

NUS-Tsinghua Centre for Extreme Search A Joint Research Collaboration Between NUS & Tsinghua University

TEM: Tree-enhanced Embedding Model for Explainable Recommendation

Xiang Wang¹, Xiangnan He¹, Fuli Feng¹, Liqiang Nie², Tat-Seng Chua¹

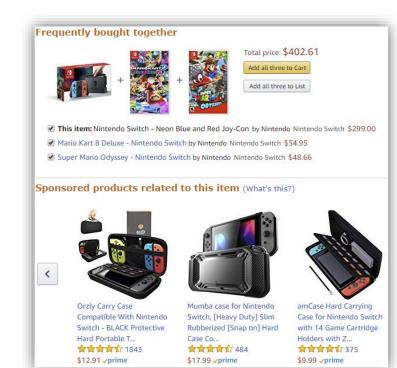
¹ National University of Singapore ² Shandong University Work presented in WWW 2018, Lyon, France

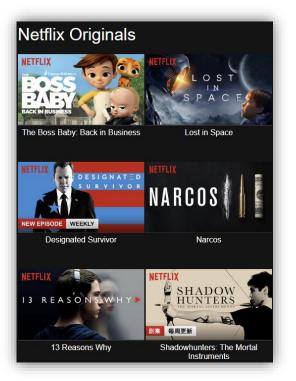
© Copyright NExT++. All Right Reserved.

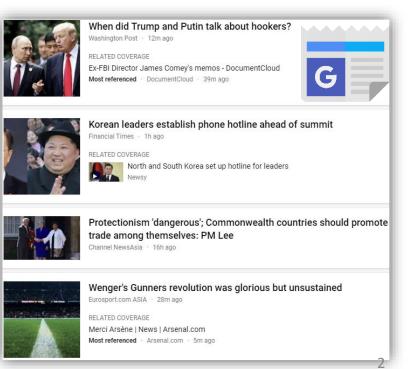
NE^X**T**⁺⁺ Value of Recommender Systems (RS)

Amazon: 35% sales from recommendations
Netflix: 80% TV shows discovered are recommended

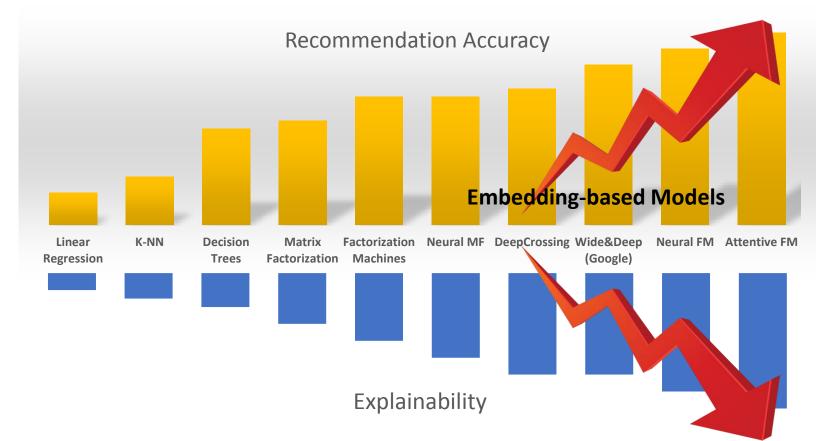
Google News: RS generates 38% more click-through







NE^{**X**}**T**⁺⁺ Trade-off of Accuracy & Explainability

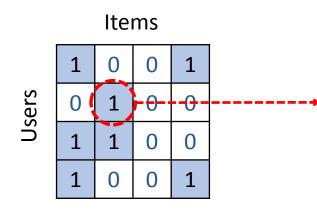


Our Goal:

- Explainable: be transparent in generating a recommendation & can identify the key rules for a prediction
- Accurate: achieve the same level or comparable performance as embeddingbased methods

NEXT⁺⁺ Embedding-based Models

Embedding-based Models: Learn latent factors for each feature (IDs & side Info)



User-Item Interactions

Matrix Factorization (MF)

