.03178	0.01558	0.04360	0.01813	0.06190	0.02132
	NMTR	0.02732	0.01445	0.04130	0.01831	0.06391	0.02279	0.09920	0.02891
Multi-behavior	GraphSAGE-MB	0.02094	0.01223	0.02805	0.01406	0.03804	0.01616	0.05351	0.01887
Multi-Denavior	NGCF-MB	0.03076	0.01754	0.04196	0.02042	0.05857	0.02389	0.08408	0.02833
	RGCN	0.01814	0.00955	0.02627	0.01165	0.03877	0.01426	0.05749	0.01750
	MBGCN	0.04006	0.02088	0.05797	0.02548	0.08348	0.03079	0.12091	0.03730
	Improvement	30.23%	19.04%	37.04%	24.78%	24.91%	28.88%	8.90%	26.40%

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

Observation2: Multi-behavior models perform better than single-behavior models

- Ablation Study on Model structure
 - Ablation study of user-item propagation weight

_	Model	Recall20	NDCG20	Recall40	NDCG40
-	$\alpha_{ur}=1$	0.04508	0.02068	0.06468	0.02476
	Uniform w	0.05586	0.02481	0.08265	0.03075
C	Learn-able w	0.05797	0.02548	0.08347	0.03079

Learn-able *w* is the best!

Ablation study of item-item propagation method

Model	Recall20	NDCG20	Recall40	NDCG40
No propagation	0.05575	0.02451	0.08212	0.02997
Only target	0.05632	0.02458	0.08112	0.03073
All behavior	0.05797	0.02548	0.08347	0.03079

It's reasonable to have item-item propagation based on all behavior!

- Cold-start Problem Study
 - Recommendation for cold-start user
 - Learn users' interest only from auxiliary behaviors

Our model can alleviate cold-start problem better!

• Hyper-parameter Study

Conclusion

- We approach the problem of multi-behavior recommendation.
- We develop a MBGCN method with *user-item propagation layer* and *item-item propagation layer* to address two major challenges on modeling *behavior strength* and *behavior semantics*.
- We do experiment on two real-world datasets to demonstrate the superiority of our MBGCN model.

Recent advances of GNN-based RecSys

DGCN: Diversified Recommendation with Graph Convolutional Networks. Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. WWW 2021

Background

- How to measure a recommender system?
 - accuracy, diversity, freshness, novelty...
- Diversity: dis-similarity among the recommended items

Background

- Having both accuracy and diversity is challenging
- Accuracy-Diversity dilemma

Goal: better trade-off between accuracy and diversity 126

Existing solutions

- Re-ranking (usually heuristics and greedy), e.g. MMR^{[1][2]}
- First accuracy, then diversity
 - Step 1: Generate candidates (accuracy)
 - Step 2: Re-rank candidates (diversify with some loss on accuracy)

$$MMR \stackrel{\text{def}}{=} Arg \max_{D_i \in R \setminus S} \left[\lambda(Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)) \right]$$

Accuracy and diversity are **decoupled**!

Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and producing summaries. In *Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval* (pp. 335-336).
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).

Challenges

- Insufficient diversity signals in matching models
- Upstream matching models are unaware of diversification
- Sample bias with respect to item category
- Dominant categories have much more samples than disadvantaged categories
- Accuracy-diversity dilemma
- Higher diversity is often at the cost of lower accuracy

- Diversified recommendation with Graph Convolutional Networks (DGCN)
- Challenge 1: insufficient diversity signals in matching models
- **Our proposal**: perform diversification with GCN
- Benefit 1: diversify during matching instead of diversify after matching (challenge 1 addressed)
- Benefit 2: higher order neighbors tend to cover more diverse items

- Diversified recommendation with Graph Convolutional Networks (DGCN)
- Challenge 2: sample bias with respect to item category
- Our proposal:
 - Diversified neighbor discovering and negative sampling
 - Intuition: balance dominant and disadvantaged category
 - Adversarial learning
 - Intuition: remove category information from item embedding

- Diversified recommendation with Graph Convolutional Networks (DGCN)
- Challenge 3: Accuracy-diversity dilemma
- Our proposal:
 - Tunable neighbor discovering and negative sampling
 - Two hyper-parameters are introduced to perform trade-off between accuracy and diversity