Input: user ID, item ID Interaction: Inner Product

$$\hat{y}_{MF}(u,i) = b_0 + b_u + b_i + \mathbf{p}_u^\top \mathbf{q}_i$$

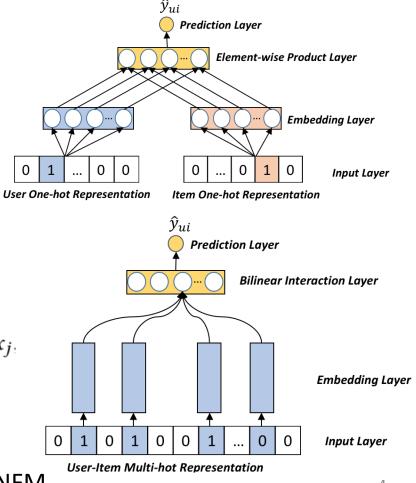
Factorization Machine (FM)

Input: user ID, item ID, side features ID Interaction: Element-wise Product

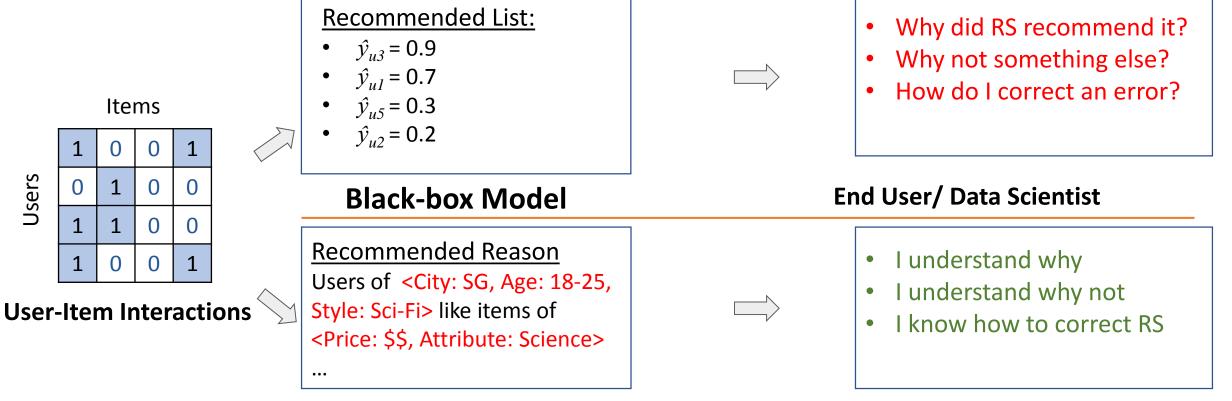
$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{t=1}^n w_t x_t + \sum_{t=1}^n \sum_{j=t+1}^n \mathbf{v}_t^\top \mathbf{v}_j \cdot x_t x_j$$

Neural Network Methods

NCF, Deep Crossing, Wide&Deep, DIN, NFM



NE^{**X**}**T**⁺⁺ Explainable Recommendation



Explainable Model

End User/ Data Scientist

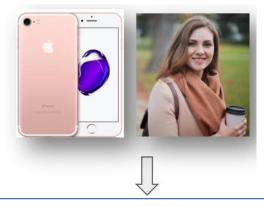
Transparency, Trust, Explainability, Scrutability

Cross Feature: combinatorial feature that crosses (or multiplies) multiple individual input features.

Why?

Higher-order feature interactions: e.g., [Age * Occupation *Gender]

Explicit decision rules

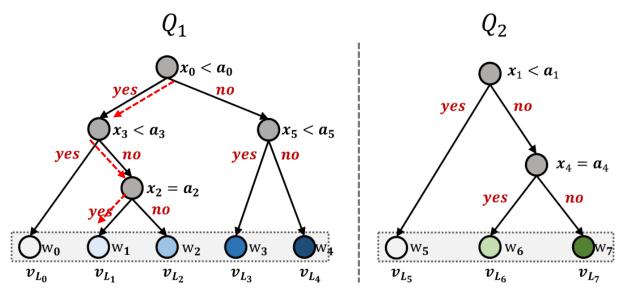


Users of <Gender=female & Age=20-25 & Income Level=\$8,000> tend to adopt items of <Color=Pink & Product=Apple>.

NT⁺⁺ Tree-based Methods

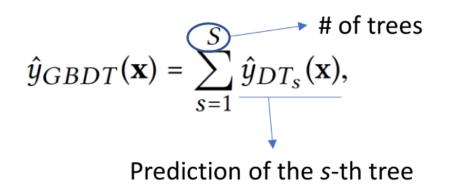
Decision Tree (DT):

- Each node splits a feature variable into two decision edges based on a value.
- A path from the root to a leaf -> a decision rule (like a cross feature).
- The leaf node -> the prediction value.



Forest (ensemble of trees)

Since a single tree may not be expressive enough, a typical way is to build a forest, i.e., an ensemble of additive trees



leaf node v_{L_2} represents $[x_0 < a_0] \& [x_3 \ge a_3] \& [x_2 \ne a_2]$

Next ++ Tree-based vs. Embedding-based Model

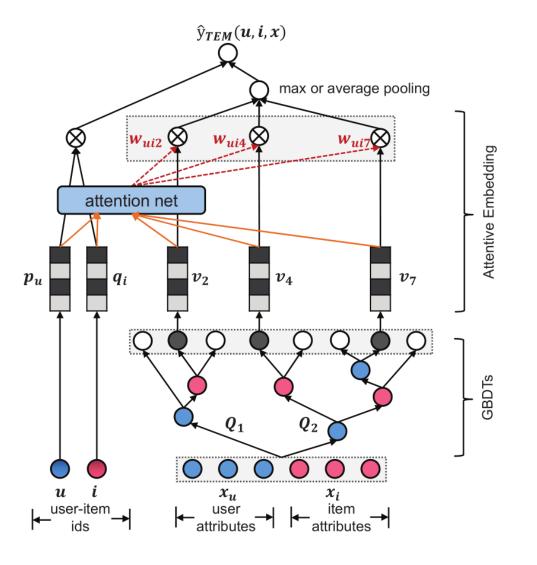
Tree-based Model (e.g., GBDT)	Embedding-based Model (e.g., DNN, FM)
+ Strong at continuous features	+ Strong at categorical features
+ Explainable	- Blackbox
+ Low serving cost	- High serving cost
- Weak generalization ability to unseen feature combinations.	+ Strong generalization ability to unseen feature combinations.

Why not combining the strengths of the two types of models?

NEXT ++ Tree-enhanced Embedding Model

Concrete Reasons: Explicitly discover effective cross features from rich side information of users & items

Explicit Decision Process: Estimate user-item matching score in an explainable way