- Diversified recommendation with Graph Convolutional Networks (DGCN)
- Diversify during matching with GCN
- Diversified neighbor discovering and negative sampling
- Adversarial learning

• Diversified neighbor discovering and negative sampling

select node neighbors and negative items randomly #neighbors (positive samples): clothes >> electronics #negative samples: clothes \approx electonics #recommended items: clothes >> electronics low diversity idea: select more electronics as neighbors and more clothes as negative items 133

• Diversified neighbor discovering

Algorithm 2 HistogramAndRebalance

INPUT: User node *u*'s neighbors $\mathcal{N}(u)$; item-category table *C*; rebalance weight α **OUTPUT:** Sample probability over node *v*'s neighbors *p*

1: $H \leftarrow \text{ComputeCategoryHistogram}(\mathcal{N}(v), \mathcal{C})$

- 2: for all node $i \in \mathcal{N}(u)$ do
- 3: $p(i) \leftarrow 1/H(C(i))$ 4: $p(i) \leftarrow p(i)^{\alpha}$
- 5: **end for**

6:
$$p \leftarrow \text{Normalize}(p)$$

- 7: **return** *p*
- 1. Compute category histogram for each user's interacted items
- 2. Take inverse of the histogram to reweight each interacted item
- 3. Introduce α to perform trade-off (take exp to smooth)

• Diversified negative sampling

- 1. Select more negative items from positive categories
- 2. Introduce β to perform trade-off (sample probability)

- Adversarial learning
 - Capture only item-level preference

 Remove category-level preference Remove category information from

item embeddings!

We can not predict item category from the item embedding!

- Datasets
 - Taobao
 - Beibei
 - MSD
- Baselines
 - MMR^{[1][2]}
 - DUM^[3]
 - PMF + α + $\beta^{[4]}$
 - DPP^[5]
- Metrics
 - Accuracy: recall, hit ratio

dataset	users	items	categories	interactions
Taobao	82633	136710	3108	4230631
Beibei	19140	17196	110	265110
MSD	65269	40109	15	2423262

coverage: #recommended categories **entropy & gini index**: equality/fairness of different categories

• Diversity: coverage, entropy, gini index (lower is better)

 Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and producing summaries. In *Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval* (pp. 335-336).
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).

[3] Ashkan, A., Kveton, B., Berkovsky, S., & Wen, Z. (2015, January). Optimal Greedy Diversity for Recommendation. In IJCAI (Vol. 15, pp. 1742-1748).

[4] Sha, C., Wu, X., & Niu, J. (2016, January). A Framework for Recommending Relevant and Diverse Items. In IJCAI (Vol. 16, pp. 3868-3874).
[5] Chen, L., Zhang, G., & Zhou, H. (2017). Fast greedy map inference for determinantal point process to improve recommendation diversity. arXiv preprint arXiv:1709.05135.

- **RQ1:** How does the proposed method perform compared with other diversified recommendation algorithms?
- **RQ2:** What is the effect of each proposed component in DGCN?
- **RQ3:** How to perform trade-off between accuracy and diversity using DGCN?

• Overall Comparison

dataset			Taobao					Beibei		
metrics	recall	hit ratio	coverage	entropy	gini index	recall	hit ratio	coverage	entropy	gini index
MMR	0.0544	0.0453	74.5460	3.4931	0.5825	0.1097	0.1036	77.016	4.0184	0.4373
DUM	0.0495	0.0497	126.6621	4.1051	0.4587	0.0746	0.0724	84.3044	4.0389	0.4599
$PMF + \alpha + \beta$	0.0473	0.0435	125.5600	4.3725	0.4648	0.1092	0.1054	73.4675	3.7528	0.5127
DPP	0.0633	0.0485	79.1154	3.3904	0.6096	0.0751	0.0745	69.3416	3.7545	0.5078
DGCN	0.0776	0.0783	84.6685	3.5779	0.5583	0.1212	0.1278	71.8546	3.7149	0.5279