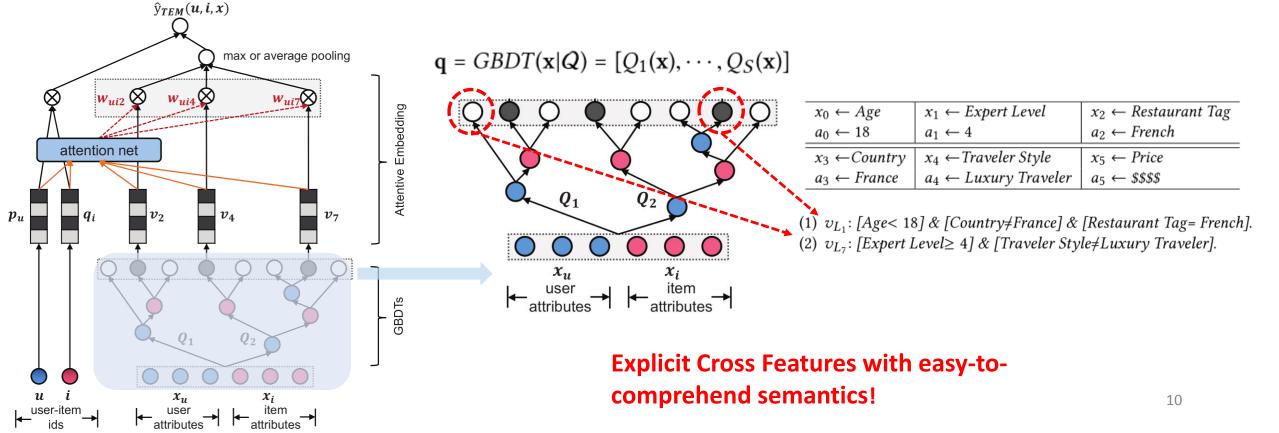


NEXT++ Constructing Cross Features

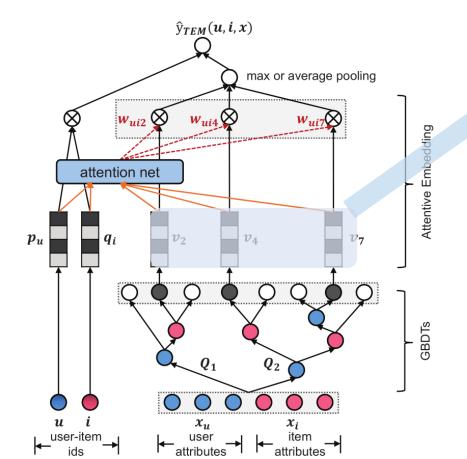
Traditional Solution: manually cross all values of feature variables

Our Solution: GBDT -> automatically identify useful cross features

We bulid GBDT on user attributes and item attributes.



Primary Consideration: seamlessly integrate cross features with embedding-based CF
Our Solution: embed them into user-item latent space



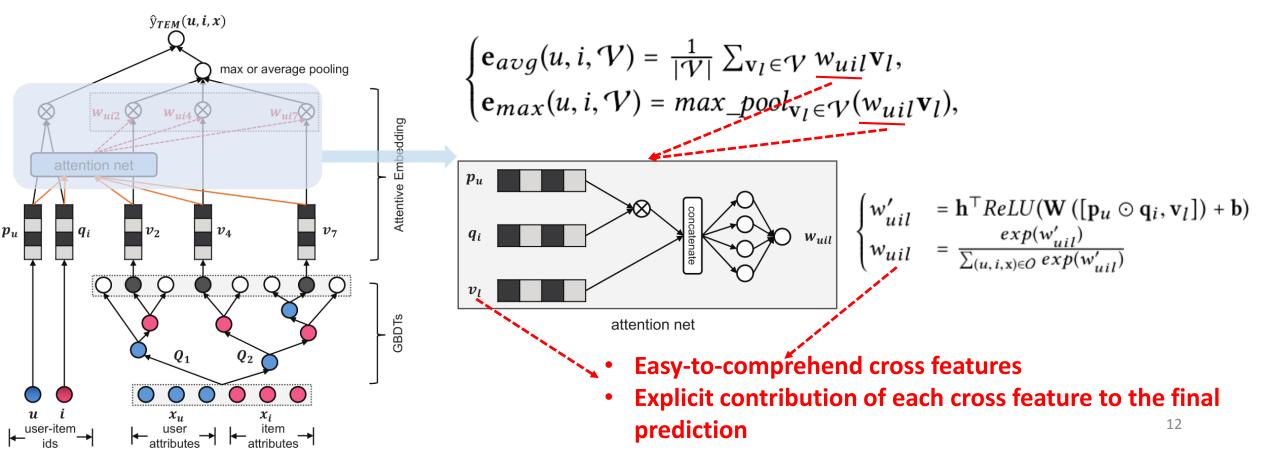
$$\mathbf{q} = GBDT(\mathbf{x}|\mathbf{Q}) = [Q_1(\mathbf{x}), \cdots, Q_S(\mathbf{x})].$$

Multi-hot encoding of cross-feature ID

 $\mathcal{V} = \{q_1 \mathbf{v}_1, \cdots, q_L \mathbf{v}_L\}$ Embedding for each cross-feature ID

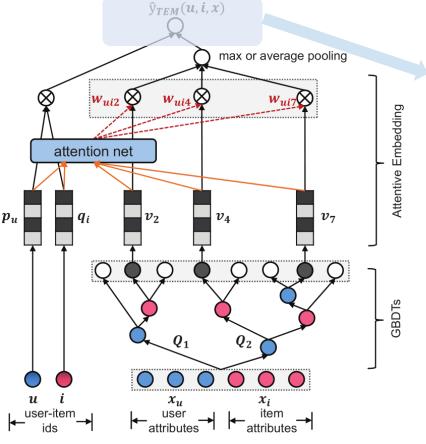
The correlations among cross features may be captured in the embedding space.