• The accuracy-diversity tradeoff exists widely

Overall Comparison

dataset			Taobao					Beibei		
metrics	recall	hit ratio	coverage	entropy	gini index	recall	hit ratio	coverage	entropy	gini index
MMR	0.0544	0.0453	74.5460	3.4931	0.5825	0.1097	0.1036	77.016	4.0184	0.4373
DUM	0.0495	0.0497	126.6621	4.1051	0.4587	0.0746	0.0724	84.3044	4.0389	0.4599
$PMF + \alpha + \beta$	0.0473	0.0435	125.5600	4.3725	0.4648	0.1092	0.1054	73.4675	3.7528	0.5127
DPP	0.0633	0.0485	79.1154	3.3904	0.6096	0.0751	0.0745	69.3416	3.7545	0.5078
DGCN	0.0776	0.0783	84.6685	3.5779	0.5583	0.1212	0.1278	71.8546	3.7149	0.5279

- The accuracy-diversity tradeoff exists widely
- It is more difficult to balance the two aspects for greedy algorithms

Overall Comparison

dataset			Taobao		Beibei					
metrics	recall	hit ratio	coverage	entropy	gini index	recall	hit ratio	coverage	entropy	gini index
MMR	0.0544	0.0453	74.5460	3.4931	0.5825	0.1097	0.1036	77.016	4.0184	0.4373
DUM	0.0495	0.0497	126.6621	4.1051	0.4587	0.0746	0.0724	84.3044	4.0389	0.4599
$PMF + \alpha + \beta$	0.0473	0.0435	125.5600	4.3725	0.4648	0.1092	0.1054	73.4675	3.7528	0.5127
DPP	0.0633	0.0485	79.1154	3.3904	0.6096	0.0751	0.0745	69.3416	3.7545	0.5078
DGCN	0.0776	0.0783	84.6685	3.5779	0.5583	0.1212	0.1278	71.8546	3.7149	0.5279

- The accuracy-diversity tradeoff exists widely
- It is more difficult to balance the two aspects for greedy algorithms
- Our proposed DGCN achieves a better overall performance

Overall Comparison

 DGCN attains a better overall performance considering both accuracy and diversity against state-of-the-art DPP method

• Study on DGCN

method	recall	coverage
DPP	0.0633	79.1154
GCN	0.1013	61.9111
Rebalance Neighbor Sampling	0.0939	71.2528
Boost Negative Sampling	0.0954	76.7391
Adversarial Learning	0.0846	79.0722
DGCN	0.0776	84.6685

Each component alone contributes to improve diversity

• Study on DGCN

method	recall	coverage
DPP	0.0633	79.1154
GCN	0.1013	61.9111
Rebalance Neighbor Sampling	0.0939	71.2528
Boost Negative Sampling	0.0954	76.7391
Adversarial Learning	0.0846	79.0722
DGCN	0.0776	84.6685

- Each component alone contributes to improve diversity
- Combining the three special designs achieves the most diverse recommendation

Trade-off between accuracy and diversity

• Trade-off is successfully achieved by tuning the two introduced hyper-parameters, α and β 146

Conclusion and Future Work

 We propose diversification during matching based on GCN, which attains better overall performance compared with existing diversification after matching approaches.
Better trade-off between accuracy and diversity can be effectively achieved by the proposed DGCN model.

- Future work
- Automate the process of neighbor discovering and negative sampling in DGCN and replace it with a learnable module.

- Background
- Motivations and Challenges of GNN-based RecSys
- Recent Advances of GNN-based RecSys
 - Part I Collaborative Filtering, Knowledge Graph-based RecSys
 - Part II Feature-based Sequential/Bundle/Multi-behavior/Diversified RecSys
- Open Problems and Future Directions

Open discussions

Go Deeper

- Requiring more efforts and explorations
- Efficiency on large-scale graphs
 - A concern in industrial deployment
- Hyper-graph
- Dynamic Graph

WSDM 2022 Tutorial

Thanks!

https://sites.google.com/view/gnn-recsys

Gao. et al. "Graph neural networks for recommender systems: Challenges, methods, and directions." *arXiv preprint arXiv:2109.12843* (2021).