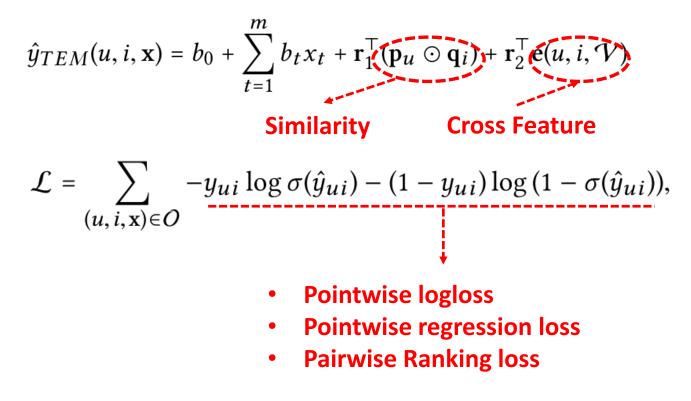
Primary Consideration: different cross features contribute differently for a prediction Solution: Attention Network



Primary Consideration: explicit decision process & similarity-based + cross featurebased explanation mechanism

Solution: Simple linear regression





OUTLINE

- Introduction
- Motivation
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

Research Questions:

RQ1: Compared with the state-of-the-art recsys methods, can TEM achieve comparable accuracy?

- RQ2: Can TEM make the recsys results easy-to-interpret by using cross features and the attention network?
- Tasks: Attraction Recommendation & Restaurant Recommendation
- Dataset: TripAdvisor

Table 2: Statistics of the datasets.	
--------------------------------------	--

Dataset	User#	User Feature#	Item#	Item Feature#	Interaction#
LON-A	16, 315	3,230	953	4,731	136, 978
NYC-R	15, 232	3,230	6,258	10, 411	129, 964

Table 3: Statistics of the side information, where the dimension of each feature is shown in parentheses.

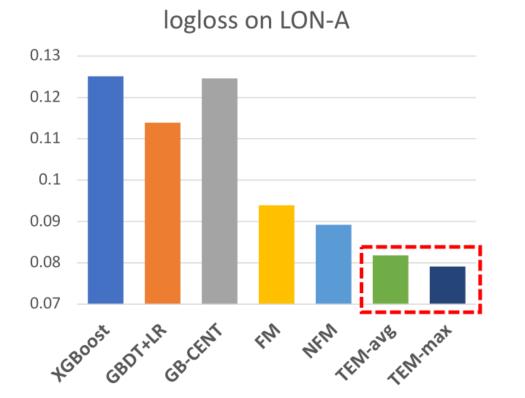
Side Information	Features (Category#)	
LON-A/NYC-R User Feature	Age (6), Gender (2), Expert Level (6), Traveler Styles (18), Country (126), City (3, 072)	
LON-A Attraction Feature	Attributes (89), Tags (4, 635), Rating (7)	
NYC-R Restaurant Feature	Attributes (100), Tags (10, 301), Price (3), Rating (7)	

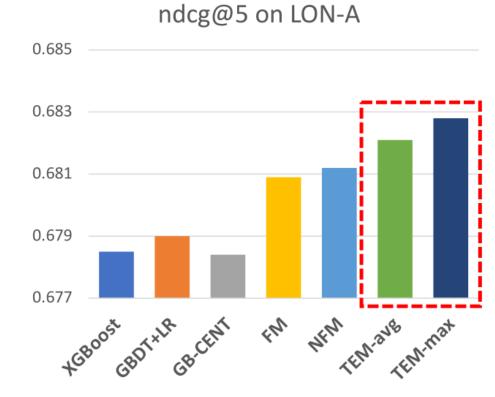
- ***XGBoost:** the state-of-the-art tree-based model
- GBDT+LR [ADKDD'14]: feeding the cross features extracted from GBDT into the logistic regression
- GB-CENT [WWW'17]: modeling categorical features with embedding-based model, numerical features with decision trees.
- FM: a generic embedding model that implicitly models all the second-order cross features
- **NFM [SIGIR'17]**: the state-of-the-art factorization model under the neural network framework

Evaluation Protocols:

- Iogloss: indicate the generalization ability of each model
- ndcg@k: reflect the top-k recommendation performance

NT⁺⁺ RQ1: Overall Performance Comparison



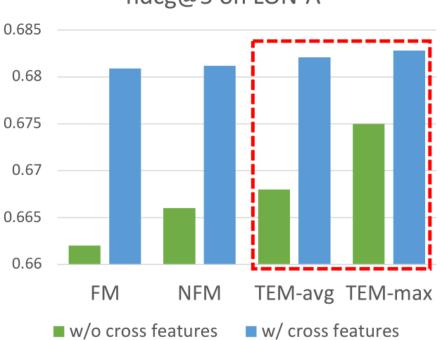


Observations:

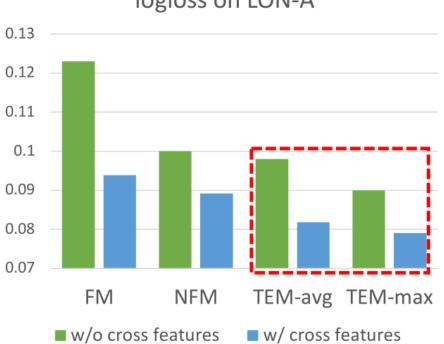
Comparable Expressiveness & Accuracy

- TEM achieves the best performance w.r.t. logloss.
- TEM achieves comparable ndcg@5 to NFM.

RQ1: Effect of Cross Feature Modeling



ndcg@5 on LON-A



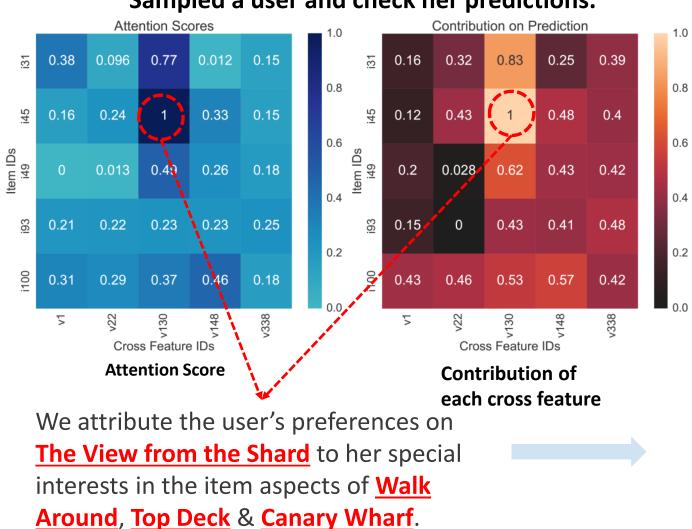
logloss on LON-A

Without cross feature modeling:

- All methods have worse performance
- TEM is still better than others, due to the utility of attention network

(can learn which features are more important for a user-item prediction).

RQ2: Case Study of Explainability



Sampled a user and check her predictions.

• V130: User Gender=*Female*] & [User Style=*Peace and Quiet Seeker*] \Rightarrow [Item Attribute=Sights & Landmarks] & [Item Tag=Walk Around] • V148: [User Age=30-40] & [User Country=USA] \Rightarrow [Item Tag= $Top \ Deck \&$ *Canary Wharf*

TEM can provide more informative explanations based on a user's preferred cross features.

- We proposed a tree-enhanced embedding method (TEM), which seamlessly combines the generalization ability of embedding-based models with the explainability of treebased models.
- Owing to the explicit cross features from tree-based part & the easy-to-interpret attention network, the whole prediction process of our solution is transparent & selfexplainable.

Future Work:

- 1. Jointly learn the tree-based and embedding-based
- 2. Relational reasoning over KG (symbolic logics) + Deep Learning
- 3. How to evaluate the quality of explanations?

NUS-Tsinghua Centre for Extreme Search A Joint Research Collaboration Between NUS & Tsinghua University

THANK YOU

NExT research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its IRC@SG Funding Initiative.